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Abstract

In this paper we propose new insights based on an insertion heuristic and gener-
alized resource constraint propagation for solving the job shop scheduling problem
with minimum and maximum time-lags. To show the contribution of our proposi-
tions we propose a branch-and-bound algorithm and provide an experimental study.
The results obtained conclude that our heuristic obtains feasible schedules with a
better makespan than previous approaches, especially for instances with tightened
time lags. The results also prove the interest of the constraint propagation general-
ization when time lags are considered.
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1 Introduction
The job shop problem with minimum and maximum time-lags (JSPTL) is a generalization
of the well-known job shop problem (JSP), in which there are time constraints restricting
the minimum or the maximum distance between two successive job operations. The
JSPTL involves a set of jobs that have to be processed on a set of machines. Each job
i consists of a sequence of operations; (i, j) denotes the jst operation of job i. Every
operation must be assigned to a unique machine without interruption. The distance
between the end of an operation (i, j) and the start of its successor (i, j+1) is constrained
to belong to interval [TLmin

i,j,j+1, TLmax
i,j,j+1]. Solving the JSPTL consists in sequencing all

operations on the machines, such that successive operations of the same job satisfy time
lag constraints and such that each machine processes at most one operation at a time.
The objective is to find a schedule that minimizes the makespan.%! The problem can be
denoted by Jm|TLi,j,j+1|Cmax.

The classical JSP is a well-addressed problem in the literature but only few articles are
concerned with time-lag constraints. Wikum et al. [24] study single-machine problems
with minimum and/or maximum distances between jobs and state that some particular
single-machine problems with time-lags are polynomially solvable, even if the general
case is NP-hard. Brucker et al. [3] show that many scheduling problems (such as multi-
processor tasks or multi-purpose machines) can be modeled as single-machine problems
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with time-lags and propose a branch-and-bound method. A local search approach can be
found in [13]. Caumond et al. [5] study the JSPTL considered in this paper. They propose
an insertion heuristic and a memetic algorithm. Furthermore, since the JSPTL can be
viewed as a special case of the resource-constrained project scheduling problem (RCPSP)
with time lags, the relevant literature on this problem also apply to the JSPTL [15, 17].
However, in general, finding a feasible solution with time lags is an NP-complete problem
for the RCPSP. This is not the case for the JSPTL, for which a trivial solution, called
canonical schedule, can be obtained by a greedy algorithm [5]. The algorithm simply sorts
jobs in an arbitrary order and, for each job taken in this order, schedules all its operations
at the earliest possible time at the end of the partial schedule. For |J | jobs, there are
|J |! so-obtained “canonical” schedules with the same makespan, which is the sum of the
duration of all the operations. The interest of a specific study of the JSPTL comes from
this property. However, for makespan minimization, the canonical schedule may have a
very poor performance. In the presence of maximum time-lags, classical JSP heuristics
cannot be easily extended and finding a non-trivial feasible schedule for the JSPTL is not
simple due to maximum time-lags constraints.

In this paper, we propose a new heuristic for computing a feasible schedule for the
JSPTL and a branch-and-bound method including new generalized resource constraint
propagation techniques for solving the JSPTL. Constraint propagation is commonly used
when solving decision problems from a constraint satisfaction perspective; planning and
scheduling problems are not an exception to the rule (see for example [20]). The exper-
iments show the interest of these generalized propagations compared to usual constraint
propagation. Moreover, our method outperforms the best-known approaches in the liter-
ature for small instances.

This paper is organized as follows. In Section 2, we present the job shop problem with
time-lags under study and a literature review. Section 3 is dedicated to new resource
constraint propagation based on generalized time constraints. The proposed method for
solving the JSPTL is detailed in Section 4. This method is based on a branch-and-bound
procedure, on a new insertion heuristic for the JSPTL, and on the generalized resource
constraint propagation. In Section 5, we provide an experimental study to evaluate the
impact of the proposed insertion heuristic and to evaluate the interest of generalized
resource constraint propagation for solving the JSPTL. Conclusions and future research
directions are given in Section 6.

2 The job shop problem with time lags

2.1 Notations
The following notations are used throughout the paper:

- M : the set of machines;

- J = {Ji}i=1..|J |: the set of jobs;

- T : the set of operations;

- Tµ: the set of operations which have to be processed on the same machine µ ∈ M ;

- (i, j): the jth operation of job i;
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- ni: the last index of the operations of job i;

- mi,j: the machine allocated to operation (i, j);

- pi,j: the duration of operation (i, j);

- TLmin
i,j,j+1 and TLmax

i,j,j+1: the minimum and maximum time-lags between operations
(i, j) and (i, j + 1), respectively;

- sti,j and fti,j: the start- and finish-times of operation (i, j), respectively (to be
determined).

2.2 Modeling
The model of the JSPTL is based on a set of decision variables X = {sti,j, fti,j}(i,j)∈T ,
and on a set of constraints (time-lag and resource sharing constraints):

min Cmax, (1)
s.t. : (2)
Cmax ≥ fti,j, ∀(i, j) ∈ T, (3)

sti,j+1 ≥ fti,j + TLmin
i,j,j+1, ∀i = 1, ..., |J |, j = 1, ..., ni − 1, (4)

sti,j+1 ≤ fti,j + TLmax
i,j,j+1, ∀i = 1, ..., |J |, j = 1, ..., ni − 1, (5)

fti,j = sti,j + pi,j, ∀(i, j) ∈ T, (6)
(sti,j ≥ ftk,l) ∨ (stk,l ≥ fti,j), ∀(i, j), (k, l) ∈ Tµ, ∀µ ∈ M, (7)

sti,j ≥ 0, ∀(i, j) ∈ T. (8)

Constraints (3) state that the makespan is greater than or equal to the finish time of all
operations of each job. Constraints (4) and (5) represent the minimum and maximum
time lags between two consecutive operations of the same job i, respectively. Constraints
(6) describe duration constraints. Constraints (7) state that operations competing for the
same machine must be sequenced.

As an illustrative example, let consider the following JSPTL with three jobs composed
of three operations described in Table 1. Each cell in this table gives the machine, the
duration, and the maximum time-lag between this operation and its successor if it exists.
In this instance, we consider that the minimum time-lags are all zero. In the following of
this paper, operation durations are assumed to be fixed but this assumption does not im-
pact our contribution. A canonical schedule corresponding to this problem is represented
with a makespan equal to

∑
(i,j)∈T pi,j = 57 in Fig. 1.

Table 1: Example of JSPTL

Operation 1 Operation 2 Operation 3
J1 (m3, 4, 2) (m1, 6, 2) (m2, 6,−)
J2 (m2, 6, 4) (m3, 11, 4) (m1, 8,−)
J3 (m1, 4, 2) (m2, 5, 2) (m3, 7,−)
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Figure 1: A canonical schedule for the example of Table 1

2.3 Graph representation
2.3.1 Disjunctive activity-on-node graph and operation time windows

The classical representation of the JSP is usually based on disjunctive activity-on-node
(AON) graphs [9, 19]. This representation can be extended easily to the JSPTL [5].
The nodes are associated with operations and the arcs are partitioned into two sets: the
set of conjunctive (oriented) arcs and the set of disjunctive (non oriented) edges. The
conjunctive arcs represent the time lag constraints (4) and (5). For each job i and each
operation j < ni, there is an arc from (i, j) to (i, j + 1) valuated by pi,j + TLmin

i,j,j+1 and
an arc from (i, j + 1) to (i, j) valuated by −(pi,j + TLmax

i,j,j+1). Dummy operations with
zero duration, 0 and ∗, are introduced to represent the start and end of the schedule
respectively. Operation 0 is a predecessor of the first operation of each job through a
conjunctive arc valuated by 0. Operation ∗ is a successor of the last operation (i, ni) of
each job through a conjunctive arc valuated by pi,ni. Restricting to these conjunctive
arcs, the longest path between node 0 and operation (i, j) gives the earliest start time
of the operation sti,j . The earliest completion time is then ft

i,j
= sti,j + pi,j. Given an

upper bound UB on the makespan, the conjunctive graph can also be used to compute a
latest start time sti,j set to UB minus the longest path between (i, j) and ∗. The latest
completion time is then fti,j = sti,j + pi,j. Hence for each operation, start time windows
[sti,j, sti,j] and end time windows [ft

i,j
, fti,j] are obtained.

The disjunctive edges represent resource sharing constraints. Namely, there is a dis-
junctive edge between two distinct operations (i, j) and (k, l) as soon as mi,j = mk,l. A
(complete) selection is an arbitrary (complete) orientation of the disjunctive edges such
that each obtained arc is valuated by the duration of the origin operation. To represent a
solution, the resulting graph must be free of positive length cycles. A selection satisfying
these constraints is called a feasible selection. In a feasible selection, the length of the
longest path from 0 to (i, j) represents a resource- and precedence-feasible earliest start
time. The length of the longest path from 0 to ∗ gives the makespan of the represented
solution. With these definitions, the JSPTL can be stated as the problem of finding a
complete feasible selection of minimum makespan.

The disjunctive AON graph linked to Table 1 is depicted in Fig. 2. Dotted edges are
the disjunctive edges while plain arcs are conjunctive arcs.

2.3.2 Disjunctive time-bound-on-node graph

To represent a broader variety of time constraints in scheduling problems, the disjunctive
time-bound-on-node (TBON) graph has been introduced [11]. The disjunctive TBON
representation is equivalent to the disjunctive AON graph, but we choose to use it in the
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Figure 2: AON representation for the instance of Table 1

sequel since it allows the distinct visualization of the different components of the problem:
duration time lags, start and finish times, although it yields a larger number of nodes.

In this representation, each operation is associated with two nodes representing its
start- and finish- time. As for the disjunctive AON graph, there are conjunctive arcs and
disjunctive edges. An additional node x0 is introduced to represent the beginning of the
scheduling time. As for the AON graph, a node ∗ can also be added to represent the end
of the schedule.

A conjunctive arc linking two nodes xu and xv is labeled by the value δxu,xv linked to
the minimum distance between the time bound variables: xu−xv ≥ δxu,xv . The disjunctive
edges of the AON graph between (i, j) and (k, l) existing when mi,j = mk,l are replaced
for the TBON by a pair of exclusive conjunctive arcs: a conjunctive arc from fti,j to stk,l

and a conjunctive arc from ftk,l to sti,j both valuated by 0. For the JSPTL, the TBON
graph conjunctive arcs can be built according to Table 2. A complete selection consists
in choosing a single conjunctive arc for each exclusive pair. In a feasible selection, the
longest path from each start node (respectively finish node) of each operation to node x0

represents the latest start- (respectively finish-) time of operations. The makespan is the
longest path from node x0 to node ∗.

Table 2: Arc values for the JSPTL TBON graph

xu xv δxu,xv condition
sti,j fti,j pi,j –
fti,j sti,j −pi,j –
fti,j sti,j+1 TLmin

i,j,j+1 j < ni

sti,j+1 fti,j −TLmax
i,j,j+1 j < ni

x0 sti,j 0 –
fti,j ∗ 0 –
fti,j stk,l 0 mi,j = mk,l

Fig. 3 represents the disjunctive TBON graph of the example presented in Table 1.
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To simplify the representation, only the disjunctions on machine m1, which correspond
to three sets of disjunctive constraints, are represented in the figure (dotted lines).
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Figure 3: TBON representation for the instance of Table 1

3 Generalized constraint propagation
Constraint propagation amounts to reduce the decision variable domains and/or to ex-
plicitly generate induced constraints, depending on the constraint propagation level, by
means of an active use of constraints. In this section, the objective function is not ex-
plicitly considered. Instead, a tentative upper bound of the makespan UB is se.t The
purpose of the constraint propagation mechanism is to prove satisfiability of Cmax ≤ UB.
Since this is an NP-complete decision problem, this mechanism is not complete, i.e., when
an inconsistency arises during constraint propagation, the problem is unsatisfiable; oth-
erwise, the problem is not proved to be satisfiable in the other case. We will present in
Section 4 how we integrate this mechanism into a makespan minimization method for the
JSPTL.

We distinguish between time constraint propagation, working on a set of conjunctive
temporal constraints such as the conjunctive part of the TBON graph (see Section 2.3.2)
or Simple Temporal Network in the Artificial Intelligence field [7], and resource constraint
propagation tackling the disjunctive constraints or disjunctive temporal problem [21].

3.1 Time constraint propagation
To check the global consistency of a conjunctive temporal problem one might use filtering
techniques such as arc-consistency (AC) or path-consistency (PC) that both run in poly-
nomial time [6]. PC computes any binary constraint between each couple of time points
by intersecting it with all paths going through a third time point. AC is a more restricted
case of PC since it only updates the domain of each time point. For a conjunctive set of
time constraints, the advantage of PC is that it computes the complete minimal graph of
time constraints: for any two time points, PC provides the interval containing the values
that are consistent with other constraints. An inconsistency arises when a positive length

6



cycle is detected in the graph (either by AC or by PC). PC computes in the TBON graph
the longest paths length between each operation time points xu and xv, denoted by axu,xv

in O(N3), where N is the number of operations. For each conjunctive arc, axu,xv is ini-
tialized with δxu,xv and the longest paths are computed progressively by maintaining the
relation axu,xw ≥ axu,xv + axv,xw , for all u, v, w, such as in the Floyd-Warshall algorithm.

Several variants of PC algorithms exist. In this paper, we consider an incremental
version of path-consistency called IFPC (Incremental Full Path Consistency) which effi-
ciency was shown on the JSP [18]. Basically, since our solving method (see Section 4) adds
progressively precedence constraints to build a complete selection, the IFPC algorithm
reaches an O(N2) complexity for each added precedence constraint.

3.2 Generalized disjunctive constraint propagation
Standard disjunctive constraint propagation rules (see e.g., [1]), are based on operation
time windows. We propose in this section a generalization of these rules to incorporate
the all-pairs longest path lengths axu,xv .

Propagation based on disjunctive pairs

Based on IFPC algorithm for time constraints, a generalization of the simplest disjunc-
tive constraint propagation rule, called Forbidden Precedence (FP), has previously been
proposed in [2, 8, 12]. We recall here this generalization. FP propagation considers the
disjunctive constraint [(i, j) ≺ (k, l) ∨ (i, j) ) (k, l)]. The principle of FP consists in
adding to the set of conjunctive constraints, one of the precedence constraints involved in
the disjunction; if it leads to an inconsistency then this precedence is forbidden (therefore
the reverse is mandatory). It yields:

∀µ ∈ M, ∀(i, j), (k, l) ∈ Tµ, if ftk,l − sti,j < pi,j + pk,l then (i, j) ⊀ (k, l). (9)

The generalization of FP, denoted by GFP, is based on the value of the binary constraints
deduced by IFPC between the two variables stk,l and fti,j:

∀(i, j), (k, l) ∈ Tµ, if astk,l,fti,j > 0 then (i, j) ⊀ (k, l) (10)

where astk,l,fti,j is the length of the longest path from stk,l to fti,j.
Since by definition, astk,l,fti,j verifies astk,l,fti,j ≥ pk,l − ftk,l + sti,j + pi,j , it can be

proved (see Fig. 4) that the generalization dominates the classical formulation with the
same complexity (it explores the same set of disjunctions).

Propagation based on disjunctive sets of operations

We generalize two other disjunctive constraint propagation rules, named Latest Starting
time Last (LSL) and Earliest Finishing time First (EFF) by [4]. Rule LSL aims at
sequencing an operation i after a set of operations competing for the same resource.
Symmetrically, EFF sequences an operation (i, j) before a set of operations competing for
the same resource. The classical formulation of LSL is:

∀µ ∈ M, ∀S ⊂ Tµ, ∀(i, j) ∈ Tµ\S, if max
(k,l)∈S′⊆S

(ftk,l − pk,l) < sti,j + pi,j then S ′ ≺ (i, j).

(11)
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sti,j

stk,l

ftk,l

x0

fti,j

sti,j
pk,l

pi,j

−ftk,l

astk,l,fti,j

Figure 4: Minimal TBON graph for GFP

LSL can be generalized, using the same principle as FP and GFP: the generalization
is based on the length of the longest path from stk,l to fti,j , ∀(k, l), (i, j) ∈ Tµ, ∀µ ∈ M .
In the minimal complete graph obtained by IFPC algorithm it corresponds to astk,l,fti,j .
The new formulation is then:

∀µ ∈ M, ∀S ⊂ Tµ, ∀(i, j) ∈ Tµ\S, if min
(k,l)∈S′⊆S

astk,l,fti,j > 0 then S ′ ≺ (i, j). (12)

This generalization of LSL is denoted by GLSL. Symmetrically, the generalization
GEFF can be obtained for EFF. The algorithm for applying GLSL has the same com-
plexity as those for LSL (it explores the same set of operations).

The demonstration of this result follows the same principle as for the generalization
of FP rule: astk,l,fti,j deduced by IFPC is the length of the longest path from stk,l to
fti,j, ∀(k, l) ∈ S ′, i.e., astk,l,fti,j ≥ pk,l − ftk,l + sti,j + pi,j∀(k, l) ∈ S ′ (see Fig. 5).

. . .

pi,j fti,j
sti,j

x0

x0

S ′

astk1,l1 ,fti,j
astk2 ,l2 ,fti,j

stk1,l1
ftk1,l1pk1,l1 stk2,l2

ftk2,l2pk2,l2 stk3,l3

ftk3,l3pk3,l3

−ftk1,l1

−ftk2,l2 −ftk3,l3

astk3,l3 ,fti,j

sti,j

Figure 5: Minimal TBON graph for GLSL
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Propagation based on energetic reasoning

We propose a new generalization of the forbidden precedence with energetic reasoning
(FPE). FPE also considers a set of operations competing for the same resource, but it
also involves the minimum consumption of operations over given intervals [t1, t2]. For a
given machine and a given operation (k, l) over an interval [t1, t2], the classical formulation
of the minimal consumption is [10, 16]:

w((k, l), t1, t2) = max[0, min(pk,l, t2 − t1, ft
k,l

− t1, t2 − stk,l)].

Rule FPE [16] considers the disjunctive constraint between two operations (i, j) and
(m, n) and computes the minimal consumption of all other operations (k, l) using the
same resource over the interval bounded by earliest start time of (i, j) and latest finish
time of (m, n):

∀µ ∈ M, ∀(i, j), (m, n) ∈ Tµ, T ∗
µ = Tµ \ {(i, j), (m, n)},

if ftm,n − sti,j < pi,j + pm,n +
∑

(k,l)∈T ∗
µ

w((k, l), sti,j , ftm,n) then (i, j) ⊀ (m, n). (13)

The generalized formulation of the minimal consumption of operation (k, l) can be
obtained by using the longest paths computed by IFPC (see Fig. 6):

wext((k, l), sti,j, ftm,n) = max[0, min(pk,l, asti,j ,ftm,n , asti,j ,ftk,l
, astk,l,ftm,n)]. (14)

The two first terms pk,l and asti,j ,ftm,n correspond to the trivial cases, when opera-
tion (k, l) if fully processed inside the interval [sti,j , ftm,n], and when it covers the in-
terval, respectively. Indeed asti,j ,ftm,n represents a lower bound of the length of interval
[sti,j, ftm,n]. The third term considers the case where (k, l) is left-shifted for which (k, l)
overlaps [sti,j , ftm,n] by asti,j ,ftk,l

. Similar reasoning leads to the expression of the last
term, when the operation is right-shifted.

stk,l ftk,l

astk,l,ftm,n

ftm,nstm,nfti,j

aftm,n,sti,j

astij ,ftm,n

asti,j ,ftk,l

sti,j pi,j pm,n

pk,l

Figure 6: Minimal graph for minimal consumption

The generalized forbidden precedence with energetic reasoning (GFPE) is then based
on the following extension of the minimal consumption:

∀µ ∈ M, ∀(i, j), (m, n) ∈ Tµ, T ∗
µ = Tµ \ {(i, j), (m, n)},

if − aftm,n,sti,j < pi,j + pm,n +
∑

(k,l)∈T ∗
µ

wext((k, l), sti,j, ftm,n) then (i, j) ⊀ (m, n), (15)
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where −aftm,n,sti,j is the maximal length of interval [sti,j, ftm,n].

Unfortunately, there is no dominance between FPE and GFPE as it can be illustrated
in the following example.

Let us consider four operations (i, j), (m, n), (k, l), and (u, v) competing for the same
machine. The TBON graph of Fig. 7 synthesizes the useful data.

4

4

1
1

-3

-7

-3

-2

0 -1 2-6

1

sti,j

-9

-1
0 1

-3
0 -2-1

ftm,n

x0

ftk,l ftu,vstk,l stu,v

Figure 7: Example for energetic-based rules

Let us consider the disjunctive constraint between (i, j) and (m, n). The minimal
consumptions of operations (k, l) and (u, v) over the interval [sti,j , ftm,n] are then:

• w((k, l), sti,j, ftm,n) = max[0, min(1, 9 − 1, 1 − 1, 9 − 1)] = 0,

• w((u, v), sti,j, ftm,n) = max[0, min(1, 9 − 1, 3 − 1, 9 − 6)] = 1.

For the same operations, the generalized minimal consumptions are:

• wext((k, l), sti,j, ftm,n) = max[0, min(1, 4, 1, 4)] = 1,

• wext(u, v), sti,j, ftm,n) = max[0, min(1, 4, 2, 0)] = 0.

Suppose that minimal durations of operations (i, j) and (m, n) are pi,j = 4 and pm,n =
3, rule FPE (13) tests the following condition: 9 − 1 < 4 + 3 + 0 + 1 which is not
verified then it allows no deduction. However, rule GFPE (15) provides us with the test
7 < 4 + 3 + 1 + 0 which holds and implies (i, j) ⊀ (m, n). In this example, rule GFPE
dominates rule FPE. However, if on the same example, we change the value of the arc
from x0 to stk,l by interval [1, 2] and the value of the arc sti,j from ftk,l by interval [0, 3],
the classical minimal consumptions are then:

• w((k, l), sti,j, ftm,n) = max[0, min(1, 9 − 1, 2 − 1, 9 − 2)] = 1,

• w(u, v), sti,j, ftm,n) = max[0, min(1, 9 − 1, 3 − 1, 9 − 6)] = 1,

and the value of generalized minimal consumptions are:

• wext((k, l), sti,j, ftm,n) = max[0, min(1, 4, 0, 4)] = 0,

• wext(u, v), sti,j, ftm,n) = max[0, min(1, 4, 2, 0)] = 0.
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The application of rule FPE produces the test 9− 1 < 4+3+1+1 which holds and then
it is deduced that (i, j) ⊀ (m, n). Conversely, with rule GFPE, the test 7 < 4 + 3 + 0 + 0
does not permit any deduction. On this second example, rule FPE subsumes rule GFPE.

In this section, we showed the theoretical contribution of the generalized propagation
rules GFP, GEFF, and GLSL. Nevertheless, an experimental validation is needed to prove
their practical contribution. Indeed, the generalization is based on an IFPC algorithm
which is more time-consuming than an AC-like algorithm (for instance a Bellman-Ford
algorithm). Moreover, we showed in the previous example that there is no dominance
between rules FPE and GFPE.

We must also recall that, for solving disjunctive scheduling problems, Edge Finding
(denoted here by EdFi) [1] is generally considered as an efficient propagation rule. Note
that EdFi produces the same conclusions as LSL or EFF. However, at present time, EdFi
does not seem to be generalizable, as EFF and LSL do. Our, objective is then to evaluate
experimentally to what extend the generalized rules can also be efficiently triggered.

4 Proposed solving method
In order to evaluate the contribution of generalized resource constraint propagation, the
proposed formulations are included in a basic branch-and bound procedure presented in
this section. We also propose a job insertion heuristic to obtain an initial upper bound.

4.1 A job insertion heuristic
4.1.1 Issues for greedy heuristics in the presence of maximum time lags

For the JSP, priority-rule based greedy heuristics (list algorithms) obtain very quickly
an approximate solution. These heuristics consider a set of candidate operations to be
scheduled (i.e., the operations are ready and the machine on which they are to be per-
formed is free). The operations are ordered considering a (static or dynamic) priority rule
and scheduled so as to build a partial feasible schedule. More precisely, each operation
selected with the priority rule is inserted in the partial sequence on the machine it requires
without changing this partial sequence.

To solve the JSPTL, the implementation of greedy heuristics has to cope with another
difficulty. Indeed, proceeding as described above may lead to an unsatisfiable solution
because we can easily have cases where all insertion positions for the selected operation
violate the maximum time lag constraints.

4.1.2 Principle of the proposed heuristic

Actually, for general time-lag problems (like RCPSPs with time lags), answering the
question whether there exists a feasible solution is itself an NP-complete problem. As
already mentioned, however, there are trivial “canonical” solutions for the JSPTL, in
which jobs are sequenced consecutively.

Aware of this property, Caumond et al. [5] have designed a list heuristic based as-
sociated with a method for repairing partial solutions already built. The list heuristic
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works by selecting with a priority rule at each step an operation among the set of can-
didate operations (whose predecessor has already been scheduled) and the operation is
appended at the end of the partial schedule. The repairing mechanism takes place when
no candidate operation can be appended without violating a time lag constraint. In the
worst case, this heuristic generates the canonical schedule.

We propose here a new heuristic for the JSPTL. Our idea is to take advantage of the
fact that the time lag constraints occur only inside the job. Our heuristic builds a list of
jobs and takes each job consecutively according to this list. At each step, the operations
of the current job are all inserted in the partial schedule according to the increasing
operation number.

For instance, considering again the example of Table 1, if job J1 is selected, the heuris-
tic schedules the operations (1, 1) then (1, 2) and then (1, 3) on their respective machines
while checking time-lag constraints. Once a job has been scheduled, it is considered as
fixed and the start times of its operations cannot be changed.

The complete schedule of the set of operations of a job leads to idle-time intervals
on the machine. During the schedule of operations of the next job, our heuristic tries
to schedule these operations in the idle-time intervals (insertion positions) previously
created. Hence we define our heuristic as a job insertion procedure. Such heuristics were
previously proposed for job-shop problems without maximum time lags [14, 23]. For the
JSPTL, the situation where no insertion position exists for the current operation also
occurs for the job insertion heuristic and it can be necessary to make several attempts
to schedule the operations of the current job, as shown by the following example. Let us
consider that our heuristic has already scheduled jobs J1 and J2 (see Fig. 8), it has now
to insert job J3. The idle time interval on m1 allows scheduling operation (3, 1) at its
earliest date on m1.

m1

m3 1, 1

1, 2

2, 1

2, 2

1, 3

2, 3

m2

Figure 8: Insertion of Jobs 1 and 2

However, the schedule of (3, 2) on m2 cannot be done, considering simultaneously its
processing time of 5, the idle times when m2 is free, and satisfying the maximum time-
lag constraint of 2 between (3, 1) and (3, 2) (situation displayed in Fig. 9(a) with the
representation in black of two occurrences of (3, 2), before and after operation (1, 3)). Job
3 insertion can be canceled and the next insertion position for (3, 1) is tested, and the
process is carried out until the job can be inserted (see Fig. 9(b)).

As in the method given in [5], in the worst case, our heuristic schedules the jobs
according to the canonical schedule.

4.1.3 Algorithm

Our heuristic is based on the insertion of each job one by one in the schedule. The
following static orders of jobs considered for building input jobs lists are:

- lexicographical and anti-lexicographical orders;
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3,2 3,2

1, 2

2, 2

1, 3

2, 3

1, 1

3, 1

m2

m3

m1

2, 1

1, 1

2, 1

1, 2

2, 2

1, 3

2, 33, 1

3, 2...

3, 3

(a) (b)

Figure 9: Insertion of Job 3

- ascending and descending orders of TLmax
i,j,j+1, ∀Ji ∈ J ;

- ascending and descending orders of
∑ni

j=1 pi,j, ∀Ji ∈ J ;

- ascending and descending orders of
∑ni

j=1 TLmax
i,j,j+1 +

∑ni

j=1 pi,j, ∀Ji ∈ J .

Once entirely scheduled, a job u is fixed, meaning that each of its operations (u, v)
have a fixed start and finish times STu,v and FTu,v. We let however a full degree of
freedom to the operations of the job being currently inserted.

For such a job i, suppose operations (i, 1), . . . , (i, j−1) have been inserted in intervals
[I1, I1], . . . , [Ij−1, Ij−1] and that operation (i, j) is tentatively inserted in some interval
[Ij−1, Ij−1]. Each Iq is fixed and equal to 0 or to some FTu,v and each Iq is also fixed and
equal to ∞ or to some STu,v. Hence the constraints for (i, j) insertion can be represented
by the insertion TBON graph displayed in Figure 10.

x0

pi,1

−pi,1

pi,2

−pi,2
−TLmax

i,1,2

fti,2
sti,j−1 fti,j−1

−pi,j

fti,jfti,1sti,1

I1

−I1
I2

Ij−1

pi,j−1

−Ij−1 −Ij

Ij

−I2

−TLmax
i,j−1,j

−pi,j−1

TLmin
i,j−1,jsti,j

pi,jTLmin
i,1,2 sti,2

Figure 10: Insertion graph

Proposition 1. Insertion of (i, j) in [Ij , Ij] is feasible, if and only if

Ij − Ij ≥ pi,j, (16)
Ij − ftj−1

i,j−1
≥ TLmin

i,j−1,j + pi,j, (17)

Ij − ft
j−1
i,j−1 ≤ TLmax

i,j−1,j, (18)

where ftj−1
i,j−1

is the length of the longest path from x0 to fti,j−1 and −ft
j−1
i,j−1 is the length of

the longest path from fti,j−1 to x0 in the insertion graph resulting from (i, j−1) insertion.

Proof. The insertion of (i, j) in [Ij , Ij ] is feasible if and only if it does not generate any
positive length elementary cycle in the insertion graph. Since the new nodes sti,j and
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fti,j are connected to the insertion graph only via nodes x0 and fti,j−1, any created cycle
of positive length traverses either x0 or fti,j−1, or both. There is only one elementary
cycle traversing only x0: (x0, sti,j, fti,j, x0) of length Ij + pi,j − Ij which yields condition
(16). There is one elementary cycle traversing only fti,j−1: (fti,j−1, sti,j, fti,j−1) of length
TLmin

i,j−1,j − TLmax
i,j−1,j ≤ 0 unless the problem is trivially unfeasible. The remaining cycles

traverse both nodes x0 and fti,j−1 and the largest one takes either the longest path from
x0 to fti,j−1 of length ftj−1

i,j−1
, which yields condition (17) or the longest path from fti,j−1

to x0, of length −ft
j−1
i,j−1, with yields condition (18).

Once (i, j) is inserted in [Ij, Ij], we need to compute values ftj
i,j

and ft
j
i,j−1 for insertion

of (i, j + 1). The insertion graph displayed in Figure 10 shows that the longest path from
x0 to fti,j is either path (x0, sti,j, fti,j) or a path issued from fti,j−1 and traversing only
arcs from the previous insertion graph between x0 and fti,j−1. Symmetrically, the longest
path from fti,j to 0 is either reduced to arc (fti,j, x0) or going to fti,j−1 and traversing only
arcs from the previous insertion graph between fti,j−1 and x0. This yields the following
O(1) update of the (i, j) time window:

ftj
i,j

= max(Ij + pi,j, ftj−1
i,j−1

+ TLmin
i,j−1,j + pi,j), (19)

ft
j
i,j = min(Ij, ft

j−1
i,j + TLmax

i,j−1,j + pi,j). (20)

The job insertion algorithm is displayed in Algorithm 1. For each job according to
list L, the heuristic scans the operations. Each time a feasible interval (indexed by qj)
is encountered on mi,j for (i, j), the algorithm tries to insert (i, j + 1) on mi,j+1. If no
feasible interval is found for (i, j) then the algorithm scans again the possible intervals for
(i, j − 1) starting with the interval indexed by (qj−1 + 1), and so on.

Note the worst-case time complexity of the procedure for inserting a single job is
O(|J |m), which is exponential in the number of machines. However, for some instances
the number of machines may be small. To reduce the CPU time, the number of tested
insertion positions may be restricted arbitrarily before reaching the canonical position for
each job. However, in our experiments it has never been necessary.

4.2 Branch-and-Bound procedure
4.2.1 Binary search

The proposed Branch and Bound (B&B) procedure has been designed to check whether
a solution having a makespan lower than or equal to a given value exists or not. This
B&B is integrated into a binary search procedure which iterates on makespan values. The
principle is as follows:

1. Compute an initial lower bound LB (by applying the selected constraint propagation
rules) and an initial upper bound UB (with the proposed job insertion heuristic).

2. Repeat:

(a) Set H ← (LB + UB)/2;
(b) Determine a solution of the JSPTL with makespan lower than or equal to H

or prove that there is no solution;
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Algorithm 1: Job insertion heuristic
for each job i ∈ L do

j ← 1; inserted ← false;
q ← 1 (first interval index on mi,j);
while not inserted do

for each possible interval on mi,j starting from q do
if Conditions (16-18) are verified then

store in qj the interval index on mi,j ;
compute ftj

i,j
and ft

j
i,j according to expressions (19) and (20);

inserted ← true; break;
end

end
if inserted=false then

set j ← j − 1; q ← qj + 1;
else

set j ← j + 1; q ← 1;
inserted ← false;

end
end
Fix start times for job i and update intervals for job i + 1;

end

(c) If a solution is obtained, then set UB to the obtained makespan, else set
LB ← H + 1;

3. Until LB = UB.

For Step 2(b), a basic B&B method is used whose goal is to compare the pruning power
of the various studied constraint propagation rules under a common tree search scheme.
This B&B is limited by a maximum CPU time. Its main components are described in the
following sections.

4.2.2 Branching scheme

The adopted branching scheme has been previously proposed in [22]. At each node, we
consider the machine with the maximal load and, for this machine, we consider the list
of the conflicting operations not yet scheduled. This branching scheme produces one
node for each partial schedule of one operation before all the others. For instance, at
a given node, let consider L = {a, b, c, d} a list of conflicting operations for the most
loaded machine, the branching scheme produces four nodes corresponding to constraints
a ≺ {b, c, d}, b ≺ {a, c, d}, c ≺ {a, b, d} and d ≺ {a, b, c}.

4.2.3 Constraint propagation

At each node of the B&B, constraint propagation rules are applied to check the consistency
of the subproblem. If an inconsistency arises, the node cannot lead to a solution and it
is then fathomed. At each node, the constraint propagation algorithm (see Algorithm
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2) starts with IFPC algorithm and follows with resource constraint propagation, until a
fixed point is reached or as soon as an inconsistency is detected. In this algorithm, X is
the set of decision variables and C is the set of conjunctive time constraints.

Algorithm 2: Propagation algorithm
C ′: the new constraints at the considered node;
IFPC(X, C, C’ );
flag ← true; while flag do

flag ← false; for m ∈ M do
Resource Constraint Propagation(Rules, X, C, New_C, flag);
/* where Rules is a set of constraint propagation rules and
New_C are new time constraints produced by the propagation
process */

end
if flag then

IFPC(X, C, New_C );
end

end

For each node, a new set of constraints, named C ′, has to be taken into account. The
first step of the propagation algorithm initializes IFPC algorithm with the precedence con-
straints C ′ associated to the node. IFPC algorithm propagates constraints in C ′ to the rest
of the problem (X, C). For each resource, the procedure
Resource_Constraint_Propagation(Rules,X,C,New_C,flag) propagates the set of prop-
agation rules R into the problem (X, C). These propagations lead to new constraints
New_C which will be taken into account by IFPC algorithm at the next iteration of Al-
gorithm 2. This propagation algorithm stops when no more deduction can be done (flag
= true). It is designed such that several combinations of rules which propagate resource
constraints can be chosen based on those defined in Section 5.1.

5 Computational results

5.1 Experimental setting
All the algorithms were coded in Ada 95 using GNAT 4.4.1 compiler and the tests were
performed on a 2.33 GHz computer with 4 GB of RAM running under Linux Red Hat
4.4.1-2.

Instances

Our experiments were conducted on instances presented in [5]. These instances have
been obtained from classical JSP benchmarks where time lags have been added. These
instances are identified by their name and a minimum (α) and a maximum (β) time-
lag coefficients: Name_α_β. Minimum and maximum time-lags are calculated for each
job i with these coefficients, the duration of the job, and the number of operations of
this job ni by TLmin

i,j,j+1 ← α × (
∑ni

j=1 pi,j)/ni and TLmax
i,j,j+1 ← β × (

∑ni

j=1 pi,j)/ni. In the
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proposed instances, minimum time lags are null (α = 0) and note that there is an identical
maximum time lag for each operation in the same job. There are two set of instances:

- Set 1: instance ft06, and la01 to la05, with β ∈ {0, 0.25, 0.5, 1, 2, 3, 5, 10},

- Set 2: instance la06 to la40, with β ∈ {0, 0.5, 1, 2 or 3, 10}.

In [5], only a subset of these instances were tested:

- Subset 1a: instance ft06, and la01 to la05, with β ∈ {0, 0.5, 1, 2},

- Subset 2a: instance la06 to la08, with β ∈ {0, 0.5, 1, 2, 10}.

Combinations of resource constraint propagation rules

One of the aim of these experiments is to experimentally evaluate the efficiency of the
generalized resource constraint propagation rules. Thus, we choose to test the two follow-
ing combinations to compare the results with or without the generalization for resource
constraint propagation:
{FP,EFF,LSL} (1) and
{GFP,GEFF,GLSL} (2).

We test separately the generalization of the energetic rule FPE, as no theoretical
dominance could be exhibited. Therefore we compare the three following combinations:
{FP,FPE,EFF,LSL} (5),
{GFP,FPE,GEFF,GLSL} (6), and
{GFP,GFPE,GEFF,GLSL} (7).

We also evaluate the impact of the Edge Finding (EdFi) rule, for which no general-
ization could be provided, for each of the above combinations:
{FP,EFF,LSL,EdFi} (3),
{GFP,GEFF,GLSL,EdFi} (4),
{FP,FPE,EFF,LSL,EdFi} (8),
{GFP,FPE,GEFF,GLSL,EdFi} (9), and
{GFP,GFPE,GEFF,GLSL,EdFi} (10).

For the experiments, we consider the above-defined 10 combinations of resource con-
straint propagation rules.

5.2 Global results
Tables from 3 to 6 present the results we obtain on the two sets of instances presented in
Section 5.1. We do not present our results for instances from la26 to la40 since our B&B
cannot improve the initial bounds on these instances. In these tables, the first column
corresponds to instance name (I) and the first row to maximum time-lag coefficients (β).
For each instance, we give the bounds obtained for the makespan ([LB, UB]), the CPU
time associated, and the combination of rules which obtained this result. If UB = LB we
only give the optimum, otherwise our algorithm was stopped after a time-out (TO) fixed
to 10 minutes (for a B&B iteration). The bounds noted with an asterisk mean that they
improved the initial ones.

Table 3 shows that for instance set 1, 42 instances out of 48 are solved with our method.
The initial bounds for the makespan are improved on 5 out of the 6 remaining instances.
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The table shows that the constraint propagation rule combination (9) is generally the
only one to reach and prove optimality. This combination includes all the generalized
rules except the energetic reasoning rule, combining with Edge Finding. The table also
shows that no-wait instances with a maximum time lag coefficient equal to 0 are much
harder to solve with our method.

For instance set 2, the B&B method is only able to solve 6 instances to optimality
out of 100 with rather large maximum time lags. For 5 of these instances, combination
rule (9) is still the only one to obtain this result. For 26 of the 94 instances not solved to
optimality, the method is able to improve the initial bounds. This occurs more often for
large maximum time lags than for small maximum time lags.

Table 3: Global results for Set1
!!!!!I

β 0 0.25 0.5 1 2 3 5 10

ft06 73* 64* 63* 58* 55* 55* 55* 55*
11 7 8 9 5 3 3 3
6-9 9 4-6-9-

10
4-6-7-
9-10

1-3-4-
5-6-8-
9-10

5-6-8-9 1-5-6-
8-9

all

la01 971* 819* 758* 683* 666* 666* 666* 666*
1877 682 436 89 80 57 55 53
9 9 9 9 8-9 4-8-10 8-9 4-8-9-

10

la02 [859*;1082] [782*;830*] 742* 686* 673* 660* 655* 655*
765 1004 661 390 788 261 76 75
TO TO 9 9 9 9 9 9

la03 [805*;834*] 721* 679* 640* 630* 617* 617* 598*
1441 968 930 282 223 122 166 104
TO 9 9 9 9 9 9 9

la04 [537;1027] 760* 703* 646* 619* 605* 596* 590*
507 1464 724 373 61 57 336 82
TO 9 9 9 9 9 9 9

la05 [715*;836*] [694*;744*] 622* 593* 593* 593* 593* 593*
746 1185 417 366 96 50 55 50
TO TO 9 9 9 9 9 9

5.3 Contribution of generalized resource constraint propagation
To confirm the interest of the generalization rules, we scored the different combinations of
the two sets of instances as follows: if none of the combinations finds the optimal solution,
they obtain the score of 0. When some or all combinations find the optimal solution they
are ordered by ascending CPU time. The first combination is given the score of 10, the
second is given the score of 9, etc.

Fig. 11 represents the score (Y axis) obtained by the different combinations (X axis)
on Sets 1 and 2. It is confirmed in this figure that the best combination of rule is (9), i.e.,
{GFP,FPE,GEFF,GLSL,EdFi} ahead of the combination (8) i.e., {FP,FPE,EFF,LSL,EdFi}
not far the combination (6) i.e., {GFP,FPE,GEFF,GLSL}. We can also note that if we
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Table 4: Global results for Set 2 (1/3)

!!!!!I
β 0 0.5 1 2 10

la06 [926;1770] [926;1471] [926;1391] [926;927*] [926;927*]
25 526 524 960 707
TO TO TO TO TO

la07 [869;1536] [869;1430] [869;1065*] [869;1205] [869;1123]
530 529 754 521 518
TO TO TO TO TO

la08 [863;1640] [863;1454] [863;1052*] 863* 863*
528 529 587 558 260
TO TO TO 9 9

Table 5: Global results for Set 2 (2/3)

!!!!!I
β 0 0.5 1 3 10

la09 [951;1859]
530

[951;1706]
529

[951,1215*]
594

[951,956*]
1764

[951-955*]
752

TO TO TO TO TO

la10 [958-1666]
526

[958;1530]
524

[958;1147*]
562

958* 312 [958;1151]
517

TO TO TO 8 TO

la11 [1222;2323]
572

[1222;1873]
575

[1222;1796]
565

[1222;1489]
552

[1222;1304*]
721

TO TO TO TO TO

la12 [1039;2011]
577

[1039;1777]
580

[1039;1543]
570

[1039;1391]
559

[1039;1153]
544

TO TO TO TO TO

la13 [1150;2219]
583

[1150;1888]
574

[1150;1814]
568

[1150;1240*]
754

[1150;1306*]
939

TO TO TO TO TO

la14 [1292;2145]
585

[1292;1954]
581

[1292;1598*]
894

1292* 1327 [1292,1301*]
1105

TO TO TO 4 TO

la15 [1207;2276]
573

[1207;1997]
577

[1207;1693]
566

[1207;1268*]
1077

[1207;1499]
543

TO TO TO TO TO
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Table 6: Global results for Set 2 (3/3)

!!!!!I
β 0 0.5 1 3 10

la16 [1285*;1908]
1030

[660;1577]
583

[660;1377]
572

[660;1183]
564

[660;1183]
556

TO TO TO TO TO

la17 [683;1776]
583

[683;1397]
587

[683;1218]
581

785*
907

784* 1131

TO TO TO 9 9

la18 [623;2005]
578

[623;1533]
582

[623;1370]
570

[840*;870*]
788

[840*;870*]
799

TO TO TO TO TO

la19 [685;2066]
579

[685;1551]
579

[685;1030*]
693

[808*;930*]
873

[801*;915*]
779

TO TO TO TO TO

la20 [744;2300]
582

[744;1627]
584

[744;1146*]
761

[866*;987*]
904

[866*;987*]
706

TO TO TO TO TO

la21 [935;2748]
907

[935;2213]
905

[935;1870]
901

[935,1555]
780

[935;1452]
717

TO TO TO TO TO

la22 [830;2740]
934

[830;1677]
883

[830;1581]
816

[830;1540]
771

[830;1312]
714

TO TO TO TO TO

la23 [1032;2972]
917

[1032;2354]
918

[1032;1894]
842

[1032;1441]
759

[1032;1441]
712

TO TO TO TO TO

la24 [857;2905]
904

[857;2217]
854

[857;1784]
832

[857;1400]
735

[857;1171*]
1152

TO TO TO TO TO

la25 [864;2706]
878

[864;1966]
876

[864;1791]
827

[864;1199*]
1164

[864;1142*]
1116

TO TO TO TO TO
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compare the combinations with and without the generalization of rules FP, EFF and LSL,
the combination with these generalizations obtain better scores than without.

Figure 11: Efficiency of the CP rule combinations on Sets 1 and 2

Fig. 11 also shows that the use of EdFi rule does not cover all the propagations obtained
with the generalization of rules FP, EFF, and LSL. Unfortunately, we can note that rule
GFPE is not efficient enough as it increases the CPU time.

5.4 Comparison with other methods
In this section, we compare our approach with the memetic algorithm proposed in [5]. The
comparisons are carried out only on the instances used in [5] (see Section 5.1): Subset 1a
(Table 7) and Subset 2a (Table 8). In each table, the first column gives the instance
name and the second one indicates either the optimum value in Table 7 (Optimum) or
the optimum of the corresponding classical job shop (i.e., without time lags) in Table 8
(JS-Opt). This latest optimum of the job shop problem without time lags is obviously
a trivial lower bound of the job shop problem with time lags. The three next columns
present the lower bound (LB) and the upper bound (UB) obtained with our method,
and the corresponding CPU time in seconds. For the memetic algorithm, the results
correspond to four runs per instance [5]. The remaining columns present the best results
obtained with this algorithm, the average time to obtain the best improvement (Tm) over
these runs and the global average time (TTm) of these runs. The results written in bold
correspond to the optimum results obtained.

These tables show that, on Subset 1a, we obtain better results than [5], except on the
no-wait instances (β = 0). This is not the case with Subset 2a as shown in Table 8. We
only prove the optimum value for the less constrained instance la08_0_10 while Caumond
et al. prove it for two other instances with a coefficient β equal to 10. Moreover, their
upper bounds are better than those found with our method.

5.5 Efficiency of the job heuristic
The proposed heuristic is based on a given order for jobs to be inserted. Several orders
(see Section 4.1.3) were compared on the set of instances and the most efficient is the
descending order of job durations. It reaches the best makespan value for more than 33%
over all the instances (Sets 1 & 2). For the instances under study, since time lags are
strongly correlated to job durations, the orders based on time lags are not more efficient
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Table 7: Comparison on Subset 1a

Instance Optimum LB UB CPU Memetic algorithm Tm/TTm
ft06_0_0 73 73 73 11 77 35.5/157.25

ft06_0_0.5 63 63 63 8 63 72/149.75
ft06_0_1 58 58 58 9 58 1/144.25
ft06_0_2 55 55 55 5 55 2.25/133.5
la01_0_0 971 971 971 1877 971 149/280

la01_0_0.5 758 758 758 436 867 149/278
la01_0_1 683 683 683 89 723 164/265
la01_0_2 666 666 666 80 666 86/230
la02_0_0 937 859 1082 TO 937 149/278

la02_0_0.5 742 742 742 661 872 80/285
la02_0_1 686 686 686 390 723 150/267
la02_0_2 673 673 673 788 683 167/238
la03_0_0 820 805 834 TO 820 234/1028

la03_0_0.5 679 679 679 930 685 211/293
la03_0_1 640 640 640 282 641 206/278
la03_0_2 630 630 630 223 648 150/253
la04_0_0 887 537 1207 TO 923 196/285

la04_0_0.5 703 703 703 724 769 104/273
la04_0_1 646 646 646 373 662 151/273
la04_0_2 619 619 619 61 631 83/245
la05_0_0 777 715 836 TO 797 144/256

la05_0_0.5 622 622 622 417 678 135/260
la05_0_1 593 593 593 366 615 92/244
la05_0_2 593 593 593 96 593 36/207

Table 8: Comparison on Subset 2a

Instance JS-Opt LB UB CPU Memetic algorithm Tm/TTm
la06_0_0 926 926 1770 525 1392 341/779

la06_0_0.5 926 926 1471 526 1153 545/773
la06_0_1 926 926 1391 524 1101 403/735
la06_0_3 926 926 1391 524 1101 405/739
la06_0_10 926 926 927 707 926 14/14
la07_0_0 890 869 1536 530 1329 599/907

la07_0_0.5 890 869 1430 529 1132 573/784
la07_0_1 890 869 1065 754 1009 532/736
la07_0_3 890 869 1079 659 975 477/710
la07_0_10 890 869 1123 518 890 39/39
la08_0_0 863 863 1640 528 1385 327/851

la08_0_0.5 863 863 1454 529 1164 470/772
la08_0_1 863 863 1052 587 1013 541/742
la08_0_3 863 863 1052 587 1013 544/746
la08_0_10 863 863 863 260 863 17/17
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than orders based on job durations, and the combination of both job durations and time
lags does not improve the results. Globally, we obtain about 25% of best solutions for the
descending (ascending) order of time lags, from 12% to 14% for lexicographical orders,
and between 5% and 7% for ascending orders of time lags and durations.

With our method, the CPU time for solving a given instance of Set 1 is 1.02 s in aver-
age. For Set 2 (limited to la06–la25), the time is of 25.17 s. If we refine these results, we
obtain that the method needs 1.14 s for Subset 1a and 5.13 s for Subset 2a.

Table 9 presents a comparison between the best variant of our job insertion heuristic
(JI) and the operation insertion heuristic (OI) presented by Caumond et al. in [5]. This
evaluation was limited to Subset 1a because the results obtained by the OI heuristic of [5]
are only available for these instances.

For the JI heuristic, the average deviation above optimum over all instances is 33.15%
whereas the average deviation of the OI heuristic is 47.63%, which represents a significant
gain.

Table 9: Heuristic comparison on Subset 1a

Optimum Initial UB JI heuristic JI dev OI heuristic OI dev
ft06_0_0 73 197 96 31.51 83 13.70

ft06_0_0.5 63 197 72 14.29 109 73.02
ft06_0_1 58 197 72 24.14 58 0.0
ft06_0_2 55 197 70 27.27 55 0.0
la01_0_0 971 2849 1258 29.56 1504 54.89

la01_0_0.5 758 2849 1063 40.24 1474 94.46
la01_0_1 683 2849 928 35.87 1114 63.10
la01_0_2 666 2849 967 45.20 948 42.34
la02_0_0 937 2643 1082 15.47 1416 51.12

la02_0_0.5 742 2643 1011 36.25 1207 62.67
la02_0_1 686 2643 935 36.30 1136 65.60
la02_0_2 673 2643 928 37.89 895 32.99
la03_0_0 820 2383 1081 31.83 1192 45.37

la03_0_0.5 679 2383 930 36.97 1085 59.79
la03_0_1 640 2383 886 38.44 931 47.47
la03_0_2 630 2383 808 28.25 787 24.92
la04_0_0 887 2507 1207 26.61 1346 51.75

la04_0_0.5 703 2507 870 23.76 1156 64.44
la04_0_1 646 2507 1010 43.03 857 32.66
la04_0_2 619 2507 892 44.10 838 35.38
la05_0_0 777 2283 1080 34.62 1224 57.53

la05_0_0.5 622 2283 935 50.32 1208 94.21
la05_0_1 593 2283 814 37.27 964 62.56
la05_0_2 593 2283 749 26.31 683 15.18

In Table 10, we present the average gap above the optimum for both heuristics on
subcategories of instances from Subset 1a. Considering the different time lags, we can
notice that, for β ∈ {0, 0.5, 1}, which correspond to the most constrained time lags, we
obtain an average gap of at most 35.84% while the OI heuristic obtains an average gap of
at least 44.90%. On the contrary, for β = 2, the OI average gap is only of 25.13% while
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it reaches of 34.84% for our JI heuristic. This result suggests that our heuristic is better
suited for tight time lags than the Caumond et al.’s one.

Table 10: Average gap for the two heuristics

Time-lags JI heuristic OI heuristic
*_0_0 28.27 % 45.73 %

*_0_0.5 33.64 % 74.76 %
*_0_1 35.84 % 44.90 %
*_0_2 34.84 % 25.13%

6 Conclusions and future work
This paper addresses the job shop scheduling problem with minimum and maximum time-
lags (JSPTL). We presented generalizations of several standard disjunctive constraint
propagation rules based on all-pair longest paths in a conjunctive Time-Bound-On-Node
graph and their application for the job shop problem with maximum time lags. To exhibit
the contribution of the generalized rules for this problem we proposed a Branch-and-Bound
algorithm embedded in a binary search to solve the JSPTL.

The obtained results show that the branch and bound incorporating generalized rules
associated with edge-finding solves more instances in a predetermined amount of time than
the standard rules, except for the energetic reasoning rule. Moreover, for small instances,
our branch-and-bound procedure outperforms a genetic algorithm from the literature.

We also presented a simple heuristic based on job insertion. This heuristic was used
to improve the results of our binary search, and compared with a heuristic presented by
other authors. We conclude that our heuristic always obtains feasible schedules with a
better makespan for tight maximum time lags. Despite a high worst-case complexity, the
heuristic performs well in practice with small CPU time requirements.

There are several further research directions. First, it could be helpful to succeed
generalizing the Edge-Finding rule. Second, we tested a restricted number of combinations
and more experiments could be done to find a more powerful association of propagation
rules. Last, the proposed branch-and-bound was designed to validate the new constraint
propagation rules, but not to obtain benchmark results on the JSPTL instances. Designing
more powerful exact method for the JSPTL is a fruitful research direction. Especially,
more efforts have to be carried out to improve the search scheme.
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