
HAL Id: hal-00492320
https://hal.science/hal-00492320v1

Preprint submitted on 15 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Universal Loop-Free Super-Stabilization
Lélia Blin, Stephane Rovedakis, Maria Potop-Butucaru, Sébastien Tixeuil

To cite this version:
Lélia Blin, Stephane Rovedakis, Maria Potop-Butucaru, Sébastien Tixeuil. Universal Loop-Free Super-
Stabilization. 2010. �hal-00492320�

https://hal.science/hal-00492320v1
https://hal.archives-ouvertes.fr

Universal Loop-Free Super-Stabilization

Lélia Blin4,2, Maria Potop-Butucaru1,2,3, Stephane Rovedakis4,5, and Sébastien
Tixeuil1,2

1 Univ. Pierre & Marie Curie - Paris 6, France
2 LIP6-CNRS UMR 7606, France

maria.gradinariu@lip6.fr, sebastien.tixeuil@lip6.fr
3 INRIA REGAL, France

4 Université d’Evry Val d’Essonne, France
lelia.blin@ibisc.univ-evry.fr, stephane.rovedakis@ibisc.univ-evry.fr

5 IBISC-EA 4526, France

Abstract. We propose an univesal scheme to design loop-free and super-
stabilizing protocols for constructing spanning trees optimizing any tree
metrics (not only those that are isomorphic to a shortest path tree).
Our scheme combines a novel super-stabilizing loop-free BFS with an
existing self-stabilizing spanning tree that optimizes a given metric. The
composition result preserves the best properties of both worlds: super-
stabilization, loop-freedom, and optimization of the original metric with-
out any stabilization time penalty. As case study we apply our composi-
tion mechanism to two well known metric-dependent spanning trees: the
maximum-flow tree and the minimum degree spanning tree.

1 Introduction

New distributed emergent networks such as P2P or sensor networks face high
churn (nodes and links creation or destruction) and various privacy and security
attacks that are not easily encapsulated in the existing distributed models. One
of the most versatile techniques to ensure forward recovery of distributed sys-
tems is that of self-stabilization [1,2,3]. A distributed algorithm is self-stabilizing
if after faults and attacks hit the system and place it in some arbitrary global
state, the system recovers from this catastrophic situation without external (e.g.
human) intervention in finite time. A recent trend in self-stabilizing research is to
complement the self-stabilizing abilities of a distributed algorithm with some ad-
ditional safety properties that are guaranteed when the permanent and intermit-
tent failures that hit the system satisfy some conditions. In addition to being self-
stabilizing, a protocol could thus also tolerate crash faults [4,5], nap faults [6,7],
Byzantine faults [8,9,10,11], a limited number of topology changes [12,13,14] and
sustained edge cost changes [15,16].

The last two properties are especially relevant when building optimized span-
ning trees in dynamic networks, since the cost of a particular edge and the net-
work topology are likely to evolve through time. If a spanning tree protocol
is only self-stabilizing, it may adjust to the new costs or network topology in

such a way that a previously constructed spanning tree evolves into a discon-
nected or a looping structure (of course, in the absence of network modifications,
the self-stabilization property guarantees that eventually a new spanning tree
is constructed). Now, a packet routing algorithm is loop free [17,18] if at any
point in time the routing tables are free of loops, despite possible modification
of the edge-weights in the graph (i.e., for any two nodes u and v, the actual
routing tables determines a simple path from u to v, at any time). The loop-free
property [15,16] in self-stabilization guarantees that, a spanning tree being con-
structed (not necessarily a “minimal” spanning tree for some metric), then the
self-stabilizing convergence to a “minimal” spanning tree maintains a spanning
tree at all times (obviously, this spanning tree is not “minimal” at all times).
The consequence of this safety property in addition to that of self-stabilization
is that the spanning tree structure can still be used (e.g. for routing) while
the protocol is adjusting, and makes it suitable for networks that undergo such
very frequent dynamic changes. In order to deal with the network churn, super-
stabilization captures the quality of services a tree stucture can offer during and
after a localized topological change. Super-stabilization [19] is an extension of
self-stabilization for dynamic settings. The idea is to provide some minimal guar-
antees (a passage predicate) while the system repairs after a topology change.
In the case of optimized spanning trees algorithms while converging to a correct
configuration (i.e. an optimized tree) after some topological change, the system
keeps offering the tree service during the stabilization time to all members that
have not been affected by this modification.

Related works Relatively few works investigate merging self-stabilization and
loop free routing, with the notable exception of [15,16,20]. In [15], Cobb and
Gouda propose a self-stabilizing algorithm which constructs spanning trees with
loop-free property. This algorithm allows to optimize general tree metrics from
a considered root, such as bandwidth, delay, distance, etc ... To this end, each
node maintains a value which reflects its cost from the root for the optimized
metric, for example the maximum amount of bandwith on its path to reach the
root. The basic idea is to allows a node to select a neighbor as its parent if this
one offers a better cost. To avoid loop creation, when the cost of its parent or
the edge-cost to its parent changed a propagation of information is started to
propagate the new value. A node can safely change its parent if its propagation
of information is ended. Thus, a node can not select one of its descendant as its
parent. This algorithm requires a upper bound on the network diameter known
to every participant to detect the presence of a cycle and to reset the states of
the nodes. Each node maintains its distance from the root and a cycle is detected
when the distance of a node is higher than the diameter upper bound.

Johnen and Tixeuil [16] propose another loop-free self-stabilizing algorithm
constructing spanning trees, which makes no assumption on the network. This
algorithm follows the same approach used in [15], that is using propagation
of information in the tree. As in [15], this second algorithm constructs trees
optimizing several metrics from a root, e.g., depth first search tree, breadth
first search tree, shortest path tree, etc. Since no upper bound on the network

diameter is used, when a cycle is present in the initial network state the protocol
continues the initiate propagation of information to grow the value of the nodes
in the cycle. The values of these nodes grow until the value of a node reaches a
threshold which is the value of a node out of the cycle. Thus, the node reaching
this threshold discover a neighbor which offers a better value and can select it to
break the cycle. When no cycle is present in the network, the system converges
to a correct state.

Also, both protocols use only a reasonable amount of memory (O(log n) bits
per node) and consider networks with static topology and dynamic edge costs.
However, the metrics that are considered in [15,16] are derivative of the short-
est path (distance graph) metric, that is considered a much easier task in a
distributed setting than that of tree metrics not based on distances, e.g., min-
imum spanning tree, minimum degree spanning tree, maximum leaf spanning
tree, etc. Indeed, the associated metric is locally optimizable [21], allowing es-
sentially locally greedy approaches to perform well. By contrast, some sort of
global optimization is needed for tree metrics not based on distances, which often
drives higher complexity costs and thus less flexibility in dynamic networks.

Recently, [20] proposed a loop-free self-stabilizing algorithm to solve the
minimum spanning tree problem for networks, assuming a static topology but
dynamic edge costs. None of the previously mentioned works can cope with
both dynamic edge changes (loop-freedom) and dynamic local topology changes
(super-stabilization). Also, previous works are generic only for local tree metrics,
while global tree metrics require ad hoc solutions.

Our contributions We propose a distributed generic scheme to transform exist-
ing self-stabilizing protocols that construct spanning tree optimizing an arbi-
trary tree metric (local or global), adding loop-free and super-stabilizing prop-
erties to the input protocol. Contrary to existing generic protocols [15,16], our
approach provides the loop-free property for any tree metric (global or local,
rather than only local). Our technique also adds super-stabilization, which the
previous works do not guarantee. Our scheme consists in composing a distributed
self-stabilizing spanning tree algorithm (established and proved to be correct for
a given metric) with a novel BFS construction protocol that is both loop-free
and super-stabilizing. The output of our scheme is a loop-free super-stabilizing
spanning tree optimizing the tree metric of the input protocol. Moreover, we
provide complexity analysis for the BFS construction in both static and dy-
namic settings. We examplify our scheme with two case study: the maximum
flow tree and the minimum degree spanning tree. In both cases, the existing self-
stabilizing algorithms can be enhanced via our method with both loop-free and
super-stabilizing properties. Interestingly enough, the stabilization time com-
plexity of the original protocols is not worsen by the transformation.

2 Model and notations

We consider an undirected weighted connected network G = (V,E,w) where
V is the set of nodes, E is the set of edges and w : E → R+ is a positive cost

function. Nodes represent processors and edges represent bidirectional communi-
cation links. Additionally, we consider that G = (V,E,w) is a dynamic network
in which the weight of the communication links and the sets of nodes and edges
may change. We consider anonymous networks (i.e., processors have no IDs),
with one distinguished node, called the root6. Throughout the paper, the root is
denoted r. We denote by deg(v) the number of v’s neighbors in G. The deg(v)
edges incident to any node v are labeled from 1 to deg(v), so that a processor
can distinguish the different edges incident to a node.

The processors asynchronously execute their programs consisting of a set of
variables and a finite set of rules. The variables are part of the shared register
which is used to communicate with the neighbors. A processor can read and
write its own registers and can only read the shared registers of its neighbors.
Each processor executes a program consisting of a sequence of guarded rules.
Each rule contains a guard (boolean expression over the variables of a node and
its neighborhood) and an action (update of the node variables only). Any rule
whose guard is true is said to be enabled. A node with one or more enabled rules
is said to be privileged and may make a move executing the action corresponding
to the chosen enabled rule.

A local state of a node is the value of the local variables of the node and the
state of its program counter. A configuration of the system G = (V,E) is the
cross product of the local states of all nodes in the system. The transition from
a configuration to the next one is produced by the execution of an action of at
least one node. A computation of the system is defined as a weakly fair, maximal
sequence of configurations, e = (c0, c1, . . . ci, . . .), where each configuration ci+1

follows from ci by the execution of a single action of at least one node. During
an execution step, one or more processors execute an action and a processor
may take at most one action. Weak fairness of the sequence means that if any
action in G is continuously enabled along the sequence, it is eventually chosen
for execution. Maximality means that the sequence is either infinite, or it is finite
and no action of G is enabled in the final global state.

In the sequel we consider the system can start in any configuration. That
is, the local state of a node can be corrupted. Note that we don’t make any
assumption on the bound of corrupted nodes. In the worst case all the nodes in
the system may start in a corrupted configuration. In order to tackle these faults
we use self-stabilization techniques.

6 Observe that the two self-stabilizing MST algorithms mentioned in the Previous
Work section assume that the nodes have distinct IDs with no distinguished nodes.
Nevertheless, if the nodes have distinct IDs then it is possible to elect one node as a
leader in a self-stabilizing manner. Conversely, if there exists one distinguished node
in an anonymous network, then it is possible to assign distinct IDs to the nodes in a
self-stabilizing manner [2]. Note that it is not possible to compute deterministically a
MST in a fully anonymous network (i.e., without any distinguished node), as proved
in [22].

Definition 1 (self-stabilization). Let LA be a non-empty legitimacy predi-
cate7 of an algorithm A with respect to a specification predicate Spec such that
every configuration satisfying LA satisfies Spec. Algorithm A is self-stabilizing
with respect to Spec iff the following two conditions hold:
(i) Every computation of A starting from a configuration satisfying LA preserves
LA (closure).
(ii) Every computation of A starting from an arbitrary configuration contains a
configuration that satisfies LA (convergence).

We define bellow a loop-free configuration of a system as a configuration
which contains paths with no cycle between any couple of nodes in the system.

Definition 2 (Loop-Free Configuration). Let Cycle(u, v) be the following
predicate defined for two nodes u, v on configuration C, with P (u, v) a path from
u to v described by C:

Cycle(u, v) ≡ ∃P (u, v), P (v, u) : P (u, v) ∩ P (v, u) = ∅.

A loop-free configuration is a configuration of the system which satisfies ∀u, v :
Cycle(u, v) = false.

We use the definition of a loop-free configuration to define a loop-free stabi-
lizing system.

Definition 3 (Loop-Free Stabilization). A distributed system is called loop-
free stabilizing if and only if it is self-stabilizing and there exists a non-empty
set of configurations such that the following conditions hold: (i) Every execution
starting from a loop-free configuration reaches a loop-free configuration (closure).
(ii) Every execution starting from an arbitrary configuration contains a loop-free
configuration (convergence).

Definition 4 (Super-stabilization [19]). A protocol P is super-stabilizing
with respect to a class of topology change event Λ iff the following two condi-
tions hold:
(i) P is self-stabilizing and (ii) for every computation beginning at a legitimate
configuration and containing a single topology change events of type Λ, a passage
predicate holds.

In the sequel we study the problem of constructing a spanning tree optimizing
a desired metric in self-stabilizing manner, while guaranteeing the loop-free and
super-stabilizing properties.

3 Super-stabilizing Loop-Free BFS

In this section, we describe the extension of the self-stabilizing loop-free al-
gorithm proposed in [16] to dynamic networks. Furthermore, we disscuss the

7 A legitimacy predicate is defined over the configurations of a system and is an
indicator of its correct behavior.

super-stabilization of new algorithm. Interestingly, our algorithm preserves the
loop-free property without any degradation of the time complexity of the original
solution.

3.1 Algorithm description

Algorithm Dynamic-LoopFree-BFS constructs a BFS tree and guarantees the
loop-free property for dynamic networks. That is, when topological changes arise
in the network (add or deletion of nodes or edges) the algorithm maintains a BFS
tree without creating a cycle in the spanning tree. To this end, each node has two
states: Neutral, noted N , and Propagate, noted P . A node in state N can safely
select as parent its neighbor with the smallest distance (in hops) from the root
without creating a cycle. A node in state P has an incoherent state according
to its parent in the spanning tree. In this case, the node must not select a new
parent otherwise a cycle can be created. So, this node has to inform first its
descendants in the tree that an incoherency in the BFS tree was detected. Then,
it corrects when all its subtrees have recovered a coherent state. Therefore, a
node v in state P initiates a propagation of information with feedback in its
subtree. When the propagation is finished the nodes in the subtree v (including
v) recovers a correct distance and the state N .

We consider a particular node r which acts as the root of the BFS tree in
the network. Every node executes the same algorithm, except the root which
uses only Rule RInitRoot to correct its state. In a correct state, the root r of the
BFS tree has no parent, a zero level and the state N . Otherwise, Rule RInitRoot

is executed by r to correct its state.
The other five rules are executed by the other nodes of the network.
Rule RSafeChangeP is used by a node v with the state N if it detects a better

parent, i.e., a neighbor node with a lower level than the level of its actual parent.
In this case, v can execute this rule to update its state in order to select a new
parent without creating a cycle in the tree.

If a node v has the best parent in its neighborhood but an incoherent level
according to its parent, then v executes Rule RLevel++ to change its status to P
and to initiate a propagation of information with feedback which aims to inform
its descendants of its new correct level. A descendant x of node v with state N
with a parent in state P executes Rule RLevel++ to continue the propagation and
to take into account its new level.

When a leaf node x, descendant of v in Status P is reached, x stops the prop-
agation by executing Rule REndPropag to change its state to N and to obtain its
correct level. The end of propagation is pull up in the tree using Rule REndPropag.

Rule RLevelCorrect corrects at node v the variable used to propagate the new
level in the tree (variable NewLevelv) if this variable is lower than the actual
level of v.

Rule RDynamic deals with the dynamism of the network. This rule is executed
by a node v when it detects that its parent is no more in the network and it
cannot select with Rule RSafeChangeP a new parent because of its level (otherwise
it may create a cycle). The aim of this rule is to increase the level of node v

using propagations of information as with Rule RLevel++, until v’s level allows v
to select a neighbor as its new parent without creating a cycle.

Figure 2 illustrates the mechanic of Rule RDynamic. In Figure 2(a) is depicted
a part of the constructed BFS tree before the deletion of the node of level 2.
After the deletion of this node, the node v with level 3 executes Rule RDynamic

to increase its level (equal to the lowest neighbor level plus one) in order to
recover a new parent. Figure 2(b) shows the new level of v and the new levels
v’s descendants when the first propagation is ended. However, a level of 5 is not
sufficient to allow v to select a new parent, so a second propagation is started
by v which affects the levels given by Figure 2(c). Note that a descendant of v
can leave v’s subtree to obtain a better level if possible, this can be observed in
Figure 2(c). Finally, v reaches a state with a level which allows v to execute Rule
RSafeChangeP to select its new parent, and v’s descendants execute Rule RLevel++

to correct their levels according to v’s level. Figure 2(d) shows the new levels
computed by the nodes.

Detailed level description. In the following, we describe the variables, the
predicates and the rules used by Algorithm Dynamic-LoopFree-BFS.

Variables: For any node v ∈ V (G), we denote by N(v) the set of all neighbors of
v in G and by Dv the set of sons of v in the tree. We use the following notations:

– pv: the parent of node v in the current spanning tree;

– statusv: the status of node v, P when v is in a propagation phase, N other-
wise;

– levelv: the number of edges from v to the root r in the current spanning tree;

– NewLevelv: the new level in the current spanning tree (used to propagate the
new level).

l̂evelv ≡

{

min{levelu + 1 : u ∈ N(v)} if v 6= r

0 otherwise

Minv ≡ min{u : u ∈ N(v) ∧ levelu = l̂evelv − 1 ∧ statusu = N}

̂parentv ≡

{

Minu if ∃u ∈ N(v), levelu = l̂evelv − 1 ∧ statusu = N

⊥ otherwise
Dv ≡ {u : u ∈ N(v) ∧ p

u
= v ∧ levelu > levelv}

ublv ≡

{

min{levelu − 1 : u ∈ Dv} if Dv 6= ∅
∞ otherwise

PropagEnd(v) ≡ (∀u ∈ Dv, statusu = N)

PChange(v) ≡ (l̂evelv < levelv ∨ (levelv = l̂evelv ∧ p
v
6= ̂parentv)) ∧ ̂parentv 6= ⊥

Levelup(v) ≡ levelv 6= levelp
v
+ 1 ∨ (statusp

v
= P ∧ levelv 6= NewLevelp

v
+ 1)

Fig. 1. Predicates used by the algorithm.

The root of the tree executes only the first rule, named RInitRoot, while the
other nodes execute the five last rules.

Fig. 2. Correction of the BFS tree after a node deletion.

RInitRoot : (Root Rule)
if v = r ∧ (pv 6= ⊥ ∨ levelv 6= 0 ∨ NewLevelv 6= 0 ∨ statusv 6= N)
then pv := ⊥; levelv := 0;NewLevelv := 0; statusv := N ;

RSafeChangeP : (Safe parent change Rule)
if v 6= r ∧ statusv = N ∧PChange(v)

then levelv := l̂evelv;NewLevelv := levelv; pv := ̂parentv;

RLevel++ : (Increment level Rule)
if v 6= r ∧ statusv = N ∧ pv ∈ N(v) ∧ ¬PChange(v) ∧ Levelup(v)
then statusv := P ;NewLevelv := NewLevelp

v
+ 1;

REndPropag : (End of propagation Rule)
if v 6= r ∧ statusv = P ∧PropagEnd(v) ∧ ublv ≥ NewLevelv
then statusv := N ; levelv := NewLevelv;

RLevelCorrect : (Level correction Rule)
if v 6= r ∧ NewLevelv < levelv then NewLevelv := levelv;

RDynamic : (Increment level Rule for dynamic networks)
if v 6= r ∧ statusv = N ∧ pv 6∈ N(v) ∧ ¬PChange(v)

then statusv := P ;NewLevelv := l̂evelv;

3.2 Correctness proof

The algorithm proposed in the precedent subsection extends the algorithm of
[16] to dynamic network topologies. When the system is static the correctness of
the algorithm directly follows from the results proven in [23]. In the following, we
focus only the case of dynamic topologies, i.e., when nodes/edges of the tree fails
or nodes/edges are added in the network. Note that in the following, we only

study the case of an edge failure. A node failure produces the same consequences,
i.e., the spanning tree is splitted and some nodes have no parent. Moreover, we
do not consider edges out of the tree because this does not lead the system in an
illegitimate configuration. After each fail of node or edge in the tree, we assume
the uderlying network is always connected.

In [23], a legitimate configuration for the algorithm is defined by the following
predicate satisfied by every node v ∈ V : PrLP

v ≡ [(v = r) ∧ (levelv = 0) ∧
(statusv = N)]∨[(v 6= r)∧(levelv = ˙levelv)∧(statusv = N)∧(levelv = levelp

v
+1)],

with ∀v 6= r, ˙levelv = min{ ˙levelu+1 : u ∈ N(v)} defines the optimal level of node
v.

Note that after a fail of an edge of the tree T , Predicate PrLP
v is not satisfied

anymore. The tree T splits in a forest F which contains the subtrees of T . Let
Orph be the set of nodes v such that pv 6∈ N(v), note that r 6∈ Orph. The
following predicate is satisfied by every node v ∈ V, v 6∈ Orph

PrLC
v ≡

{

levelp
v
+ 1 ≤ levelv ∧ NewLevelv ≥ levelv if v 6= r

levelr = 0 ∧ statusr = N otherwise

We show below that each node with no parent in F starts a propagation of
information in its subtree.

Lemma 1. Let a node v ∈ V, v ∈ Orph. If statusv = N and PChange(v) = false
then status v eventually moves to P .

Proof. Let v ∈ V, v ∈ Orph be a node such that statusv = N and PChange(v) =
false. v can only execute Rules RLevelCorrect or RDynamic, because v can not execute
Rules RSafeChangeP,RLevel++ and REndPropag since statusv = N,PChange(v) = false
and pv 6∈ N(v). To change its status from N to P , a node v ∈ Orph must
execute Rule RDynamic. Suppose that v does not execute Rule RDynamic. So v can
only execute Rule RLevelCorrect. However, after execution of Rule RLevelCorrect we
have NewLevelv := levelv and the guard of Rule RLevelCorrect is no more satisfied.
Thus, only the guard of Rule RDynamic is satisfied and v remains enabled until it
performs Rule RDynamic. Therefore, the scheduler eventually selects v to perform
Rule RDynamic. �

According to Lemma 9 in [23], a node v such that statusv = P eventually
performs Rule REndPropag to change its status to N . In the following, we show
that a node in Orph (i.e., without a parent in its neighborhood) eventually leaves
the set Orph.

Lemma 2. Let v ∈ V, v ∈ Orph. Eventually, v is not anymore in the set Orph
and selects a parent without creating a cycle.

Proof. We show the lemma by induction on the height of the subtree of v.
Consider the case where a node v ∈ Orph has a neighbor u ∈ N(v) such that
levelu < levelv. We assume that for every node x in F , x 6∈ Orph, we have
levelpx

+ 1 ≤ levelx. So, u can not be a descendant of v. Thus, v performs Rule
RSafeChangeP to choose u as its parent without creating any cycle in F . Otherwise,

every node u ∈ N(v) is a child of v. According to Lemma 9 in [23] and Lemma
1 (above), the level of every node in the subtree of v increases. Since we assume
the network is always connected, there exists a leaf node x in the subtree of v
such that levelx > ˙levelx = levely, with y ∈ N(x). Thus, x can execute Rule
RSafeChangeP to choose y as its parent and x leaves the subtree of v. Since the
height of the subtree of v is finite, eventually v can choose a neighbor u as its
parent because u is no more in the subtree of v. Therefore, in a finite time a
node v ∈ Orph leaves the set Orph by selecting a parent in its neighborhood
without creating a cycle. �

According to Lemma 2, each node has a parent and no cycle is created. Thus,
the system reaches a configuration where a spanning tree is constructed. So the
analysis given in [23] can be used to show that the system reaches a configu-
ration in which for each node v ∈ V we have levelv = ˙levelv. Since the initial
configuration contains a spanning tree, the algorithm stabilizes to a breadth first
search tree and during the stabilization of the algorithm the loop-free property
is maintained, as showed in [23].

Above we consider only the fail of nodes/edges of the tree, now we discuss
the add of nodes and edges in the network. In a legitimate configuration, after
the add of an edge every node v ∈ V always satisfies levelv ≥ ˙levelv. According
to Lemma 12 and Corollary 1 in [23], in a finite time eventually for every node
v ∈ V we have levelv = ˙levelv. In a legitimate configuration, after the add of
a node v Rule RSafeChangeP is executed by v to select a neighbor u ∈ N(v) as
its parent, there exists such a node u because we assume that the network is
always connected. Therefore, the system is in an arbitrary configuration where a
spanning tree is constructed. Therefore, the analysis given in [23] can be used to
show that in a finite time for every node v ∈ V we have levelv = ˙levelv. Moreover,
in the case of node/edge adds the initial configuration contains a spanning tree,
thus the loop-free property is maintained by the algorithm.

In the following, we prove that the presented algorithm has a superstabilizing
property for a particular class of topology change events. We show that a passage
predicate is satisfied during the restabilizing execution of our algorithm. We
define the considered topology change events, noted ε:

– an add (resp. a removal) of an edge (u, v) in the network noted recovuv

(resp. crashuv);

– an add (resp. a removal) of a neighbor node u of v in the network noted
recovu (resp. crashu).

In the sequel, we suppose that after every topology change event the network
remains connected. We provide below definitions of the topology change events
class Λ and passage predicate.

Definition 5 (Class Λ of topology change events). crashuv and crashv

compose the class Λ of topology change events.

Definition 6 (Passage predicate). The parent of a node v can be modified if
v is in the subtree connected by the removed edge or node, and the parent is not
changed for any other node in the tree.

Lemma 3. The proposed protocol is superstabilizing for the class Λ of topology
change events, and the passage predicate (Definition 6) continues to be satisfied
while a legitimate configuration is reached.

Proof. Consider a legitimate configuration ∆. Suppose ε is a removal of edge
(u, v) from the network. If (u, v) is not a tree edge then the levels of u and v are
not modified and neither u nor v changes its parent, thus no parent variable is
modified. Otherwise, let pv = u, u’s level and u’s parent are not modified, it is
true for any other node x not contained in the subtree of v since the distance
between x and the root r in the graph is not modified (i.e., PredicatePChange(x)
is not satisfied). However, u is no more a neighbor of v so according to Lemma 1
v executes Rule RDynamic and starts a propagation phase. Moreover, according
to Lemma 2 v selects a new parent without creating a cycle. Therefore, only a
node in the subtree connected by the edge (u, v) may change its parent.

Suppose ε is a removal of node u from the network. Any node x not contained
in the subtree of u do not change its parent relation because the distance between
x and the root node r is not modified (i.e., PredicatePChange(x) is not satisfied).
Consider each edge (u, v) between u and its child v, we can apply the same
argument described above for an edge removal. So only any node contained in
the subtree connected by u may change its parent. �

3.3 Complexity analysis

In the following we focus the complexity analysis of our algorithm in both static
and dynamic networks. Note that the original algorithm proposed in [16] had no
complexity analysis. Interestingly, we prove that our extension has a zero time
extra-cost with respect to the original solution.

Lemma 4. Starting from an arbitrary configuration, in at most O(n2) rounds
a breadth first search tree is constructed by the algorithm in a static network.

Proof. To construct a spanning tree, the algorithm must remove all the cycles
present in the starting configuration. So, we first analyze the number of rounds
needed to remove a cycle.

To remove a cycle, a node of the cycle must change its parent to select a
node out of the cycle, such a node is named a break node. A node can change
its parent using Rule RSafeChangeP, but a break node executes Rule RSafeChangeP if
the level of the new parent (out of the cycle) is lower than the level of the break
node. Consider a break node x and the neighbor y of x which must be selected
as the new parent of x. We note Lx and Ly the level of x and y respectively. To
select y as its new parent and to break the cycle, x must have its level Lx such
that Ly < Lx. In the cycle, a node corrects its level according to its parent by
initiating a propagation of information with Rules RLevel++ and REndPropag. Thus

the number of increments until we have Ly < Lx is equal to ⌈ (Lx+1)−Ly

|C| ⌉, with

|C| the size of the cycle C to break. The propagation of information is in order
of the size of C. Thus, O((Lx + 1) − Ly) rounds are needed to have Ly < Lx.
Since we want to construct a breadth first search tree the level of a node cannot
exceed n, with n the size of the network. Thus, we consider that the level of a
node is encoded using logn bits. The biggest value for (Lx +1)−Ly is obtained
when Ly = 1 and therefore we have (Lx + 1)− Ly ≤ n.

Since the maximum number of possible cycles of a network is no more than
n/2, obtained with cycles of size 2, we have that in O(n2) all cycles are removed
in the network and a spanning tree is constructed. In at most O(D) additional
rounds a breadth first tree is constructed, with D the diameter of the network.
Indeed, no cycle is created by the algorithm until reaching a legitimate configu-
ration, since the algorithm guarantee the loop-free property. �

Lemma 5. Starting from an arbitrary configuration, in at most O(n2) rounds
a breadth first search tree is constructed by the algorithm in a dynamic network.

Proof. In a dynamic network, for a node we can have the case where the edge
leading to its parent or its parent is deleted from the network. When a node x
detects this case, x executes Rule RDynamic to find a new parent in the network.
To accomplish this task, x starts a propagation of information to increment its
level since it has an incorrect level according to its parent (which is no more in
the network).

We have two cases for the new parent selected by x. The first case is that the
new parent of x is a neighbor y with level Ly bigger than x’s level Lx. In this
case, x must increment its level to have the condition Ly < Lx. To obtain this
condition, at most Ly −Lx increments are needed, that is at most n increments
since we want to construct a breadth first tree and the level of a node is encoded
using logn bits. The second case is that x selects one of its children u as its new
parent, but to preserve the loop-free property x can do this only when u is no
more a child of x. The worst case for x is to wait that it has no more children if u
is its only child, that is the subtree of x has disappeared. At most n increments
are needed to have that x has an empty subtree.

In all cases, at most n increments are needed and the number of rounds for a
propagation of information is in the order of the size of the subtree of x, that is
at most n. Thus, in at most O(n2) rounds x finds a new parent in the network,
then we can consider we are in the case of a static network and Lemma 4 can be
applied. Therefore, in at most O(n2) rounds a legitimate configuration is reached
by the algorithm. �

4 Super-stabilizing Loop-Free transformation scheme

Our objective is to design a generic scheme for the construction of spanning
trees considering any metric (not only metrics based on distances in the graph)
with loop-free and super-stabilizing properties. The idea is to extend an existing
self-stabilizing spanning tree optimized for a given metric (e.g. MST, maximum

degree spanning tree, max-flow tree etc) with super-stabilizing and loop-free
properties via the composition with a spanning tree construction that already
satisfies these properties. Assume M be the predicate that captures the prop-
erties of the metric to be optimized. Consider A the algorithm that outputs a
self-stabilizing spanning tree and verifies M. That is, given a graph, A computes
the set of edges SA that satisfies M and is a spanning tree. Consider Algorithm
B an algorithm that outputs a super-stabilizing and loop-free spanning tree SB.
Ideally, if all edges in SA are included in SB then there is no need for further
transformations. However, in most of the cases the two trees are not identical.
Therefore, the idea of our methodology is very simple. Algorithms A and B run
such that the output of A defines the graph input for B. That is, the neighbor-
hood relation used by B is the initial graph filtered by A to satisfy the predicate
M. The principal of this composition is already known in the literature as fair
composition [24]. In our case the ”slave” protocol is protocol A that outputs the
set of edges input for the ”master” protocol B.

The following lemma direct consequence of the results proven in [24] guar-
anties the correctness of the composition.

Lemma 6. Let M be the predicate that captures the properties of the metric
to be optimized. Let A be an algorithm that outputs a self-stabilizing spanning
tree that satisfies M, SA. Let B be a loop-free protocol that computes a spanning
tree on the topology defined by SA and super-stabilizing for a class of topology
changes Λ. The fair composition of A and B is a protocol that outputs a loop-free
spanning tree that satisfies M and is super-stabilizing for Λ.

Note that our super-stabilizing loop-free BFS can be used as protocol B in
the above composition. The interesting property of the composition is that the
time complexity will be maximum between O(n2) and the complexity time of
the candidate to be transformed. Note that so far, the best time complexity of a
spanning tree optimized for a given metric is O(n2) which leads to the conclusion
that the composition does not alterate the time complexity of the candidate.

In the following, we specify the predicate M for two well known problems:
max-flow trees and minimum degree spanning trees.

Case study 1: Maximum-flow tree The problem of constructing a maximum-
flow tree from a given root node r can be stated as follows. Given a weighted
undirected graph G = (V,E,w), the goal is to construct a spanning tree T =
(V,ET) rooted at r, such that for every node v ∈ V the path between r and v
has the maximum flow. Formally, let fw(v) = min(fw(pv), w(pv, v)) the flow for
every node v ∈ V in tree T and mfwv the maximum flow value of v among all
spanning trees of G rooted at r. The maximum-flow tree problem is to compute
a spanning tree T , such that ∀v ∈ V, fw(v) = mfwv. The max flow tree problem
has been studied e.g. in [21]. In this case, the graph GSA

= (VSA
,SA) for the

maximum-flow tree problem must satisfies the following predicate:

M ≡ (|SA| = n−1)∧(V = VSA
)∧(∀v ∈ V, fw(v) = max{min(fw(u), w(u, v)) : u ∈ N(v)}).

Case study 2: Minimum degree spanning tree Given an undirected graph G =
(V,E) with |V | = n, the minimum degree spanning tree problem is to construct
a spanning tree T = (V,ET), such that the maximum degree of T is minimum
among all spanning trees of G. Formally, let degT (v) the degree of node v ∈ V in
the subgraph T and deg(T) the maximum degree of subgraph T (i.e., deg(T) =
max{degT (v) : v ∈ V }). The minimum spanning tree problem is to compute a
spanning tree T , such that deg(T) = min{deg(T ′) : T ′ is a spanning tree of G}.
A self-stabilizing solution for the minimum degree spanning tree algorithm has
been proposed in [25]. If this solution plays the slave master in our transformation
scheme then the graph GSA

= (VSA
,SA) input for the BFS algorithm satisfy

the following predicate:

M ≡ (|SA| = n−1)∧(V = VSA
)∧deg(GSA

) = min{deg(T ′) : T ′ a spanning tree of G}.

5 Concluding remarks

We presented a scheme for constructing loop-free and super-stabilizing protocol
for universal tree metrics, without significant impact on the performance. There
are several open questions raised by our work:

1. Decoupling various added properties (such as loop-freedom or super-stabilization)
seems desirable. As a particular network setting may not need both prop-
erties and/or temporarily run in conditions where the network is essentially
static, some complexity cost could be saved by removing uneeded proper-
ties. Of course, stripping our scheme can trivially result in a generic loop-
free transformer or to a generic super-stabilizing transformer. Yet, modular
design of features, as well as further enhancements (such as safe conver-
gence [26,27]), seems an interesting path for future research.

2. The implementation of self-stabilizing protocols recently was helped by com-
pilers that take as input guarded commands and provide as output actual
source code for existing devices [28]. Transformers such as this one would
typically benefit programmers’ toolboxes as they ease the reasoning by keep-
ing the source code intricacies at a very high level. Actual implementation
of our transformer into a programmer’s toolbox is a challenging ingeneering
task.

References

1. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11) (1974) 643–644

2. Dolev, S.: Self-Stabilization. MIT Press (2000)
3. Tixeuil, S.: Self-stabilizing Algorithms. Chapman & Hall/CRC Applied Algorithms

and Data Structures. In: Algorithms and Theory of Computation Handbook, Sec-
ond Edition. CRC Press, Taylor & Francis Group (November 2009) 26.1–26.45

4. Gopal, A.S., Perry, K.J.: Unifying self-stabilization and fault-tolerance (prelimi-
nary version). In: PODC. (1993) 195–206

5. Anagnostou, E., Hadzilacos, V.: Tolerating transient and permanent failures (ex-
tended abstract). In: WDAG. (1993) 174–188

6. Dolev, S., Welch, J.L.: Wait-free clock synchronization. Algorithmica 18(4) (1997)
486–511

7. Papatriantafilou, M., Tsigas, P.: On self-stabilizing wait-free clock synchronization.
Parallel Processing Letters 7(3) (1997) 321–328

8. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of
byzantine faults. J. ACM 51(5) (2004) 780–799

9. Ben-Or, M., Dolev, D., Hoch, E.N.: Fast self-stabilizing byzantine tolerant digital
clock synchronization. In: PODC. (2008) 385–394

10. Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks in stabi-
lization. In: SSS. (2006) 440–453

11. Masuzawa, T., Tixeuil, S.: Stabilizing link-coloration of arbitrary networks with
unbounded byzantine faults. International Journal of Principles and Applications
of Information Science and Technology (PAIST) 1(1) (December 2007) 1–13

12. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.
Chicago J. Theor. Comput. Sci. 1997 (1997)

13. Herman, T.: Superstabilizing mutual exclusion. Distributed Computing 13(1)
(2000) 1–17

14. Katayama, Y., Ueda, E., Fujiwara, H., Masuzawa, T.: A latency optimal super-
stabilizing mutual exclusion protocol in unidirectional rings. J. Parallel Distrib.
Comput. 62(5) (2002) 865–884

15. Cobb, J.A., Gouda, M.G.: Stabilization of general loop-free routing. J. Parallel
Distrib. Comput. 62(5) (2002) 922–944

16. Johnen, C., Tixeuil, S.: Route preserving stabilization. In: Self-Stabilizing Systems.
(2003) 184–198

17. Garcia-Luna-Aceves, J.J.: Loop-free routing using diffusing computations.
IEEE/ACM Trans. Netw. 1(1) (1993) 130–141

18. Gafni, E.M., Bertsekas, P.: Distributed algorithms for generating loop-free routes
in networks with frequently changing topology. IEEE Transactions on Communi-
cations 29 (1981) 11–18

19. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.
Chicago J. Theor. Comput. Sci. 1997 (1997)

20. Blin, L., Potop-Butucaru, M., Rovedakis, S., Tixeuil, S.: A new self-stabilizing
minimum spanning tree construction with loop-free property. In: DISC. (2009)
407–422

21. Gouda, M.G., Schneider, M.: Stabilization of maximal metric trees. In: WSS.
(1999) 10–17

22. Gupta, S.K.S., Srimani, P.K.: Self-stabilizing multicast protocols for ad hoc net-
works. J. Parallel Distrib. Comput. 63(1) (2003) 87–96

23. Johnen, C., Tixeuil, S.: Route preserving stabilization. Technical Report 1353,
LRI, Université Paris-Sud XI (2003)

24. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming
only read/write atomicity. Distributed Computing 7(1) (1993) 3–16

25. Blin, L., Potop-Butucaru, M.G., Rovedakis, S.: Self-stabilizing minimum-degree
spanning tree within one from the optimal degree. In: IPDPS. (2009) 1–11

26. Kakugawa, H., Masuzawa, T.: A self-stabilizing minimal dominating set algorithm
with safe convergence. In: IPDPS. (2006)

27. Kamei, S., Kakugawa, H.: A self-stabilizing approximation for the minimum con-
nected dominating set with safe convergence. In: OPODIS. (2008) 496–511

28. Dalton, A.R., McCartney, W.P., Dastidar, K.G., Hallstrom, J.O., Sridhar, N., Her-
man, T., Leal, W., Arora, A., Gouda, M.G.: Desal alpha: An implementation of the
dynamic embedded sensor-actuator language. In: ICCCN, IEEE (2008) 541–547

