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A COARSE SPACE CONSTRUCTION BASED ON LOCAL DIRICHLET TO NEUMANN MAPS

Coarse grid correction is a key ingredient in order to have scalable domain decomposition methods. In this work we construct the coarse grid space using the low frequency modes of the subdomain DtN maps, and apply the obtained two-level preconditioners to the extended or the original linear system arising from an overlapping domain decomposition. Our method is suitable for parallel implementation and its efficiency is demonstrated by numerical examples on problems with high heterogeneities for both manual and automatic partitionings.

Some notations and definitions

A coefficient matrix of the linear system Ax = b M preconditioner for A Z, Y full rank matrices which span the coarse grid subspaces E E = Y T AZ, Galerkin matrix or coarse-grid matrix Ξ Ξ = ZE -1 Y T , coarse-grid correction matrix in MG and DDM

P D P D = I -AΞ = I -AZ(Y T AZ) -1 Y T Q D Q D = I -ΞA = I -Z(Y T AZ) -1 Y T A P BN N P BN N = Q D M -1 P D + ZE -1 Y T P ADEF 2 P ADEF 2 = Q D M -1 + ZE -1 Z T 1. Introduction.
We consider the solution of the linear system Ax = b ∈ R p arising from the discretization of an elliptic boundary value problem (BVP) of the type

ηu -div(κ∇u) = f (1.1)
where κ is the diffusion tensor which can be discontinuous. When using an iterative method in a one-level domain decomposition framework, one may encounter a long stagnation or a slow convergence, especially when the number of subdomains is large. Even when κ = 1, the convergence of a one-level domain decomposition method presents a long plateau of stagnation. Its length is related to the number of subdomains of the decomposition in one direction. For example, we know that for the problem divided into N subdomains in a one-way partitioning, the convergence can never be achieved in less than N -1 iterations since the exchange of information between the subdomains is reduced to their common interfaces. Thus, the global information transfers only from one subdomain to its neighbors [START_REF] Magoulès | Algebraic approximation of Dirichlet-to-Neumann maps for the equations of linear elasticity[END_REF][START_REF] Nataf | Optimal interface conditions for domain decomposition methods[END_REF]. One needs a two-level method to have a scalable algorithm, i.e., an algorithm whose convergence rate is weakly dependent on the number of subdomains, see [START_REF] Toselli | Domain decomposition methods: algorithms and theory[END_REF] and references therein. Two-level domain decomposition methods are closely related to multigrid methods and deflation corrections, see [START_REF] Tang | Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods[END_REF] and references therein. These methods are defined by two ingredients: a full rank matrix Z ∈ R p×m with m ≪ p and an algebraic formulation of the correction. These techniques imply solving a reduced size problem of order m × m called a coarse grid problem. The space spanned by the columns of Z should ideally contain the vectors responsible for the stagnation of the one level method. We will come back later to the choice of Z in the framework of domain decomposition methods and focus for now on the various algebraic ways to improve convergence by using a coarse grid.

According to [START_REF] Tang | Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods[END_REF], for a domain decomposition method (DDM), a well-known coarse grid correction preconditioner is of the form I + ZE -1 Z T , where E = Z T AZ is the coarse grid matrix used to speed up convergence. The abstract additive coarse grid correction proposed in [START_REF] Padiy | Generalized augmented matrix preconditioning approach and its application to iterative solution of ill-conditioned algebraic systems[END_REF] is M -1 +ZE -1 Z T , where M -1 is the additive Schwarz preconditioner, a sum of local solvers in each subdomain, which can be implemented in parallel. The first term is a fine grid solver, and the second term represents a coarse solver. Hence it is called the two-level additive Schwarz preconditioner. The BPS preconditioner introduced by Bramble, Paschiak and Schatz [START_REF] Bramble | The construction of preconditioners for elliptic problems by substructuring, I[END_REF] is of this type. In the context of domain decomposition methods, we mention the balancing Neumann-Neumann preconditioner and the FETI algorithm. They have been extensively investigated, see [START_REF] Toselli | Domain decomposition methods: algorithms and theory[END_REF] and references therein. For symmetric systems the balancing preconditioner was proposed by Mandel [START_REF] Mandel | Balancing domain decomposition[END_REF]. The abstract balancing preconditioner [START_REF] Mandel | Balancing domain decomposition[END_REF] for nonsymmetric systems reads [START_REF] Erlangga | Deflation and balancing preconditioners for Krylov subspace methods applied to nonsymmetric matrices[END_REF],

P BN N = Q D M -1 P D + ZE -1 Y T .
(1.2)

For the preconditioner P BN N , if we choose the initial approximation x 0 = Ξb, then the action of P D is not required in practice, see [28, p.48]. Note that the multigrid (MG) V(1,1)-cycle preconditioner P M G is closely related to P BN N . Choosing the proper smoother M in P BN N , we can ensure that P M G and P BN N are SPD, and P M G A and P BN N A have the same spectrum [START_REF] Tang | A comparison of two-level preconditioners based on multigrid and deflation[END_REF]. For a SPD system, by choosing Y = Z, the authors in [START_REF] Tang | Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods[END_REF] define

P ADEF 2 = Q D M -1 + ZE -1 Z T , (1.3) 
which is as robust as P BN N but usually less expensive [START_REF] Tang | Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods[END_REF]. The two-level hybrid Schwarz preconditioner in [25, p.48] has the same form as P ADEF 2 . It is shown in [START_REF] Tang | Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods[END_REF] that with a proper choice of the starting vector the preconditioners P ADEF 2 and P BN N are equivalent. Given the coarse grid subspace, we can construct the two-level preconditoners above. An effective two-level preconditioner is highly dependent on the choice of the coarse grid subspace. We will now focus on the choice of the coarse space Z in the context of domain decomposition methods for problems of type (1.1) with heterogeneous coefficients. In this case, the coarse space is made of vectors with support in one subdomain or one subdomain and its neighbors. When the jumps in the coefficients are inside the subdomains (and not on the interface) or across the interface separating the subregions, the use of a fixed number of vectors per subdomain in Z gives good results, see [START_REF] Dryja | Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions[END_REF], [START_REF] Mandel | Balancing domain decomposition for problems with large jumps in coefficients[END_REF], [START_REF] Pechstein | Scaling up through domain decomposition[END_REF], [START_REF] Pechstein | Analysis of FETI methods for multiscale PDEs[END_REF], [START_REF] Dohrmann | An overlapping Schwarz algorithm for almost incompressible elasticity[END_REF] and [START_REF] Dohrmann | Hybrid Domain Decomposition Algorithms for Compressible and Almost Incompressible Elasticity Internat[END_REF]. When the discontinuities are along the interfaces between the subdomains, results are not so good.

Here, we propose to construct a coarse subspace such that the two-level method is robust with respect to heterogeneous coefficients for an arbitrary domain decomposition. Even if the discontinuities are along the interface like for instance in the case with layered coefficients and a one-way decomposition in the orthogonal direction (see § 4.1), the iteration counts are very stable with respect to jumps of the coefficients.

Our method is based on the low-frequency modes associated with the Dirichlet-to-Neumann (DtN) map on each subdomain. After obtaining the eigenvectors associated with the small eigenvalues of DtN, we use the harmonic extension to the whole subdomain. It is efficient even for problems with large discontinuities in the coefficients. Moreover, it is suitable for parallel implementation. We apply such a two-level preconditioner to the original linear system (2.1) and to the extended one (2.2) arising from the domain decomposition method.

The paper is organized as follows. In Section 2, we introduce the two-level preconditioners: the additive Schwarz (AS), the restricted additive Schwarz (RAS) and the Jacobi-Schwarz (JS) with the coarse grid correction. The construction of coarse grid spaces is presented in Section 3. In Section 4 numerical tests on the model problem demonstrate the efficiency of our method. Some concluding remarks are given in Section 5.

Algebraic Domain Decomposition

Methods. Without loss of generality, we consider here a decomposition of a domain Ω into two overlapping subdomains Ω 1 and Ω 2 . The overlap is denoted by O := Ω 1 ∩ Ω 2 . This yields a partition of the domain: Ω = Ω(1)

I ∪ Ō ∪ Ω (2) 
I where Ω (i)

I := Ω i \ Ō, i = 1, 2.
At the algebraic level this corresponds to a partition of the set of indices N into three sets: N After the discretization of the BVP (1.1) defined in domain Ω, we obtain a linear system of the following form

A u :=    A (1) II A (1) IO A (1) OI A OO A (2) OI A (2) IO A (2) II       u (1) I u O u (2) I    =    f (1) I f O f (2) I    . (2.1)
We can also define the extended linear system by considering twice the variables located in the overlapping region

à ũ :=      A (1) II A (1) IO A (1) OI A OO A (2) OI A (1) OI A OO A (2) OI A (2) IO A (2) II           u (1) I u (1) O u (2) O u (2) I      =     f (1) I f O f O f (2) I     , (2.2) 
where the subscript 'O' stands for 'overlap', u

O are the duplicated variables in the overlapping domain O, u (i) I are variables in the subdomain Ω i I . It is easy to check that if A OO is invertible, there is an equivalence between problems (2.1) and (2.2).

Classical preconditioners for problem (2.1) are the additive Schwarz (AS) and the restricted additive Schwarz (RAS) methods, see [START_REF] Cai | A restricted additive Schwarz preconditioner for general sparse linear systems[END_REF] or [START_REF] Toselli | Domain decomposition methods: algorithms and theory[END_REF] and references therein. Let R j be the rectangular restriction matrix to subdomain Ω j , j = 1, 2. Let D j , j = 1, 2 be diagonal matrices which correspond to a partition of unity in the sense that

R T 1 D 1 R 1 + R T 2 D 2 R 2 = I .
By defining Rj := D j R j , we have

RT 1 R 1 + RT 2 R 2 = I .
Then the additive Schwarz preconditioner reads

M -1 AS := R T 1 A -1 1 R 1 + R T 2 A -1 2 R 2 (2.3)
and the restricted additive Schwarz method reads

u n+1 = u n + ( RT 1 A -1 1 R 1 + RT 2 A -1 2 R 2 )(f -Au n ), (2.4) 
where

A i := R i AR T i , i = 1, 2.
From the iterative scheme (2.4), we can define the preconditioner

M -1 RAS := RT 1 A -1 1 R 1 + RT 2 A -1 2 R 2 .
Note that the RAS preconditioner is nonsymmetric. It leads to an iterative method that is identical to the discretization of the continuous Jacobi-Schwarz method, see [START_REF] Efstathiou | Why restricted additive Schwarz converges faster than additive Schwarz[END_REF].

Ω 1 * Ω 2 * Ω 3 * Ω 2 Ω 1 Ω 3 Fig. 2.2. RAS (n domain =3, n overlap =4-1, nxpt= 6, see § 4.
1 for these parameters). The circles and the crosses stand for the unknowns in each subdomain.

An illustration of RAS is given in Figure 2.2 for a three subdomain decomposition, where Ω i are overlapping subdomains and Ω * i are nonoverlapping subdomains. If we take D i to have zero entries for nodes in the region Ω i \ Ω * i , we define

RT 1 =   I Ω * 1 0 0   , RT 2 =   0 I Ω * 2 0   , RT 3 =   0 0 I Ω * 3   , R 1 = I Ω1 0 0 , R 2 = 0 I Ω2 0 , R 3 = 0 0 I Ω3 ,
where I Ωi is the identity matrix, whose dimension equals to the number of unknowns in Ω i .

For our extended linear system (2.2), a natural preconditioner can be built by using its diagonal blocks. For the two subdomain case (2.2), the block diagonal preconditioner M JS is

M JS :=      A (1) II A (1) IO A (1) OI A OO A OO A (2) OI A (2) IO A (2) II      . (2.5)
and one can easily notice that M -1 JS can be computed in parallel. The resulting method will be referred to as the Jacobi-Schwarz (JS) method. When used in a Richardson algorithm such as in (2.4), it was proved in [START_REF] St-Cyr | Optimized multiplicative, additive, and restricted additive Schwarz preconditioning[END_REF] that M JS applied to (2.2) and M RAS applied to (2.1) lead to equivalent algorithms. But as we shall see from numerical experiments, two-level methods applied to (2.2) or to (2.1) are not necessarily equivalent.

Note that even though the original matrix A is symmetric, the extended one à is not. As for the preconditioners, M AS and M JS are symmetric but M RAS is not. As a result the only case where we have both a symmetric matrix and a symmetric preconditioner is when M AS applies to the original matrix A. In this case, the Krylov method we use is the CG algorithm. In the other two cases (namely M JS applied to the extended matrix and M RAS applied to the original system), we use GMRES [START_REF] Saad | GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[END_REF].

Using preconditioners M AS , M JS or M RAS , we can remove the influence of very large eigenvalues of the coefficient matrix, which correspond to high frequency modes. But the small eigenvalues still exist and hamper the convergence. These small eigenvalues correspond to low frequency modes and represent certain global information. We need a suitable coarse grid space to efficiently deal with them.

The Coarse Grid Space Construction.

A key problem is the choice of the coarse subspace. Ideally, we can choose the deflation subspace Z which consists of the eigenvectors associated with the small eigenvalues of the preconditioned operator. But the lower part of the spectrum of a matrix is costly to obtain. The cost is in any case larger than the cost of solving a linear system. Thus, there is a need to choose the coarse space a priori. For instance in [START_REF] Nicolaides | Deflation of conjugate gradients with applications to boundary value problems[END_REF], Nicolaides defines the deflation subspace Z as follows

(z j ) i = 1, if i ∈ Ω j , 0, if i / ∈ Ω j ,
whose matrix form is

Z =   1 Ω * 1 0 0 0 1 Ω * 2 0 0 0 1 Ω * 3   , (3.1) 
where 1 Ω * i is a vector of all ones, and its length equals the number of unknowns in Ω * i . Recall that the subdomains Ω * i are nonoverlapping as shown in Figure 2.2. In [START_REF] Vuik | An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients[END_REF][START_REF] Vuik | The construction of projection vectors for a deflated ICCG method applied to problems with extreme contrasts in the coefficients[END_REF], the projection vectors z i are chosen in a similar but more complicated way. Definition (3.1) is also used as the aggregation-based coarse level operator in AMK [START_REF] Erlangga | Algebraic multilevel Krylov methods[END_REF]. Originally (3.1) is used for disjoint sets, not for the overlapping case. In the following, we use it in the overlapping case as well. This coarse space performs well in the constant coefficient case. But when there are jumps in the coefficients, it cannot prevent stagnation in the convergence.

We now propose a construction of the coarse space that will be suitable for parallel implementation and efficient for accelerating the convergence for problems with highly heterogeneous coefficients and arbitrary domain decompositions. We still choose Z such that it has the form

Z =       W 1 0 • • • 0 . . . W 2 • • • 0 . . . . . . • • • . . . 0 0 • • • W d       , (3.2) 
where d is the number of subdomains. But W i is now a rectangular matrix whose columns are based on the harmonic extensions of the eigenvectors corresponding to small eigenvalues of the DtN map in each subdomain Ω i . Remark that the sparsity of the coarse operator E = Z T AZ is a result of the sparsity of Z. The nonzero components of E correspond to adjacent subdomains.

More precisely, let us consider first at the continuous level the Dirichlet to Neumann map DtN

Ωi . Let u : Γ i → R, DtN Ωi (u) = κ ∂v ∂n i Γi ,
where v satisfies

L(v) := (η -div(κ∇))v = 0, in Ω i , v = u, on Γ i , (3.3) 
and Γ i is the interface boundary. If the subdomain is not a floating one (i.e. ∂Ω i ∩∂Ω = ∅), it is necessary to add on the part of the global boundary, the boundary condition from the original problem. To construct the coarse grid subspace, we use the low frequency modes associated with the DtN operator:

DtN Ωi (u) = λκ u (3.4) with λ < 1/diam(Ω i ) (3.5)
where diam(Ω i ) is the diameter of subdomain Ω i . We first motivate our choice of a coarse space based on DtN map. We write the original Schwarz method at the continuous level, where the domain Ω is decomposed in a one-way partitioning. The error e n i between the current iterate at step n of the algorithm and the solution u |Ωi (e n i := u n iu |Ωi ) in subdomain Ω i at step n of the algorithm satisfies: L(e

Ω i Ω i+1 Ω i-1 e n i e n+1 i-1 e n+1 i+1 Ω i Ω i+1 Ω i-1 e n i e n+1 i-1 e n+1 i+1
n+1 i ) = 0 in Ω i , e n+1 i = j =i ξ j i e n j
on Ωi ∩ ∂Ω j , where ξ j i is such that

j =i ξ j i = 1 ∂Ωi .
On the 1D example sketched in Figure 3.1, we see that the rate of convergence of the algorithm is related to the decay of the harmonic functions e n i in the vicinity of ∂Ω i via the subdomain boundary condition. Indeed, a small value for this BC leads to a smaller error in the entire subdomain thanks to the maximum principle.

Moreover a fast decay for this value corresponds to a large eigenvalue of the DtN map whereas a slow decay corresponds to small eigenvalues of this map because the DtN operator is related to the normal derivative at the interface and the overlap is thin. Thus the small eigenvalues of the DtN map are responsible for the slow convergence of the algorithm and it is natural to incorporate them in the coarse grid space.

We now explain why we only keep eigenvectors with eigenvalues smaller than 1/diam(Ω i ) in the coarse space. We start with the constant coefficient case κ = 1. In this case, the smallest eigenvalue of the DtN map is zero and it corresponds to the constant function 1. For a shape regular subdomain, the first positive eigenvalue is of order 1/diam(Ω i ), see [START_REF] Escobar | The geometry of the first non-zero Stekloff eigenvalue[END_REF]. Keeping only the constant function 1 in the coarse space leads to good numerical convergence, see figure 4.2. In the case of high contrasts in the coefficient κ, the smallest eigenvalue of the DtN map is still zero. But due to the variation of the coefficients we may possibly have positive eigenvalues smaller than 1/diam(Ω i ). In order to have a convergence behavior similar to the one of the constant coefficient case, it is natural to keep all eigenvectors with eigenvalues smaller than 1/diam(Ω i ).

To obtain the discrete form of the DtN map, we consider the variational form of (3.3). Let's define the bilinear form a i :

H 1 (Ω i ) × H 1 (Ω i ) → R, a i (w, v) := Ωi ηwv + κ∇w • ∇v.
With a finite element basis {φ k }, the coefficient matrix of a Neumann boundary value problem in domain Ω i is

A (i) kl = Ωi ηφ k φ l + κ∇φ k • ∇φ l .
Let I (resp. Γ i ) be the set of indices corresponding to the interior (resp. boundary) degrees of freedom and n Γi := #(Γ i ) the number of interface degrees of freedom. Note that for the whole domain Ω, the coefficient matrix is given by

A kl = Ω ηφ k φ l + κ∇φ k • ∇φ l .
With block notations, we have

A (i) II = A II , A (i) ΓiI = A ΓiI and A (i) IΓi = A IΓi . But the matrix A (i)
ΓiΓi refers to the matrix prior to assembly with the neighboring subdomains and thus cannot be simply extracted from the coefficient matrix A. In problem (3.3), we use Dirichlet boundary conditions. Let U ∈ R nΓ i and u := k∈Γi U k φ k . Let v := k∈I V k φ k + l∈Γi V l φ l be the finite element approximation of the solution of (3.3). Let V I = (V k ) k∈I , we have with obvious notations:

A II V I + A IΓi U = 0 . (3.6)
A variational definition of the flux reads

Γi κ ∂v ∂n φ k = Ωi ηvφ k + κ∇v • ∇φ k for all φ k , k ∈ Γ i . So the variational formulation of the eigenvalue problem (3.4) reads Ωi ηvφ k + κ∇v • ∇φ k = λ Γi κv φ k (3.7)
for all φ k , k ∈ Γ i . Let M κ,Γi be the weighted mass matrix

(M κ,Γi ) kl := Γi κφ k φ l , ∀k, l ∈ Γ i .
The compact form of equation (3.7) is

A (i) ΓiΓi U + A ΓiI V I = λM κ,Γi U .
With (3.6), the discrete form of (3.4) is a generalized eigenvalue problem (A

(i) ΓiΓi -A ΓiI A -1 II A IΓi ) U = λ M κ,Γi U . (3.8) 
The step by step procedure on how to construct the rectangular matrices W i in the coarse space matrix Z, see (3.2), is as follows. Algorithm 1. In parallel for all subdomains

1 ≤ i ≤ N , 1. Compute eigenpairs of (3.8) (U i 1 , λ i 1 ), (U i 2 , λ i 2 ), . . . , (U i mi , λ i mi ) such that λ i 1 ≤ . . . ≤ λ i mi < 1/diam(Ω i ) ≤ λ i mi+1 ≤ . . .

Compute their harmonic extensions

V i k := (-A -1 II A IΓi U i k , U i k ) T , 1 ≤ k ≤ m i .
3. The final formula for the rectangular matrix W i with m i columns depends on the system to be solved If the extended system is solved, see (2.2),

W i = [V i 1 | . . . |V i mi ] .
If the original system is solved, see (2.1),

W i = [D i V i 1 | . . . |D i V i mi ] .
We call this procedure the Z D2N method. We also use Z D2N to denote the coarse grid space constructed by this method. Its construction is fully parallel. Similarly we call Z N ico the method of Nicolaides or the corresponding coarse grid space. Let us remark that when η = 0 and the subdomain is a floating one, the lowest eigenvalue of the DtN map is zero and the corresponding eigenvector is a constant vector. Thus, Z N ico and Z D2N coincide. As we shall see in the next section, when a subdomain has several jumps of the coefficient, taking Z N ico is not efficient and it is necessary to take Z D2N with more than one vector per subdomain.

Note that when we work on the original system, the definition of the coarse space involves a partition of unity via the matrices D i . Thus the vectors of the coarse space are able to span the zero energy modes of the original problem if there are no Dirichlet boundary conditions.

Numerical Results

. From a practical point of view, it is more difficult to work on the extended system (2.2) than on the original one (2.1). Indeed, when working on (2.2) we have to create extra data structures. For this reason, we first consider in § 4.1 a one-way decomposition of the domain. This enables us to work both on the original system (2.1) and on the extended one (2.2). In § 4.2 an arbitrary decomposition is considered. We will work only on the original system (2.1).

4.1. One-way domain decomposition. In order to illustrate numerically the behavior of the coarse space, we first consider the following model problem:

L u := - ∂ ∂x c(y) ∂ ∂x - ∂ ∂y d(y) ∂ ∂y + η(y) u(x, y) = f (x, y) in (0, L) × (0, 1)
where the length L of the domain is proportional to the number of subdomains. 

Ω i u=0 ∂u/∂n =0 (∂/∂n + α)u=0 Γ R Γ L ∂u/∂n =0 δ δ

In addition, we use the following parameters in our tests

• n domain represents the number of subdomains.

• n overlap stands for the overlap in x-direction; correspondingly the width of the overlap is δ = (n overlap + 1)h, where h is the mesh size. • (n xpt + n overlap ) is the number of grid points in x-direction in one subdomain.

• n ypt is the number of grid points in the y-direction. These numerical tests are performed in Matlab. We compare the two coarse grids, namely the Nicolaides one (3.1) and the one defined in Algorithm 1 (D2N), only for the RAS and JS preconditioners. See 4.2 for the RAS and AS methods. We use full GMRES as the linear solver, together with the left preconditioner P ADEF 2 , which is constructed by taking Z equal to Z N ico or to Z D2N , where Z D2N is of the form (3.2). Please note that when using the left preconditioned GMRES on Ax = b, the residual ||b -Ax|| is returned for the approximate solution x (Figures 4.2-4.6).

4.1.1. The original vs. extended system. We first compare the effect of the coarse grid correction when applied to the original system (2.1) (RAS method) or to the extended system (2.2) (JS method). We begin with the Nicolaides coarse grid space. As expected when there is no coarse grid correction, RAS and JS perform similarly and have a plateau in the convergence curve.

For the constant case in Figure 4.2, the piecewise coarse grid space of Nicolaides is quite good for both the extended system and the original system. It works better on the extended system (2.2) (JS method) than on the original system (2.1) using RAS (22 vs. 36 iterations).

For the case with discontinuities Z N ico is not good. For this kind of problem, Z D2N gives a much faster convergence, see Figure 4.3. Note that for the case HPL2, the number of small eigenvalues determined by (3.5) is 2, which is equal to the number of high permeability layers, see [START_REF] Vuik | An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients[END_REF]. We can see that our Z D2N method works well on both the extended system and the original system but it gives better convergence on the extended system. It seems to us that this is due to the fact that for JS we do not need a partition of unity. For RAS this partition of unity is necessary to be able to span the zero energy modes of the original problem. But then, the local harmonicity of the coarse space components is lost. This the reason why we will further investigate our Z D2N method on the extended system. 4.1.2. The robustness of the Z D2N method. In the following we test the robustness of the approach with respect to the various parameters of the problem: jumps of the coefficients, number of subdomains, mesh size and size of the overlap.

Figure 4.4 shows that when using a coarse space the iteration numbers are almost constant as the number of subdomains increases. The three convergence curves with Z D2N are difficult to distinguish.

We also consider the robustness with respect to the size of the jumps. We take as an example in Table 4.2 the case HPL2 with a ranging from 1 to 10 6 . Using the criterion (3.5), in each subdomain two small eigenvectors are chosen to construct the Table 4.2 Case HPL2 with the Z D2N coarse space for jumps in the coefficients ranging from 1 to 10 6 . n domain =32, n overlap =3, nxpt=8, nypt=16.

In Figure 4.5, we plot the convergence curves for three successive refinements of the mesh. We see an increase in the number of iterations that can be related to the fact that the convergence rate of the Schwarz method depends on the physical size of the overlap. Here, we have a two element overlap and thus the physical size of the overlap decreases as the mesh is refined.

In Figure 4.6, we consider the test HPL1 with various sizes of overlap h, 2h and 3h solved with the Z D2N coarse space or without any coarse space (JS). For both methods, the iteration counts are improved as the overlap is increased. This is in agreement with the theory of the Schwarz method. From the residual curves, we see that our method is very efficient and robust.

4.1.3. Spectral analysis of the preconditioned system. In Figures 4.7 and 4.8, we display the spectra of CONST case and HPL5 case respectively for the original system, the one level method and the two level method with the D2N coarse grid using P ADEF 2 . The spectrum of the preconditioned matrices has three characteristics:

• the eigenvalues are between 0 and 2;

• the spectrum is more clustered;

• for Z D2N the smallest eigenvalue is well separated from the origin. Since the small eigenvalues near the origin have a negative influence on the fast convergence, we check the minimum real part of eigenvalues of six cases (see Table 4.3). a function of x and y. The boundary conditions are zero-Dirichlet on the entire boundary. The corresponding discretizations and data structures were obtained by using the software FreeFem++ [11] in connection with Metis partitioner [START_REF] Karypis | METIS -Unstructured Graph Partitioning and Sparse Matrix Ordering System[END_REF]. In the following we will compare the AS and RAS preconditioners with and without Nicolaides coarse space to the new preconditioner based on the harmonic extension of the eigenvectors of the local DtN operators.

Case

We test the method on overlapping decompositions into rectangular N × N domains and on decompositions into N ×N irregular domains obtained via Metis. These overlapping decompositions are built by adding layers to non-overlapping ones. The general non-overlapping decompositions can be generated for example, by using the Metis partitioner.

Homogeneous viscosity.

In this case we have κ = 1 in the whole domain. As in the case of a one-way decomposition, the two preconditioning methods based on Nicolaides coarse grid and DtN eigenvectors, behave in quite a similar way whether AS or RAS are used when the viscosity is constant in the whole domain.

Here we have chosen a 4 by 4 regular subdomain decomposition. Each subdomain has 40 nodes on each side and the overlap equals 2 elements. As expected, using the new algorithm, the number of eigenvectors contributed by each subdomain (which is calculated automatically) is always 1. Figure 4.9 shows all three convergence curves for both AS and RAS. This numerically asserts that in the constant coefficient case, the Z N ico and Z D2N are almost identical. The small differences lie in the fact that for Z N ico the coarse space is defined analytically whereas for Z D2N it is obtained via a numerical procedure.

4.2.2. Highly heterogeneous viscosity. We will perform the same tests as before on two different configurations of highly heterogeneous viscosity. We consider the following situations:

• alternating viscosity: for y such that for [9y] ≡ 0(mod 2), κ = 10 6 ; and κ = 1 elsewhere. (See Here the number of eigenvectors considered in the construction of the coarse space is more important than in the homogeneous case (otherwise the global information cannot be correctly captured) and it may vary as a function of the number of subdomains. This is illustrated in Table 4.4 for the alternating case and Table 4.5 for the skyscraper case. Note that for each subdomain the total number of eigenvalues is equal to the number of nodes on the interface. In these cases, typical values are 2, 3 or 4. Table 4.6 shows that using the new method convergence highly improves convergence whether a uniform or Metis partition is used in this highly heterogeneous coefficient case. noverlaps will always be equal to 2. As an illustration, we have chosen to present extensively the 4 × 4 case both with and without using the Metis partitioner.

Figure 4.11 shows together the decomposition into subdomains and the jumps in κ, Figure 4.12 shows the convergence curves for the three methods using RAS and Table 4.7 gives in detail the number of eigenvalues per subdomain that were used to build the coarse grid in the case of a Metis decomposition. Again the number is often higher than 1 because the heterogeneities in κ impose that more global information on the solution be exchanged to avoid the plateau phenomenon. The convergence curves show that this strategy is a success. 4.2.4. Continuous variations of the coefficient. This time we take an analytical function for κ which is chosen as: κ(x, y) = κ M /3 * sin(ω * π * (x + y) + 0.1).

In our case κ M = 10 6 and ω = 4. We chose a 2 node overlap and a total of 160 nodes per side of the global domain. We study the 4 × 4 and 8 × 8 decompositions both with and without Metis. As an example, Figure 4.13 shows information for the 4 by 4 decomposition using Metis. Table 4.10 shows information on the approximate condition numbers of the preconditioned operators in the Metis 8 by 8 case. This was achieved using the Ritz values during the conjugate gradient iteration procedure when AS is used. As expected for D2N the smallest eigenvalue is larger than in the other cases which leads to a better condition number for the operator. Finally Table 4.11 shows the number of iterations needed to reach convergence for all three methods in all four cases. Again D2N performs significantly better. Table 4.9 Number of functions contributed to the coarse space by each subdomain for the "Continuous" test case and the 4 × 4 decomposition with Metis 4.2.5. Random κ distribution. In this section we propose a test with random coefficient. We use a log-normal distribution for the parameter κ. This distribution is calculated using the Gaussian Random field generator available at the web-page http://www-users.math.umd.edu/ bnk/bak/generate.cgi courtesy of Boris Kozintsev and Benjamin Kedem. We choose the exponential covariance family with parameters θ 2 = 1 and θ 1 = e -1 λ with λ = 4∆x in order for the correlation r(l) between the values at two points separated by a distance l to be r(l) = e -l λ . This gives us a normal distribution with mean value 0 of the random variable X at each grid point. We then define X ′ = σX + µ in order to have a µ mean value and a σ standard deviation. In our example, µ = 3 and σ = 2 (see Figure 4.14 (left)). Finally, we calculate κ = 10 X ′ giving us a log-normal random field with m ean value µ κ = µln [START_REF] Escobar | The geometry of the first non-zero Stekloff eigenvalue[END_REF] deviation σ κ = σln [START_REF] Escobar | The geometry of the first non-zero Stekloff eigenvalue[END_REF].

The parameters of the test case are the following: 4 by 4 subdomains, 20 nodes per subdomain edge using a Metis partition. For these values λ = 4 * 1 4×20 = 0.05. The size of the overlap will be successively 1, 2 and 3 and we will compare the restricted additive Schwarz (RAS) and additive Schwartz methods (AS). The size of the overlap does not have a significant influence on the comparison between methods as showed in Table 4.14. In order to improve the condition number (Table 4.13) as many as 9 out of 99 eigenvectors are used to build the coarse space, with success.

Conclusions.

We have considered the extended (2.2) and the original (2.1) linear systems arising from the domain decomposition method with overlapping. We applied the two-level preconditioner using the Schwarz algorithm and the coarse grid correction. The coarse grid space is based on the low frequency modes of the local DtN map. Its size automatically adapts to the difficulty of the problem. With this coarse space, we can obtain fast convergence for problems with large discontinuities (even along the interface) and arbitrary domain decompositions. The method has the potential to be extended to other systems of equations like elasticity but it requires further investigations. 
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 42 Fig. 4.2. Case CONST, JS and RAS using coarse grids. n domain =32, n overlap =1, nxpt=8, nypt=16, Both Z N ico and Z D2N work well for the constant case.
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 43 Fig. 4.3. Case HPL2, JS and RAS with coarse grid correction. n domain =64, n overlap =1, nxpt=8, nypt=16. Z N ico does not work well, while Z D2N gives a fast convergence.
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 44 Fig. 4.4. Case HPL3 with various number of subdomains. n domain =128(cross), 64(circle), 32(triangular), n overlap =1, nypt=16. Z D2N : dotted lines, JS : solid lines.
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 456 Fig. 4.5. Case HPL3 with various mesh sizes: 1/64 (cross), 1/32 (circle) and 1/16 (triangle), n overlap =1, n domain =16. Z D2N : dotted lines, JS: solid lines.
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 46 Fig. 4.6. HPL1 with various overlaps: h (cross), 2h (circle) and 3h (triangle), n domain =32, nxpt = nypt=16. Z D2N : dotted lines, JS: solid lines.
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 47 Fig. 4.7. Spectra of CONST case. n domain =16, n overlap =1, nxpt=8, nypt=16. The 3rd is the result of Z D2N method with 1 small eigenvector of DtN taken into account in each subdomain.
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 248 Fig. 4.8. Spectra of HPL5 case. n domain =16, n overlap =1, nxpt=8, nypt=16. The 3rd is the result of Z D2N method with 5 small eigenvectors of DtN taken into account in each subdomain. The number of small eigenvalues is determined by (3.5).
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 494 Fig. 4.9. 4 × 4 subdomains, uniform κ distribution, AS (left) and RAS (right)
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 4410 Fig. 4.10. Heterogeneous viscosity: alternating and skyscraper cases.
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 4 Fig. 4.11. 4 × 4 subdomains uniform (left) and Metis (right) -This shows both the subdomain boundaries and the jumps in κ for the "hard" test case
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 4 Fig. 4.12. 4 × 4 subdomains, uniform (left) and Metis (right)-RAS convergence for the 'hard' test case
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 41 Test cases. b = 1, a = 100000.

Table 4 . 3

 43 The minimum real part of eigenvalues. Ã is the coefficient matrix of the extended system (2.2) and M JS is the Jacobi-Schwarz preconditioner. n domain =16, n overlap =1, nxpt=8, nypt=16. The test cases are defined in Table4.1.

		CONST HPL1	HPL2	HPL3	HPL4	HPL5
	N smeig	1	1	2	3	4	5
	M -1 JS Ã P ADEF 2 Ã	2.67e-6 2.67e-6 2.67e-6 2.67e-6 2.67e-6 2.67e-6 0.23 0.40 0.40 0.40 0.40 0.40

Table 4 .

 4 The Nicolaides preconditioner gives comparable results to the one level method.[START_REF] Dohrmann | Hybrid Domain Decomposition Algorithms for Compressible and Almost Incompressible Elasticity Internat[END_REF] 4 by 4 decomposition -Number of functions contributed to the coarse space by each subdomain for the 'skyscraper' test case 4.2.3. A hard test case with inclusions and channels. In order to compare our method to existing codes we solve a test case with known difficulties: the diffusion coefficient κ takes values between 1 and approximately 1.5 × 10 6 and the distribution contains both inclusions and channels. The total number of nodes will always be 256 on each side of Ω. The decomposition will change however: we will successively

	subdomain number of used eigenvalues total number of eigenvalues
	1	2	84
	2	2	125
	3	2	125
	4	2	82
	5	3	127
	6	2	172
	7	2	172
	8	3	127
	9	3	127
	10	2	172
	11	2	172
	12	3	127
	13	2	83
	14	2	127
	15	2	127
	16	2	85
		Table 4.4	
	4 by 4 decomposition -Number of functions contributed to the coarse space by each subdomain
	for the 'alternating' test case		
	subdomain number of used eigenvalues total number of eigenvalues
	1	2	84
	2	2	125
	3	2	125
	4	2	82
	5	4	127
	6	4	172
	7	4	172
	8	4	127
	9	4	127
	10	4	172
	11	4	172
	12	4	127
	13	3	83
	14	4	127
	15	4	127
	16	3	85

Table 4 . 6

 46 Convergence results for the 'skyscraper' and 'alternating' test case

Table 4 . 7

 47 4 × 4 subdomains, uniform (left) and Metis (right)-RAS convergence for the 'hard' test case Metis 4 by 4 decomposition -Number of functions contributed to the coarse space by each subdomain for the 'hard' test case

	subdomain number of used eigenvalues total number of eigenvalues
	1		3			155	
	2		1			109	
	3		5			175	
	4		3			183	
	5		3			153	
	6		2			125	
	7		1			71	
	8		3			128	
	9		4			193	
	10		4			174	
	11		2			71	
	12		2			128	
	13		3			166	
	14		3			127	
	15		3			188	
	16		3			106	
		AS AS+Nico AS+D2N RAS RAS+Nico RAS+D2N
	2 × 2	103	110	22	70	70	14
	2 × 2 with Metis 76	76	22	57	57	18
	4 × 4	603	722	26	169	165	15
	4 × 4 with Metis 483	425	36	148	142	23
	8 × 8	461	141	34	205	95	21
	8 × 8 with Metis 600	542	31	240	196	19

Table 4
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	Convergence results for the 'hard' test case

Table 4 .

 4 10 Condition numbers for the "Continuous" test case 8 × 8 decomposition with Metis

	and standard
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 4 11 Convergence for the "Continuous" test case
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 4 Fig. 4.14. log(κ) for the 'random' test case (left) and convergence history (right) for AS with an overlap of 2 12Number of functions contributed to the coarse space by each subdomain for the 'random' test case and the 2 element overlap

				10 0				
									AS
									P BNN : AS + Z Nico
		IsoValue -0.751221 3.73873 8.22869 8.97702 10.8478 7.48036 6.73204 5.98371 5.23539 4.48706 2.99041 2.24208 1.49376 0.74543 -0.00289558 -1.49955 -2.24787 -2.9962 -3.74453 -4.86701	Error	10 -4 10 -3 10 -2 10 -1					P BNN : AS + Z
				10 -5				
				10 -6				
				10 -7				
				10 -8	0	10	20	30	40	50	60
								Iteration count
	subdomain number of used eigenvalues total number of eigenvalues
	1	7						61
	2	3						36
	3	8						98
	4	7						61
	5	6						68
	6	5						58
	7	7						101
	8	6						72
	9	9						99
	10	6						80
	11	8						78
	12	3						39
	13	6						94
	14	5						53
	15	6						101
	16	5						63

D2N

Table 4 .

 4 [START_REF] Golub | Matrix Computations, 3rd Edition[END_REF] Condition numbers for the 'random' test case and overlap = 2

	AS AS+Nico AS+D2N RAS RAS+Nico RAS+D2N
	overlap = 1 89	82	30	79	78	22
	overlap = 2 59	57	27	50	52	33
	overlap = 3 45	46	22	36	40	24

Table 4 .

 4 14 Convergence for the random test case (4 × 4 decomposition with Metis)