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Abstract

On Spinc manifolds, we study the Energy-Momentum tensor associated with a spinor

field. First, we give a spinorial Gauss type formula for oriented hypersurfaces of a

Spinc manifold. Using the notion of generalized cylinders, we derive the variationnal

formula for the Dirac operator under metric deformation and point out that the

Energy-Momentum tensor appears naturally as the second fundamental form of an

isometric immersion. Finally, we show that generalized Spinc Killing spinors for

Codazzi Energy-Momentum tensor are restrictions of parallel spinors.

Key words: Spinc structures, Spinc Gauss formula, metric variation formula for
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1 Introduction

In [14], O. Hijazi proved that on a compact Riemannian spin manifold (Mn, g) any

eigenvalue λ of the Dirac operator to which is attached an eigenspinor ψ satisfies

λ2
> inf

M
(
1

4
ScalM + |ℓψ|2), (1)
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where ScalM is the scalar curvature of the manifold M and ℓψ is the field of symmetric

endomorphisms associated with the field of quadratic forms Tψ called the Energy-

Momentum tensor and defined on the complement set of zeroes of the eigenspinor ψ,

for any vector X ∈ Γ(TM) by

Tψ(X) = Re < X · ∇Xψ,
ψ

|ψ|2
> .

Here ∇ denotes the Levi-Civita connection on the spinor bundle of M and “·” the

Clifford multiplication. The limiting case of (1) is characterized by the existence of a

spinor field ψ satisfying for all X ∈ Γ(TM),

∇Xψ = −ℓψ(X) · ψ. (2)

For Spinc structures, the complex line bundle LM is endowed with an arbitrary con-

nection and hence an arbitrary curvature iΩM which is an imaginairy 2-form on the

manifold. In terms of the Energy-Momentum tensor the author proved in [25] that on a

compact Riemannian Spinc manifold any eigenvalue λ of the Dirac operator to which

is attached an eigenspinor ψ satisfies

λ2
> inf

M

(1

4
ScalM −

cn
4
|ΩM | + |ℓψ|2

)
, (3)

where cn = 2[n
2
]
1
2 . The limiting case of (3) is characterized by the existence of a spinor

field ψ satisfying for every X ∈ Γ(TM),




∇ΣM
X ψ = −ℓψ(X) · ψ,

ΩM · ψ = i cn
2
|ΩM |ψ.

(4)

Here ∇ΣM denotes the Levi-Civita connection on the Spinc spinor bundle and “·” the

Spinc Clifford multiplication. In [25], the author showed also that the sphere with a

special Spinc structure is a limiting manifold for (3).

Studying the Energy-Momentum tensor on a Riemannian or semi-Riemannian

spin manifolds has been done by many authors, since it is related to several geometric

constructions (see [12], [2], [24] and [6] for results in this topic). In this paper we

study the Energy-Momentum tensor on Riemannian and semi-Riemannian Spinc

manifolds. First, we prove that the Energy-Momentum tensor appears in the study of

the variations of the spectrum of the Dirac operator:

Proposition 1.1 Let (Mn, g) be a Spinc Riemannian manifold and gt = g + tk a

smooth 1-parameter family of metrics. For any spinor field ψ ∈ Γ(ΣM), we have

d

dt

∣∣∣∣
t=0

(DMtτ t0ψ, τ
t
0ψ)gt

= −
1

2

∫

M

< k, Tψ > dvg, (5)
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where (., .) =
∫
M

Re 〈., .〉 dvg, the Dirac operator DMt is the Dirac operator associ-

ated with Mt = (M, gt), Tψ = |ψ|2 Tψ = Re < X · ∇Xψ, ψ > and τ t0ψ is the image

of ψ under the isometry τ t0 between the spinor bundles of (M, g) and (M, gt).

This was proven in [4] by J. P. Bourguignon and P. Gauduchon for spin manifolds.

Using this, we extend to Spinc manifolds a result by Th. Friedrich and E. C. Kim in

[8] on spin manifolds:

Theorem 1.2 Let M be a Spinc Riemannian manifold. A pair (g0, ψ0) is a critical

point of the Lagrange functional

W(g, ψ) =

∫

U

(ScalMg + ελ < ψ, ψ >g − < Dgψ, ψ >g

)
dvg,

(λ, ε ∈ R) for all open subsets U of M if and only if (g0, ψ0) is a solution of the

following system {
Dgψ = λψ,

ricMg −
ScalMg

2
g = ε

4
Tψ,

where ricMg denotes the Ricci curvature ofM considered as a symmetric bilinear form.

Now, we interprete the Energy-Momentum tensor as the second fundamental form of

a hypersurface. In fact, we prove the following:

Proposition 1.3 Let Mn →֒ (Z, g) be any compact oriented hypersurface isometri-

cally immersed in an oriented Riemannian Spinc manifold (Z, g), of constant mean

curvature H and Weingarten map W . We assume that Z admits a parallel spinor field

ψ, then the Energy-Momentum tensor associated with ϕ =: ψ|M satisfies

2ℓϕ = −W.

Moreover the hypersurface M satisfies the equality case in (3) if and only if

ScalZ − 2 ricZ(ν, ν) − cn|Ω
M | = 0. (6)

This was proven by Morel in [24] for a compact oriented hypersurface of a spin man-

ifold carrying parallel spinor but in this case the hypersurface M is directly a limiting

manifold for (1) without the condition (6).

Finally, we study generalized Killing spinors on Spinc manifolds. They are character-

ized by the identity, for any tangent vector field X on M ,

∇ΣM
X ψ =

1

2
F (X) · ψ, (7)
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where F is a given symmetric endomorphism on the tangent bundle. It is straightfor-

ward to see that

2Tψ(X, Y ) = −〈F (X), Y 〉 .

These spinors are closely related to the so-called T–Killing spinors studied by

Friedrich and Kim in [9] on spin manifolds. It is natural to ask whether the tensor

F can be realized as the Weingarten tensor of some isometric embedding of M in a

manifold Zn+1 carrying parallel spinors. Morel studied this problem in the case of spin

manifolds where the tensor F is parallel and in [2], the authors studied the problem in

the case of semi-Riemannian spin manifolds where the tensor F is a Codazzi-Mainardi

tensor. We establish the corresponding result for semi-Riemannian Spinc manifolds:

Theorem 1.4 Let (Mn, g) be a semi-Riemannian Spinc manifold carrying a general-

ized Spinc Killing spinor ϕ with a Codazzi-Mainardi tensor F . Then the generalized

cylinder Z := I ×M with the metric dt2 + gt, where gt(X, Y ) = g((Id− tF )2X, Y ),
equipped with the Spinc structure arising from the given one on M has a parallel

spinor whose restriction to M is just ϕ.

A characterisation of limiting 3-dimensional manifolds for (3), having generalized

Spinc Killing spinors with Codazzi tensor is then given.

The paper is organised as follows: In Section 2, we collect basic material on

spinors and the Dirac operator on semi-Riemannian Spinc manifolds. In Section 3,

we study hypersurfaces of Spinc manifolds. We derive a spinorial Gauss formula after

identifying the restriction of the Spinc spinor bundle of the ambient manifold with

the Spinc spinor bundle of the hypersurface. In Section 4, we define the generalized

cylinder of a Spinc manifold M and we collect formulas relating the curvature of

a generalized cylinder to geometric data on M . In section 5, we compare the Dirac

operators for two differents semi-Riemannian metrics, then one first has to identify

the spinor bundles using parallel transport. In the last section, we interprete the

Energy-Momentum tensor as the second fundamental form of a hypersurface and we

study generalized Spinc Killing spinors. The author would like to thank Oussama

Hijazi for his support and encouragements.

2 The Dirac operator on semi-Riemannian Spinc man-

ifolds

In this section, we collect some algebraic and geometric preliminaries concerning the

Dirac operator on semi-Riemannian Spinc manifolds. Details can be found in [3] and

[2]. Let r + s = n and consider on Rn the nondegenerate symmetric bilinear form of
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signature (r, s) given by

〈v, w〉 :=
r∑

j=1

vjwj −

n∑

j=r+1

vjwj,

for any v, w ∈ Rn. We denote by Clr,s the real Clifford algebra corresponding to

(Rn, 〈·, ·〉), this is the unitary algebra generated by Rn subject to the relations

ej · ek + ek · ej =

{
−2δjk if j 6 r,
2δjk if j > r,

where (ej)16j6n is an orthonormal basis of Rn of signature (r, s), i.e., 〈ej, ek〉 = εjδjk
and εj = ±1. The complex Clifford algebra Clr,s is the complexification of Clr,s and

it decomposes into even and odd elements Clr,s = Cl0r,s ⊕Cl1r,s. The real spin group is

defined by

Spin(r, s) := {v1 · ... · v2k ∈ Clr,s | vj ∈ Rn such that 〈vj, vj〉 = ±1}.

The spin group Spin(r, s) is the double cover of SO(r, s), in fact the following se-

quence is exact

1 −→ Z/2Z −→ Spin(r, s)
ξ

−→ SO(r, s) −→ 1,

where ξ = Ad|Spin(r,s)
and Ad is defined by

Ad : Cl∗r,s −→ End(Rn)

w −→ Adw : v −→ Adw(v) = w · v · w−1.

Here Cl∗r,s denotes the group of units of Clr,s. Since S1∩Spin(r, s) = {±1}, we define

the complex spin group by

Spinc(r, s) = Spin(r, s) ×Z2 S1.

The complex spin group is the double cover of SO(r, s) × S1, this yields to the exact

sequence

1 −→ Z2 −→ Spinc(r, s)
ξc

−→ SO(r, s) × S1 −→ 1,

where ξc = (ξ, Id2). When n = 2m is even, Clr,s has a unique irreducible complex

representation χ2m of complex dimension 2m, χ2m : Clr,s −→ End(Σr,s). If n =
2m + 1 is odd, Clr,s has two inequivalent irreducible representations both of complex

dimension 2m, χj2m+1 : Clr,s −→ End(Σj
r,s), for j = 0 or 1, where Σj

r,s = {σ ∈

Σr,s, χ
j
2m+1(ωr,s)σ = (−1)jσ} and ωr,s is the complex volume element

ωr,s =

{
im−s e1 · ... · en if n = 2m,
im−1+s e1 · ... · en if n = 2m+ 1.
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We define the complex spinorial representation ρn by the restriction of an irreducible

representation of Clr,s to Spinc(r, s):

ρn :=





χ2m|Spinc(r,s)
if n = 2m,

χ0
2m+1|Spinc(r,s)

if n = 2m+ 1,
.

When n = 2m is even, ρn decomposes into two inequivalent irreductible represen-

tations ρ+
n and ρ−n , i.e., ρn = ρ+

n + ρ−n : Spinc(r, s) → Aut(Σr,s). The space Σr,s

decomposes into Σr,s = Σ+
r,s ⊕ Σ−

r,s, where ωr,s acts on Σ+
r,s as the identity and minus

the identity on Σ−
r,s. If n = r + s is odd and when restricted to Spinc(r, s), the two

representations χ0
2m+1|Spinc(r,s)

and χ1
2m+1|Spinc(r,s)

are equivalent and we simply choose

Σr,s := Σ0
r,s. The complex spinor bundle Σr,s carries a Hemitian symmetric bilinear

Spinc(r, s)-invariant form 〈·, ·〉, such that

〈v · σ1, σ2〉 = (−1)s+1 〈σ1, v · σ2〉 for all σ1, σ2 ∈ Σr,s and v ∈ Rn.

Now, we give the following isomorphism α, which is of particular importance for the

identification of the Spinc bundles in the context of immersions of hypersurfaces:

α : Clr,s → Cl0r+1,s

ej → ν · ej, (8)

where we look at an embedding of Rn onto Rn+1 such that (Rn)⊥ is spacelike and

spanned by a spacelike unit vector ν.

Let Nn be an oriented semi-Riemannian manifold of signature (r, s) and let

PSON be the SO(r, s)-principal bundle of positively space and time oriented or-

thonormal tangent frames. A complex Spinc structure on N is a Spinc(r, s)-principal

bundle PSpincN over N , an S1-principal bundle PS1N over N together with a twofold

covering map Θ : PSpincN −→ PSON ×N PS1N such that

Θ(ua) = Θ(u)ξc(a),

for every u ∈ PSpincN and a ∈ Spinc(r, s), i.e., N has a Spinc struc-

ture if and only if there exists an S1-principal bundle PS1N over N such

that the transition functions gαβ × lαβ : Uα ∩ Uβ −→ SO(r, s) × S1 of the

SO(r, s) × S1-principal bundle PSON ×N PS1N admit lifts to Spinc(r, s) denoted by

g̃αβ × l̃αβ : Uα ∩ Uβ −→ Spinc(r, s), such that ξc ◦ (g̃αβ × l̃αβ) = gαβ × lαβ . This,

anyhow, is equivalent to the second Stiefel-Whitney class w2(N) being equal, modulo

2, to the first chern class c1(L
N) of the complex line bundle LN . It is the complex line

bundle associated with the S1-principal fibre bundle via the standard representation of

the unit circle.
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Let ΣN := PSpincN ×ρn
Σr,s be the spinor bundle associated with the spinor

representation. A section of ΣN will be called a spinor field. Using the cocycle

condition of the transition functions of the two principal fibre bundles PSpincN and

PSON ×N PS1N , we can prove that

ΣN = Σ
′

N ⊗ (LN)
1
2 ,

where Σ
′

N is the locally defined spin bundle and (LN)
1
2 is locally defined too but ΣN

is globally defined. The tangent bundle TN = PSON ×ρ0 Rn where ρ0 stands for the

standard matrix representation of SO(r, s) on Rn, can be seen as the associated vector

bundle TN ≃ PSpincN ×pr1◦ξc◦ρ0 Rn where pr1 is the first projection. One defines the

Clifford multiplication at every point p ∈ N :

TpN ⊗ ΣpN −→ ΣpN

[b, v] ⊗ [b, σ] −→ [b, v] · [b, σ] := [b, v · σ = χn(v)σ],

where b ∈ PSpincN , v ∈ Rn, σ ∈ Σr,s and χn = χ2m if n is even and χn = χ0
2m+1

if n is odd. The Clifford multiplication can be extended to differential forms. Clifford

multiplication inherits the relations of the Clifford algebra, i.e., for X, Y ∈ TpN and

ϕ ∈ ΣpN we have X · Y · ϕ + Y · X · ϕ = −2 〈X, Y 〉ϕ. In even dimensions the

spinor bundle splits into ΣN = Σ+N ⊕ Σ−N, where Σ±N = PSpincN ×ρ±n
Σ±
r,s. Clif-

ford multiplication by a non-vanishing tangent vector interchanges Σ+N and Σ−N .

The Spinc(r, s)-invariant nondegenerate symmetric sesquilinear form on Σr,s and Σ±
r,s

induces inner products on ΣN and Σ±N which we again denote by 〈·, ·〉 and it satisfies

〈X · ψ, ϕ〉 = (−1)s+1 〈ψ,X · ϕ〉 ,

for every X ∈ Γ(TN) and ψ, ϕ ∈ Γ(ΣN). Additionally, given a connection 1-form

AN on PS1N , AN : T (PS1N) −→ iR and the connection 1-form ωN on PSON for the

Levi-Civita connection ∇N , we can define the connection

ωN × AN : T (PSON ×N PS1N) −→ son ⊕ iR = spinC

n

on the principal fibre bundle PSON ×N PS1N and hence a covariant derivative ∇ΣN

on ΣN [7] given locally by

∇ΣN
ek
ϕ =

[
b̃× s, ek(σ) +

1

4

n∑

j=1

εj ej · ∇
N
ek
ej · σ +

1

2
AN(s∗(ek))σ

]

= ek(ϕ) +
1

4

n∑

j=1

εj ej · ∇
N
ek
ej · ϕ+

1

2
AN(s∗(ek))ϕ, (9)

where ϕ = [b̃× s, σ] is a locally defined spinor field, b = (e1, . . . , en) is a local space

and time oriented orthonormal tangent frame, s : U −→ PS1N is a local section of
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PS1N and b̃× s is the lift of the local section b × s : U → PSON ×N PS1N to the 2-

fold covering Θ : PSpincN −→ PSON ×N PS1N . The curvature of AN is an imaginary

valued 2-form denoted by FAN = dAN , i.e., FAN = iΩN , where ΩN is a real valued

2-form on PS1N . We know that ΩN can be viewed as a real valued 2-form on N [7].
In this case iΩN is the curvature form of the associated line bundle LN . The curvature

tensor RΣN of ∇ΣN is given by

RΣN(X, Y )ϕ =
1

4

n∑

j,k=1

εjεk
〈
RN(X, Y )ej, ek

〉
ej · ek · ϕ+

i

2
ΩN(X, Y )ϕ, (10)

where RN is the curvature tensor of the Levi-Civita connection ∇N . In the Spinc case,

the Ricci identity translates, for every X ∈ Γ(TN), to

n∑

k=1

εk ek · R
ΣN(ek, X)ϕ =

1

2
RicN(X) · ϕ−

i

2
(XyΩN) · ϕ. (11)

Here RicN denotes the Ricci curvature considered as a field of endomorphism on

TN . The Ricci curvature considered as a symmetric bilinear form will be written

ricN(Y, Z) =
〈
RicN(Y ), Z

〉
. The Dirac operator maps spinor fields to spinor fields

and is locally defined by

DNϕ = is
n∑

j=1

εjej · ∇
ΣN
ej
ϕ,

for every spinor field ϕ. The Dirac operator is an elliptic operator, formally selfadjoint,

i.e., if ψ or ϕ has compact support, then (DNϕ, ψ) = (ϕ,DNψ), where (ϕ, ψ) =∫
N
〈ϕ, ψ〉 dvg.

3 Semi-Riemannian Spinc hypersurfaces and the

Guass formula

In this section, we study Spinc structures of hypersurfaces, such as the restriction of

a Spinc bundle of an ambient semi-Riemannian manifold and the complex spinorial

Gauss formula.

Let Z be an oriented (n + 1)-dimensional semi-Riemannian Spinc manifold

and M ⊂ Z a semi-Riemannian hypersurface with trivial spacelike normal bundle.

This means that there is a vector field ν on Z along M satisfying 〈ν, ν〉 = +1
and 〈ν, TM〉 = 0. Hence if the signature of M is (r, s), then the signature of Z is

(r + 1, s).
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Proposition 3.1 The hypersurface M inherts a Spinc structure from that on Z , and

we have {
ΣZ|M ≃ ΣM if n is even,
Σ+Z |M ≃ ΣM if n is odd.

Moreover Clifford multiplication by a vector field X , tangent to M , is given by

X • ϕ = (ν ·X · ψ)|M , (12)

where ψ ∈ Γ(ΣZ) (or ψ ∈ Γ(Σ+Z) if n is odd), ϕ is the restriction of ψ to M , “·” is

the Clifford multiplication on Z , and “•” that on M .

Proof: The bundle of space and time oriented orthonormal frames of M can be em-

bedded into the bundle of space and time oriented orthonormal frames of Z restricted

to M , by

Φ : PSOM −→ PSOZ|M (13)

(e1, · · · , en) −→ (ν, e1, · · · , en).

The isomorphism α, defined in (8) yields the following commutative diagram:

Spinc(r, s)

ξc

��

→֒ Spinc(r + 1, s)

ξc

��

SO(r, s) × S1 →֒ SO(r + 1, s) × S1

where the inclusion of SO(r, s) in SO(r+1, s) is that which fixes the first basis vector

under the action of SO(r + 1, s) on Rn+1. This allows to pull back via Φ the principal

bundle PSpincZ|M as a Spinc structure for M , denoted by PSpincM . Thus, we have the

following commutative diagram:

PSpincM

Θ
��

// PSpincZ|M

Θ
��

PSOM ×M PS1Z|M
// PSOZ|M ×M PS1Z|M

The Spinc(r, s)-principal bundle (PSpincM,π,M) and the S1-principal bundle

(PS1M =: PS1Z|M , π,M) define a Spinc structure onM . Let ΣZ be the spinor bundle

on Z ,

ΣZ = PSpincZ ×ρn+1 Σr+1,s,

where ρn+1 stands for the spinorial representation of Spinc(r+1, s). Moreover, for any

spinor ψ = [b̃× s, σ] ∈ ΣZ we can always assume that pr1 ◦ Θ(b̃× s) = b is a local

section of PSOZ with ν for first basis vector where pr1 is the projection into PSOZ .

Then we have

ψ|M = [b̃× s|U∩M
, σ|U∩M

],

9



where the equivalence class is reduced to elements of Spinc(r, s). It follows that one

can realise the restriction to M of the spinor bundle ΣZ as

ΣZ|M = PSpincM ×ρn+1◦α Σr+1,s.

If n = 2m is even, it is easy to check that χ0
2m+1 ◦α = χ0

2m+1|
Cl0

r+1,s

. Hence χ0
2m+1 ◦α

is an irreductible representation of Clr,s of dimension 2m, as χ0
2m+1|

Cl0
r+1,s

, and finally

χ0
2m+1 ◦ α

∼= χ2m. We conclude that

ρ2m+1 ◦ α ∼= ρ2m, and ΣZ|M
∼= ΣM.

If n = 2m+ 1 is odd, we know that χ0
2m+1 is the unique irreductible representation of

Clr,s of dimension 2m for which the action of the complex volume form is the identity.

Since n+1 = 2m+2 is even, ΣZ decomposes into positive and negative parts, Σ±Z =
PSpincZ ×ρ±2m+1

Σ±
r+1,s. It is easy to show that χ2m+2 ◦α = χ2m+2|

Cl0
r+1,s

, but χ2m+2 ◦α

can be written as the direct sum of two irreductible inequivalent representations, as

χ2m+2|
Cl0

r+1,s

. Hence, we have

χ2m+2 ◦ α = (χ2m+2 ◦ α)+ ⊕ (χ2m+1 ◦ α)−,

where (χ2m+2 ◦ α)±(ωr,s) = ±IdΣr,s
. The representation χ0

2m+1 being the unique rep-

resentation of Clr,s of dimension 2m for which the action of the volume form is the

identity, we get (χ2m+2 ◦ α)+ ∼= χ0
2m+1. Finally,

ρ+
2m+2 ◦ α

∼= ρ2m+1 and Σ+Z |M
∼= ΣM.

Now, Equation (12) follows directly from the above identification.

Remarks 3.2 1. The algebraic remarks in the previous section show that if n is odd

we can also get Σ−Z |M ≃ ΣM, where the Clifford multiplication by a vector field

tangent to M is given by X • ϕ = −(ν ·X · ψ)|M .
2. The connection 1-form defined on the restricted S1-principal bundle (PS1M =:
PS1Z|M , π,M), is given by

AM = AZ
|M : T (PS1M) = T (PS1Z)|M −→ iR.

Then the curvature 2-form iΩM on the S1-principal bundle PS1M is given by iΩM =
iΩZ

|M , which can be viewed as an imaginary 2-form on M and hence as the curvature

form of the line bundle LM , the restriction of the line bundle LZ to M .

3. For every ψ ∈ Γ(ΣZ) (ψ ∈ Γ(Σ+Z) if n is odd), the real 2-forms ΩM and ΩZ are

related by the following formulas:

|ΩZ |2 = |ΩM |2 + |νyΩZ |2, (14)
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(ΩZ · ψ)|M = ΩM • ϕ+ (νyΩZ) • ϕ. (15)

In fact, we can write

ΩZ =
n∑

i=1

ΩZ(ν, ei) ν ∧ ei +
n∑

i<j

ΩZ (ei, ej) ei ∧ ej = −(νyΩZ) ∧ ν + ΩM ,

which is (14). When restricting the Clifford multiplication of ΩZ by ψ to the hypersur-

face M we obtain

(ΩZ · ψ)|M = (ν · (νyΩZ) · ψ)|M + (ΩM · ψ)|M = (νyΩZ) • ϕ+ ΩM • ϕ. (16)

Proposition 3.3 (The spinorial Gauss formula) We denote by ∇ΣZ the spinorial

Levi-Civita connection on ΣZ and by ∇ΣM that on ΣM . For all X ∈ Γ(TM) and

for every spinor field ψ ∈ Γ(ΣZ), then

(∇ΣZ
X ψ)|M = ∇ΣM

X ϕ−
1

2
W (X) • ϕ, (17)

where W denotes the Weingarten map with respect to ν and ϕ = ψ|M . Moreover, let

DZ and DM be the Dirac operators on Z and M . Denoting by the same symbol any

spinor and it’s restriction to M , we have

ν ·DZϕ = D̃ϕ+
isn

2
Hϕ− is∇ΣZ

ν ϕ, (18)

where H = 1
n
tr(W ) denotes the mean curvature and D̃ = DM if n is even and

D̃ = DM ⊕ (−DM) if n is odd.

Proof: The Riemannian Gauss formula is given, for every vector fields X and Y on

M , by

∇Z
XY = ∇M

X Y + 〈W (X), Y 〉 ν. (19)

Let (e1, e2, ..., en) a local space and time oriented orthonormal frame of M , such

that b = (e0 = ν, e1, e2, ..., en) is that of Z . We consider ψ a local section of ΣZ ,

ψ = [b̃× s, σ] where s is a local section of PS1Z . Using (9), (19) and the fact that

X(ψ)|M = X(ϕ) for X ∈ Γ(TM), we compute for j = 1, ..., n

(
∇ΣZ
ej
ψ

)
|M

= ej(ϕ) +
1

4

n∑

k=0

εk(ek · ∇
Z
ej
ek · ψ)|M +

1

2
AZ(s∗(ej))ϕ

= ej(ϕ) +
1

4

n∑

k=1

εk(ek · ∇
Z
ej
ek · ψ)|M +

1

4
(ν · ∇Z

ej
ν · ψ)|M +

1

2
AM(s∗(ej))ϕ

= ∇ΣM
ej

ϕ+
1

4

n∑

k=1

εk < W (ej), ek > (ek · ν · ψ)|M −
1

4
(ν ·W (ej) · ψ)|M

= ∇ΣM
ej

ϕ−
1

2
(ν ·W (ej) · ψ)|M

= ∇ΣM
ej

ϕ−
1

2
W (ej) • ϕ.

11



Moreover (DZψ)|M = is
∑n

j=1 εj(ej · ∇
ΣZ
ej
ψ)|M + is(ν · ∇ΣZ

ν ψ)|M , and by (17),

is
n∑

j=1

εj(ej · ∇
ΣZ
ej
ψ)|M = is

n∑

j=1

εj (ej · ∇
ΣM
ej

ϕ) − is
1

2

n∑

j=1

εj (ej · ν ·W (ej) · ψ)|M

= −isν ·
n∑

j=1

εj ν · ej · ∇
ΣM
ej

ϕ+ is
1

2

n∑

j=1

εj (ν · ej ·W (ej) · ψ)|M

= −ν · D̃ϕ−
is

2
tr(W )(ν · ψ)|M .

Proposition 3.4 Let Z be an (n + 1)-dimensional semi-Riemannian Spinc manifold.

Assume that Z carries a semi-Riemannian foliation by hypersurfaces with trivial

spacelike normal bundle, i.e., the leaves M are semi-Riemannian hypersurfaces and

there exists a vector field ν on Z perpendicular to the leaves such that 〈ν, ν〉 = 1
and ∇Z

ν ν = 0. Then the commutator of the leafwise Dirac operator and the normal

derivative is given by

i−s[∇ΣZ
ν , D̃]ϕ = DWϕ−

n

2
ν · gradM(H) ·ϕ+

1

2
ν · divM(W ) ·ϕ+

i

2
ν · (νyΩZ) ·ϕ.

Here gradM denotes the leafwise gradient, divM(W ) =
∑n

i=1 εi (∇
M
ei
W )(ei) denotes

the leafwise divergence of the endomorphism field W and DWϕ =
∑n

i=1 εi ν · ei ·
∇ΣM
W (ei)

ϕ.

Proof: We choose a local oriented orthonormal tangent frame (e1, . . . , en) for the

leaves and we may assume for simplicity that ∇Z
ν ej = 0. Now, we compute

i−s[∇ΣZ
ν , D̃]ϕ =

n∑

j=1

εj

(
∇ΣZ
ν (ν · ej · ∇

ΣM
ej

ϕ) − ν · ej · ∇
ΣM
ej

∇ΣZ
ν ϕ

)

=
n∑

j=1

εj ν · ej ·
(
∇ΣZ
ν ∇ΣM

ej
ϕ−∇ΣM

ej
∇ΣZ
ν ϕ

)

(17)
=

n∑

j=1

εj ν · ej ·
[
∇ΣZ
ν (∇ΣZ

ej
+

1

2
ν ·W (ej))

−(∇ΣZ
ej

+
1

2
ν ·W (ej))∇

ΣZ
ν

]
ϕ

=
n∑

j=1

εj ν · ej ·
(
RΣZ(ν, ej) + ∇ΣZ

[ν,ej ]
+

1

2
ν · (∇Z

νW )(ej)
)
ϕ

(11)
= −

1

2
ν · RicZ(ν) · ϕ+

i

2
ν · (νyΩZ) · ϕ

+
n∑

j=1

εj ν · ej ·
(
∇ΣZ
W (ej)

+
1

2
ν · (∇Z

νW )(ej)
)
ϕ

12



(17)
= −

1

2
ν · RicZ(ν) · ϕ+

i

2
ν · (νyΩZ) · ϕ

+
n∑

j=1

εj ν · ej ·
(
∇ΣM
W (ej)

−
1

2
ν ·W 2(ej) +

1

2
ν · (∇Z

νW )(ej)
)
ϕ

= −
1

2
ν · RicZ(ν) · ϕ+

i

2
ν · (νyΩZ) · ϕ+ DWϕ

+
1

2

n∑

j=1

εj ej ·
(
−W 2(ej) + (∇Z

νW )(ej)
)
ϕ.

The Riccati equation for the Weingarten map (∇Z
νW )(X) = RZ(X, ν)ν + W 2(X)

yields

i−s[∇ΣZ
ν , D̃]ϕ = −

1

2
ν · RicZ(ν) · ϕ+

i

2
ν · (νyΩZ) · ϕ+ DWϕ

+
1

2

n∑

j=1

εj ej · (R
Z(ej, ν)ν) · ϕ

= −
1

2
ν · RicZ(ν) · ϕ+

i

2
ν · (νyΩZ) · ϕ+ DWϕ+

1

2
ricZ(ν, ν)ϕ

= DWϕ−
1

2

n∑

j=1

εi ric
Z(ν, ej) ν · ej · ϕ+

i

2
ν · (νyΩZ) · ϕ. (20)

The Codazzi-Mainardi equation for X, Y, V ∈ TM is given by
〈
RZ(X, Y )V, ν

〉
=〈

(∇M
XW )(Y ), V

〉
−

〈
(∇M

Y W )(X), V
〉
. Thus,

ricZ(ν,X) =
n∑

j=1

εj
〈
RZ(X, ej)ej, ν

〉

=
n∑

j=1

εj

(〈
(∇M

XW )(ej), ej
〉
−

〈
(∇M

ej
W )(X), ej

〉)

= tr(∇M
XW ) −

〈
divM(W ), X

〉
.

Plugging this into (20) we get

i−s[∇ΣZ
ν , D̃]ϕ = DWϕ−

1

2

n∑

j=1

εj

(
tr(∇M

ej
W ) −

〈
divM(W ), ej

〉)
ν · ej · ϕ

+
i

2
ν · (νyΩZ) · ϕ.

= DWϕ−
1

2

n∑

j=1

εj ej(tr(W ))ν · ej · ϕ+
1

2
ν · divM(W ) · ϕ

+
i

2
ν · (νyΩZ) · ϕ.

= DWϕ−
n

2
ν · gradM(H) · ϕ+

1

2
ν · divM(W ) · ϕ+

i

2
ν · (νyΩZ) · ϕ.

13



4 The generalized cylinder on semi-Riemannian Spinc

manifolds

Let M be an n-dimensional smooth manifold and gt a smooth 1-parameter family of

semi-Riemannian metrics on M , t ∈ I where I ⊂ R is an interval. We define the

generalized cylinder by

Z := I ×M,

with semi-Riemannian metric gZ := 〈·, ·〉 = dt2 + gt. The generalized cylinder is an

(n+1)-dimensional semi-Riemannian manifold of signature (r+1, s) if the signature

of gt is (r, s).

Proposition 4.1 There is a 1-1-correspondence between the Spinc structures on M
and that on Z .

Proof: As explained in Section 3, Spinc structures on Z can be restricted to Spinc

structures on M . Conversely, given a Spinc structure on M it can be pulled back to

I × M via the projection pr2 : I × M −→ M yields a Spinc structure on Z . In

fact, the pull back of the Spinc(r, s)-principal bundle PSpincM on M gives rise to a

Spinc(r, s)-principal bundle on Z denoted by PSpincZ

PSpincZ

π

��

// PSpincM

π

��

Z = I ×M // M

Enlarging the structure group via the embedding Spinc(r, s) →֒ Spinc(r+1, s), which

covers the standard embedding

SO(r, s) × S1 →֒ SO(r + 1, s) × S1

(a, z) 7→
((

1 0

0 a

)
, z

)
,

gives a Spinc(r + 1, s)-principal fibre bundle on Z , denoted also by PSpincZ . The pull

back of the line bundleLM onM defining the Spinc structure onM , gives a line bundle

LZ on Z such that the following diagram commutes

LZ = pr∗2(L
M)

π

��

// LM

π

��

Z = I ×M // M

.

The line bundle LZ on Z and the Spinc(r + 1, s)-principal fibre bundle PSpincZ on Z
yields the Spinc structure on Z which restricts to the given Spinc structure on M .
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Remark 4.2 If M is a Spinc Riemannian manifold and if we denote by iΩM the imag-

inairy valued curvature on the line bundle LM , we know that there exists a unique

curvature 2-form, denoted by iΩZ , on the line bundle LZ = pr∗2(L
M), defined by

iΩZ = pr∗2(iΩ
M). Thus we have

ΩZ(X, Y ) = ΩM(X, Y ) and ΩZ(ν, Y ) = 0 for any X, Y ∈ Γ(TM).

Proposition 4.3 [2] On a generalized cylinder Z = I × M with semi-Riemannian

metric gZ = 〈·, ·〉 = dt2 + gt we define, in every p ∈ M and X, Y ∈ TpM , the first

and second derivatives of gt by

ġt(X, Y ) :=
d

dt
(gt(X, Y )) and g̈t(X, Y ) :=

d2

dt2
(gt(X, Y )).

Hence the following formulas hold:

〈W (X), Y 〉 = −
1

2
ġt(X, Y ), (21)

〈
RZ(U, V )X, Y

〉
=

〈
RMt(U, V )X, Y

〉
(22)

+
1

4

(
ġt(U,X)ġt(V, Y ) − ġt(U, Y )ġt(V,X)

)
,

〈
RZ(X, Y )U, ν

〉
=

1

2

(
(∇Mt

Y ġt)(X,U) − (∇Mt

X ġt)(Y, U)
)
, (23)

〈
RZ(X, ν)ν, Y

〉
= −

1

2

(
g̈t(X, Y ) + ġt(W (X), Y )

)
, (24)

where X, Y, U, V ∈ TpM , p ∈M .

5 The variation formula for the Dirac operator on

Spinc manifolds

First we give some facts about parallel transport on Spinc manifolds along a curve

c. We consider a Riemannian Spinc manifold N , we know that there exists a unique

correspondence which associates to a spinor field ψ(t) = ψ(c(t)) along a curve c :
I −→ N another spinor field D

dt
ψ along c, called the covariant derivative of ψ along c,

such that

D

dt
(ψ + ϕ) =

D

dt
ψ +

D

dt
ϕ, for any ψ and ϕ along the curve c,

D

dt
(fψ) = f

D

dt
ψ + (

d

dt
f) ψ, where f is a differentiable function on I,

∇ΣN
ċ(t)ψ =

D

dt
ϕ, where ϕ(t) = ψ(c(t)).
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A spinor field ψ along a curve c is called parallel when D
dt
ψ(t) = 0 for all t ∈ I . Now,

if ψ0 is a spinor at the point c(t0), t0 ∈ I, (ψ0 ∈ Σc(t0)N) then there exists a unique

parallel spinor ϕ along c, such that ψ0 = ϕ(t0). The linear isometry τ t1t0 defined by

τ t1t0 : Σc(t0)N −→ Σc(t1)N

ψ0 −→ ϕ(t1),

is called the parallel transport along the curve c from c(t0) to c(t1). The basic property

of the parallel transport on a Spinc manifold is the following: Let ψ be a spinor field

on a Riemannian Spinc manifold N , X ∈ Γ(TN), p ∈ N and c : I −→ N an integral

curve through p, i.e., c(t0) = p and d
dt
c(t) = X(c(t)), we have

(∇ΣN
X ψ)p =

d

dt

(
τ t0t (ψ(t))

)
|t=t0 . (25)

Now, we consider gt a smooth 1-parameter family of semi-Riemannian metrics on a

Spinc manifold M and the generalized cylinder Z = I ×M with semi-Riemannian

metric gZ = 〈·, ·〉 = dt2 + gt. For t ∈ I we denote by Mt the manifold (M, gt). Let

us write “·” for the Clifford multiplication on Z and “•t” for that on Mt. Recall from

Section 4 that Spinc structures on M and Z are in 1-1-correspondence and ΣZ|Mt
=

ΣMt as hermitian vector bundles if n = r+ s is even and Σ+Z|Mt
= ΣMt if n is odd.

For a given x ∈ M and t0, t1 ∈ I , parallel transport τ t1t0 on the generalized cylinder Z
along the curve c : I → I ×M, t→ (t, x) is given by

τ t1t0 : Σc(t0)Z ≃ ΣxMt0 −→ Σc(t1)Z ≃ ΣxMt1 .

This isomorphism satisfies

τ t1t0 (X •t0 ϕ) = (ζt1t0X) •t1 (τ t1t0 ϕ),

< τ t1t0 ψ, τ
t1
t0
ϕ >=< ψ,ϕ >,

where ζt1t0 : T(x,t0)Z ≃ TxMt0 → T(x,t1)Z ≃ TxMt1 is the parallel transport on Z
along the same curve c, X ∈ TxMt0 and ψ, ϕ ∈ ΣxMt0 .

Theorem 5.1 On a Spinc manifold M , let gt be a smooth 1-parameter family of

semi-Riemannian metrics. Denote by DMt the Dirac operator of Mt, and Dġt =∑n

i,j=1 εiεj ġt(ei, ej)ei •t ∇
ΣMt
ej

. Then for any smooth spinor field ψ on Mt0 we have

d

dt

∣∣∣∣
t=t0

τ t0t D
Mtτ tt0ψ = −

1

2
Dġt0ψ +

1

4
gradMt0 (trgt0

(ġt0)) •t0 ψ −
1

4
divMt0 (ġt0) •t0 ψ.

Proof: The vector field ν := ∂
∂t

is spacelike of unit length and orthogonal to the

hypersurfacesMt := {t}×M . Denote byWt the Weingarten map ofMt with respect to
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ν and by Ht the mean curvature. If X is a local coordinate field on M , then 〈X, ν〉 = 0
and [X, ν] = 0. Thus

0 = dν 〈X, ν〉 =
〈
∇Z
ν X, ν

〉
+

〈
X,∇Z

ν ν
〉

=
〈
∇Z
Xν, ν

〉
+

〈
X,∇Z

ν ν
〉

= −〈Wt(X), ν〉 +
〈
X,∇Z

ν ν
〉

=
〈
X,∇Z

ν ν
〉

and differentiating 〈ν, ν〉 = 1 yields
〈
ν,∇Z

ν ν
〉

= 0. Hence ∇Z
ν ν = 0, i.e., for x ∈ M

the curves t 7→ (t, x) are geodesics parametrized by arclength. So the assumptions of

Proposition 3.4 are satisfied for the foliation (Mt)t∈I . By Remark 4.2, the commutator

formula of Proposition 3.4 gives for a section ϕ of ΣMt, (or Σ+Mt if n is odd)

i−s[∇ΣZ
ν , DMt ]ϕ = DWtϕ−

n

2
gradMt(Ht) •t ϕ +

1

2
divMt(Wt) •t ϕ. (26)

From Proposition 4.3 we deduce

divMt(Wt) = −
1

2
divMt(ġt), Ht = −

1

2n
trgt

(ġt) and DWt = −
1

2
Dġt .

Thus (26) can be rewritten as

i−s[∇ΣZ
ν , DMt ]ϕ = −

1

2
Dġtϕ+

1

4
gradMt(trgt

(ġt)) •t ϕ−
1

4
divMt(ġt) •t ϕ. (27)

Now if ϕ is parallel along the curves t 7→ (t, x), i.e., it is of the form ϕ(t, x) =
τ tt0ψ(t0, x) for some spinor field ψ on Mt0 , then using (25) at t = t0, the left hand side

of (27) could be written as

i−s[∇ΣZ
ν , DMt ]ϕ = i−s∇ΣZ

ν DMt ϕ = i−s
d

dt

∣∣∣∣
t=t0

τ t0t D
Mt ϕ

= i−s
d

dt

∣∣∣∣
t=t0

τ t0t D
Mtτ tt0ψ, (28)

which gives the variation formula for the Dirac operator.

Corollary 5.2 Let (Mn, g) be a Spinc Riemannian manifold, if we consider the family

of metrics defined by gt = g + tk, where k is a symmetric (0, 2)-tensor, we have

d

dt

∣∣∣∣
t=0

τ 0
t D

Mtτ t0ψ = −
1

2
Dkψ +

1

4
gradM(trg(k)) · ψ −

1

4
divM(k) · ψ, (29)

where “· = •t0=0” is the Clifford multiplicaton on M .

This formula has been proved in [4], Theorem 21 for spin Riemannian manifolds and

in [2] for spin semi-Riemannian manifolds.
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6 Energy-Momentum tensor on Spinc manifolds

In this section we study the Energy-Momentum tensor on Spinc Riemannian mani-

folds from a geometric point of vue. We begin by giving the proofs of Proposition 1.1,

Theorem 1.2 and Proposition 1.3.

Proof of Proposition 1.1 : Using Equation (29) we calculate

d

dt

∣∣∣∣
t=0

(τ 0
t D

Mtτ t0ψ, ψ)gt
=

d

dt

∣∣∣∣
t=0

(DMtτ t0ψ, τ
t
0ψ)gt

= −
1

2
(Dkψ, ψ)g

= −
1

2

∑

i,j

k(ei, ej)(ei · ∇
ΣM
ej

ψ, ψ)

= −
1

2

∫

M

< k, Tψ > dvg.

Proof of Theorem 1.2 : The Proof of this Theorem will be omitted since it is similar

to the one given by Friedrich and Kim in [8] for spin manifolds.

Proof of Proposition 1.3 : Let ψ be any parallel spinor field on Z . Then Equa-

tion (17) yields

∇ΣM
X ϕ =

1

2
W (X) • ϕ. (30)

Let (e1, ..., en) be a positively oriented local orthonormal basis of TM . For j = 1, ..., n
we have

∇ΣM
ej

ϕ =
1

2

n∑

k=1

Wjk ek • ϕ.

Taking Clifford multiplication by ei and the scalar product with ϕ, we get

Re(ei • ∇
ΣM
ej

ϕ, ϕ) =
1

2

n∑

k=1

WjkRe(ei • ek • ϕ, ϕ).

Since Re(ei • ek • ϕ, ϕ) = −δik|ϕ|
2, it follows, by the symmetry of W

Re(ei • ∇
ΣM
ej

ϕ+ ej • ∇
ΣM
ei

ϕ, ϕ) = −Wij|ϕ|
2.

Therefore, 2ℓϕ = −W . Using Equation (18) it is easy to see that ϕ is an eigenspinor

associated with the eigenvalue −n
2
H of D̃. Since ScalZ = ScalM + 2 ricZ(ν, ν) −

n2H2 + |W |2 we get

1

4
(ScalM − cn|Ω

M |) + |Tϕ|2 =
1

4
(ScalZ − 2 ricZ(ν, ν) − cn|Ω

M |) + n2H
2

4

= n2H
2

4
,
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hence M satisfies the equality case in (3) if and only if (6) holds.

Corollary 6.1 Under the same conditions as Proposition 1.3, if n = 2 or 3, the hyper-

surface M satisfies the equality case in (3) if RicZ(ν) = 0 and ScalZ > 0.

Proof: Since Z has a parallel spinor, we have (see [7])

|RicZ(ν)| = |νyΩZ |, (31)

i(Y yΩZ) · ψ = RicZ(Y ) · ψ for every Y ∈ Γ(ΣZ). (32)

For Y = ej in Equation (32) then taking Clifford multiplication by ej and summing

from j = 1, ..., n+ 1, we get

i
n+1∑

j=1

ej · (ejyΩZ) · ψ =
n+1∑

j=1

ej · RicZ(ej) · ψ = −ScalZψ.

But 2 ΩZ · ψ =
∑n+1

j=1 ej · (ejyΩZ) · ψ, hence we deduce that ΩZ · ψ = iScalZ

2
ψ. By

(31) and (15) we obtain ΩM • ϕ = iScalZ

2
ϕ. Since n = 2 or 3 we have |ΩM | = ScalZ

2

and Equation (6) is satisfied.

Corollary 6.2 Under the same conditions as Proposition 1.3, if the restriction of the

complex line bundle LZ is flat, i.e., LM is a flat complex line bundle (ΩM = 0), the

hypersurface M is a limiting manifold for (3).

Proof: Since ΩM = 0, Equation (15) yields iScalZ

2
ϕ = ΩZ · ψ|M

= (νyΩZ) • ϕ. But,

i(νyΩZ) • ϕ = i(ν · (νyΩZ) · ψ)|M = (ν · RicZ(ν) · ψ)|M

= −ricZ(ν, ν)ϕ+
n∑

j=1

ricZ(ν, ej) ej • ϕ. (33)

Taking the real part of the scalar product of Equation (33) with ϕ yields
ScalZ

2
= ricZ(ν, ν), hence Equation (6) is satisfied.

Now, let M be a Spinc Riemannian manifold having a generalized Killing spinor field

ϕ with a symmetric endomorphism F on the tangent bundle TM . As mentioned in

the introduction, it is straightforward to see that 2Tϕ(X, Y ) = −〈F (X), Y 〉 . We

will study these generalized Killing spinors when the tensor F is a Codazzi-Mainardi

tensor, i.e., F satisfies

(∇M
X F )(Y ) = (∇M

Y F )(X) for X, Y ∈ Γ(TM). (34)

For this, we give the following lemma whose proof will be omitted since it is similar

to Lemma 7.3 in [2].
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Lemma 6.3 [2] Let gt be a smooth 1-parameter family of semi-Riemannian metrics

on a Spinc manifold (Mn, g = g0) and let F be a field of symmetric endomorphisms

of TM . We consider the metric gZ = 〈., .〉 = dt2 + gt on Z such that gt(X, Y ) =
g((Id − tF )2X, Y ) for all vector fields X, Y on M . We have

〈
RZ(U, ν)ν, V

〉
= 0 for

all vector fields U, V tangent to M and if F satisfies the Codazzi-Mainardi equation

then
〈
RZ(U, V )W, ν

〉
= 0 for all U, V and W on Z .

Proof of Theorem 1.4: We define ψ(0,x) := ϕx via the identification ΣxM ∼= Σ(0,x)Z
(resp. Σ+

(0,x)Z for n odd) and ψ(t,x) = τ t0ψ(0,x). By Equation (21), the endomorphism F

is the Weingarten tensor of the immersion of {0} ×M in Z and hence by construction

we have for all X ∈ Γ(TM)

∇ΣZ
X ψ|{0}×M = 0 and ∇ΣZ

ν ψ ≡ 0. (35)

Since the tensor F satisfies the Codazzi-Mainardi equation, Lemma 6.3 yields

gZ(RZ(U, V )W, ν) = 0 for all U, V and W ∈ Γ(Z) and gZ(RZ(X, ν)ν, Y ) = 0
for all X and Y tangent to M . Hence RZ(ν,X) = 0 for all X ∈ Γ(TM). Let X be a

fixed arbitrary tangent vector field on M . Using (10) and (35) we get

∇ΣZ
ν ∇ΣZ

X ψ = RΣZ(ν,X)ψ =
1

2
RZ(X, ν) · ψ +

i

2
ΩZ(X, ν)ψ = 0.

Thus showing that the spinor field ∇ΣZ
X ψ is parallel along the geodesics R×{x}. Now

(35) shows that this spinor vanishes for t = 0, hence it is zero everywhere on Z . Since

X is arbitrary, this shows that ψ is parallel on Z .

Corollary 6.4 Let (M3, g) be a compact, oriented Riemannian manifold and ϕ an

eigenspinor associated with the first eigenvalue λ1 of the Dirac operator such that

the Energy-Momentum tensor associated with ϕ is a Codazzi tensor. M is a limiting

manifold for (3) if and only if the generalized cylinder Z4, equipped with the Spinc

structure arising from the given one on M , is Kähler of positive scalar curvature and

the immersion of M in Z has constant mean curvature H .

Proof: First, we should point out that every 3-dimensional compact, oriented, smooth

manifold has a Spinc structure. Now, if M3 is a limiting manifold for (3), by Theorem

1.4, the generalized cylinder has a parallel spinor whose restriction to M is ϕ. Since Z
is a 4-dimensional Spinc manifold having parallel spinor, Z is Kähler [1]. Moreover,

using (15), we have

ΩM • ϕ = i
ScalZ

2
ϕ = i

cn
2
|ΩM |ϕ,

so ScalZ > 0. Finaly H = 1
n
tr(W ) = 1

n
tr(−2Tϕ) = − 2

n
λ1, which is a constant. Now

if the generalized cylinder is Kähler and M is a compact hypersurface of constant

mean curvature H , thus M is compact hypersurface immersed in a Spinc manifold

having parallel spinor with constant mean curvature. Since ScalZ > 0 and νyΩZ =
RicZ(ν) = 0, Corollary 6.1 gives the result.
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