
HAL Id: hal-00492202
https://hal.science/hal-00492202

Submitted on 15 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An exact method for the bi-objective one-machine
problem with maximum lateness and unit family setup

cost objectives
Christian Artigues, Nicolas Jozefowiez, Mohamed Ali Aloulou

To cite this version:
Christian Artigues, Nicolas Jozefowiez, Mohamed Ali Aloulou. An exact method for the bi-objective
one-machine problem with maximum lateness and unit family setup cost objectives. International
Symposium on Combinatorial Optimization (ISCO 2010), Mar 2010, Hammamet, Tunisia. pp.1233-
1240. �hal-00492202�

https://hal.science/hal-00492202
https://hal.archives-ouvertes.fr

An exact method for the bi-objective
one-machine problem with maximum lateness

and unit family setup cost objectives

Christian Artigues a, b,, Nicolas Jozefowiez a, b, 1

aCNRS; LAAS; 7 avenue du Colonel Roche, F-31077 Toulouse, France

bUniversité de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse,

France

Mohamed Ali Aloulou c, d, 2

cLAMSADE; Université Paris Dauphine, Place du Maréchal de Lattre de

Tassigny, 75775 Paris Cedex 16, France

dCNRS, FRE 3234, F-75016 Paris, France

Abstract

This paper deals with an NP-hard bi-objective one-machine problem with ready
times involving maximum lateness and unit family setup cost objectives. Consider-
ing separately both objectives, the maximum lateness one-machine problem is also
NP-hard but efficiently solved by Carlier’s algorithm while the unit family setup
cost one machine-problem with two families can be solved in polynomial timeby
Darte’s algorithm, even when precedence constraints are considered. Under the
ǫ−constraint framework we propose a branch-and-bound method to minimize the
first objevtive with a given upper bound on the second.

Keywords: bi-objective one-machine scheduling, maximum lateness, unit family
setup costs, branch-and-bound.

1 Introduction

In this paper, we define a bi-objective scheduling problem and design an exact
multi-objective algorithm to solve it. We consider a one-machine scheduling
problem, with each job being associated to a ready time, a due date, and
a color (or family type) out of two possible colors. Any color change on
the machine involves a unit cost. Therefore, we have two objectives: the
minimization of the maximum lateness and the number of switches between
the two colors. Considering separately both objectives, the maximum lateness
one-machine problem is NP-hard, albeit efficiently solved by Carlier’s branch-
and-bound algorithm [2] while the unit family setup cost one machine-problem
with two families can be solved in polynomial time, even when precedence
constraints are considered by Darte’s algorithm [3]. We consider here the bi-
objective problem, which is NP-hard as one of the single-objective problem
is NP-hard. Formally, a multi-objective problem can be stated as follows:
(MOP) : minx∈D F (x) = (f1(x), f2(x), . . . , fn(x)), where n ≥ 2 is the number
of objective functions, x = (x1, x2, . . . , xr) is the decision variable vector or
solution, D is the feasible solution space, and F (x) is the objective vector.
The set O = F (D) corresponds to the images of the feasible solutions in the
objective space, and y = (y1, y2, . . . , yn), where yi = fi(x), is a point of the
objective space. A MOP solution is the set of non-dominated solutions called
the Pareto set (PS), or non-dominated set. Dominance is defined as follows:

Definition 1 A solution x dominates a solution z if and only if ∀ i ∈ {1 . . . n},
fi(x) ≤ fi(z) and ∃ i ∈ {1 . . . n}, such that fi(x) < fi(z).

The main contributions of this paper are the modelization of the prob-
lem by means of an integer program, the definition of a branch-and-bound
procedure based on Carlier’s algorithm to solve the minimum maximum late-
ness problem with a given upper bound on the total setup cost, denoted
1|ri, SCsi,b = 1|ǫ(Lmax|TSC) under the notations proposed by [1,4] where
Lmax and TSC stand for maximum lateness and total setup cost, respec-
tively, and its use in an ǫ-constraint method to generate the optimal Pareto
set. The paper is organized as follows. The problem is defined and modeled
in Section 2. The single objective algorithms for each objective [2,3] are also
described. The branch-and-bound algorithm and the ǫ-constraint method are
described in Section 3. where Lmax and TSC stand for maximum lateness
and total setup cost, respectively.

1 Email: christian.artigues, nicolas.jozefowiez@laas.fr
2 Email: Mohamed-Ali.Aloulou@dauphine.fr

2 Problem

2.1 Mathematical model

The following integer program models the problem. Let V be the set of jobs
to schedule. For each job i ∈ V , ri is its ready time, di its due date, and pi its
duration. s and f are two fictitious jobs representing the start and the end of
the schedule respectively. For two jobs i ∈ V and j ∈ V , cij is equal to 1 if i

and j are not of the same color, 0 otherwise. For each job i ∈ V , ti is the start
time of i. For each pair of jobs i and j in V ∪ {s, t}, xij is a binary variable
equal to 1 if and only if j is scheduled immediately after i. Lmax is maximum
lateness. Then, the problem can be formulated as follows:

min Lmax(1)

min
∑

i∈V

∑

j∈V

cijxij(2)

∑

j∈V ∪{f}

xij = 1 (i ∈ V)(3)

∑

j∈V ∪{s}

xji = 1 (i ∈ V)(4)

∑

i∈V

xsi = 1(5)

tj ≥ ti + pi −M(1− xij) (i, j ∈ V)(6)

Lmax≥ ti + pi − di (i ∈ V)(7)

ti≥ ri (i ∈ V)(8)

xij ∈ {0, 1} (i ∈ V ∪ {s}, j ∈ V ∪ {p})(9)

Objectives (1) and (2) respectively minimizes the maximum lateness and the
number of switches. Constraints (3) verify that only a single job succeeds
immediately a job i. Constraints (4) work similarly to identify the job im-
mediately preceeding a job i. Contraint (5) initializes the flow. Constraints
(6) compute the earliest possible starting times according the sequence (M
is a large value). Constraints (7) set the value of the maximum lateness.
Constraints (8) and (9) bound the variables.

2.2 Minimizing the total lateness [2]

When the maximum lateness objective is considered, the problem (denoted
1|ri|Lmax) can be efficiently solved by Carlier’s algorithm [2], which is a branch

and bound method based on the following components. First, the problem is
transformed by replacing the due dates di by tails qi with qi = N − di for
each job i ∈ V where N is an arbitrary constant. The considered objective is
then a modified makespan Cqmax = maxi∈V (ti +pi +qi). At each node, a lower
bound is obtained by computing the Jackson’s premptive schedule, which is an
optimal solution of problem 1|ri, pmtn|Lmax a relaxation of 1|ri|Lmax allowing
job preemption. Branching is done by modifying release times (heads) or tails
according to the following principle. A feasible solution is computed at each
node by Shrage’s algorithm, a list scheduling heuristic, which, at each decision
time t (equal to a release date or a job completion time), selects the available
job with the largest tail. From the Schrage solution, a critical block (a set of
consecutive jobs J∗ = {i1, . . . , im} verifying Cqmax = ri1 +

∑m

a=1
pa + qim) is

extracted. If all but last jobs of this block ia, a < p verify qia ≥ qip the schrage
solution is optimal w.r.t. modified heads and tails and the node is pruned.
Otherwise, the “pivot” job ic verifying qic < qip and c is maximal in [1, p] is
identified and subblock Jc = {ic+1, . . . , ip} is considered. The properties of
Schrage’s solution allow to define a binary search tree. Indeed, the objective
can only be improved by sequencing ic before all jobs of Jc (ic ≺ Jc) which can
be ensured during the Schrage algorithm process by setting

qic := max(qic ,

m∑

k=c

pik + qip)(10)

or after all jobs of Jc (Jc ≺ ic) by setting

ric := max(ric , min
ik∈Jc

rik +
m∑

k=c

pik)(11)

2.3 Minimizing the number of color switches under precedence constraints [3]

Without precedence constraints between jobs, minimizing the color switches
is trivial. With precedence constraints, 1|ri, prec, SCsi,b|TSC can be solved in
polynomial time by Darte’s algorithm [3] as follows. The method computes
only two solutions. For the first solution, one of the two colors is selected,
say c1. All jobs of color c1 without predecessor are scheduled jointly in any
order and their precedence constraints are deleted. Then a color change must
occur and the process restart with c2 jobs, until all jobs are scheduled. For
solution 2, c2 is selected first. The solution with the minimum number of color
switches is selected.

3 Algorithms

3.1 ǫ-constraint method

In the bi-objective case, the ǫ-constraint method adds a new constraint to the
problem : fi(x) ≤ ǫ, where fi is one objective and ǫ is a given value, and it
works to optimize only the second objective. Varying the ǫ parameter allows
different problems with different solutions to be generated. If the problems
are solved with an exact algorithm, the solutions are therefore Pareto optimal
solutions.

In our case, we transform the objective minimizing the number of switches
into a constraint and obtain the problem 1|ri, SCsi,b = 1|ǫ(Lmax|TSC), where
TSC stands for total setup cost. For a given value of ǫ, the problem is solved
by the branch-and-bound algorithm described in 3.2. The following algorithm
ensures that all the non-dominated points are found and that there is no
computaiton reduntancy by selecting the values of ǫ properly.

STEP 1 Set ǫ← |V | − 1 (i.e. the maximum number of switches possible).

STEP 2 If ǫ = 1, the algorithm is over. Solve 1|ri, SCsi,b = 1|ǫ(Lmax|TSC)
by branch-and-bound (see 3.2)

STEP 3 The solution is stored as a solution in the non-dominated set and
ǫ is fixed to ǫ∗ − 1 where ǫ∗ is the number of switches in the solution found
by the branch-and-bound algorithm. Go to STEP 2.

3.2 Branch-and-bound algorithm for 1|ri, SCsi,b = 1|ǫ(Lmax|TSC)

The branch and bound we propose is based on the integration of Carlier’s and
Darte’s algorithm [2,3] described in Sections 2.2 and 2.3 to tackle constraint
TSC ≤ ǫ.

Initial solution. An initial solution is computed by a modified Schra-
ge’s algorithm: In case of tie for the maximum tails, a job of the same color
as the previously scheduled one is selected. Let a “group” be a maximal set of
consecutive jobs having the same color in a given sequence. Once the solution
(not necessarily respecting TSC ≤ ǫ) is obtained, a local search method is
carried out. A move consist in inserting all the jobs of a group into another
group of identical color. At each step, among all possible group merges, the
one involving the lower maximum lateness increase is selected. The process
stops as soon as TSC ≤ ǫ. Then, inside each group, the Shrage’s algorithm is
applied to further reduce the maximum lateness. This solution initializes the
upper bound, which can also be set by a previously found solution inside the

ǫ−constraint method (see “Non-dominated solutions storing” below).
Branching scheme As for Carlier’s algorithm we propose a branching
scheme based on necessary conditions to improve a feasible solution computed
at each node. One of the major difficulty brought by constraint TSC ≤ ǫ is
that the Schrage property of the feasible solution used to define the binary
branching scheme in Carlier’s algorithm no more holds in general. We propose
the following workaround. A critical block J∗ is computed as in Section 2.2.
If the block verifies the Schrage solution property (for all k ∈ [1, m−1] qik+1

≤
qik or rik+1

> rik), the branching scheme generating two nodes described by
updates (10) and (11) is used. Otherwise, to improve the feasible solution, it
is necessary to move one job of J∗ (not only ic) before or after all other jobs
of J∗ which yields a n-ary branching. For each candidate node i ≺ J∗ \ {i}
or i ≻ J∗ \ {i}, we check whether this branching is feasible w.r.t. the existing
precedence constraints and the authorized number of color switches.

In all cases, a node consists in a decision i ≺ X or X ≺ i where X is
a set of jobs. Contrarily to Carlier’s algorithm in which these constraints
are represented only by ready times or due dates updates in relation with
the behavior of Schrage’s algorithm, we propose here to store explicitely the
associated precedence constraints, which will be useful for node evaluation
and improvement mechanisms, described below.

Node evaluation. As the precedence constraints set by branching are
explicitely stored, the node feasibility w.r.t. TSC ≤ ǫ is checked directely by
Darte’s algorithm which provides the exact value of the number of switches
reachable by the node. The node is fathomed if this value exceeds ǫ. For the
maximum lateness criterion, a lower bound can still be obtained by computing
the Jackson’s preemtive schedule of value LB. The node is then fathomed
if LB is not lower than the best feasible solution value. Classical resource
constraint propagation methods are used to reduce job time windows and
generate additional precedence constraints.

Feasible solution update at each node. Since Darte’s algorithm is
exact for the number of color switches objective, we take advantage of its use
to compute the feasible solution associated with the node for upper bounding
and branching purposes, except for the root node where the modified schrage
method is used. The solution computed by the standard Darte’s algorithm
may have a high Cqmax. We propose the following enhancements. We compute
the critical block J∗ associated with Darte’s solution and we apply a local
search principle until no improvement of the Cqmax can be found without
exceeding ǫ color switches. The considered moves in the local search scheme
are based on the same necessary improvement conditions as the branching

scheme. A move thus consists in setting i ≺ J∗ \{i} or i ≻ J∗ \{i} constraints
until the stopping condition is met.

Non-dominated solutions storing. Solutions found during the branch-
and-bound algorithm are stored into an archive along with the best found
solutions. That way, they can be used to provide an initial upperbound in-
stead of the solution returned by the construction heuristic. If the problem
1|ri, SCsi,b = 1|ǫ(Lmax|TSC) under consideration is such that there is a solu-
tion with no more than ǫ switches in the archive, this solution is used as the
initial upperbound, otherwise the usual heuristic is used.

4 Computational results

The algorithm has been tested on instances generated according to [2] with
random colors. The CPU time was limited to five minutes, therefore on some
instances, we do not obtain the optimal Pareto set but an approximation.
Table 1 reports for each tested instance (Inst.) the size of the instance (n),
the number of created nodes in the search tree (#NC), the number of fathomed
nodes in the search tree (#ND), the time in seconds (Seconds), the number of
optimal Pareto solutions found (#Pareto), and the last epsilon value reached
before hiting the time limit.

5 Conclusions

The results show our method is able to generate the exact Pareto set for
n = 20 and is able to generate a significant number of compromise solutions
for n ≥ 30. This is to our knowledge the first exact method proposed so far for
this bi-objective problem. Further work will consist in extending the method
to an arbitrary number of colors and setup costs. Even with two families, a
critical issued is to propose a lower bound for the maximum lateness taking
account on the upper bound on the number of switches.

Acknowledgements

The research of the third author was partially sponsored by the project ANR-
GUEPARD

Table 1
Computation results.

#instance n #NC #ND Seconds #Pareto Last ǫ

110 20 37 8 0.14 7 ended

117 20 251 234 0.97 8 ended

119 20 240 232 1.12 5 ended

171 20 14108 14108 77.95 13 ended

221 20 506 430 1.93 6 ended

227 20 3405 3363 18.81 6 ended

24 20 21 13 0.04 7 ended

264 20 638 638 4.08 7 ended

30 20 46 9 0.04 4 end

53 20 18895 18667 90.63 10 ended

89 20 122 104 0.40 5 ended

117 30 14789 14626 127.34 9 ended

119 30 15322 13757 306.22 5 ε = 7

171 30 24021 21107 301.29 15 ε = 3

221 30 40355 33582 393.73 14 ε = 2

227 30 63268 53987 975.64 10 ε = 5

24 30 484 53 1.59 7 ended

264 30 19365 16196 330.12 11 ε = 5

30 30 13640 4318 326.37 3 ε = 2

53 30 12117 8408 115.92 3 ε = 2

89 30 27302 23240 146.86 9 ε = 6

117 50 7258 3985 126.86 10 ε = 8

119 50 2961 917 48.39 1 ε = 15

171 50 18464 2647 115.71 4 ε = 6

221 50 23221 14182 71.49 19 ε = 2

227 50 3030 1404 72.46 18 ε = 6

24 50 7627 557 300.07 2 ε = 23

264 50 12115 8685 674.499 9 ε = 11

30 50 5 3 0.09 12 ε = 5

53 50 9716 598 129.54 10 ε = 9

89 50 15861 2239 309.00 2 ε = 13

References

[1] A. Allahverdi, C.T. Ng, T.C.E. Cheng and M. Kovalyov. A Survey of scheduling
problems with setup times or costs. European journal of Operational Research,
187:985–1032, 2008.

[2] J. Carlier. The one-machine sequencing problem. European Journal of

Operational Research, 11(1):42–47, 1982.

[3] A. Darte. On the complexity of loop fusion. Parallel Computing, 26(9):1175–
1193, 2000.

[4] H. Hoogeveen. Multicriteria scheduling. European journal of Operational

Research, 167:592–623, 2005.

