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The Dawn of a Golden Age in

Mathematical Insect Sociobiology

NIGEL R. FRANKS, ANNA DORNHAUS, JAMES A. R.

MARSHALL, FRANCOIS-XAVIER DECHAUME

MONCHARMONT

THE TITLE FOR THIS CHAPTER is a prediction. It is bold. It is also ar-

guably overly grand and it may be illusory. History alone will judge if this

is the dawn of a golden age in mathematical sociobiology. To be sure,

mathematical biology has already seen a number of false dawns. It may ap-

pear, for example, that both catastrophe theory and chaos theory each

have enjoyed almost all of their 15 minutes of fame. However, it is right

and proper that a wave of initial excitement, or indeed, hyperbole, is fol-

lowed by slower and steadier progress as a field matures.

So what justifies our unbridled optimism? The first answer is demon-

strable progress. Self-organization theory and complex systems theory

coupled with pioneering experiments have already revolutionized our un-

derstanding of organizational aspects of insect societies and even our own

societies. Such is the gathering excitement, predictive power, and massing

evidence that this endeavor has earned a new epithet: “Sociophysics” or

“the physics of society” (Ball 2004; Strogatz 2004). Why sociophysics? Be-

cause the philosophy and even some of the principles of statistical me-

chanics are now being applied in sociobiology to great effect. The central

issue in social biology to which mathematical biology is being applied is the

question of how societies are organized. In shorthand, how do super-

organisms work?

The second answer is that necessity is the mother of invention. The re-

quirement for a mathematical sociobiology was not only predicted by Wil-

son (1971) but he gave a clear directive that results would come from

considering mass action and stochastic effects. These are key aspects of



statistical mechanics. Modeling is needed because the mechanisms under-

lying insect societies as complex systems “are neither self-evident nor sus-

ceptible of easy proof” (Wilson 1971; emphasis added). Thought

experiments are not sufficient to predict the properties of the whole from

those of the parts. Their complexity and emergent properties are such that

these systems are opaque until they have been disassembled and re-

assembled and interrogated with a combination of mathematical models

and experiments.

In this chapter, we discuss how different modeling techniques can be

used to study the functions, mechanisms, and evolution of collective be-

havior, and how such theoretical approaches can also feed back into em-

pirical research, or into disciplines outside of biology. Finally, we give

our—admittedly subjective—recommendations for the future of theoreti-

cal sociobiology.

A Typology of Models

Explanatory models can be split into different categories depending on

their aims: teleonomic models (often called optimality models), mechanis-

tic models, and artificial evolution models. Models of the first category aim

to illuminate the function or goal of a behavior or other trait (under the as-

sumption that the trait is the result of adaptive evolution, Cuthill 2005).

Mechanistic models aim to explain the mechanisms by which a pattern of

behavior or other feature is created. Finally, artificial evolution models

may help in the understanding of the evolutionary process itself. We dis-

cuss each of these types in turn below, along with their benefits and certain

cautionary notes.

Teleonomic Models

Teleonomic models try to portray the function of an aspect of a biological

system in an evolutionary context. For example, how could we explain the

biased sex-ratio in an ant colony (Bourke and Franks 1995)? The word

teleonomy was first used by C. S. Pittendrigh (1958) in order to emphasize

that the recognition and description of end-directedness does not carry a

commitment to Aristotelian teleology as an efficient causal principle. In

other words, an organism may evolve to an optimal state without evolution

aiming for that state; a failure to recognize this is at the root of Intelligent



Design criticisms of evolution. Teleonomic models do not focus on the

mechanisms of decision or control of a particular behavior, but rely on the

assumption that it was shaped by natural selection and thus looks as if it

was optimized for some function relating to reproductive success. Some

classical examples of such teleonomic approaches can be found in the op-

timal foraging literature, which derives optimal behavior from assump-

tions such as maximization of food intake (Charnov 1976).

Most, but not all, teleonomic models are mathematical in nature; the

system under study is (typically) represented by differential equations,

which can sometimes be solved analytically. These equations usually rep-

resent behavior at a group or population level. In this they are similar to

techniques used in physics such as statistical mechanics which applies the

techniques of statistics to large numbers of interacting particles to explain

the macroscopic properties of populations of such particles. Statistical me-

chanics is needed when particles, such as molecules, are individually invis-

ible and yet the global properties of the population to which they belong

(such as a gas) need to be predicted. Furthermore, the complexity of the

resolving interactions is unimaginable even if the initial state and the equa-

tions of motion are known. By contrast, classical (or Newtonian) mechan-

ics charts the history of small numbers of visible particles that are

relatively large and relatively slow. In insect sociobiology the interacting

agents (e.g., workers) can often be marked individually and their move-

ments recorded, but this is not always the case. Individual army ants al-

most instantly vanish among their nestmates in swarm raids and in many

cases of nest construction in ants and termites the individuals disappear

underground—but their mass efforts are still of considerable interest and

indeed often of awesome complexity and beauty (Franks et al. 1991).

One of the founding fathers of statistical mechanics was the great Victo-

rian physicist James Clerk Maxwell (1831–1879). Maxwell and others drew

much of their inspiration for statistical mechanics from contemporary soci-

ologists (Ball 2004). In particular, Maxwell was influenced by Henry

Thomas Buckle (1821–1862), a social historian (and author of History of

Civilization in England) who argued that societies had underlying regular

characteristics notwithstanding the uniqueness and capriciousness of their

individual members. For example, Maxwell stated (referring to the study

of human behavior): “If we betake ourselves to the statistical method, we

do so confessing that we are unable to follow the details of each case, and

expecting that the effects of widespread causes, though very different in



each individual, will produce an average result on the whole nation”

(Maxwell 1873a).

Thus, statistical mechanics drew inspiration from studies of human soci-

eties and is now being applied to issues in our own societies, such as prob-

lems in traffic flow (Helbing and Huberman 1998; Helbing and Treiber

1998). Maxwell also tantalizingly referred to swarms of bees when he was

trying to convey the idea of randomly mingling molecules: “If we wish to

form a mental representation of what is going on among the molecules in

calm air, we cannot do better than observe a swarm of bees, when every in-

dividual bee is flying furiously, first in one direction and then in another,

while the swarm, as a whole, either remains at rest, or sails slowly through

the air” (Maxwell 1873b). Maxwell attributed random movement to the

bees in a swarm, likening them to random movement of air particles.

Likening insects to molecules persists as a powerful metaphor (Detrain

and Deneubourg 2006). However, real honey bees in swarms do not fly

about at random (see for example, Couzin et al. 2005). It is a shame that it

has taken so long for statistical mechanics to find its way back to one of its

natural domains—insect societies.

Example 1: Partial loads in social insect foragers.
Consider foraging in the honey bee. It has been observed that forager bees

only partially load at a nectar food source. The optimal time spent in a

flower patch of known quality may depend on the cost of flying with a

heavy load (Schmid-Hempel, Kacilnek, and Houston 1985). Alternatively,

it may be determined by the benefits of returning information about this

new food source to the colony (Varju and Núñez 1993), or checking at the

colony whether other, superior food sources have been discovered (Dorn-

haus et al. 2006). Returning to the nest with a full load of nectar from a

mediocre food source is very time consuming and could be a suboptimal

strategy. Yet flying back quickly could also be a suboptimal strategy if new

and better food sources are rarely discovered. Dornhaus et al. (2006) used

a mathematical model to analyze the importance of information collected

at the nest; because of its mathematical form, it requires just a few param-

eters.

The simplicity of mathematical models is both their strength and their

weakness. Biological sophistication can never be captured fully in a model,

but especially population-level models like the one described above



cannot take individual variability into account, and in general many vari-

ables have to be aggregated in very few parameters. For some questions

this is appropriate, for others it is not. However, there are other modeling

techniques that allow inclusion of more biological detail. For teleonomic

questions, two other approaches are also used: evolutionary modeling is

used as an optimization method (as opposed to analytical derivation of an

optimum as described in the example above), and individual-based models

are used to quantify the benefits and costs of certain behaviors under a

large number of conditions, thus also making predictions about which be-

havior tends to give the highest benefits in certain situations.

The aim of teleonomic models is to solve a problem from an engineer-

ing or strategic standpoint. For example, what decision rules should lead to

the most effective nectar collection? Such an approach relies on the as-

sumption that natural selection shaped the biological system in order to be

most effective. If the experimental data deviate from the optimal predic-

tions of the model, this will shed new light on the biological interpretation

of the system.

Mechanistic Models

Mechanistic models attempt to generate and test hypotheses about proxi-

mate mechanisms creating a behavior, either at the individual or group

level. Understanding the mechanisms underlying group-level social dy-

namics within a eusocial insect colony is difficult without abstraction tools.

A colony of millions of workers, for example, is a quintessential complex

system. It is here that individual-based models in particular have had their

largest impact: examples of the outstanding success of such approaches in

social insect studies can be found in the application of self-organization

theory. Each mechanistic model assumes a particular mechanism, and pre-

dicts how the system will behave under this assumption. The predictions

of several potential mechanisms can thus be compared; if any of these pre-

dict system behavior incorrectly, the corresponding mechanism can be re-

jected.

Example 2: The blind leading the blind and the self-organization of
army ant swarm raids.
Self-organization can be defined as a process that creates a pattern at the

global level (e.g., the colony level) through multiple interactions among



the components (e.g., the workers). The components interact through

local, often simple, rules that do not explicitly code for the global pattern

(see Camazine et al. 2001).

The global patterns, whose generation we will examine, are the swarm

raids of the New World army ant Eciton burchellii (Figure 19.1). Such

swarm raids are massive compared to the size of the individuals that create

them. An E. burchellii raid can be 20 meters wide and 200 meters long and

employ 200,000 individuals (Franks 1989). Furthermore, an overview of

the swarm raid pattern is not available to individual workers in Eciton be-

Figure 19.1. The typical pattern of swarm raiding by (A) Eciton burchellii and

(B) Eciton rapax. The scale bar represents 5m. Redrawn from Burton and

Franks, 1985, with the kind permission of Blackwell Publishing; (A) originally

redrawn from Rettenmeyer (1963).



cause they have extremely rudimentary sight (Schneirla 1971; Franks

1989; Gotwald 1995). A computer simulation model of the self-organiza-

tion of an army ant raid (see Figure 19.2) used the following simple set of

rules (Deneubourg et al. 1989).

1. Leading: Each and every ant lays a followable pheromone trail wher-

ever it goes (unless it is on a trail fully saturated with pheromone).

2. Randomness: If an ant is in virgin terrain it randomly goes left or

right (at every bifurcation point in the computer simulation lattice).

3. Following: If an ant is in terrain already traversed by a nestmate it is

most likely to follow the pheromone trail laid by that nestmate. (E.g., it

Figure 19.2 A cellular automata model of the generation of Eciton swarm raids.

The first three illustrations are overlays of the same model raid for Eciton

burchellii. From left to right the figure shows the density of returning ants; the

density of all ants, and the density of pheromone trails. The darker the grey

level the greater the density. The fourth and right-most illustration shows the

density of all ants for the model re-run for a prey distribution typical of that

encountered by an Eciton rapax raid. These illustrations were generated de

novo by rerunning the computer simulation model described in Deneubourg et

al. 1989 (see also Franks et al. 1991).



has a higher probability of turning left than right if the previous ant

turned left rather than right, or vice versa, and marked that path.) Be-

cause army ants follow one another’s trails and reinforce them, trails can

get stronger and stronger.

4. Speeding: Up to a limit, the more trail pheromone present the faster

each individual will run.

5. Crowding: An ant will not, however, enter an area that is already

over-crowded by its nestmates.

6. Returning: Ants only return home when they have encountered prey

items. Returning ants obey the same rules for following the pheromone

trail as outgoing ants, but they lay more trail pheromone than outgoing

ants.

7. Flow: A constant number of ants leave the nest per unit time.

These seven golden rules are sufficient for the blind to lead the blind in

the creation of a swarm raid of dazzling complexity and sophistication. It is

imperative to note, however, that these seven qualitative rules must be ex-

ecuted in good quantitative agreement with the characteristics of the real

army ants. The rate at which individual workers move matters; the rates of

deposition and evaporation of trail pheromones matter; and the relative

rates of trail-laying by outward bound and returning ants matter (Franks et

al. 1991). All these quantitative variables have been established by study-

ing experimentally the movements of E. burchellii workers and they have

been incorporated into the model (Figure 19.2). That is, both the qualita-

tive and quantitative assumptions of the model have been verified. Certain

predictions of this modeling have also been tested (Franks et al. 1991).

The single most intriguing prediction of this model is that swarm raids

have an active architecture. These are event-driven systems. The precise

pattern of a raid depends on the distribution of prey encountered. Indeed,

when the model is run with no prey and hence no returning ants (rule 6),

the anastamosing series of columns behind the raid front is absent and a

raid consists only of a broad swarm front and a principle trail. Further-

more, if prey are in large clumps that are few and far between, the model

predicts that a swarm raid may break up into divergent sub-swarms. This

occurs because strong return traffic flows from two (or more) directions

and the outgoing ants part company. Such a raid pattern consisting of sub-

swarms is seen in E. rapax (Burton and Franks 1985), a close relative of E.

burchellii, which is a specialist predator of other social insect nests and



thus encounters large clumps of prey that are few and far between (Figure

19.2b). This prediction has been tested by presenting the normally cohe-

sive swarm raids of E. burchellii with large clumps of prey that are few and

far between. The result was that E. burchellii adopted a swarm raid pat-

tern similar to that of E. rapax (Franks et al. 1991).

Evolutionary Models and Alternative Worlds

In constructing a model of a biological system, whether an organism or a

society, we need not limit ourselves to the representation of that which

currently exists. Invaluable as models of existing systems are, it can be

equally interesting and instructive to model that which does not exist,

but may have or indeed once did. In doing so we begin to touch on a fun-

damental question of the contingency of evolution; if the tape of evolu-

tion were replayed, would the outcome be the same (Gould 1989)?

Considering evolutionary alternatives in terms of relative effectiveness

for a given task might help illuminate whether a feature evolved as it did

due to a direct fitness advantage, or whether evolutionary or physical

constraints may have been involved. Considering evolutionary alterna-

tives in a sequence may also allow us to recreate plausible simulations of

real evolutionary events in a species, genus, or even phylum. Of course,

for some, this approach may seem problematic or even misguided due to

the lack of data required for rigorous validation. A converse viewpoint

would be that such models might enable us to explore the consequences

of theories in the absence of empirical data by acting as extended

“opaque thought experiments” in the sense of Di Paolo, Noble, and

Bullock (2000).

There is, however, an even more radical viewpoint on evolutionary mod-

els: they can be alternative worlds. That is, computer models may be actual

instantiations of a different, noncarbon-based form of life, rather than

mere simulacra. Under this view these models act as sources of data to in-

form our theorizing about the nature of life and its attendant processes of

ontogeny, phylogeny, and so forth. Such a viewpoint is exemplified by Ray’s

work with digital organisms (1994) or Bedau’s “emergent thought experi-

ment” approach to computer modeling (1999). These issues have been re-

cently summarized more thoroughly elsewhere (Marshall and Franks

2007); here we shall limit ourselves to considering examples of modeling

evolutionary alternatives in a little more detail.



More boldly, if one could measure the effectiveness of different alterna-

tive realizations of the same adaptive feature, and know which realizations

were present at various points in evolutionary history, one would be faced

with the tantalizing prospect of being able to reproduce a plausible evolu-

tionary history. Some work in this area has already been carried out, such

as Niklas’ (1999) work on plant morphospaces. Using a simple generative

plant model that can give rise to a variety of morphologies from varying a

small number of parameters, and equipped with a fitness function that

evaluates morphologies in terms of criteria such as light absorption, me-

chanical stability, and so on, it is possible to construct “adaptive walks”

through the morphospace of possible plant forms via a simple local search

of similar forms of higher fitness. Niklas uses such a model to consider

what the effects of increasing the number of morphological optimality cri-

teria are on the fitness landscapes and the adaptive walks over them. How-

ever, if the starting point for the adaptive walk could be determined by

reference to a fossil plant for example, would it not be intriguing if such a

simple model could recreate the evolution from this ancestral form to the

modern day form, via various intermediate forms observed in the fossil

record?

For sociobiology, reconstructing evolutionary histories may be more

problematic, as behavior is somewhat difficult to fossilize, and those fossils

that do result from behavior may require much interpretation (e.g. Miller,

2003). We need not despair however, as we can look to more “primitive”

behaviors, in other species, that are related to our species of interest. Also,

we could generate the missing origin of the adaptive walk through our own

hypothesizing; for example, one plausible sequence of adaptations leading

to the evolution of the collective decision-making mechanism employed by

Temnothorax albipennis during house-hunting has been proposed by Pratt

et al. (2002, 2005; Pratt, this volume). Such hypotheses may be rescued

from being labeled as “just-so” stories if a suitable computer model could

demonstrate plausibly the adaptive value of each link in the proposed evo-

lutionary chain.

Classic Problems with Modeling Approaches

The two examples given above, foraging by honey bees and the self-organi-

zation of army ant raids, exemplify the value of supplementing empirical

with theoretical studies. Nevertheless, models are only as good as their as-



sumptions. Indeed, when they rely on large sets of untested assumptions,

they have to be handled with care and their predictions regarded with ex-

treme caution, or better, unrestrained skepticism. Many models, whether

individual-based or even based on a modest-sized system of differential

equations, cannot be studied analytically, so they have to be studied

through numerical resolution. The modification of a single parameter may

have incredibly dramatic consequences for the general predictions of a

model. This is why theoreticians using complex mechanistic models have a

duty to perform long and tedious sensitivity analyses. It is becoming clear

that simulation models are a new kind of experimental system (or more ac-

curately, the use of simulation falls somewhere between traditional

tractable formulation and experimental system). Simulations are properly

explored using the same experimental (experimental design) and statistical

techniques (visualization, statistics, data mining) that are used to explore

real-world systems. If a modeler wants to discover functional dependen-

cies, then a barrage of trials must also be run to examine predictions across

a wide range of parameters.

Another pitfall to be avoided is the illusion that such theoretical ap-

proaches can proceed without being directed by strong biological ques-

tions. Certain models, for example, claim to be open-minded and to be

question-free at their inception. Hogeweg and Hesper (1990) made ex-

actly this kind of error while reviewing strong points of individual-based

models. They explicitly referred to what they call “self-structuring and

non-goal directed models . . . [Individual-based models] can be non-goal-

oriented models, i.e. one does not have to determine in advance what fea-

tures will be studied.”

Biologists should never just naïvely hope that an interesting property

will emerge from their model. The hope pinned to individual-based mod-

els was that, once the individuals had been specified in a model, the col-

lective level consequences would emerge naturally. Similarly, a lot of

complex simulations are built without any hierarchical structure. Because

there appears to be no need to think carefully about the assumptions or

the parameters, one might be tempted to consider that all the parameters

have the same level of accuracy or importance. Such a view is downright

dangerous, not least because the effects of important parameters can be

diluted among a jumble of other effects.

For example, most mechanistic models require a much more detailed

understanding of variability and stochasticity, both through differences



between individuals and a changing environment, than population-level

models. The study of inter-individual differences has gained popularity,

maybe because of that; it has revealed that individuals can differ substan-

tially in their sensory, cognitive, and motor abilities (Scheiner, Erber and

Page 1999; Scheiner and Erber, this volume), as well as differing in their

behavioral responses to the same stimuli (Weidenmüller 2004; Chittka et

al. 2003). This is an important aspect to consider if discussing, for example,

task allocation in social insect colonies. Similarly, it is becoming clear that

the physical environment, and its variability, may play a big role in creating

organization. It can serve as a seed or template for structure, or it can be

used as a medium not just for information transmission but also informa-

tion storage (stigmergy) (Detrain and Deneubourg 2002; Dornhaus and

Chittka 2005). Often the dynamics and the evolution of strategies used by

social insects can only be understood by considering the type of environ-

ment and the variability to which they are exposed (Dornhaus and Chittka

2004b). The recognition of the importance of the environment should lead

to new experimental studies that focus on quantifying environmental pa-

rameters and how they change, as well as the social insect behaviors them-

selves.

Earlier, we alluded to the term sociophysics and the label “the physics of

society,” and we think this term can be problematic. The problem arises if

people imagine that societies can be reduced purely to physics. For ex-

ample, Camazine et al. (2001) put extreme emphasis on the crucial point

that self-organization is not an alternative explanation to natural selection

for complexity in biology. Nevertheless, when their book was reviewed in

Nature, a biophysicist repeated this error (Ben-Jacob 2002). Unfor-

tunately, we think it is likely to be repeated again and again because some

of the most dramatic recent demonstrations of self-organization in biology

have experimentally accentuated the physics of these systems. Consider

three recent examples from studies of ants. First, Lasius niger does not ha-

bitually forage on bridges (Dussutour et al. 2004). Second, Linepithema

humile workers probably very rarely accumulate at the end of twigs and

then drip-off like a chaotically leaking tap (Bonabeau et al. 1998; Ther-

aulaz et al. 2001). Third, Messor sancta in nature will never encounter so

many dead bodies outside their nest, in a circular arena, that they will ex-

hibit Turing morphogenesis—producing cemeteries in regularly spaced

clusters (Theraulaz 2000). Nevertheless, even though all these studies ar-

guably excessively turn-up-the heat to accentuate the “signal to noise



ratio,” they are valuable in that they reveal the biological principles that

may have an important role in these systems—only to a much more subtle

degree in the natural world. As is the case with all laboratory studies of be-

havior, ideally they should be followed up with fieldwork whenever this is

possible. Of course, the purpose of some of these experiments may not

have been the study of (natural) ant behavior, but the study of collective

behavior of a complex system where one tests, for example, how different

patterns can be created. This can be a worthy goal in itself, especially if the

resulting insights can be used successfully to design artificial systems that

employ logically similar processes to generate useful patterns and proce-

dures. It is important to note that none of these findings show that biology

reduces to physics. Biology is unique among the sciences because it is the

domain of evolution by natural selection, thus it is underpinned by physics

and chemistry but does not reduce to them.

New Topics in (Empirical) Insect Sociobiology

The use of a variety of modeling approaches has made sociobiology a truly

interdisciplinary effort. Once such connections between disciplines are es-

tablished, methods and ideas can be exchanged in both directions. This has

inspired and helped the empirical study of social insects as well. Biologists

are now exploring new questions experimentally, inspired by theoretical

advances in other fields. Networks theory, with the now famous “small

world effects,” was established in mathematics and sociology, but is now

being applied to the pattern of interactions in social groups of animals

(Fewell 2003; Couzin et al. 2005) as well as that of ecological interactions

(Memmott 1999; Memmott, Waser, and Price 2004). The realization in

mathematics and physics that positive feedback systems can lead to pat-

tern formation has prompted biologists to examine feedback loops, for ex-

ample, in recruitment (Beekman, Sumpter, and Ratnieks 2001); traffic

flow (Couzin and Franks 2002), aggregation behavior (Jeanson et al. 2004;

Jeanson and Deneubourg, this volume), and spatial structure (Theraulaz et

al. 2002; Bonabeau et al. 1998). Researchers in economics and epidemiol-

ogy have developed methods of analyzing the spread of ideas and diseases,

looking for patterns of information flow in heterogeneous populations

(Britton et al. 2002; Feffermann and Traniello this volume) and discover-

ing how some disappear while others spread rapidly. Similarly, social insect

researchers have realized that information is not evenly distributed in an



insect colony and have started to study ways of information flow (e.g., See-

ley 1998; Dornhaus and Chittka 2004a). They, in turn, found bifurcation

and collective decision making involving minimal colony sizes and quorum

thresholds reminiscent of critical masses (Franks et al. 2002; Beckers et al.

1989; Anderson and McShea 2001; Seeley and Visscher 2004). Others

have demonstrated how decision making in a social insect colony may

function in a similar manner to neural circuits in the primate brain, and

thus similarly achieve optimal decision making (Marshall et al., submit-

ted). More parallels are sure to be found between such systems, and rather

than reinventing wheels separately, researchers would do well to explore

the use of techniques and results already established for similar systems in

other fields.

Nevertheless, interdisciplinary research has its difficulties, not just be-

cause one has to admit ignorance and be prepared to learn about a new

system. It also often means adjusting to the different traditions of research

and communication in another field. It is therefore not surprising that a

certain reluctance has to be overcome before a common language is found

and ideas are fruitfully exchanged between disciplines. To some degree,

the complexity of the models used in theoretical sociobiology has forced

biologists to interact with mathematicians and computer scientists, and the

complexity of many man-made systems has led computer scientists and

engineers to look for problem-solving strategies in (equally complex) bio-

logical systems. The emergence of pattern from collective activity—self-

organization—has thus become a buzz-word in several disciplines. Social

insect research, neuroscience, physics, sociology, computer science, and

other fields have discovered the similarities in the processes underlying

pattern formation in their systems, which was only possible after they had

started creating a common language to talk about them (Camazine et al.

2001; Ball 1999). This interaction has introduced not only new ideas to bi-

ology, and particularly social insect science, but also new tools, such as

individual-based simulations and other mathematical and computational

techniques. A growing number of studies now look at mechanisms of how

collective pattern is created (e.g., Bonabeau et al. 1998; Franks and

Deneubourg 1997; Camazine et al. 2001; Millor et al. 1999; Roces 2002;

Sendova-Franks and Franks 1999; Watmough and Camazine 1995), in ad-

dition to studying why animals collaborate in the first place. The latter in-

volves weighing benefits against costs and thus often mathematical

models; the former, however, is usually too complex to be solved analyti-



cally and is only possible by the rise in the power of available computa-

tional tools.

New modeling techniques can open up new areas to be studied, and

thereby inspire new experiments. In fact, the more interesting results of

modeling studies are not those that confirm old hypotheses; they are those

results that show us that we do not actually understand why and how

things happen the way they do. This, in an ideal world, should lead to new

and experimental ways of approaching the system under study, but the

temptation is great to bend and “correct” the model in such a way that it

conforms to previous hypotheses. It is vital that we let our views of how so-

cial insect colonies work be challenged by results from new modeling stud-

ies; at the same time, all models should suggest ways to test any new

hypotheses in the real world.

Attempting to build a model of collective behavior usually leads to the

realization of how much we still do not know. Too often, the interaction is

a one-way street: models use experimentally collected data, but predic-

tions of models are then not tested on a real-world system. We think that

this is one of the big opportunities, but also challenges, opened up by using

models: to close the gap, to help identify and lead to the collection of miss-

ing data, and to test new hypotheses and predictions from modeling stud-

ies experimentally. However, it is also important to realize that models can

lead not only to new experiments but also to important new questions.

Repaying the Favor: Feedback from Biology into Other

Disciplines

Thus far, we have sought to demonstrate the contribution that mathemati-

cal models and computers have made to the development of insect socio-

biology. In return, the study of social insects has made contributions of its

own to computer science, mathematics, and related disciplines. Computer

scientists are increasingly realizing that social insects have evolved solu-

tions to some difficult problems, such as foraging; problems that are simi-

lar in many respects to those encountered by computer scientists. In the

twenty-first century the ubiquity of computers and networks such as the

Internet has created a host of problems in which a global, accurate picture

of the entire problem is not available for the planning of a solution. Rather,

approaches to these problems must try to optimize a solution using only

local and uncertain information. It is precisely these constraints that social



insects work under; consider the example of foraging behavior in social in-

sects, in which individual insects only have access to local information (the

food sources they discover or are recruited to by other scouts) which is un-

certain (food sources can fluctuate in quality, appear or disappear, etc.).

For such problems the collective behaviors of social insects may provide

inspiration for robust and efficient solutions. One example is the applica-

tion of an algorithm based on pheromone-based foraging in ants to the

routing of connections in a telecoms network (Dorigo and Stützle 2004).

In the ants, shorter paths to a food source receive more ant traffic and

hence more pheromone, and positive feedback for those shorter paths oc-

curs. However, if new and better paths become available or old high-use

ones are blocked, the colony is often able to adapt. Other social insect be-

haviors may be applicable to engineering problems; the house-hunting be-

havior of Temnothorax albipennis, for example, has been studied with

reference to decentralized control problems such as process migration in

computer networks (Marshall et al. 2006).

Even in cases where a global view of the problem is available, there is a

significant class of problems in computer science and mathematics that are

combinatorial; that is, there are too many possible solutions to evaluate all

the alternatives exhaustively. One famous example is a kind of shortest

path problem known as the Traveling Salesman Problem, in which the

shortest possible tour visiting all the cities in a country exactly once must

be discovered. Heuristic approaches for solving such problems are re-

quired, and here again the pheromone-based foraging behavior of ants has

provided inspiration. By allowing a simulated ant colony to “forage” re-

peatedly for the shortest tour around the cities, important components of

the tour are found to be those that repeatedly are heavily marked with vir-

tual pheromone, and these components may be combined into a single

good quality solution (Bonabeau, Dorigo, and Theraulaz 1999). Social

insect-inspired engineering solutions have been derived from spatial sort-

ing (Lumer 1994) or task allocation (Bonabeau, Dorigo, and Theraulaz

1999), and are used in job-shop scheduling (Cicirello 2004), software

‘agents’ (Parunak 1997; Weiss 1999), optimization of communication net-

works (DiCaro and Dorigo 1998), and collective robotics (e.g., for plane-

tary exploration; Brooks and Flynn 1989; Krieger, Billeter, and Keller

2000). Moreover, computer science and mathematics are not the only dis-

ciplines to benefit from insights into the collective behavior of social in-

sects; such disparate fields as corporate organization and sociology have



also taken inspiration from social insect organization (Costa 2002; Parunak

1997). Of course, interest in what lessons social insects might hold for the

organization of human affairs has a long and venerable history: “It is true

that certain living creatures, as bees and ants, live sociably one with an-

other (which are therefore by Aristotle numbered amongst political crea-

tures) . . . and man may desire to know why mankind cannot do the same.”

(Hobbes 1651).

Recommendations for the New Generation Mathematical

Sociobiologist

As the French mathematician Henri Poincaré (1905) said, “Science is built

of facts as a house is built of stones; but an accumulation of facts is no more

science than a heap of stones is a house.” If biology is to be more than just

“stamp collecting” (or stone heaping), and more like physics, then theory is

essential. In fact, recent advances in the mathematical and computational

sciences have brought theory to the fore in biology. However, Jacob (1970)

was rather overstating the matter when he said, “One doesn’t study life in

laboratories these days.” Rather, we feel that while modeling has tremen-

dous contributions to make to the development of biological understand-

ing, biological experimentation and validation should always be the final

arbiter (see also Bray 2001; May 2004).

We believe that the quality of a modeling study is directly related to how

clearly the questions, the assumptions, and the hypotheses are laid out,

and how well the method used can distinguish between these hypotheses.

Progress is only made when questions are answered. Merely achieving a

similarity of certain model results with empirically observed ones does not

guarantee that the underlying mechanisms are the same (Bonabeau and

Theraulaz 1994). The scientific approach of devising hypotheses and at-

tempting to falsify them is bread and butter to any empirical biologist, but

is not necessarily part of a mathematician’s or computer scientist’s daily

work. Particularly with stochastic models, the same techniques of multiple

sampling and statistical analysis have to be used as with an empirical study.

This also is needed to check that any model results apply to the biologically

relevant parameter values.

Simple models are usually more illuminating than complex ones. Esti-

mating parameter values used in numerical models always entails the ne-

cessity of performing a sensitivity analysis. If many parameters have to be



estimated, a sensitivity analysis can become cumbersome—and this is one

of the most important reasons for preferring a simple model to a complex

one. When a model is designed, the feasibility of analyzing it should be

considered at the outset. Further, in complex models the underlying as-

sumptions are often hard to specify. However, understanding how certain

assumptions lead to the observed results is key to the explanatory value of

a model.

Lastly, in order to make an impact on a field that is mostly empirical,

modelers should aim to communicate their results to empiricists. This can

be helped by clearly stating how model results follow from particular as-

sumptions. Models should make testable predictions and such tests should

be spelled out explicitly in a modeling study.

What are the hallmarks of good modeling studies? (1) They should an-

swer a biologically relevant question by spelling out hypotheses and dis-

proving some of them. (2) They should show that the results apply to

biologically relevant parameter values, and are independent of some varia-

tion in parameter estimates. (3) They should clearly indicate which assump-

tions led to the results. (4) Last, but not least, they should suggest empirical

ways of testing the conclusions of the model. Models that meet this “gold-

standard” should not fail to make a substantial impact in this field.

In sum, as insect sociobiologists we have an unrivaled opportunity to ob-

serve our study organizations part and parcel. We can then employ recent

developments in statistical physics, its sister disciplines of complexity the-

ory and self-organization theory, and the new realm of individual-based

modeling to generate testable hypotheses. And we can evaluate and test

these ideas through close-coupled iterated loops of progressive modeling

and experimentation. The future is indeed bright for insect sociobiology.

Acknowledgments

We wish to thank BBSRC (EF19832) and EPSRC (GR/S78674/01) and

the DFG (German Science Foundation, Emmy Nöther Fellowship to

A.D.) for funding.

Literature Cited

Anderson, C., and D. W. McShea. 2001. “Individual vs. social complexity, with

particular reference to ant colonies.” Biological Reviews 76: 211–237.



Ball, P. 1999. The self-made tapestry. Oxford: Oxford University Press.

———. 2004. Critical mass: How one thing leads to another. London: William

Heinemann.

Beckers, R., S. Goss, J. L. Deneubourg, and J. M. Pasteels. 1989. “Colony size,

communication and ant foraging strategy.” Psyche 96: 239–256

Bedau, M. A. 1999. “Can unrealistic computer models illuminate theoretical

biology?” In A. S. Wu, ed., Proceedings of the 1999 genetic and evolution-

ary computation conference workshop programme, 20–23. San Francisco:

Morgan Kaufmann.

Beekman, M., D. Sumpter, and F. Ratnieks. 2001. “Phase transition between

disordered and ordered foraging in Pharaoh’s ants.” Proceedings of the

National Academy of Sciences USA 98: 9703–9704.

Ben-Jacob, E. 2002. “When order comes naturally.” Nature 415: 370.

Bonabeau, E., M. Dorigo, and G. Theraulaz. 1999. Swarm intelligence: From

natural to artificial systems. New York: Oxford University Press.

Bonabeau, E., G. Theraulaz, J.-L. Deneubourg, N. R. Franks, O. Rafelsberger,

J. L. Joly, and S. Blanco. 1998. “A model for the emergence of pillars, walls

and royal chambers in termite nests.” Philosophical Transactions of the

Royal Society of London: Biological Sciences 353: 1561–1576.

Bonabeau, E., and G. Theraulaz. 1994. “Why do we need artificial life?”

Artificial Life 1: 303–325.

Bonabeau, E., G. Theraulaz, J.-L. Deneubourg, A. Lioni, F. Libert, C.

Sauwens, and L. Passera. 1998. “Dripping faucet with ants.” Physical

Review E Volume 57: 5904–5907.

Bourke, A. F. G., and N. R. Franks. 1995. Social evolution in ants. Princeton:

Princeton University Press.

Bray, D. 2001. “Reasoning for results.” Nature 412: 863.

Brooks, R. A., and A. M. Flynn. 1989. “Fast, cheap, and out of control: A robot

invasion of the solar system. Journal of the British Interplanetary Society

20: 478–485.

Britton, N. F., N. R. Franks, S. C. Pratt, and T. D. Seeley. 2002. “Deciding on

a new home: How do honeybees agree?” Proceedings of the Royal Society

B 269: 1383–1388.

Burton, J. L., and N. R. Franks. 1985. “The foraging ecology of the army ant

Eciton rapax: An ergonomic enigma?” Ecological Entomology 10:

131–141.

Camazine, S., J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E.

Bonabeau. 2001. Self-organization in biological systems. Princeton:

Princeton University Press.

Charnov, E. L. 1976. “Optimal foraging, the marginal value theorem.”

Theoretical Population Biology 9: 129–136.



Chittka, L., A. G. Dyer, F. Bock, and A. Dornhaus. 2003. “Bees trade off forag-

ing speed for accuracy.” Nature 424: 388.

Cicirello, S. and S. F. Smith 2004. “Wasp-like agents for distributed factory

coordination.” Journal of Autonomous Agents and Multi-Agent Systems 8:

237–266.

Costa, J. T. 2002. “Scale models? What insect societies teach us about our-

selves.” Proceedings of the American Philosophical Society 146: 170–180.

Couzin, I. D., and N. R. Franks. 2002. “Self-organized lane formation and

optimized traffic flow in army ants.” Proceedings of the Royal Society B

270: 139–146.

Couzin, I. D., J. Krause, N. R. Franks, and S. A. Levin. 2005. “Effective lead-

ership and decision-making in animal groups on the move.” Nature 433:

513–516.

Cuthill, I. C. 2005. “The study of function in behavioural ecology. Animal

Biology 55: 399–417.

Deneubourg, J. L., S. Goss, N. R. Franks, and J. M. Pasteels. 1989. “The blind

leading the blind: Modeling chemically mediated army ant raid patterns.”

Journal of Insect Behavior 2: 719–725.

Detrain, C., and J.-L. Deneubourg. 2002. “Complexity of environment and

parsimony of decision rules in insect societies.” The Biological Bulletin 202:

268–274.

———. 2006. “Self-organized structures in a superorganism: Do ants “behave”

like molecules?” Physics of Life Review 3: 162–187.

DiCaro, G., and M. Dorigo. 1998. “AntNet: Distributed stigmergic control for

communications networks.” Journal of Artificial Intelligence Research 9:

317–365.

Di Paolo, E. A., J. Noble, and S. Bullock. 2000. “Simulation models as opaque

thought experiments.” In M. A. Bedau, Bedau MA.; Snyder E and N. H.

Packard, eds., Proceedings of the Seventh International Conference on

Artificial Life, 497–506. Cambridge: MIT Press.

Dorigo, M., and T. Stützle. 2004. Ant colony optimization. Cambridge: MIT

Press.

Dornhaus, A., and L. Chittka. 2004a. “Information flow and regulation of for-

aging activity in bumble bees.” Apidologie 35: 183–192.

———. 2004b. “Why do honey bees dance?” Behavioral Ecology and

Sociobiology 55: 395–401.

———. 2005. “Bumble bees (Bombus terrestris) store both food and informa-

tion in honeypots.” Behavioral Ecology Behavioral Ecology 16: 661–666.

Dornhaus, A., F. Klügl, C. Oechslein, F. Puppe, and L. Chittka. 2006. Benefits

of recruitment in honey bees: ecology and colony size.” Behavioral Ecology

17: 336–344.



Dussutour, A., V. Fourcassié, D. Helbing, and J.-L. Deneubourg. 2004.

“Optimal traffic organization in ants under crowded conditions.” Nature

428: 70–73.

Fewell J. H. 2003. “Social insect networks.” Science 301: 1867–1870.

Franks, N. R. 1989. “Army ants: A collective intelligence.” American Scientist

77: 138–145.

Franks, N. R., and J.-L. Deneubourg. 1997. “Self-organizing nest construction

in ants: individual worker behaviour and the nest’s dynamics.” Animal

Behaviour 54: 779–796.

Franks, N. R., A. Dornhaus, J. P. Fitzsimmons, and M. Stevens. 2003. “Speed

vs. accuracy in collective decision making.” Proceedings of the Royal

Society of London Series B 270: 2457–2463.

Franks, N. R., S. C. Pratt, E. Mallon, N. Britton, and D. Sumpter. 2002.

“Information flow, opinion-polling and collective intelligence in house-

hunting social insects.” Philosophical Transactionsof the Royal Society:

Biological Sciences 357: 1567–1583.

Franks, N. R., A. B. Sendova-Franks, J. Simmons, and M. Mogie. 1999.

“Convergent evolution, superefficient teams and tempo in Old and New

World army ants.” Proceedings of the Royal Society of London B 266:

1697–1701.

Franks, N. R., N. Gomez, S. Goss, and J.-L. Deneubourg. 1991. “The blind

leading the blind in army ant raid patterns: Testing a model of self-organi-

zation.” Journal of Insect Behavior 4: 583–607.

Gotwald, W. H. 1995. Army ants: The biology of social predation. Ithaca:

Cornell University Press.

Gould, S. J. 1989. Wonderful life: The Burgess shale and the nature of history.

New York: Norton.

Helbing, D., and B. A. Huberman. 1998. “Coherent moving states in highway

traffic.” Nature 396: 738–740.

Helbing, D., and M. Treiber. 1998. “Traffic theory—Jams, waves and clusters.”

Science 282: 2001–2003.

Hobbes, T. 1651/1985. Leviathan. London: Penguin.

Hogeweg, P., and B. Hesper. 1990. “Individual-oriented modelling in ecology.”

Mathematical and Computer Modelling 13: 83–90.

Jacob, F. 1970. La logique du vivant. Paris: Gallimard.

Jeanson, R., J.-L. Deneubourg, A. Grimal, and G. Theraulaz. 2004.

“Modulation of individual behavior and collective decision-making during

aggregation site selection by the ant Messor barbarus.” Behavioral Ecology

and Sociobiology 55: 388–394.

Krieger, M. J. B., J.-B. Billeter, and L. Keller. 2000. “Ant-like task allocation

and recruitment in cooperative robots.” Nature 406: 992–995.



Lumer, F. 1994. “Diversity and adaptation in populations of clustering ants.”

From Animals to Animats 3: Proceedings of the 3rd International

Conference on Simulation of Adaptive Behavior, 501–508.

Marshall, J. A. R., A. Dornhaus, N. R. Franks, and T. Kovacs. 2006. “Noise,

cost and speed-accuracy trade-offs: Decision making in a decentralized sys-

tem.” Journal of the Royal Society: Interface 3: 243–254.

Marshall, J. A. R., and N. R. Franks. 2007. “Whys and wherefores of computer

modelling in behavioural biology.” In Laubichler M.D Müller, G.B. eds.,

Modeling biology—Structures, behavior, evolution. Cambridge: MIT Press.

Maxwell, J. C. 1873a. “Science and free will.” In L. Campbell and W. Garnett,

eds., The life of James Clerk Maxwell, 438–439. London: Macmillan.

———. 1873b. “Molecules [from Nature, Vol. 8].” In W. D. Niven, ed., The

scientific papers of James Clerk Maxwell, Vol II. Cambridge: Cambridge

University Press.

May, R. M. 2004. “Uses and abuses of mathematics in biology.” Science 303:

790–793.

Memmott, J. 1999. “The structure of a plant-pollinator food web.” Ecology

Letters 2: 276–280.

Memmott, J., N. Waser, and M. Price. 2004. “Tolerance of pollination net-

works to species extinctions.” Proceedings of the Royal Society B 271:

2605–2611.

Miller, W. III. (ed). 2003. “New interpretations of complex trace fossils.”

Palaeogeography, Palaeoclimatology, Palaeoecology (Special Issue): 192.

Millor, J., M. Pham-Delegue, J.-L. Deneubourg, and S. Camazine. 1999. “Self-

organized defensive behavior in honeybees.” Proceedings of the National

Academy of Sciences USA 96: 12611–12615.

Niklas, K. 1999. “Evolutionary walks through a land plant morphospace.”

Journal of Experimental Botany 50: 39–52.

Parunak, H. D. 1997. “ ‘Go to the ant’: Engineering principles from natural

multi-agent systems.” Annals of Operations Research 75: 69–101.

Pittendrigh, C. S. 1958. “Adaptation, natural selection and behavior.” In A.

Roe and G. G. Simpson, eds., Behavior and evolution. New Haven: Yale

University Press.

Poincaré, H. 1905. La science et l’hypothèse. Paris: Flammarion.

Pratt, S. C., E. B. Mallon, D. J. T. Sumpter, and N. R. Franks. 2002. “Quorum

sensing, recruitment, and collective decision-making during colony emigra-

tion by the ant Leptothorax albipennis.” Behavioral Ecology and

Sociobiology 52: 117–127.

Pratt, S. C., D. J. T. Sumpter, E. B. Mallon, and N. R. Franks. 2005. “An

agent-based model of collective nest choice by the ant Temnothorax

albipennis.” Animal Behaviour 70: 1023–1036.



Ray, T. S. 1994. “An evolutionary approach to synthetic biology: Zen and the

art of creating life.” Artificial Life 1: 179–210.

Roces, F. 2002. “Individual complexity and self-organization in foraging by

leaf-cutting ants.” Biological Bulletin 202: 306–313.

Scheiner, R., J. Erber, and R. E. Page. 1999. “Tactile learning and the individ-

ual evaluation of the reward in honey bees (Apis mellifera L.).” Journal of

Comparative Physiology A 185: 1–10.

Schmid-Hempel, P., A. Kacelnik, and A. L. Houston. 1985. “Honeybees maxi-

mize efficiency by not filling their crop.” Behavioral Ecology and

Sociobiology 17: 61–66.

Schneirla, T. C. 1971. Army ants: A study in social organization. San

Francisco: Freeman.

Seeley, T. D. 1998. “Thoughts on information and integration in honey bee

colonies.” Apidologie 29: 67–80

Seeley, T. D., and P. K. Visscher. 2004. “Quorum sensing during nest-site selec-

tion by honeybee swarms.” Behavioral Ecology and Sociobiology 56:

594–601.

Sendova Franks, A. B., and N. R. Franks. 1999. “Self-assembly, self-organiza-

tion and division of labour.” Philosophical Transactions of the Royal Society

of London: Biological Science 354: 1395–1405.

Strogatz, S. 2004. “The physics of crowds.” Nature 428: 367–368.

Theraulaz, G., E. Bonabeau, S. C. Nicolis, R. V. Sole, V. Fourcassie, S. Blanco,

R. Fournier, J. L. Joly, P. Fernandez, A. Grimal, P. Dalle, and J.-L.

Deneubourg. 2002. “Spatial patterns in ant colonies.” Proceedings of the

National Academy of Sciences USA 99: 9645–9649.

Theraulaz, G., E. Bonabeau, C. Sauwens, J.-L. Deneubourg, A. Lioni, F.

Libert, L. Passera, and R. Solé. 2001. “Model of droplet dynamics in the

argentine ant Linepithema humile (Mayr).” Bulletin of Mathematical

Biology 63: 1079–1093.

Varju, D., and J. Núñez. 1993. “Energy balance versus information exchange in

foraging honeybees.” Journal of Comparative Physiology 172: 257–261.

Watmough, J., and S. Camazine. 1995. “Self-organized thermoregulation of

honeybee clusters.” Journal of Theoretical Biology 176: 391–402.

Weidenmüller, A. 2004. “The control of nest climate in bumblebee (Bombus

terrestris) colonies: Interindividual variability and self reinforcement in

fanning response.” Behavioral Ecology 15: 120–128.

Weiss, G. 1999. “Multiagent systems: A modern approach to distributed artifi-

cial intelligence.” Cambridge: MIT Press.

Wilson, E. O. 1971. The insect societies. Cambridge: Belknap Press.


