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Abstract.

A model for anisotropic Coulomb screening by 2D &id carriers simultaneously, is
proposed in the Thomas-Fermi approximation. Anedjtiexpressions for the screened
interaction potentials and scattering matrix elets@mne obtained. This model is applied to the
Auger relaxation of carriers in an InAs/InP quantdat (QD) — wetting layer (WL) system.
The influences of the QD morphology and carriemssttees on screening and Auger effects
are studied. 2D-2D scattering is found to be thetnmaportant process, depending especially
on QD morphology. A smearing effect is associatedthe wetting layer wavefunction
extension along the growth axis. The screened pates similar to a potential screened by

3D carriers.

P.A.C.S.73.21.La, 71.15.Qe, 71.15.-m, 73.22.Dj



[. INTRODUCTION

Considerable research developments have been Isecastiieved in the field of
semiconductor quantum dots (QDs). These nanostasctmay improve performances of
optoelectronic devices as compared to that achievidd semiconductor quantum welié.
Current injection efficiency and modulation dynasdepend crucially on carrier capture and
relaxation in the QDs. The importance of Auger psses has attracted much attention from
the experimentaf® and theoretical®® points of view. These Auger processes may be
associated either to 3D-like carriers or 2D casriarthe wetting layer (WL) (or even QD 0D
states) but most theoretical analyses have focoseWVL states. The distinction between
these two types of carriers is indeed already aliffi for quantum well (QW) or QW
superlattic®?, Bound states in QW (2D carriers) are quite welfirled but the situation is
much more complicated for continuum states (3D-ti&aiers). We may also add that the role
of WL states in the relaxation processes is stjluastion debated from the experimental point
of view.These various scattering processes araanfled by carrier-induced screening of the
electronic interactiort$?. Some theoretical works®*®use well-known dielectric screening
functions for the 2D carriers in the WL in orderdimnulate the Auger scattering processes
involving 2D carriers. The screening for these psses is however associated in another
work®™ to carriers remaining in the barrier after injent{3D carriers). We believe indeed that
the simultaneous roles of 2D WL states and 3D Istdites should be examined within the
same model.

In this work, we present briefly a simple one-banddel for the calculation of QD
electronic discrete states including the WL in aipmcal space analysis. The detailed
simulation of dielectric screening for 2D and 3®ations is proposed. Auger relaxation

processes between the QD first excited and grotatdssare then described. Results of these



calculations are applied to InAs/InP GB&%. Finally, a discussion is made on the respective

roles of 2D and 3D carriers.

[I. CALCULATION OF QD AND WL ELECTRONIC STATES

The considered QD is assumed to have a truncaledlely shape. It is situated on a
WL which is more or less similar to a thin QW (frgul). The simulation of the QD's
electronic properties is performed with a simptifiene-band effective mass Hamiltonian

_h2

H= 5 A+V,(F). Owing to the symmetry of the problen€y,), the electronic ground
m

: : . (») - Pes (rt J Z)
state GS and excited state ES have S and P-likmeym properties @ss\l N (QD

1S state) and”Es(f):%em (QD 1P state). Th@Gs(n,Z) and ¢Es(rt,2) functions

are developed in reciprocal space on a basis afugte of Bessel and plane waves functions

(Bessel-Fourier transform in the radial direction d&ourier transform along the z axis). The

ik, T,

VA

electronic states of the WLR,F>:WW(2) are determined analytically. Only one

discretized energy level is found fH%W(Z) in the thin WL studied in this work (figure 1).

In the case of InAs/InP QDs, the electronic confieat potential is taken equal to 300
meV in the QD and in the WL, the reduced electraifective mass to 0.05, the thickness of

the WL to 1.2 nm . The description of the WL is #ganto the one of a narrow QW. The

energy of the unique WL confined electronic statds then equal to —36 meV (the energy is

set equal to 0 in the confinement layer). The esttanof WL WavefunctionLPW(Z) along the
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growth axis is large, of the order of 10 nm on eaie of the WL. The geometry of the
InAs/InP QDs (thickness h and radius R) may berotietl during the growth procedure, in
particular to tune the optical emission to the delemunication wavelengtt\€1.55um)®.

Typical values for thickness and diameter are 2.5md 30nm respectively. Electron
confinement is then stronger in the growth dirattiban in the plane. The optical emission

energy depends mainly on the thickness h but teeggrgap between the ground and excited
electronic statesEgs —Egs is in a first approximation a function of the nasli (

Ecs —Egs = —19meV for h=2.5nm and R=15nm)We must finally add that several sheets of

QD+WL are often used in order to increase the gaimptical devices. The spacing between
QD-WL sheets is generally chosen large enouigh20nm) to avoid a strong coupling
between QD and WL electronic states but not togeldo be able to stack several QD-WL
sheets in the optical confinement zone. For INASMQDS, typical values for the spacib@re

in the20-40nm rangé®** (figure 1).

[ll. SCREENING BY 2D AND 3D CHARGE CARRIERS

A. Electronic density of states
We consider the simplified approach of ref. [20]ievhtakes into account the simultaneous
presence of 2D carriers localized in a QW and 3Diexa in the barrier. The total electron

density is then calculated with :

dE

3/2 0
L oL h 1+e=#

ﬂ.2

0
where m is the effective mass;, is the quantized level in the WL (only one levsl i
considered)u is the electronic Fermi level aidis the spacing between QD-WL sheets. It is

assumed that is large enough to avoid the appearance of supedaffects. The energy



dispersions in the WL and in the bulk are suppdsdak parabolic. A single electronic Fermi

level is defined for the 2Dn,;) and 3D (35 ) electronic populations. It is possible to define

two carriers temperaturédut we consider this to be beyond the scope opthsent paper.

Figure 2-a is a representation of thg, /(L* N,) and Ny, / N, variations as a function ot

for a spacind. equal to 40nm. The percentages of carriers ifMtheand in the barrier remain
stable untilN, reaches a value of abolt, =10"cm™. The filling of 2D electronic states in
the WL is less efficient for larger values &f, and n,, is almost equal tdN, when N, is
very large. Figure 2-b shows the variationsgf and N, as a function ok for a givenN,
value (N, =10°cm™). WhenL tends to infinity, asymptotic values df,, and n,, are

n,, =7.45.10°cm™ and Ny, =N,. For very smallL values, superlattice effects are

important and this simplified approach is not valtccorresponds tb<20nm in the InAs/InP
QD systen¥ . For InAs/InP QD%, typical values for the spacirgare in the20-40nm range.
We may conclude that in such cases, neither thegfibf the WL nor the one of the barrier
can be neglected. The simultaneous roles of 2D \étes and 3D barrier states in the

screening and in the QD Auger relaxation will thenexamined in the following parts

B. Scattering potential screened by 3D carriers

We will follow the classical method of ref [24] extded later to carrier transport in

superlattice¥. The scattering potentia¥ (f) induced by a carrier localized a¢ ("test"

charge) may be obtained by solving Poisson's emuati

AV() = B () B (1) =~ [0+ )



where¢ is the dielectric constant of the materidl, (f) is the unscreened potentid,g (f)

the induced potential and, (f) Is the induced density of screening carriers. gy motice

that such a calculation should provide the sameltres a Lindhart-type calculation in the

long wavelength lim#f. We would like to point out that the expressior?\/c(t") is unchanged
by the I' « I, permutation (we will use now the notatiM(F,ﬁ,)instead ofV(F)). In the

Thomas-Fermi approximation,nmd(F) is proportional to the potentiaIV(F,Fo),

). The Fourier transform of the Poisson's equatioaldy

e2an, )
— 3DJ . A partial Fourier
E O0u

V(G,qz)=3qze—+qz) where gy, =4/0° + A5 and Ay, =(

- - 1 = iq(rp—T; . .
transform is defined by (r,ro)=KZV (6,22, ™ The partial Fourier transform of the

q

_ e’
"3D-screened” and unscreened potentials are theal daqV(q,Z,Zo):E
3D

e‘QsD ‘Z‘Zo| and

-0z~ 25|

2 _~
Ve (q,z,zo):e—gqe respectively. We define the dimensionless pothm\'!e(q,z,zo) by

\7(@,2,20). The "3D-screened" dimensionless potential is coegp&o other

ones on figure 3 for a fixed value 8f,. The curves a) and b) represent the unscreened and

"3D-screened" dimensionless potentials respectivalg will see now in the next parts that



the potential is screened more efficiently when ¢batribution of 2D carriers is taken into

account.

C. Scattering potential screened by 2D carriers witra delta distribution along the

Z axis

If screening carriers are in bound states of a WLQIW) and if the wavefunction distribution

- on = -
along the z axis is replaced bydunctior® Ny (F.7,)= ‘a—;DV (7, 2.7, )8(z~ 2,,) where

r.is the in-plane component nindz, the position of the WL along the z axis. The Paits

0° ~
Vind (q,z, Zo) e —

equation transforms to-g%/. . (qG,z,z.)+—
q |nd(q Zo) 622 £ a#

2
yielding V, ,(6.z.z,) = —e—%e_q‘z_“\/(ﬁ],zw,zo). This equation is first applied in the WL

280 O0u
ie_q‘zw_zo‘
. _ 289 . _ e’
plane ¢=z,) to find V(q,zW,zo)=W. The classical resﬁ‘ftV(q,ZW)=‘(—)2£ q+ A
€ onyp 2D
260 O0u

2 9n,, ) : i
2_5 GZDJ for a pure 2D system is then recovered when tbst "t charge is

with A, =(

located inside the WLz{=z,). The "2D-screened" potential is calculated ireeosid step at a

general position by combining the expressionQ\@l(C],Z,Zo), Vg (C],Z,ZO) andV(q,ZN,Zo) :
7



2
V(0.2.2) 2V 022) Vi (G.22)= 2 e —e_q‘N_ZOe'qV"‘N'(—“ L ﬂ
2D

The interaction potentiaY(F) does not depend anymore on the sole distance &etiie two

charge\F - Fo| like in the 3D case. The interaction along theis & indeed perturbed by the

WL at z,. However the two interacting charges still plag #ame role, the expression of the

potential being unchanged by the~ Z, permutation. The "2D-screened" (curve c¢) and

unscreened dimensionless potentials (curve a) @rgared in figure 3 for fixed values of

A,p, g and z. The anisotropy induced by the 2D carriers is cleabhserved. The WL is

located at the center of the figu®<0). The small value df, is chosen in order to study the

influence of the WL close to it. This might be tase of a charge located inside the QD.

D. Scattering potential screened by 3D carriers and®D carriers with a delta

distribution along the z axis

If both contributions are now combined followingethwo steps method used for the

2D case in part C, the partial Fourier transfornthef"2D-3D-screened” potential is :

€| ortolzmol _ ool 2ol g2 1
Vi{d,z Z, :Vex d, z, Z, +Vin d,z z,)=——/|e Usn| 22| -e %o |Zu Zo|e O3p|Z ZN|( ]}
(q ) t(q ) d (q ) ZEQ?,D 1+ q3D/‘2D

We may remark that when the charges are on thestppparts of the WLZ<z<z, or

Z2,<7<z,), the interaction potential only depends |6rr ZO|. Figure 3-d is a representation of

this potential. The presence of 2D carriers isemfld by a bent a&,=0 into the potential
curve like in the "2D-screened” case. The amplitisd@urther reduced by the 3D carriers.

Figure 4 represents the "2D-3D-screened"” potefaralarious positions of the "test" charge

along the z axis (& The "3D-screened"” case is recovered when tts&""tdharge is located
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far from the position of the WL. In other wordsetimfluence of 2D carriers on screening is
strong only when the "test" charge is located closthe WL. This is indeed the case for a
charge located into the QD. Finally, we may poimattthe strongest screening effect is
observed forz-z,. The "2D-3D-screened" potential has a symmetnmafile only in that

case.

E. Screening potential screened by 3D carriers and 2 carriers with WL

wavefunction distribution included

The influence of the 2D WL wavefunction distributi@long the z axis is now taken into

account in the induced dengity® %
na(F7) = 222 W (2) (@2f [w.@)VE 2 )z, - Moy (7
ind\" 70 a'u a'u 7o

where ¥, (Z) is the z-part of the WL wavefunction for the quaed state. The problem is

now more complicate :

2 2
 Violi2.2)= S0y, () (q2) S Do

02 | nd 4,27, £ oy £ aﬂv( ZZO)

~ Vg (@Z,Zo)’f
where the potential averaged over the WL  wavefoncti extension
V(G§.z)= ﬂLIJ |2\/ (6,2.2,)dz appears in the second member. The problem coutwlved

self-consistently by putting the solution foundpgart B in \7(€|,zo) at the first step of the

computation. It is simpler to extend the methodpps®d for pure 2D systent$?>?%2

\T(cj,zo) is calculated in a first step by integrating thesBon's equation over z and setting

Via(0.2.2,) equal toV (6.2.2,) -V, (d.2.2,):



V(G.22,)= -5 el eza%DHI () W)V (@.2,2,)e " "dz,dz,
266k 260k, 04 7,

then the equation is averaged of#(z)”in a second step to yield :

2

(s & | f(thp2)
V(G6.z)= o
(q ZO) 2eq3D 1+ g(Q?,D)
Opap

where 9(0o) = [ (@) [Wa(@) e ™ dzdz, 40 t(q,,.2, )= [|w,(2) e *ldz

2,2

It is now possible to integrate numerically the &tpn overz for any value ofz :

62 - . q J“LIJ _Q3D‘Zl Zo|d21 e_q3D|Z_Zo‘
~OsoVing(0,2.2,)+ -5 Vina (0.2 ”W
°P d( ZO) 2 d( ZO) | [ q3DA2D + g(q3D) /lgD

When the WL wavefunction distribution is simplifietthe solution to this equation is known

q3D ~Usp|2w 20| 43 |2-24] 1
o ol Sr e 1)
(p ) ‘ q 1+q3DA2D

The solutions obtained for the "2D-3D-screen§dﬁ,z,Q) taking into account or not

the WL wavefunction extension are compared on &ghrto the "3D-screened” potential:

\7((12, Zo) = %TDG_%DZ_ZO . The smearing effect associated to the WL wawfon makes the

"2D-3D-screened” potential with the WL wavefunctiocluded similar to the "3D-screened"

potential. In addition the screening induced by 2Becarriers is reduced : tt@(qu) factor

is smaller than 1. Figure 6 is a representatiothefdimensionless induced charge density

ﬁmd(q,Z,Zo) in the same three cases for twp values. ﬁmd(q,Z,Zo) is defined by

10
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n,,(F.F ):KZ Nina (6,2,2, %™ and n,,(d,2.2,) =R, (@22, )9. We have chosen to
g

take a narrow Gaussian-like function to reprodingedelta function (see part B) for the "2D-
3D " induced density when the WL wavefunction ig nwluded. The singularity in the
induced density is removed by the smearing effesbeated to the large spatial extension of
the WL wavefunction. In that case the repartitidrin@ induced charge is not very different

from the one in a pure 3D case.

IV. CARRIER RELAXATION BY AUGER PROCESSES

A. Model

Figure 7 is a schematic representation of the fmssible Auger scattering processes
associated to the relaxation of an electron from HS to the GS. In the 2D-2D scattering
process, the mobile electron remains confined enWH along the z direction. In the 3D-3D
scattering process, the bulk electron remainsenbidarier. The two other processes have not
been considered previously in the literature. la #D-3D scattering process, the mobile
electron is emitted from the WL to the barrier wdees the reverse capture from the barrier to
the WL is involved into the 3D-2D scattering proses

The relaxation of an electron from the ES to theaS$bciated to the scattering of 2D or

3D electrons, is determined by the Fermi goldea rul

Rop-20 —2—”(4”2j ”d K d ktl‘M|f| P(kwkﬁ)J E,-E) (2D-2D scattering)

Rop-a ——(%j(%j ”dsk d kt||M|f‘ P( K )5( Ei) (2D-3D scattering)

kf ktl

Rop-30 :27”(%)(%) ” knd K‘M.f| P(K ktf )J(E -E ) (3D-2D scattering)

K
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2
Rip-0 :%(ﬁj R:[',[RidSIZf d?’lzi‘l\/l if ‘2 P(Izi ’sz )J(Ef - Ei) (3D-3D scattering)

where P contains the population factors arld; is the scattering matrix element

between initiallzi and final Ef electronic states. In the 2D-3D case, a limitabarthe initial

wavevector is due to the energy conservation :

k, > \/il_T(EGS -Eg - EW) if Eqs —Egs — E,, 20 (2D-3D scattering)

B. Direct calculations of scattering rates with WL wavefunction distribution

included

As shown in part llI-C, the screened potent?e(ﬁ,z,zo) can be calculated by a simple

1D numerical integration over the z axis. This catafional step is however not necessary
for scattering rates matrix elements derived fromdpplication of the Fermi golden rule. For

example in the case of the interaction betweenlesiren located in a QW and a Coulombic

impurity at r,?° the scattering matrix elemer¥l; is equal to M =<|Zti,F[\/ (F,Q)|Etf,F>

ik, 1,

Where‘lzt,F> = Ww(z)e\/K . Using the results of part Ill-C, it is straightfeard to show that

— —

\7(kf -k, z €% . This matrix element can thereafter be averageu the impurity

M; =

distribution and the population of 2D carriers.

The electronic relaxation from the QD excited s&feto the QD ground state GS by an
Auger process involving the scattering of a 2D iearf2D-2D scattering) is an extension of

this result where the charged QD plays the rolthefCoulombic impurity. It depends on the

12



matrix element M =<|Zti,F;l/JES(FO)[\/(F,Q)\IZﬁ,F;wgs(ﬁ,» (the exchange interaction is

neglected). By introducing the partial Fourier sfamm of the potential :

M, =& [[randa? (K~ 2ie(r sl 200, (K ~K]r) (2D-2D scattering)

Z,5

The matrix elements for Auger processes involvimy dype of scattering are

calculated in a general way :

,ft.Zo)quEtf -k, rt)ei(kj o (3D-3D scattering)

M ZVE ”rtdrtdzo\TEs,Gs qlztf - Eti

24,1t

1 = AP
M = Al jjrtdrtdZoVES,GSthf —ky ’rt’zo)‘]lqktf —ky rt)ww(zo) €"* (2D-3D scattering)

M =A—jtjjrtdrtd%VEs,equﬁ -k, ’rt'Zo)quEtf -k, rt)e'ik”%ww(zo) (3D-2D scattering)

2ot

M;; :%\.“-rtdrtdzo\TES,GSQIztf ~k, ’rt’Zo)‘qulztf -k, rt)ww(zo)‘z (2D-2D scattering)

2ol

where Veg s (@,r,.z,) :jV (6,2, 2, )P s (1, 2)Pes (1, 202 is the average of the potential over
the product ¢GS(rt’Z)¢Es(rtaz). In the last case (2D-2D scattering), this forrtiata is

equivalent to the first one given above. The a\/«mi:sngegraI\7ES,GS (G, re, Zo) can be expressed

using the quantities defined in part IlI-C :

eZ

280,

0

n —
{ fescs (Oap T 2Z) a—:j’v (6, 2 )9es 65 (o T )}

where9escs (o 1) = [[ Bes (1, 2Bes (1 2) W, (2.) € dzdz,

2,7

and fesca (Ghos112,) = [ s 1 2Wes 1 27 I

13



It is now possible to study the smearing effecttred wavefunction distribution, for

example in the case of 3D-3D scattering :

e? {A_ B.*C,

if

= (smearing included)
280,V 9+ 0spAzp }

where

A= [[[e ™ ge(r e .23 (K, K,

2,2, 1

B, = [ beslr sl D[R, K,

22 1y

C = ”eusz s )z
S

2,7

i(Kg —ky
r, )e" #~ % dr dzdz,

r, )WW (z,) *r.dr,dzdz,

W, (z) e dzdz,

and

if

2 B* , .
-_¢ {A— c }(smearlng not included)
2605,V 1+03p450

where

B = ”e_q3D|Z_ZW|¢Gs (rt 'Z)¢ES (rt ,Z)qu_’ - Eti

zn

r, ){tdrt dz

C= v[ei(sz =Ky )Ze—Q3D|Z_Zw|dZ

z

C. Results for InAs/InP QDs

Figure 8 is a comparison of the QD ES-GS relaxatiares for the four Auger
processes as a function of the total electron tdenshe 2D-2D scattering process is the
fastest one except for very high densities wheeenthmber of accessible final wavevector
states for the scattered electrons is reduced llnygfieffects. The 2D-3D WL to barrier
emission is also efficient for assisting the intracklaxation. Finally the 3D-2D capture of an

electron from the barrier to the WL can be neglécte

14



Figure 9 is a representation of the ratidoetween the 2D-2D (or 3D-3D) relaxation
times calculated with and without the effect of W& wavefunction included. The smearing
effect is more important for the 2D-2D relaxatiomés but the correction to the relaxation
time remains small (about 15% at high electron iies$.

Figure 10-a shows the variation of the relaxatiores as a function of the QD radius. In the
2D-2D, 3D-3D and 3D-2D cases, the increase ofddeis decreases the relaxation time. This
is associated to a change of the QD ES and GS waatgdns and thus to a change in the

scattering matrix elements. In the 2D-3D case,djyeosite variation is observed. For large

radius, the energy shiftes — Egs is small (figure 10-b). The differences&Eyw is larger than

Ees and as a consequenégs — Ecs — E,, 20. The number of 2D electronic states available

for emission from the WL to the barrier is Ilimitedoy the condition

The energy differencé&es — Egs increases as the radius decreases down to the valu

of R=10nm whereEgs —Ec5 = E,,. Below R=10nm, all the WL 2D states are availdble

emission of an electron to the 3D states of thedraBelow R=9nm, only one QD electronic
state is quantized and the ES-GS electronic retaxas not defined. Between R=9nm and
R=10nm, the 2D-3D process is slightly more effitidman the 2D-2D process because the
number of accessible final wavevector states (3iestinstead of 2D states) for the scattered
electrons is larger.

The thickness h of the QD may be controlled duthggrowth proceduf& Figure 11
shows the variation of the relaxation times asmetion of the thickness. The behaviour of the

relaxation times versus the thickness is oppositethé one versus the radius (figure 10)

15



mainly because the energy shifts — Eqs increases when the thickness increases. For QD

thicknesses smaller than h=2nm, only one quantkecironic state exists in the QD. In most
practical cases, the InAs/InP QD thickness is athenl during the growth procedure in order
to tune the emission wavelength of the QD. Theibistion of Auger relaxation times should
not be very large. Growth studies are performedth wie aim to reduce the QD size (mainly
the radius) in order to increase the GS-ES enegparation (quantum effect). A small

increase of the thickness must be used also irr dodkeep the emission wavelength at the

same value (1.5am for example). From the calculated variations DfZD Auger relaxation
times as a function of R (figure 10-a) and h (fegyad.), we may conclude that both parameters
contribute to the slowing down of this 2D-2D inddcearrier relaxation. Our study shows
however that this slowing down is partly compendaby the speeding up of the 2D-3D

carrier relaxation.

V. CONCLUSION

The roles of 2D and 3D electronic states in theewng of a Coulombic interaction
are studied. It is shown that 2D and 3D carrierstnine taken into account simultaneously,
especially when a "test" charge is located neafQ¥é This is indeed the case for a carrier in
a QD and close to a WL. Analytical expressionshaf screened potentials are obtained in
most cases except in the case where the extenstbha 8D bound states along z is taken into
account. It is shown however that a simple 1D nuraklintegration is possible. For the
calculation of scattering matrix elements, this euocal step is not necessary and analytical
expressions for integrals involving the screenetbmital are given in all the cases. Intradot
carrier Auger relaxation assisted by 2D WL and 3k kbarrier carriers is studied. New

scattering processes involving emission (2D-3Dgapture (3D-2D) of carriers from the WL
16



to the barrier are analyzed. It is shown howevat ithh most cases the 2D-2D scattering is the
predominant process. Changes in the QD morphologpmly affect the QD optical emission
energy but also the Auger relaxation rates. The3RPDprocess is on the same order of

magnitude as the 2D-2D process for a small QD sadiu
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Figure captions
Figure 1 : Schematic representation of the QD-WL system. h Rrate the thickness and

radius of the QD respectively. L is the spacingveein QD-WL sheets.

Figure 2 : a) Variations ofn,, /(L* N,) (straight line) andn,, /N, (dashed line) as a

function of N, (L=40nm). n,, /(L* N,) and n,, / N, are calculated using the model of part
l1I-A and represent the percentages of carrietténWL and in the barrier respectively.

b) Variations ofn,, (straight line) and;; (dashed line) variations as a function of
the periodL for N,=10%cm?. For L<20nm superlattice effects along the z axis canbeot

neglected. Asymptotic values of, and n;, whenL tends to infinity are &cm®and 7.45
10"%m? respectively.
Figure 3 : Representation of théimensionless potentialé(d,z,z,) when the test charge is

located at #1.5 nm and the WL at,z0 nm in various cases : a) unscreened potential
(straight line), b) 3D screened potential (dottee), c) 2D screened potential with the WL
wavefunction approximated by a delta z functionsfas line) and d) 2D-3D screened
potential corresponding to the b) and c¢) contrimadi taken into account simultaneously
(dashed and dotted line).

Figure 4 : Representation of thdimensionless 2D-3D screened potenb?a(lq,z,zo) for
various z values when the WL wavefunction is approximatedabgelta function along the
axis.

Figure 5 : Representation of th@imensionless potentia}\g(ﬁ,z,zo) when the test charge is

located at &2 nm and the WL at,z0 nm in various cases : a) unscreened potentraight

line), b) 3D screened potential (dotted line), ©-2D screened potential obtained by a
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numerical integration (dashed line) and d) 2D-3Dresped potential with the WL

wavefunction approximated by a delta function (éasand dotted line).
Figure 6 : Representation of théimensionless induced charge densitﬁTa,g(q,Z.Zo) when

the test charge is located a& nm (a) and z3 nm (b). The straight lines correspond to 2D-
3D screened potential with the WL wavefunction appnated by a delta function, the
dashed lines to the 3D screened potential anddtieddlines to the 2D-3D screened potential
obtained by a numerical integration.

Figure 7 : Schematic representation of the various processexiamted to the Auger assisted
relaxation of a carrier from the QD excited st&&) to the QD ground state (GS). Emission
from the WL to the barrier is represented by the3IDarrow. The reverse process is the
capture from the barrier to the WL (3D-2D arrow).

Figure 8 : Variations of the relaxation timasas a function of the electron density for the 2D-
2D (straight line) 2D-3D (dashed and dotted linB}3D (dotted line) and 3D-2D (dashed
line) processes. For most densities, the 2D-2Dga®¢s the most efficient one.

Figure 9 : Variation of the ratiq between the relaxation timeslculated with and without
the delta approximation for the WL wavefunction eTielaxation timesalculated without the
delta approximation are shorter. This ratio is shdar the 2D-2D (dash and dotted line) and
3D-3D (straight line) processes.

Figure 10 : a)Variation of the relaxation timesas a function of the QD radius R for the 2D-
2D (straight line) 2D-3D (dashed and dotted linB}3D (dotted line) and 3D-2D (dashed
line) processes.

b) Variation of the ground state & straight line), excited state & dotted line), wetting
layer state (g, straight line) energies as a function of the @Dius. The differencedsEw

is reported as a dashed line for comparison with E
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Figure 11 : Variation of the relaxation timesas a function of the QD height h for the 2D-2D
(straight line) 2D-3D (dashed and dotted line) ID{@lotted line) and 3D-2D (dashed line)

processes.
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FIG. 2-a
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FIG. 2-b
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FIG. 4.
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FIG. 6-a
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FIG.7.
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FIG.8.
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FIG. 9
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FIG. 10-a
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FIG. 10-b
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FIG. 11
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