
HAL Id: hal-00492157
https://hal.science/hal-00492157

Preprint submitted on 15 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extended core and choosability of a graph
Yves Aubry, Godin Jean-Christophe, Togni Olivier

To cite this version:
Yves Aubry, Godin Jean-Christophe, Togni Olivier. Extended core and choosability of a graph. 2010.
�hal-00492157�

https://hal.science/hal-00492157
https://hal.archives-ouvertes.fr


EXTENDED CORE AND CHOOSABILITY OF A GRAPH

YVES AUBRY, JEAN-CHRISTOPHE GODIN AND OLIVIER TOGNI

Abstract. A graph G is (a, b)-choosable if for any color list of size a

associated with each vertices, one can choose a subset of b colors such
that adjacent vertices are colored with disjoint color sets. This paper
shows an equivalence between the (a, b)-choosability of a graph and the
(a, b)-choosability of one of its subgraphs called the extended core. As
an application, this result allows to prove the (5, 2)-choosability and
(7, 3)-colorability of triangle-free induced subgraphs of the triangular
lattice.

1. Introduction

Let G = (V (G), E(G)) be a graph where V (G) is the set of vertices and
E(G) is the set of edges, and let a, b, n and e be integers.

Given a list L of G i.e. a map L : V (G) → P(N) and a weight ω of G i.e.
a map ω : V (G) → N, an (L,ω)-choosability c of G is a list of the weighted
graph G such that for all vv′ ∈ E(G):

c(v) ⊂ L(v), |c(v)| = ω(v) and c(v) ∩ c(v′) = ∅.

We say that G is (L,ω)-choosable if there exists an (L,ω)-choosability c of
G. An (L, b)-choosability c of G is an (L,ω)-choosability of G such that for
all v ∈ V (G), we have ω(v) = b. A a-list L of G is a list of G such that for all
v ∈ V (G), we have |L(v)| = a. The graph G is said to be (a, b)-choosable if
for any a-list L of G, there exists an (L, b)-choosability c of G. If the graph
is (a, b)-choosable for the a-list L such that L(v) = L(v′) for all vertices v, v′,
then G is (a, b)-colorable.

The concept of list coloring and choosability was introduced by Vizing [12]
and independently by Erdős, Rubin and Taylor [3]. Since then, it has been
the subject of many works (see [10, 5, 13, 2, 14] and [6, 8] for more re-
cent papers). In order to characterize 2-choosable (i.e. (2, 1)-choosable)
graphs, Erdős et al. defined the notion of the core of a graph. The aim
of this paper is to extend the notion of core to obtain some characteriza-
tions of (a, b)-choosable graphs. Basically, extended cores will be obtained
by removing vertices of low degree and induced paths with conditions on
the vertex degrees, called handles. Using results on the choosability of a
weighted path [1] and extending some of them (Section 2), the main result
is Theorem 10 of Section 3 that shows the equivalence between the (a, b)-
choosability of a graph G and the (a, b)-choosability of a subgraph ofG called
its first extended core. Some applications of this theorem for triangle-free
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induced subgraphs of the triangular lattice are given in Section 4 and 5,
where it is shown that these graphs are (5, 2)-choosable (Theorem 15) and
(7, 3)-colorable (Theorem 21), thus giving another proof of Havet’s result [7].

In order to extend a result on the choosability of a weighted path, let us
first give some definitions and some known results.

The path Pn+1 of length n is the graph with vertex set V = {v0, v1, . . . , vn}
and edge set E =

⋃n−1
i=0 {vivi+1}. To simplify the notations L(i) denotes

L(vi) and c(i) denotes c(vi).

Definition 1. For the path Pn+1 of length n,

• a waterfall list L is a list such that for all i, j ∈ {0, . . . , n} with
|i− j| ≥ 2, L(i) ∩ L(j) = ∅;

• two lists L and L′ are similar if and only if Pn+1 is (L,ω)-choosable
whenever Pn+1 is (L′, ω)-choosable;

• the amplitude Ai,j(L) (or Ai,j) of a list L is Ai,j(L) = ∪j
k=i

L(k);
• a list L is good if |L(i)| ≥ ω(i) + ω(i+ 1) for any i, 1 ≤ i ≤ n− 1.

We have proved in [1] the following results:

Proposition 2. For any good list L of Pn+1 , there exists a similar waterfall
list Lc with |Lc(i)| = |L(i)| for all i ∈ {0, . . . , n}.

Theorem 3. Let Lc be a waterfall list of a weighted path Pn+1. Then Pn+1

is (Lc, ω)-choosable if and only if:

∀i, j ∈ {0, . . . , n} : |A(i, j)(Lc)| ≥

j
∑

k=i

ω(k).

Corollary 4. Let Lc be a good waterfall list of a weighted path Pn+1 such
that |Lc(n)| ≥ ω(n). Then Pn+1 is (Lc, ω)-choosable if and only if

∀j ∈ {0, . . . , n} : |A(0, j)(Lc)| ≥

j
∑

k=0

ω(k).

Corollary 5. Let L be a list of Pn+1 such that |L(0)| = |L(n)| = b, and
|L(i)| = a = 2b+ e for all i ∈ {1, . . . , n − 1}.

If n ≥ Even
(2b

e

)

then Pn+1 is (L, b)− choosable

where Even(x) is the smallest even integer p such that p ≥ x.

2. Choosability of a path

The purpose of this section is to extend the result of Corollary 5 to other
constrained lists, namely to 1-reduced lists.

Definition 6. A list L is said to be a 1-reduced list of Pn+1 if |L(0)| = b,
for any i ∈ {1, . . . , n − 2} : |L(i)| = a, |L(n − 1)| = |L(n)| = b + e, and
|A(n− 1, n)(L)| ≥ 2b.
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Theorem 7. Let n, a, b, e be four integers such that a = 2b+ e. Let L be a
1-reduced list of a path Pn+1.

If n = Even(
2b

e
) then Pn+1 is (L, b)− choosable.

Proof. Since

|A(n−1, n)| = |L(n−1)|+ |L(n)\L(n−1)| = (b+e)+ |L(n)\L(n−1)| ≥ 2b,

we obtain that |L(n)\L(n− 1)| ≥ b− e. Let D be a set such that

D ⊂ L(n)\L(n− 1) and |D| = b− e.

Let L′ be the new list constructed with L such that (see the following figure):

L′(i) =

{

L(i) if i ∈ {0, . . . , n− 1}
L(n)\D otherwise

L() 0 . . . n− 1 n L′() 0 . . . n− 1 n

Remainder

of

lists

Remainder

of

lists

-�

?

6
b− e

6
?2e

6
?2e

Fig. 1. Construction of L′ (on the right) for a 1-reduced list L (on the left).

A new weight function ω′ is constructed such that:

ω′(i) =

{

b if i ∈ {0, . . . , n− 1}
e otherwise.

We are going to prove that:

if Pn+1 is (L′, ω′)− choosable then Pn+1 is (L, b)− choosable.

Indeed, if c′ is an (L′, ω′)-choosability of Pn+1, then we construct c such
that:

c(i) =

{

c′(i) if i ∈ {0, . . . , n − 1}
c′(n) ∪D otherwise.

Since D ∩L(n− 1) = ∅, we have c(n− 1)∩ c(n) = ∅ and then c is an (L, b)-
choosability of Pn+1.
Now, this new list L′ is a good list of Pn+1 and |L′(n)| ≥ ω′(n). Proposition
2 shows that there exists a waterfall list Lc similar to L′ such that for all k
we have |Lc(k)| = |L′(k)|.

Thanks to Corollary 4, it remains to check that:

∀j ∈ {0, . . . , n} : |A(0, j)(Lc)| ≥

j
∑

k=0

ω′(k).
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Case 1: j ∈ {0, . . . , n− 2}. Since the list is a waterfall list, we have:

|A(0, j)(Lc)| ≥







∑j
k=0

k even

|Lc(k)| = b+ a j
2 if j is even

∑j
k=0
k odd

|Lc(k)| = a j+1
2 otherwise

and the weight function satisfies
∑j

k=0 ω
′(k) = (j + 1)b. Hence, we deduce

that

|A(0, j)(Lc)| ≥

j
∑

k=0

ω′(k).

Case 2: j = n− 1. Since the list is a waterfall list, we have:

|A(0, n − 1)(Lc)| ≥
n−1
∑

k=0
k odd

|Lc(k)| = (b+ e) + a
n− 2

2
,

and
∑n−1

k=0 ω
′(k) = nb. Then b+ e+ an−2

2 ≥ nb if and only if en
2 ≥ b, which

is true by hypothesis since n = Even(2b
e
), thus

|A(0, n − 1)(Lc)| ≥
n−1
∑

k=0

ω′(k).

Case 3: j = n. Since the list is a waterfall list, we have:

|A(0, n)(Lc)| ≥
n
∑

k=0
k even

|Lc(k)| = b+ 2e+ a
n− 2

2
,

and
∑n

k=0 ω
′(k) = nb+ e, then b+2e+ an−2

2 ≥ nb+ e if and only if en
2 ≥ b,

which is true by hypothesis since n = Even(2b
e
), thus

|A(0, n)(Lc)| ≥
n
∑

k=0

ω′(k).

�

3. The extended core of a graph

The purpose of this section is to prove Theorem 10 which gives the equiva-
lence between the (a, b)-choosability of a graph G and the (a, b)-choosability
of one of its subgraphs, its first extended core, denoted Corech(x, 1)(G) (with
the idea to take x = a

b
).

The first extended core is a generalization of the core, introduced by
Erdős, Rubin and Taylor in [3] for 2-choosable graphs.

Definition 8. A handlex of length n in a graph G is a path {v0, . . . , vn}
such that the vertices {v1, . . . , vn−1} have degree less or equal to ⌊x⌋ and for
all i, j ∈ {1, . . . , n − 1} we have: if |i − j| ≥ 2 then vivj /∈ E. The interior
of the handlex is the set of vertices {v1, . . . , vn−1}.
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t t t t t t

v0 v1 v2 vn−2vn−1vn

⌊x⌋ ⌊x⌋ ⌊x⌋ ⌊x⌋

�� �� �� �� �� ��@@ @@ @@ @@ @@ @@

Fig. 2. Example of a handlex.

Definition 9. A 1-handlex of length n is a handlex of length n such that
vn has degree less or equal to ⌊x+1⌋ and has a neighbor vn+1 of degree less
or equal to ⌊x⌋ and for all i, j ∈ {1, . . . , n + 1} we have: if |i − j| ≥ 2 then
vivj /∈ E.

t t t t t t

t

v0 v1 v2 vn−2vn−1vn

vn+1

⌊x⌋ ⌊x⌋ ⌊x⌋ ⌊x⌋

⌊x+ 1⌋

⌊x⌋

�� �� �� �� �� ��@@ @@ @@ @@ @@ @@
�
�
�@@

Fig. 3. Example of a 1-handlex.

We define the first extended core, denoted Corech(x, 1)(G), of a graph G
as the induced subgraph of G obtained inductively when we remove:

• its vertices of degree 0, 1, . . . , ⌊x− 1⌋,
• the interior of its handlex of length n ≥ Even( 2

x−⌊x⌋),

• the interior of its 1-handlex of length n = Even( 2
x−⌊x⌋)− 1.

Let us remark that the definition of Corech(x, 1)(G) does not depend on
the order which we use to remove the vertices and that the subscript ’ch’
means that we will use it for choosability purpose.

Theorem 10. Let a, b be two integers and x be a rational number such that
a
b
≥ x. For any graph G, we have the following equivalence:

G is (a, b)− choosable ⇔ Corech(x, 1)(G) is (a, b)− choosable.

Proof. Since Corech(x, 1)(G) is a subgraph of G, if G is (a, b)-choosable then
Corech(x, 1)(G) is of course (a, b)-choosable.

Conversely, suppose that Corech(x, 1)(G) is (a, b)-choosable. Let us dis-
cuss the different cases and let e be the integer defined by:

e = a− ⌊x⌋b ≥ 0 .

Case 1: we remove a vertex of low degree. Let v ∈ V (G) such that its
degree d(v) ≤ ⌊x⌋ − 1. Let N(v) be the set of neighbors of v in G. Suppose
that G−{v} is (a, b)-choosable and let L be an a-list of G. Then there exists
an (L, b)-choosability c of G− {v}.

Let L′(v) = L(v) \
⋃

w∈N(v) c(w). Then

|L′(v)| ≥ |L(v)| − d(v)b ≥ a− (⌊x⌋ − 1)b = b+ e ≥ b.
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Hence, we can complete the choosability with c(v) ⊂ L′(v) such that |c(v)| =
b, and thus G is (a, b)-choosable.

Case 2: x is an integer (x = ⌊x⌋). Since Even( 2
x−⌊x⌋) = ∞, the extended

core Corech(x, 1)(G) is limited to the case 1, and the proof is done.

Case 3: x is not an integer (x > ⌊x⌋). It remains two kinds of handlex to
consider:

Subcase 1: Let Hn(x) be a handlex of G of length n ≥ Even( 2
x−⌊x⌋).

Suppose that G′ = G − {v1, . . . , vn−1} is (a, b)-choosable, and let L be an
a-list of G. Then there exists an (L, b)-choosability c of G′. We set N ′(vi)
to be the set of neighbors of vi in the induced subgraph G − {vi−1, vi+1}.
By hypothesis for all i ∈ {1, . . . , n− 1}, the degree of vi satisfies d(vi) ≤ ⌊x⌋
hence |N ′(vi)| ≤ ⌊x⌋ − 2. Let L′ be the list of Hn(x) such that:

L′(i) =

{

c(vi) if i ∈ {0, n}
L(vi) \

⋃

w∈N ′(vi)
c(w) otherwise.

Then for all i ∈ {1, . . . , n− 1}, we have:

|L′(i)| ≥ |L(vi)| −
∑

w∈N ′(vi)

|c(w)| ≥ a− (⌊x⌋ − 2)b = 2b+ e.

Suppose without loss of generality that for all i ∈ {1, . . . , n − 1}, we have:
|L′(i)| = 2b+ e. Since a

b
≥ x we have 2

x−⌊x⌋ ≥ 2b
e
and thus

n ≥ Even(
2

x− ⌊x⌋
) ≥ Even(

2b

e
).

Since |L′(0)| = |L′(n)| = b, then L′ is a list which satisfies the hypothesis
of Corollary 5: we obtain the existence of an (L′, b)-choosability c′ of Pn+1,
i.e. of Hn(x). Finally, we construct an (L, b)-choosability c′′ of G such that:

c′′(v) =

{

c(v) if v ∈ G′

c′(v) otherwise.

Subcase 2: Let Hn(x) be a 1-handlex of G of length n = Even( 2
x−⌊x⌋)−1.

If Even( 2
x−⌊x⌋) > Even(2b

e
) then n ≥ Even(2b

e
), it is a handlex of sufficiently

big length, and hence we come back to Subcase 1. Otherwise, Even( 2
x−⌊x⌋) =

Even(2b
e
) (because Even( 2

x−⌊x⌋ ) ≥ Even(2b
e
)). By definition, there exists a

vertex vn+1 ∈ G−Hn(x) which is a neighbor of vn such that d(vn+1) ≤ ⌊x⌋.
Suppose that G′ = G − {v1, . . . , vn−1} is (a, b)-choosable, and let L be an
a-list of G and c be an (L, b)-choosability of G′. For any i ∈ {1, . . . , n},
N ′(vi) is the set of neighbors of vi in G − {vi−1, vi+1} and N ′(vn+1) is the
set of neighbors of vn+1 in G − {vn}. Let L′ be the list of Hn(x) ∪ {vn+1}
such that:

L′(i) =

{

c(v0) if i = 0
L(vi) \

⋃

w∈N ′(vi)
c(w) otherwise.
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For any i ∈ {1, . . . , n− 1}, we have:

|L′(i)| ≥ |L(vi)| −
∑

w∈N ′(vi)

|c(w)| ≥ a− (⌊x⌋ − 2)b = 2b+ e.

Furthermore, for i ∈ {n, n+ 1} :

|L′(i)| ≥ |L(vi)| −
∑

w∈N ′(vi)

|c(w)| ≥ a− (⌊x⌋ − 1)b = b+ e.

We can suppose without loss of generality that for all i ∈ {1, . . . , n − 1},
we have |L′(i)| = 2b + e, and for i ∈ {n, n + 1}, we have |L′(i)| = b + e.
Since c is an (L, b)-choosability of G′ then c(vn) ∩ c(vn+1) = ∅ and since for
i ∈ {n, n + 1}, we have c(vi) ⊂ L′(i) then we obtain:

|A(n, n + 1)(L′)| = |L′(n) ∪ L′(n+ 1)| ≥ |c(vn)|+ |c(vn+1)| = 2b.

Hence L′ is a 1-reduced list of Hn(x) ∪ {vn+1}; but since n+ 1 = Even(2b
e
),

Theorem 7 constructs an (L′, b)-choosability c′ of Hn(x) ∪ {vn+1}. Finally,
we construct an (L, b)-choosability c′′ of G such that:

c′′(w) =

{

c(w) if w ∈ G− (Hn(x) ∪ {vn+1})
c′(w) otherwise.

In conclusion, if Corech(x, 1)(G) is (a, b)-choosable, we add successively
the subgraphs of G that we removed (to obtain the Corech(x, 1)), in the
opposite order. Thanks to the cases studied in every step, the graph remains
(a, b)-choosable and thus G is (a, b)-choosable. �

Let us define the set Ch(x) to be the set of graphs G which are (a, b)-
choosable for all a, b such that a

b
≥ x, i.e.:

Ch(x) = {G, such that for all
a

b
≥ x, G is (a, b)-choosable}.

Hence, we deduce the following corollary:

Corollary 11. Let G be a graph and x be a rational number. Then:

G ∈ Ch(x) ⇔ Corech(x, 1)(G) ∈ Ch(x).

4. Application to the triangular lattice

Let R be a triangle-free induced subgraph of the triangular lattice. Re-
call that the triangular lattice is embedded in an Euclidian space and that
any vertex (x, y) of R has at most six neighbors: its neighbor on the left,
(x − 1, y), its neighbor on the right (x + 1, y), its neighbor on the top left
(x − 1, y + 1), its neighbor on the top right (x, y + 1), its neighbor on the
bottom left (x, y − 1) and its neighbor on the bottom right (x+ 1, y − 1).

Definition 12. The nodes of R are the vertices of degree 3. There are
two kinds of nodes: the left nodes whose neighbors are the neighbors on the
left, on the top right, and on the bottom right; and the right nodes whose
neighbors are the neighbors on the right, on the top left and on the bottom
left.
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Fig. 4. Left node and right node.

Definition 13. A cutting node of R is a left node (x, y) such that for any
node (x′, y′), we have y ≥ y′, and for any left node (x′, y), we have x′ ≤ x.
A handle of R is a path P such that its extremal vertices are nodes and its
internal vertices have degree 2.

A cutting handle of R is a handle such that one of its extremal vertices
is the cutting node (x, y) and one of its internal vertices is (x, y + 1).

One can see the cutting node as the left node the most on the top on the
right.

We have the trivial following lemma:

Lemma 14. Let Pn+1 be a cutting handle of R such that V (Pn+1) =
{v0, . . . , vn}. If the length n of Pn+1 is less or equal to 3, then n = 3
and v3 has got a neighbor v4 6= v2 of degree less or equal to 2.

u

u u

u u

uu

u 






J
J
J 






J

J
J

v0

v1 v2

v3 v4

Fig. 5. Cutting handle of length 3.

We have:

Theorem 15. If R is a triangle-free induced subgraph of the triangular
lattice, then:

R ∈ Ch(
5

2
) .

Proof. We set x = 5
2 , thus ⌊x⌋ = 2, hence a handle of R is a handlex of

R. Let G = Corech(x, 1)(R). If G = ∅ then Corollary 11 gives the result.
Otherwise G 6= ∅, and since the girth of this graph is at least 6 (and since we
have removed all the handlex of length n ≥ Even( 2

x−⌊x⌋ ) = 4), G can’t be a

forest of cycles and thus G has got at least two nodes (since we have removed
the vertices of degree 0 and 1, the number of nodes is necessarily even). By
symmetry, one can suppose that G has a cutting handle (otherwise we can
consider its mirror graph). Since x = 5

2 and since we have removed all the
handlex of length n ≥ 4, then Lemma 14 shows that this cutting handle
Pn+1 has length n = 3, V (P3) = {v0, . . . , v3} and v3 has a neighbor v4 6= v2
of degree less or equal to 2. Thus P3 is a 1-handlex, but this is absurd since
G = Corech(x, 1)(R). �

5. The second extended core

We can define a second extended core by removing more vertices.
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Definition 16. A 2-handlex of length n in a graph G is a 1-handlex of
length n such that v0 has degree less or equal to ⌊x+ 1⌋ and has a neighbor
v−1 of degree less or equal to ⌊x⌋ and for all i, j ∈ {−1, . . . , n+1} we have:
if |i− j| ≥ 2 then vivj /∈ E.

t t t t t t

tt

v0

v−1

v1 v2 vn−2vn−1vn

vn+1

⌊x⌋ ⌊x⌋ ⌊x⌋ ⌊x⌋

⌊x+ 1⌋

⌊x⌋⌊x⌋

⌊x+ 1⌋

�� �� �� �� �� ��@@ @@ @@ @@ @@ @@
�
�
�@@

@
@

@��

Fig. 6. Example of a 2-handlex.

Then, we define the second extended core, denoted Corech(x, 2)(G), of a
graph G as the induced subgraph of G obtained inductively when we remove:

• its vertices of degree 0, 1, . . . , ⌊x− 1⌋,
• the interior of its handlex of length n ≥ Even( 2

x−⌊x⌋),

• the interior of its 1-handlex of length n = Even( 2
x−⌊x⌋)− 1,

• the interior of its 2-handlex of length n = Even( 2
x−⌊x⌋)− 2.

We can prove (see [4] for the details) in the same way as for the first
extended core that the choosability of a graph reduces to the choosability
of its second extended core:

Theorem 17. Let a, b be two integers and x be a rational number such that
a
b
≥ x. For any graph G, we have the following equivalence:

G is (a, b)− choosable ⇔ Corech(x, 2)(G) is (a, b)− choosable.

Definition 18. Let x ∈ [2, 3[ be a rational number. A handlex of parity of
a graph G is a handlex of length n, such that there exists another path in G
of length m, from v0 to vn, with n ≥ m and m ≡ n (mod 2).

Definition 19. The Coreco(x, 2)(G) is defined as the Corech(x, 2)(G), but
in addition, we remove also, for x ∈ [2, 3[, the interior of its handlex of
parity.

Let us define the set Co(x) to be the set of graphs G which are (a, b)-
colorable for all a, b such that a

b
≥ x, i.e.:

Co(x) = {G, such that for all
a

b
≥ x, G is (a, b)-colorable}.

The McDiarmid and Reed conjecture (see [9]) asserts that:

R ∈ Co(
9

4
) .

One can prove in the same way as for the Corech(x, 2)(G) (see [4] for the
details) the following theorem:

Theorem 20. Let x ∈ [2, 3[. For any graph G, we have:

G ∈ Co(x) ⇔ Coreco(x, 2)(G) ∈ Co(x).
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Then, Theorem 20 enables us to find again a result of Havet on the col-
oration of the graph R:

Theorem 21 (Havet, [7]).

R ∈ Co(
7

3
) .

Proof. We set x = 7
3 , and G = Coreco(x, 2)(R). If G = ∅ then Theorem 20

gives the proof. Otherwise, G 6= ∅ and there exists a cutting handle Pn+1 of
G. Since Even( 2

x−⌊x⌋) = 6, we have removed all the handlex of length n ≥ 6.

For n ≤ 5, a careful study (see [4] where some technical lemmas are used)
shows that we obtain a contradiction, which concludes the proof. �

Remark 22. Using the Corech(7/3, 2), we can almost prove (some few cases
still resist) that R ∈ Ch(

7
3 ).

Remark 23. Recall that a graph G is said to be (a, b)-free-choosable in a
vertex v0 if for any list L of G such that for any v ∈ V (G)\{v0} : |L(v)| = a
and |L(v0)| = b, there exists an (L, b)-choosability c of G. If G is a graph
such that Corech(x, 2)(G) = ∅, then we have shown in particular that if a, b
are such that a

b
≥ x then G is (a, b)-free-choosable in the last vertex removed

by the algorithm used to get the core. In particular, Theorem 15 implies that
there exists a vertex v0 for which the graph R is (5, 2)-free-choosable in v0.
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