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ABSTRACT
In this paper, we propose two blind decoding approaches for
multi-input single-output (MISO) communication systems.
We first introduce a nonlinear precoding scheme that allows
viewing the received signal as a Volterra-like model with the
following properties: the input solely depends on the cod-
ing sequence, assumed to be known to the receiver, while the
kernel is a multiway array depending on informative data and
on the channel parameters. We show that such a kernel ad-
mits a PARAFAC tensor model. After estimating the kernel
by using the coding sequence, the data symbols are then re-
covered. For this purpose, two methods are proposed. The
first one directly computes the PARAFAC loading factors by
means of an alternating least squares method. The second
one solves the problem by means of a joint diagonalization
of matrices constructed with the slices of the tensor. The per-
formance of the proposed methods is evaluated by means of
simulations.

1. INTRODUCTION

Multi-input Single Output (MISO) communication channel
modelling occurs when the communication system exhibits
multiple antennas and/or transmitters whereas the receiver
has a single antenna (see Fig. 1).
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Figure 1: Multi Input Single Output communication systems.

In both cases several space-time block processing coding
and modulation schemes (in a distributed or cooperative way

in the second case) have been proposed in the literature. For
scenarios in which there is perfect channel state information
(CSI), several linear precoding systems have been proposed
(see [1] and references therein). However, in practice the CSI
at the transmitter suffers from inaccuracies caused by errors
in channel estimation and/or limited, delayed or erroneous
feedback [2]. The derivation of robust coding methods with
few or no knowledge on the transmission channel is then a
topic of particular interest.

In MISO communication channels, the propagation sce-
nario can be viewed as a highly underdetermined mixture of
sources having more sources than sensors. Systems with one
single output sensor have received considerably less attention
(see [3] and references therein).

In this paper, we introduce a nonlinear precoding scheme
where the CSI is not required. From such a scheme, we de-
rive blind decoding approaches for a MISO communication
system. The proposed nonlinear precoding scheme gives rise
to a homogeneous Volterra-like input-output equation whose
inputs depend on the coding sequence whereas the kernel de-
pends on the informative symbols and on the channel param-
eters.

It is now well known that Volterra kernels of order higher
than two can be viewed as tensors or multiway array. We
show that the kernel of the resulting Volterra-like model ad-
mits a PARAFAC model. PARAFAC (PARallel FACtors
analysis) [4] is certainly the most famous tensor model pro-
posed in the literature. In the last decade, several PARAFAC
or more generally tensor based signal processing methods
have been proposed in the literature devoted to communi-
cations [5–9]. Most of them make use of the spatial diversity
induced by multiple receive antennas. The contribution of
this paper is to provide a nonlinear precoding scheme at the
transmitter end and appropriate algorithms for blind decod-
ing. The first decoding approach is based on the alternating
least squares algorithm whereas in the second one the prob-
lem is solved by means of a joint diagonalization of a set
of matrices constructed from tensor slices. The paper is or-
ganized as follows. In section 2, we explain the nonlinear
encoding scheme and deduce the overall system model. In
section 3, two-steps decoding schemes are derived. In sec-
tion 4, the performance of the derived methods are evaluated
by means of simulations before concluding the paper in sec-
tion 5.
Notations: Vectors are written as boldface lower-case letters
(a,b,· · · ) and matrices as boldface capitals (A,B,· · · ). Ten-
sors are written using calligraphic letters X . Ai. and A. j de-
note respectively the ith row and the jth column of the I× J
matrix A. AT stands for the transpose of A whereas AH

stands for its complex conjugate. A† stands for the matrix



pseudo-inverse. diag(.) is the operator that forms a diago-
nal matrix from its vector argument whereas vec(.) forms a
vector by stacking the columns of its matrix argument. For
X ∈ CI×R and Y ∈ CJ×R, the Khatri-Rao product, denoted
by ¯, is defined as follows:

X¯Y =




Ydiag(X1.)
...

Ydiag(XI.)


 ∈ CIJ×R (1)

It can also be viewed as a column-wise Kronecker product.

X¯Y = ( X.1⊗Y.1 · · · X.R⊗Y.R ) ∈ CIJ×R, (2)

⊗ denoting the Kronecker product.

2. SYSTEM MODEL

The considered communication system has K multiple trans-
mitters or antennas. Each user transmits digital signals at
the same time and using the same bandwidth. The output at
the receiver is then a superposition of K signal waveforms.
For each user, the QM-length symbol stream is first parsed

into M×1 symbol vectors s(k)
q =

(
s(k)

1,q · · · s(k)
M,q

)T
, q =

1, · · · ,Q. The nonlinear precoding considered herein is a
two-stage one. First, each of the symbol vectors s(k)

q is lin-
early precoded by an N×M matrix A. We get b(k)

q = As(k)
q .

Note that the linear coding matrix is the same for all the
users. Then, the codewords c(k)

q to be transmitted are ob-
tained through a nonlinear mapping f (.):

c(k)
q = f (b(k)

q ) = f (As(k)
q ). (3)

The codewords are modulated by a pulse-shape filter gk(t) so
that the baseband signal xk,q(t) transmitted by the kth user is
given by

xk,q(t) =
N

∑
n=1

c(k)
n,qgk (t− (n−1)T ) ,

T being an appropriately chosen fraction of the symbol pe-
riod Ts.
We assume that each of the signals xk,q(t), k = 1, · · · ,K, is
received via a single path characterized by a fading-factor αk
and a delay τk that holds propagation delay and asynchro-
nism. In baseband, the received signal yq(t) is then given
by:

yq(t) =
K

∑
k=1

αkxk,q(t− τk)+wq(t),

wq(t) denoting the additive noise. By sampling at The
discrete-time baseband equivalent model for the received
data is then given by:

yn,q = yq(t)|t=(n−1)T =
K

∑
k=1

hk,qc
(k)
n,q +wn,q

with hk,q = αkgk (t− (n−1)T − τk) |t=(n−1)T assumed to be
quasi-static, i.e. constant during the transmission of the qth
data block.

In the sequel, we consider that the nonlinear function f (.) in-
volved in the encoding process (3) is a pth degree monomial.
Therefore, elementwise the received data can be written as
follows:

yn,q =
K

∑
k=1

hk,qc(k)
n,q +wn,q =

K

∑
k=1

hk,q f (
M

∑
m=1

an,ms(k)
m,q)+wn,q

=
K

∑
k=1

hk,q

(
M

∑
m=1

an,ms(k)
m,q

)p

+wn,q

=
K

∑
k=1

M

∑
m1=1

· · ·
M

∑
mp=1

hk,q

p

∏
j=1

an,m j s
(k)
m j ,q +wn,q. (4)

The aim of our study is to derive estimators of the data sym-
bols s(k)

m,q solely from the received data yn,q. We assume that
the linear precoding matrix A is known to the receiver. By
defining

βm1,··· ,mp,q =
K

∑
k=1

hk,q

p

∏
j=1

s(k)
m j ,q, (5)

we can rewrite (4) as:

yn,q =
M

∑
m1=1

· · ·
M

∑
mp=1

βm1,··· ,mp,q

p

∏
j=1

an,m j . (6)

We can note from (6) that the received signal is linear in the
unknown βm1,··· ,mp,q but nonlinear in the coding matrix en-
tries. In fact, in a system theory point-of-view, Eq. (6) can
be viewed as the input-output equation of a pth-order ho-
mogeneous Volterra model [10], where βm1,··· ,mp,q and an,m
represent respectively the Volterra kernel and the input se-
quence. Moreover, the structure of the kernel (5) looks like
that of a parallel cascade Wiener model (see [11]). There-
fore, in the sequel, we derive two-stage receivers. The first
step consists in estimating the parameters βm1,··· ,mp,q in the
least squares sense whereas the second one make use of the
algebraic structure of the estimated parameters.

In the sequel, we restrict our study to the third-order case,
p = 3.

3. BLIND RECEIVERS

The parameters βm1,m2,m3,q can be viewed as entries of a
symmetric tensor. Indeed, for any permutation π(.) of the
indices (m1,m2,m3), we have βp1,p2,p3,q = βm1,m2,m3,q with
(p1, p2, p3) = π(m1,m2,m3). We can then rewrite (6), in the
noiseless case, as

yn,q =
M

∑
m1=1

M

∑
m2=m1

M

∑
m3=m2

β̃m1,m2,m3,q

3

∏
j=1

an,m j . (7)

where

β̃m1,m2,m3,q =





βm1,m2,m3,q if m1 = m2 = m3
3βm1,m2,m3,q m1 = m2 6= m3
3βm1,m2,m3,q m1 = m3 6= m2
3βm1,m2,m3,q m2 = m3 6= m1
6βm1,m2,m3,q m1 6= m2 6= m3

In matrix form, Eq. (7) can be written as follows:

yq = ( y1,q · · · yN,q )T = ΦΦΦθq, (8)



where θq is a Q̄ × 1 vector containing the parameters
β̃m1,m2,m3,q to be estimated, ΦΦΦ is an N× Q̄ matrix defined as

ΦΦΦ = ΨΨΨAΩΩΩ, with ΨΨΨA




A1.⊗A1.⊗A1.
...

AN.⊗AN.⊗AN.


, ΩΩΩ is a M3× Q̄

column selection matrix, and Q̄ = (M +2)(M +1)M/6. The
least square solution of (8) is given by:

θ̂q = ΦΦΦ†yq (9)

provided ΦΦΦ is full column rank. Therefore, the most impor-
tant criterion for designing the coding matrix A is to ensure
that ΦΦΦ be full column rank. The design of the encoder is then
decoupled from the channel knowledge. However, in order
to improve the quality of the estimates in a noisy framework
it could be necessary to increase N.

Once the parameters β̃m1,m2,m3,q have been estimated, we
can deduce βm1,m2,m3,q. Therefore, we will estimate the infor-
mative symbols from the estimated parameters βm1,m2,m3,q,
which can be viewed as the entries of a third-order tensor. In
the sequel, we remove the index q since the decoding process
is per-block.

3.1 PARAFAC tensor model
Let us denote by B the M×M×M third-order symmetric
tensor with βm1,m2,m3 as entries. From Eq. (5), we can deduce
that B admits a PARAFAC model [4] with S and Sdiag(h)
as factor matrices. Using the Kruskal operator [12, 13], we
get:

B = [S,S,Sdiag(h)]

with
h = ( h1,q · · · hK,q )T

and

S =




s(1)
1,q · · · s(K)

1,q
...

. . .
...

s(1)
M,q · · · s(K)

M,q




the matrix of the data symbols assumed to be full column
rank, which implies M ≥ K.

From the sufficient condition stated by Kruskal [12], we
can deduce that, the factor matrices are essentially unique,
i.e. unique up to column permutation and scaling, if kS ≥
2
3 (K +2), where kS denotes the Kruskal-rank of S. It is also
called k-rank and is defined as the greatest integer kS such
that any set of kSt columns of S is independent. Moreover,
since the columns of S are associated with independent users,
for M≥K, S is full column rank with a high probability. As a
consequence, the above inequality is always satisfied. Hence,
the factor matrices can be obtained up to a scaling factor. The
scaling ambiguity can be removed by considering differential
modulation or by setting the first row of S equals to one.

Before deriving the estimation algorithm for fitting the
PARAFAC model, we define the following matrix represen-
tations of the tensor. The slices of B are given by

Bm.. = B.m. = B..m =




β1,1,m · · · β1,M,m
...

. . .
...

βM,1,m · · · βM,M,m




= Sdiag(Sm.)diag(h)ST . (10)

By concatenating these slices, we get the unfolding matrix

B =




B1..
...

BM..


 =




B1..
...

BM..


 =




B1..
...

BM..




= (S¯S)diag(ht)ST . (11)

For fitting the parameters of the PARAFAC model, we make
use of an Alternating least squares algorithm. For this pur-
pose, we define A1 = S, A2 = S and A3 = Sdiag(h), so that
we can rewrite the unfolding matrix as follows:

B = (A1¯A2)AT
3 = (A2¯A3)AT

1 = (A3¯A1)AT
2 .

The alternating least squares algorithm consists in alternating
minimization of the cost functions

J1 =
∥∥B− (A2¯A3)AT

1
∥∥2

F ,

J2 =
∥∥B− (A3¯A1)AT

2
∥∥2

F ,

J3 =
∥∥B− (A1¯A2)AT

3
∥∥2

F .

For each cost functions, given the two matrices involved in
the Khatri-Rao product, the least squares solutions are re-
spectively:

ÂT
1 = (A2¯A3)

† B,

ÂT
2 = (A3¯A1)

† B,

ÂT
3 = (A1¯A2)

† B.

After convergence, assuming that S has 1s as entries of its
first row, its estimate is given by:

Ŝ =
1
3

(
A1 +A2 +A3diag(a)−1)

with a the first row of A3. We can summarize the ALS esti-
mation method as follows:
1. Initialize Â(i)

1 and Â(i)
2 , i = 0.

2. Increment i = i+1.

3. Compute Â(i)
3 =

((
A(i−1)

1 ¯A(i−1)
2

)†
B

)T

.

4. Compute Â(i)
1 =

((
A(i−1)

2 ¯A(i)
3

)†
B

)T

.

5. Compute Â(i)
2 =

((
A(i)

3 ¯A(i)
1

)†
B

)T

.

6. Go to step 2 until a stoping criterion is reached.

7. Compute Ŝ = 1
3

(
A(i)

1 +A(i)
2 +A(i)

3 diag(a(i))−1
)

, where

a(i) denotes the first row of A(i)
3 .

3.2 Joint diagonalization approach
Assuming that S is full column rank, we can deduce that
S¯S is also full column rank [14]. Obviously, diag(h)ST

is full row rank, and therefore rank(B) = K, i.e. B is a rank
deficient matrix if M > K.

Let us now consider the reduced singular value decom-
position (SVD) of B:

B = UΣΣΣVT , (12)



the column-orthonormal matrices U and V, with respective
dimensions M2×K and M×K, containing the left and right
singular vectors of B respectively, whereas the K×K diag-
onal matrix ΣΣΣ is formed with the nonzero singular values of
B.

From equations (11) and (12), and the fact that
rank(BT ) = K, we deduce that V and S span the same col-
umn space. So, there exists a nonsingular matrix F, with
dimensions K×K, such that

S = VF. (13)

We can then rewrite the tensor slices as follows:

B..m = VFdiag(Sm.)diag(h)FT VT .

Now, let us define the following symmetric matrices:

Gm = VT B..mV = Fdiag(Sm.)diag(h)FT , (14)

with m = 1, · · · ,M. We can conclude that F jointly diag-
onalizes the matrices Gm, m = 1, · · · ,M. Therefore F can
be obtained by solving a joint diagonalization problem us-
ing one of the joint diagonalization algorithms proposed in
the literature ( [15] for example). Then, S is estimated using
(13). The decoding process is summarized as follows:
1. Compute the matrix V of the K right singular vectors of

B.
2. Construct the set of matrices Gm, m = 1, · · · ,M as fol-

lows Gm = VT B..mV.
3. Find the K×K matrix F that jointly diagonalizes the ma-

trices G.
4. Compute the data matrix as Ŝ = VF.

4. SIMULATION RESULTS

In this section, we give some simulation results. The sim-
ulated communication system was characterized by the fol-
lowing parameters: K = M = 3. The data sequences was
BPSK ones. Both channel parameters and encoding matrix
were driven from a uniform distribution. The results pre-
sented below are averaged values over 100 Monte Carlo tri-
als. The decoding performance is evaluated in terms of bit-
error-rate (BER). The joint diagonalization method used in
the second decoding approach is the FFDIAG method [15].

For each decoding method, in Fig. 2 and 3 we plot the
BER according to the signal-to-noise ratio (SNR).

In general, the proposed decoding methods give good re-
sults. Significant improvements are obtained by increasing
the number N of rows for the encoding matrix A. That is an
expected result since by increasing the number of rows for
the encoding matrix, the least squares estimation of the data
tensor is improved. The improvement is particularly signifi-
cant for SNR values higher than 2 dB.

In figures 4, 5, and 6 we compare the two decoding meth-
ods for different values of N. We obtain comparable results
with both methods. The joint diagonalization approach gives
slightly better results. Note that the ALS-PARAFAC were
randomly initialized. We considered 10 different initializa-
tion and then that giving the best results was selected. The al-
gorithm were stopped after 100 iterations. For these simula-
tions the joint diagonalization approach seems to have more
desirable features.
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Figure 2: Performance evaluation with different number of
rows for the encoding matrix (ALS-PARAFAC case).
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Figure 3: Performance evaluation with different number of
rows for the encoding matrix (Joint diagonalization).
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Figure 4: Comparison of the decoding methods (N = M3).



0 2 4 6 8 10 12 14 16
10

−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 
ALS−PARAFAC
Joint diagonalization

Figure 5: Comparison of the decoding methods (N = 2M3).
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Figure 6: Comparison of the decoding methods (N = 3M3).

5. CONCLUSION

In this paper, we have proposed two blind decoding schemes
for multi-input single-output (MISO) communication sys-
tems. At the transmitter end, we have introduced a new
nonlinear precoding scheme that consists in first linearly pre-
coding the informative symbol with the same matrix for all
the users and then nonlinearly mapping the linearly encoded
data. By considering a polynomial mapping of degree higher
than two, the received signal can be written as the output
of an homogeneous Volterra-like model. The input of this
model solely depend of the coding sequence assumed to be
known to the receiver while the kernel is a multilinear array
depending on informative data and on the channel param-
eters. The proposed decoding scheme is a two-stage one.
First, the data kernel is estimated in the least squares sense.
Second, the kernel is decomposed using the ALS-PARAFAC
method or a joint diagonalization of matrices constructed
from the tensor slices. We have shown the efficiency of the
proposed methods through simulation results.
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