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Symmetry analysis and exact model for the elastic, piezoelectric, electronic properties of inhomogeneous and strained wurtzite quantum nanostructures
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A symmetry analysis and a semi analytical exact model are proposed to describe the mechanical, piezoelectric and electronic properties of strained wurtzite quantum nanostructures (QNs) with axial symmetry. An expression of the piezoelectric polarization is given as a function of inhomogeneous strains. The 3D 8x8 strained k.p Hamiltonian is reduced to 2D using the total angular momentum representation. When the spin-orbit coupling is neglected, the Hamiltonians are reduced to 1x1 and 3x3 Hamiltonians for the states in the S-shell. For all the other shells, the four-fold degeneracy is demonstrated.

Simulations are performed for InN/GaN quantum dots (QDs).

A general model for bulk strained wurtzite (WZ) semiconductors 1,2 has been extended later to quantum wells (QWs) 3 and quantum dots (QDs) 4,5 . A block-diagonalization of the valence band (VB) Hamiltonian is possible for a strained bulk sample 1,2 or a homogeneous and unstrained cylindrical quantum nanostructure QN 6 . The simulation of electronic and optical properties requires a precise description of elastic and piezoelectric effects 4,5 .

Moreover, the continuous variation of chemical composition around the nanostructure has often to be included into the theoretical description 5 . The aim of this paper is to propose a complete symmetry analysis and a semi analytical model for mechanical, piezoelectric and electronic properties of strained and inhomogeneous WZ QNs with a cylindrical geometry by analogy to QNs in zinc-blende lattice 7,8 . Symmetry properties are used as much as possible to simplify the problem.

QN geometries with axial symmetry are studied in this work. The CB ∞v B axis for the geometry is perpendicular to the (0001) plane (parallel to the [0001] c axis). Physical parameters for InN and GaN materials 9,10 are used for the WZ lattice 3,4 . If the strain field is calculated using a continuum mechanical model (elasticity), the geometry of the deformed inhomogeneous QN still corresponds to the CB ∞v B symmetry. This effect is associated to the ( ) describe the mechanical properties of the WZ lattice which is related to the "transverse isotropic" materials class. The components of the strain tensor using the cylindrical representation ( r ,ϕ , z ) depend only on four quantities 7,8 . 2D calculations can then be performed in cylindrical coordinates ( r , z ) to evaluate the strains but also the piezoelectric potential. For the study of the electronic properties, we start from the 8x8 k.p Hamiltonian 1 used previously for inhomogeneous and strained QNs in Cartesian coordinates 5 :
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All the terms of the Hamiltonian can be in fact given exactly in the cylindrical representation including chemical inhomogeneities, strains and the electric potential:
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where SO ∆ is the spin-orbit coupling parameter and

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ ± ∂ ∂ - = ± ± ϕ ϕ r i r ie k i The 8x8 QNs Hamiltonian is then reduced to 2D in a z F representation ( z F = Z z L J +
is the total angular momentum), following the Sercel-Vahala method 11,12 . The basis is constructed in a product form
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where the first factor corresponds to one of the 8 band-edge Bloch functions related to the bands of the bulk material and the second factor
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to the envelope functions adapted to the usual 1-band cylindrical representation (C ∞v symmetry). Spin degeneracy is associated to

z F ± .
In ref [4], it was pointed out an additional simplification is obtained when neglecting 
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In a recent study 16 , it was argued (by comparison to tight-binding results) that, the neglect of the spin-orbit coupling should remove the p-shell splitting. The p-shell splitting predicted for QNs with hexagonal shapes in ref. , which can be determined from a simple 1x1 block
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. All the states determined from this equation are then in the S-shell of the VB. More, the wave functions do not contain any contributions from S and Z orbitals whereas the
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orbitals have equal weights (50%). In ref. 13 and 14, two-fold degenerate hole states are obtained. In that study, the S contribution is found equal to zero and the Z contribution is very small (~0.1%). This non-zero contribution may be either related to a numerical artefact, or to the fact that the geometry is only axially symmetric (atomistic effect) or to the theoretical method itself (tight binding instead of k.p) although s, px, py and pz atomic states are used. In ref. 4, a one-band effectivemass Hamiltonian is proposed for the holes to predict approximately the hole GS energy.

Using the definitions of the parameters given previously, this approximate equation yields:
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It is apparently almost equivalent to our exact 1x1 Hamiltonian:
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This error introduced by missing the
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term is however important in our case. A twofold degeneracy is also obtained with
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In this second case, the three envelope functions can be determined from reduced 3x3 blocks.

The wave function in the upper block
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All the states in the S-shell of the CB correspond to this case. It is then not surprising that the CB GS contains significant contributions from the VB states of the bulk materials [4][5][13][14][15] . In the first case, the electronic density is given by ( ) It is possible to study the influence of spin-orbit coupling using the complete 8x8

Hamiltonian. Figure 4 shows the variations of the energies of the first VB states as a function of SO ∆ . The influence of spin-orbit coupling is well approximated by a perturbative calculation. The first order term is equal to zero for the S-shell and yields a splitting IV). For the VB states, a small energy splitting is expected 5 : a few meV as indicated by the vertical line in figure 4.
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The semi-analytical model presented in this work can be used for any QN in a WZ providing that the geometry and chemical composition of the structure present a C ∞v axis perpendicular to the (0001) plane. The evaluation of mechanical, piezoelectric, electronic and optical properties is simplified using 2D cylindrical coordinates. An exact analytic expression of the polarization is given with radial and vertical components. The strained 8x8 k.p Hamiltonian is reduced to 2D using the total angular momentum representation. When the spin-orbit coupling is neglected, the 2D 4x4 strained Hamiltonians are reduced without any other approximations to 1x1 and 3x3 Hamiltonians for the states in the S-shell. The spin-orbit coupling effect can be treated by perturbation theory for the other shells. 
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  We may notice first, that this expression is valid for inhomogeneous materials and QNs. It corresponds to an axially symmetric electric potential ( )

																						r V ,	z	(axial 2D Poisson
	equation). By comparison, a symmetry breaking always occurs in the ZB case for shear
	strains (reduction to CB 2v ) whatever the symmetry initially considered (CB ∞v B or CB 4v B ) for the
	strain field 7 . Results for a truncated conic InN/GaN QD (full height, radius and truncation
	height are respectively equal to 8, 4 and 2nm) are shown on figure 1. The total electric
	potential (figure 1-a) is due to the three contributions: rad P (figure 1-b), vert P (figure 1-c) and
	SP P . The SP P contribution is very small 5 and not shown on figure 1. The electric potential
	depends mainly on vert P but the contribution due to rad P may be opposite. The influence of
	rad P is less important in QD when the aspect ratio (height/radius) is small. Figure 2 presents
	the variation of the conduction band (CB) ground state (GS) (F za =1/2, see the description of
	the electronic states) energy as a function of the truncation height, when the electric potential
	is: a) calculated with rad P , b) calculated with the total polarization WZ P , c) equal to zero, d)
	calculated with SP P and e) calculated with vert P . The effect of SP P is very small. For this
	particular geometry, the Stark energy shifts associated to rad P and vert P are opposite. The
	wave function and energy of this state depend on the shape of QD.		
																		The polarization WZ P (including the
	pyroelectric SP P , and piezoelectric radial rad P and vertical vert P contributions) is:
	WZ P	=	2	15 e	ε	rz	u	r	+	( P SP	+	e	31	( ε	rr	+	ε	) ϕϕ +	e	33	ε	zz	) z u