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I. INTRODUCTION

Considerable research developments have been recently achieved in the field of semiconductor quantum dots (QDs). These nanostructures may improve performances of optoelectronic devices as compared to that achieved with semiconductor quantum wells. [START_REF] Grundmann | Quantum Dot Heterostructures[END_REF][START_REF] Banyai | Semiconductor Quantum Dots, World Scientific Series on Atomic, Molecular and Optical Physics[END_REF][START_REF] Sugawara | Self-Assembled InGaAs/GaAs Quantum Dots[END_REF][START_REF] Zh | Quantum Wires and Dots show the Way Forward[END_REF] Current injection efficiency and modulation dynamics depend crucially on carrier capture and relaxation in the QDs. The importance of Auger processes has attracted much attention from the experimental [START_REF] Ohnesorge | [END_REF][6][7][8][9][10] and theoretical [11][12][13][14][15][16][17][18] points of view. These Auger processes may be associated either to 3D-like carriers or 2D carriers in the wetting layer (WL) (or even QD 0D states) but most theoretical analyses have focused on WL states. The distinction between these two types of carriers is indeed already difficult for quantum well (QW) or QW superlattice [19][20][21][22][23] . Bound states in QW (2D carriers) are quite well defined but the situation is much more complicated for continuum states (3D-like carriers). We may also add that the role of WL states in the relaxation processes is still a question debated from the experimental point of view.These various scattering processes are influenced by carrier-induced screening of the electronic interactions [24][25][26][27][28][START_REF] Bastard | Wave Mechanics Applied to Semiconductor Heterostructures[END_REF] . Some theoretical works 11,16,18 use well-known dielectric screening functions for the 2D carriers in the WL in order to simulate the Auger scattering processes involving 2D carriers. The screening for these processes is however associated in another work 13 to carriers remaining in the barrier after injection (3D carriers). We believe indeed that the simultaneous roles of 2D WL states and 3D bulk states should be examined within the same model.

In this work, we present briefly a simple one-band model for the calculation of QD electronic discrete states including the WL in a reciprocal space analysis. The detailed simulation of dielectric screening for 2D and 3D electrons is proposed. Auger relaxation processes between the QD first excited and ground states are then described. Results of these calculations are applied to InAs/InP QDs [START_REF] Miska | [END_REF][31][32][33][34] . Finally, a discussion is made on the respective roles of 2D and 3D carriers.

II. CALCULATION OF QD AND WL ELECTRONIC STATES

The considered QD is assumed to have a truncated cylinder shape. It is situated on a WL which is more or less similar to a thin QW (figure 1). The simulation of the QD's electronic properties is performed with a simplified one-band effective mass Hamiltonian ( )

r V m H conf r h + ∆ - = 2 2 .
Owing to the symmetry of the problem ( v C ∞ ), the electronic ground state GS and excited state ES have S and P-like symmetry properties : In the case of InAs/InP QDs, the electronic confinement potential is taken equal to 300 meV in the QD and in the WL, the reduced electronic effective mass to 0.05, the thickness of the WL to 1.2 nm . The description of the WL is similar to the one of a narrow QW. The energy of the unique WL confined electronic state w E is then equal to -36 meV (the energy is set equal to 0 in the confinement layer). The extension of WL wavefunction ( )

( ) ( ) π π π π ϕ ϕ ϕ ϕ ψ ψ ψ ψ
z w Ψ
along the growth axis is large, of the order of 10 nm on each side of the WL. The geometry of the InAs/InP QDs (thickness h and radius R) may be controlled during the growth procedure, in particular to tune the optical emission to the telecommunication wavelength (λ=1.55µm) [START_REF] Miska | [END_REF] .

Typical values for thickness and diameter are 2.5nm and 30nm respectively. Electron confinement is then stronger in the growth direction than in the plane. The optical emission energy depends mainly on the thickness h but the energy gap between the ground and excited electronic states

ES GS E E -
is in a first approximation a function of the radius (

meV 19 E E ES GS - = -
for h=2.5nm and R=15nm). We must finally add that several sheets of QD+WL are often used in order to increase the gain in optical devices. The spacing between QD-WL sheets is generally chosen large enough (L>20nm) to avoid a strong coupling between QD and WL electronic states but not too large to be able to stack several QD-WL sheets in the optical confinement zone. For InAs/InP QDs, typical values for the spacing L are in the 20-40nm range [START_REF] Miska | [END_REF][31][32][33][34] (figure 1).

III. SCREENING BY 2D AND 3D CHARGE CARRIERS

A. Electronic density of states

We consider the simplified approach of ref. [20] which takes into account the simultaneous presence of 2D carriers localized in a QW and 3D carriers in the barrier. The total electron density is then calculated with :

( ) ( ) ( ) ∫ ∞ - - +       + + = + = 0 / 2 / 3 2 2 / 2 3 2 1 2 1 log dE e E m e L mkT n L n N kT E kT E D D t w µ µ µ µ µ µ µ µ π π π π π π π π h h
where m is the effective mass, E w is the quantized level in the WL (only one level is considered), µ is the electronic Fermi level and L is the spacing between QD-WL sheets. It is assumed that L is large enough to avoid the appearance of superlattice effects. The energy dispersions in the WL and in the bulk are supposed to be parabolic. A single electronic Fermi level is defined for the 2D ( D n 2 ) and 3D ( D n 3 ) electronic populations. It is possible to define two carriers temperatures 13 but we consider this to be beyond the scope of the present paper.

Figure 2 . For very small L values, superlattice effects are important and this simplified approach is not valid. It corresponds to L<20nm in the InAs/InP QD system 32 . For InAs/InP QDs 32 , typical values for the spacing L are in the 20-40nm range.

We may conclude that in such cases, neither the filling of the WL nor the one of the barrier can be neglected. The simultaneous roles of 2D WL states and 3D barrier states in the screening and in the QD Auger relaxation will then be examined in the following parts

B. Scattering potential screened by 3D carriers

We will follow the classical method of ref [24] extended later to carrier transport in superlattices 28 . The scattering potential ( ) r V r induced by a carrier localized at r o ("test" charge) may be obtained by solving Poisson's equation :

( ) ( ) ( ) ( ) ( ) [ ] r n r e r V r V r V ind o ind ext r r r r r + - = ∆ + ∆ = ∆ δ ε
where ε is the dielectric constant of the material,

( ) r V ext r is the unscreened potential, ( ) r V ind r
the induced potential and ( ) r n ind r is the induced density of screening carriers. We may notice that such a calculation should provide the same result as a Lindhart-type calculation in the long wavelength limit [START_REF] Bastard | Wave Mechanics Applied to Semiconductor Heterostructures[END_REF] . We would like to point out that the expression of ( )

r V r is unchanged by the o r r r
r ↔ permutation (we will use now the notation ( )

o r r V r r , instead of ( ) r V r
). In the Thomas-Fermi approximation, ( )

r n ind r is proportional to the potential ( ) o r r V r r , , ( ) ( ) 
o D o ind r r V n r r n r r r r , , 3 µ µ µ µ ∂ ∂ - =
. The Fourier transform of the Poisson's equation yields ( ) ( )

2 2 2 3 , z z q q e q q V D + = ε r where 2 3 2 3 - + = D D q q λ λ λ λ and 2 / 1 3 2 3 -         ∂ ∂ = µ µ µ µ ε ε ε ε λ λ λ λ D D n e
. A partial Fourier transform is defined by ( ) ( )

) ( , , 1 , t to r r q i q o o e z z q V A r r V r r r r r r r - ∑ = .
The partial Fourier transform of the "3D-screened" and unscreened potentials are then equal to ( )

O D z z q D o e q e z z q V - - = 3 3 2 2 , , ε ε ε ε r and ( ) O z z q o ext e q e z z q V - - = ε ε ε ε 2 , , 2 r
respectively. We define the dimensionless potentials ( )

o z z q V , , ~r by 
( ) ( ) o o z z q V q e z z q V , , 2 , , 2 r r ε ε ε ε = .
The "3D-screened" dimensionless potential is compared to other ones on figure 3 for a fixed value of D 3 λ λ λ λ . The curves a) and b) represent the unscreened and "3D-screened" dimensionless potentials respectively. We will see now in the next parts that the potential is screened more efficiently when the contribution of 2D carriers is taken into account.

C. Scattering potential screened by 2D carriers with a delta distribution along the z axis

If screening carriers are in bound states of a WL (or QW) and if the wavefunction distribution along the z axis is replaced by a δ function 28 , 

( ) ( ) ( ) w o w t D o ind z z r z r V n r r n - ∂ ∂ - = δ δ δ δ µ µ µ µ r r r r , , ,
( ) ( ) ( ) ( ) w o w D o ind o ind z z z z q V n e z z q V z z z q V q - ∂ ∂ = ∂ ∂ + - δ δ δ δ µ µ µ µ ε ε ε ε , , , , , , 2 2 2 2 
2 r r r yielding ( ) ( ) o w z z q D o ind z z q V e n q e z z q V w , , 2 , , 2 2 r r - - ∂ ∂ - = µ µ µ µ ε ε ε ε . This equation is first applied in the WL plane (z=z w ) to find ( ) µ µ µ µ ε ε ε ε ε ε ε ε ∂ ∂ + = - - D z z q o w n q e e q e z z q V O w 2 2 2 2 1 2 , , r 
. The classical result 28 ( ) ( )
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for a pure 2D system is then recovered when the "test " charge is located inside the WL (z o =z w ). The "2D-screened" potential is calculated in a second step at a general position by combining the expressions for ( )

o ext z z q V , , r , (
)

o ind z z q V , , r and ( 
)
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The interaction potential ( ) 

D. Scattering potential screened by 3D carriers and 2D carriers with a delta distribution along the z axis

If both contributions are now combined following the two steps method used for the 2D case in part C, the partial Fourier transform of the "2D-3D-screened" potential is :

( ) ( ) ( )               + - = + = - - - - - - D D z z q z z q z z q D o ind o ext o q e e e q e z z q V z z q V z z q V w D O w D O D 2 3 3 2 1 1 2 , , , , , , 3 3 3 
λ λ λ λ ε ε ε ε r r r
We may remark that when the charges are on the opposite parts of the WL (z w <z<z o or z o <z<z w ), the interaction potential only depends on o z z -. Figure 3-d is a representation of this potential. The presence of 2D carriers is reflected by a bent at z w =0 into the potential curve like in the "2D-screened" case. The amplitude is further reduced by the 3D carriers.

Figure 4 represents the "2D-3D-screened" potential for various positions of the "test" charge along the z axis (z o ). The "3D-screened" case is recovered when the "test" charge is located far from the position of the WL. In other words, the influence of 2D carriers on screening is strong only when the "test" charge is located close to the WL. This is indeed the case for a charge located into the QD. Finally, we may point that the strongest screening effect is observed for z o= z w . The "2D-3D-screened" potential has a symmetrical profile only in that case.

E. Screening potential screened by 3D carriers and 2D carriers with WL wavefunction distribution included

The influence of the 2D WL wavefunction distribution along the z axis is now taken into account in the induced density 24,28,[START_REF] Bastard | Wave Mechanics Applied to Semiconductor Heterostructures[END_REF] :

( ) ( ) ( ) ( ) ( ) o D o t w w D o ind r r V n dz r z r V z z n r r n r r r r r r , , , , 3 1 1 2 1 2 2 µ µ µ µ µ µ µ µ ∂ ∂ - Ψ Ψ ∂ ∂ - = ∫ where ( ) z w Ψ
is the z-part of the WL wavefunction for the quantized state. The problem is now more complicate :

( ) ( ) ( ) ( ) ( ) o D o w D o ind o ind z z q V n e z q V z n e z z q V z z z q V q , , , , , , , 3 2 2 2 2 2 2 2 r r r r µ µ µ µ ε ε ε ε µ µ µ µ ε ε ε ε ∂ ∂ + Ψ ∂ ∂ = ∂ ∂ + -
where the potential averaged over the WL wavefunction extension

( ) ( ) ( )dz z z q V z z q V o w o , , , 2 r r ∫ Ψ =
appears in the second member. The problem could be solved self-consistently by putting the solution found in part B in ( )

o z q V ,
r at the first step of the computation. It is simpler to extend the method proposed for pure 2D systems 24,25,28,[START_REF] Bastard | Wave Mechanics Applied to Semiconductor Heterostructures[END_REF] .

( )

o z q V ,
r is calculated in a first step by integrating the Poisson's equation over z and setting ( )

o ind z z q V , , r equal to ( ) ( ) o ext o z z q V z z q V , , , , r r - : ( ) ( ) ( ) ( ) ∫∫ - - - - Ψ Ψ ∂ ∂ - = 1 2 2 3 3 , 1 2 1 2 1 2 2 2 3 2 3 2 , , 2 2 , , z z z z q o w w D D z z q D o dz dz e z z q V z z n q e e q e z z q V D o D r r µ µ µ µ ε ε ε ε ε ε ε ε then the equation is averaged over ( ) 2 z w Ψ
in a second step to yield :

( ) ( ) ( )             + = D D D o D D o q q g z q f q e z q V 2 3 3 3 3 2 1 , 2 , λ λ λ λ ε ε ε ε r where ( ) ( ) ( ) ∫∫ - - Ψ Ψ = 1 1 3 , 1 2 1 2 3 z z z z q w w D dzdz e z z q g D and ( ) (
)
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It is now possible to integrate numerically the equation over z for any value of z o :

( ) ( ) ( ) ( ) ( ) 2 3 3 2 3 1 2 1 2 2 3 2 2 2 3 3 1 3 , , , , ~D z z q D D D z z q w w D o ind o ind D O D O D e q g q dz e z z q q z z q V z z z q V q λ λ λ λ λ λ λ λ - - - - +         + Ψ Ψ = ∂ ∂ + - ∫ r r
When the WL wavefunction distribution is simplified, the solution to this equation is known

(part B) : ( )         + - = - - - - D D z z q z z q D o ind q e e q q z z q V w D O w D 2 3 3 1 1 , , ~3 3 λ λ λ λ r .
The solutions obtained for the "2D-3D-screened" ( )

o z z q V , , ~r
taking into account or not the WL wavefunction extension are compared on figure 5 to the "3D-screened" potential:

( )

O D z z q D o e q q z z q V - - = 3 3 , , ~r
. The smearing effect associated to the WL wavefunction makes the "2D-3D-screened" potential with the WL wavefunction included similar to the "3D-screened" potential. In addition the screening induced by the 2D carriers is reduced : the ( ) D q g 3 factor is smaller than 1. Figure 6 

( ) ( )q z z q n z z q n o ind o ind , , , , r r = .
We have chosen to take a narrow Gaussian-like function to reproduce the delta function (see part B) for the "2D-3D " induced density when the WL wavefunction is not included. The singularity in the induced density is removed by the smearing effect associated to the large spatial extension of the WL wavefunction. In that case the repartition of the induced charge is not very different from the one in a pure 3D case.

IV. CARRIER RELAXATION BY AUGER PROCESSES

A. Model

Figure 7 is a schematic representation of the four possible Auger scattering processes associated to the relaxation of an electron from the ES to the GS. In the 2D-2D scattering process, the mobile electron remains confined in the WL along the z direction. In the 3D-3D scattering process, the bulk electron remains in the barrier. The two other processes have not been considered previously in the literature. In the 2D-3D scattering process, the mobile electron is emitted from the WL to the barrier whereas the reverse capture from the barrier to the WL is involved into the 3D-2D scattering process.

The relaxation of an electron from the ES to the GS associated to the scattering of 2D or 3D electrons, is determined by the Fermi golden rule : ( )

( ) ( ) ∫∫ -       = ti tf k , k tf ti ti 2 tf 2 2D - 2D k k k d k d 2 R r r r r r r h i f if E E P M A δ δ δ δ π π π π π π π π , 4 2 2 2 (2D-2D scattering) ( ) ( ) ∫∫ -             = ti f k , k f ti ti 2 f 3 3D - 2D k k k d k d 2 R r r r r r r h i f if E E P M V A δ δ δ δ π π π π π π π π π π π π , 8 4 2 3 2 (2D-3D scattering) ( ) ( ) ∫∫ -             = i tf k , k tf i i 3 tf 2 3D - 2D k k k d k d 2 R r r r r r r h i f if E E P M V A δ δ δ δ π π π π π π π π π π π π , 8 4 2 3 2 (3D-2D scattering) ( ) ( ) ∫∫ -       = i f k , k f i i 3 f 3 3D - 3D k k k d k d 2 R r r r r r r h i f if E E P M V δ δ δ δ π π π π π π π π , 8
w ES GS E E E m - - ≥ 2 2 h ti k if 0 ≥ - - w ES GS E E E (2D-3D scattering)

B. Direct calculations of scattering rates with WL wavefunction distribution included

As shown in part III-C, the screened potential ( )

o z z q V , , ~r
can be calculated by a simple 1D numerical integration over the z axis. This computational step is however not necessary for scattering rates matrix elements derived from the application of the Fermi golden rule. For example in the case of the interaction between an electron located in a QW and a Coulombic impurity at r o [START_REF] Bastard | Wave Mechanics Applied to Semiconductor Heterostructures[END_REF] , the scattering matrix element 

( ) to r q i o i f if e z k k V A M r r r r . , 1 - =
. This matrix element can thereafter be averaged over the impurity distribution and the population of 2D carriers.

The electronic relaxation from the QD excited state ES to the QD ground state GS by an Auger process involving the scattering of a 2D carrier (2D-2D scattering) is an extension of this result where the charged QD plays the role of the Coulombic impurity. It depends on the matrix element

( ) ( ) ( ) o GS tf o o ES ti if r r k r r V r r k M r r r r r r r r ψ ψ ψ ψ ψ ψ ψ ψ ; , , ; , =
(the exchange interaction is neglected). By introducing the partial Fourier transform of the potential :

( ) ( ) ( ) ( ) ∫∫ - - = t r , z, t ti tf 1 t ES t ti tf t t if r k k J z , r z , r z , k k V dz dr r A 1 M r r r r ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ * GS (2D-2D scattering)
The matrix elements for Auger processes involving any type of scattering are calculated in a general way :

( ) ( ) ∫∫ - - - = t o o zi zf r , z )z k i(k t ti tf 1 ti tf o t t if e r k k J k k dz dr r V 1 M r r r r o t GS ES z r V , , , (3D-3D scattering) ( ) ( ) ( ) ∫∫ Ψ - - = t o o zf r , z z ik * t ti tf 1 ti tf o t t if e r k k J k k dz dr r L A 1 M o w o t GS ES z z r V r r r r , , , (2D-3D scattering) ( ) ( ) ( ) ∫∫ Ψ - - = t o o zi r , z z -ik t ti tf 1 ti tf o t t if e r k k J k k dz dr r L A 1 M o w o t GS ES z z r V r r r r , , , (3D-2D scattering) ( ) ( ) ( ) ∫∫ Ψ - - = t o r , z t ti tf 1 ti tf o t t if r k k J k k dz dr r A 1 M 2 , , , o w o t GS ES z z r V r r r r (2D-2D scattering)
where

( ) ( ) ( ) ( )dz z z q V z r q V o o t GS ES ∫ = z , r z , r t ES t GS ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ , , , , , r r
is the average of the potential over the product

( ) ( ) z , r z , r t ES t GS ϕ ϕ
. In the last case (2D-2D scattering), this formulation is equivalent to the first one given above. The average integral ( )

o t GS ES z r q V , , , r
can be expressed using the quantities defined in part III-C :

( ) ( ) ( ) ( )       ∂ ∂ - = t D GS ES o D o t D GS ES D o t GS ES r q g z q V n z r q f q e z r q V , , , , 2 , , 3 , 2 3 , 3 2 
, r r µ µ µ µ ε ε ε ε where ( ) ( ) ( ) ( ) ∫∫ - - Ψ = 1 1 3 , 1 2 1 3 , , z z z z q w t D GS ES dzdz e z r q g D z , r z , r t ES t GS ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ and ( ) ( ) ( ) dz e z r q f O D z z q o t D GS ES - - ∫ = 3 , , 3 , z , r z , r t ES t GS ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
It is now possible to study the smearing effect of the wavefunction distribution, for example in the case of 3D-3D scattering :

      + - = D D s s D if q g C B A V q e M 2 3 3 2 * 2 λ λ λ λ ε ε ε ε (smearing included) where ( ) ( ) ( ) ∫∫∫ - - - - = t o o zi zf r , z z, o t t )z k i(k t ti tf 1 t ES t GS dzdz dr r e r k k J z , r z , r r r ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ O D z z q e A 3 ( ) ( ) ( ) ( ) ∫∫∫ Ψ - = - - t o r , z z, o t t t ti tf 1 t ES t GS dzdz dr r r k k J z , r z , r 2 3 o w z z q s z e B O D r r ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ( ) ∫∫ - - - Ψ = 1 1 3 , 1 2 1 z z z z q w s dzdz e z C D )z k i(k zi zf e and       + - = D D D if q C B A V q e M 2 3 3 2 1 * 2 λ λ λ λ ε ε ε ε (smearing not included) where ( ) ( ) (
)

∫∫ - = - - t r z, t t t ti tf 1 t ES t GS dz dr r r k k J z , r z , r r r ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ w D z z q e B 3 ∫ - - - = z z z q dz e C w D 3 )z k i(k zi zf e

C. Results for InAs/InP QDs

Figure 8 is a comparison of the QD ES-GS relaxation times for the four Auger processes as a function of the total electron density. The 2D-2D scattering process is the fastest one except for very high densities where the number of accessible final wavevector states for the scattered electrons is reduced by filling effects. The 2D-3D WL to barrier emission is also efficient for assisting the intradot relaxation. Finally the 3D-2D capture of an electron from the barrier to the WL can be neglected. Figure 9 is a representation of the ratio ρ between the 2D-2D (or 3D-3D) relaxation times calculated with and without the effect of the WL wavefunction included. The smearing effect is more important for the 2D-2D relaxation times but the correction to the relaxation time remains small (about 15% at high electron densities).

Figure 10-a shows the variation of the relaxation times as a function of the QD radius. In the 2D-2D, 3D-3D and 3D-2D cases, the increase of the radius decreases the relaxation time. This is associated to a change of the QD ES and GS wavefunctions and thus to a change in the scattering matrix elements. In the 2D-3D case, the opposite variation is observed. For large radius, the energy shift The thickness h of the QD may be controlled during the growth procedure [START_REF] Miska | [END_REF] . Figure 11 shows the variation of the relaxation times as a function of the thickness. The behaviour of the relaxation times versus the thickness is opposite to the one versus the radius (figure 10) mainly because the energy shift

GS ES E E -
increases when the thickness increases. For QD thicknesses smaller than h=2nm, only one quantized electronic state exists in the QD. In most practical cases, the InAs/InP QD thickness is controlled during the growth procedure in order to tune the emission wavelength of the QD. The distribution of Auger relaxation times should not be very large. Growth studies are performed with the aim to reduce the QD size (mainly the radius) in order to increase the GS-ES energy separation (quantum effect). A small increase of the thickness must be used also in order to keep the emission wavelength at the same value (1.55 µm for example). From the calculated variations of 2D-2D Auger relaxation times as a function of R (figure 10-a) and h (figure 11), we may conclude that both parameters contribute to the slowing down of this 2D-2D induced carrier relaxation. Our study shows however that this slowing down is partly compensated by the speeding up of the 2D-3D carrier relaxation.

V. CONCLUSION

The roles of 2D and 3D electronic states in the screening of a Coulombic interaction are studied. It is shown that 2D and 3D carriers must be taken into account simultaneously, especially when a "test" charge is located near the QW. This is indeed the case for a carrier in a QD and close to a WL. Analytical expressions of the screened potentials are obtained in most cases except in the case where the extension of the 2D bound states along z is taken into account. It is shown however that a simple 1D numerical integration is possible. For the calculation of scattering matrix elements, this numerical step is not necessary and analytical expressions for integrals involving the screened potential are given in all the cases. Intradot carrier Auger relaxation assisted by 2D WL and 3D bulk barrier carriers is studied. New scattering processes involving emission (2D-3D) or capture (3D-2D) of carriers from the WL to the barrier are analyzed. It is shown however that in most cases the 2D-2D scattering is the predominant process. Changes in the QD morphology not only affect the QD optical emission energy but also the Auger relaxation rates. The 2D-3D process is on the same order of magnitude as the 2D-2D process for a small QD radius.

Figure captions

Figure 1 : Schematic representation of the QD-WL system. h and R are the thickness and radius of the QD respectively. L is the spacing between QD-WL sheets. 
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  reciprocal space on a basis of products of Bessel and plane waves functions (Bessel-Fourier transform in the radial direction and Fourier transform along the z axis). The electronic states of the WL ( ) in the thin WL studied in this work (figure1).
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  anymore on the sole distance between the two charge in the 3D case. The interaction along the z axis is indeed perturbed by the WL at z w . However the two interacting charges still play the same role, the expression of the potential being unchanged by the o z z ↔ permutation. The "2D-screened" (curve c) and unscreened dimensionless potentials (curve a) are compared in figure3for fixed values of D 2 λ λ λ λ , q and z o . The anisotropy induced by the 2D carriers is clearly observed. The WL is located at the center of the figure (z w =0). The small value of z o is chosen in order to study the influence of the WL close to it. This might be the case of a charge located inside the QD.

  is a representation of the dimensionless induced charge density ( ) same three cases for two z o values.

  In the 2D-3D case, a limitation on the initial wavevector is due to the energy conservation :

  results of part III-C, it is straightforward to show that
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 11 Figure 11 : Variation of the relaxation times τ as a function of the QD height h for the 2D-2D
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