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A COARSE SPACE CONSTRUCTION BASED ON LOCAL
DIRICHLET TO NEUMANN MAPS

FREDERIC NATAF*, HUA XIANG', VICTORITA DOLEAN?!, AND NICOLE SPILLANES$

Abstract. Coarse grid correction is a key ingredient in order to have scalable domain decom-
position methods. In this work we construct the coarse grid space using the low frequency modes of
the subdomain DtN maps, and apply the obtained two-level preconditioners to the extended or the
original linear system arising from an overlapping domain decomposition. Our method is suitable for
parallel implementation and its efficiency is demonstrated by numerical examples on problems with
high heterogeneities for both manual and automatic partitionings.

Some notations and definitions

A coefficient matrix of the linear system Ax = b

M preconditioner for A

zY full rank matrices which span the coarse grid subspaces

E E =YTAZ, Galerkin matrix or coarse-grid matrix

= Z=ZE YT coarse-grid correction matrix in MG and DDM
Pp Po=1-A==1-AZ(YTAZ)"'YT

Qp Qp=1-ZA=1-2Z(YTAZ)"'YTA

PpnN Pgyy = QpM~'Pp+ ZE~'YT
Pappr2 Pappra=QpM-'+ ZE-1ZT

1. Introduction. We consider the solution of the linear system Ax = b € RP
arising from the discretization of an elliptic boundary value problem (BVP) of the

type
nu — div(kVu) = f (1.1)

where k is the diffusion tensor which can be discontinuous. When using an itera-
tive method in a one-level domain decomposition framework, one may encounter a
long stagnation or a slow convergence, especially when the number of subdomains
is large. Even when x = 1, the convergence of a one-level domain decomposition
method presents a long plateau of stagnation. Its length is related to the number of
subdomains of the decomposition in one direction. For example, we know that for
the problem divided into N subdomains in a one-way partitioning, the convergence
can never be achieved in less than N — 1 iterations since the exchange of information
between the subdomains is reduced to their common interfaces. Thus, the global in-
formation transfers only from one subdomain to its neighbors [16, 19]. One needs a
two-level method to have a scalable algorithm, i.e., an algorithm whose convergence
rate is weakly dependent on the number of subdomains, see [28] and references therein.

Two-level domain decomposition methods are closely related to multigrid methods
and deflation corrections, see [26] and references therein. These methods are defined
by two ingredients: a full rank matrix Z € RP*™ with m < p and an algebraic
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formulation of the correction. These techniques imply solving a reduced size problem
of order m x m called a coarse grid problem. The space spanned by the columns of
Z should ideally contain the vectors responsible for the stagnation of the one level
method. We will come back later to the choice of Z in the framework of domain
decomposition methods and focus for now on the various algebraic ways to improve
convergence by using a coarse grid.

According to [26], for a domain decomposition method (DDM), a well-known
coarse grid correction preconditioner is of the form I + ZE~'Z7, where E = ZTAZ
is the coarse grid matrix used to speed up convergence. The abstract additive coarse
grid correction proposed in [21] is M~ '+ ZE~*ZT where M ~! is the additive Schwarz
preconditioner, a sum of local solvers in each subdomain, which can be implemented
in parallel. The first term is a fine grid solver, and the second term represents a
coarse solver. Hence it is called the two-level additive Schwarz preconditioner. The
BPS preconditioner introduced by Bramble, Paschiak and Schatz [1] is of this type. In
the context of domain decomposition methods, we mention the balancing Neumann-
Neumann preconditioner and the FETI algorithm. They have been extensively in-
vestigated, see [28] and references therein. For symmetric systems the balancing
preconditioner was proposed by Mandel [17]. The abstract balancing preconditioner
[17] for nonsymmetric systems reads [8],

Ppyn =QpM~'Pp+ ZE~'YT. (1.2)

For the preconditioner Py, if we choose the initial approximation xg = Zb, then
the action of Pp is not required in practice, see [28, p.48]. Note that the multigrid
(MG) V(1,1)-cycle preconditioner Py¢ is closely related to Pgyyn. Choosing the
proper smoother M in Ppypy, we can ensure that Py;g and Pgyny are SPD, and
Py A and Ppy A have the same spectrum [27].

For a SPD system, by choosing Y = Z, the authors in [26] define

Pappros = QpM ' + ZE7'ZT, (1.3)

which is as robust as Pgyy but usually less expensive [26]. The two-level hybrid
Schwarz preconditioner in [25, p.48] has the same form as Papgpe. It is shown in
[26] that with a proper choice of the starting vector the preconditioners P4pgpre and
Ppnn are equivalent.

Given the coarse grid subspace, we can construct the two-level preconditoners
above. An effective two-level preconditioner is highly dependent on the choice of
the coarse grid subspace. We will now focus on the choice of the coarse space Z
in the context of domain decomposition methods for problems of type (1.1) with
heterogeneous coefficients. In this case, the coarse space is made of vectors with
support in one subdomain or one subdomain and its neighbors. When the jumps
in the coefficients are inside the subdomains (and not on the interface) or across the
interface separating the subregions, the use of a fixed number of vectors per subdomain
in Z gives good results, see [6], [18], [22], [23], [4] and [5]. When the discontinuities
are along the interfaces between the subdomains, results are not so good.

Here, we propose to construct a coarse subspace such that the two-level method
is robust with respect to heterogeneous coeflicients for an arbitrary domain decompo-
sition. Even if the discontinuities are along the interface like for instance in the case
with layered coefficients and a one-way decomposition in the orthogonal direction (see
§ 4.1), the iteration counts are very stable with respect to jumps of the coefficients.
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Our method is based on the low-frequency modes associated with the Dirichlet-to-
Neumann (DtN) map on each subdomain. After obtaining the eigenvectors associated
with the small eigenvalues of DtN, we use the harmonic extension to the whole sub-
domain. It is efficient even for problems with large discontinuities in the coefficients.
Moreover, it is suitable for parallel implementation. We apply such a two-level pre-
conditioner to the original linear system (2.1) and to the extended one (2.2) arising
from the domain decomposition method.

The paper is organized as follows. In Section 2, we introduce the two-level pre-
conditioners: the additive Schwarz (AS), the restricted additive Schwarz (RAS) and
the Jacobi-Schwarz (JS) with the coarse grid correction. The construction of coarse
grid spaces is presented in Section 3. In Section 4 numerical tests on the model prob-
lem demonstrate the efficiency of our method. Some concluding remarks are given in
Section 5.

2. Algebraic Domain Decomposition Methods. Without loss of generality,
we consider here a decomposition of a domain 2 into two overlapping subdomains
Q1 and Q. The overlap is denoted by O := Q1 N Q5. This yields a partition of the
domain: ) = Q(Il) uoOu Q(IQ) where Qy) = Q,\O0, i = 1,2. At the algebraic level this
corresponds to a partition of the set of indices A into three sets: NI(l), O and NI(Q).

Ul(l) u UI(Z)

FiG. 2.1. Decomposition into two overlapping subdomains.

After the discretization of the BVP (1.1) defined in domain 2, we obtain a linear
system of the following form

1 1
WAy VR [
Au:= A(O} Aoo A(O} uo | = | fo |- (2'1)
2 2
i ] LR L

We can also define the extended linear system by considering twice the variables
located in the overlapping region

A T
AG) Aoo A |ug) f(% 7
Al L) L



where the subscript 'O’ stands for ’overlap’, ug) are the duplicated variables in the

overlapping domain O, uy) are variables in the subdomain Q%. It is easy to check
that if Apo is invertible, there is an equivalence between problems (2.1) and (2.2).

Classical preconditioners for problem (2.1) are the additive Schwarz (AS) and the
restricted additive Schwarz (RAS) methods, see [2] or [28] and references therein. Let
R; be the rectangular restriction matrix to subdomain Q;, j =1,2. Let D;, j = 1,2
be diagonal matrices which correspond to a partition of unity in the sense that

RIDiRy + RYDyRy = 1.
By defining R; := D, R;, we have
RTR +RTR, =1.
Then the additive Schwarz preconditioner reads
My&:=RTAT'R) + RYA;'R, (2.3)
and the restricted additive Schwarz method reads
utt = u" + (RTAT'Ry + RYAS Ry (f — Au™), (2.4)

where A; := R;ARY, i = 1,2. From the iterative scheme (2.4), we can define the
preconditioner

Mpgis = RTAT R, + RYA'R,.
Note that the RAS preconditioner is nonsymmetric. It leads to an iterative method

that is identical to the discretization of the continuous Jacobi-Schwarz method, see
[7].

* * *

QB
SIS SIS SIS
OOOOOOXXX

Q

2

Q " Q

1 3

F16. 2.2. RAS (Mgomain=3, Noveriap=4-1, Napt= 6, see § 4.1 for these parameters). The
circles and the crosses stand for the unknowns in each subdomain.

An illustration of RAS is given in Figure 2.2 for a three subdomain decomposition,
where (); are overlapping subdomains and 2} are nonoverlapping subdomains. If we
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take D; to have zero entries for nodes in the region §; \ 7, we define

) Io: ) 0 ) 0
RT =10, RY = |Ios |, RF=10 |,
0 0 Io;
Ry =[Io, 0 0], Ry=[0 I, 0], Ry=1[0 0 Io,],

where I, is the identity matrix, whose dimension equals to the number of unknowns
in Qi-

For our extended linear system (2.2), a natural preconditioner can be built by
using its diagonal blocks. For the two subdomain case (2.2), the block diagonal
preconditioner M ;g is

1) (1)
1
A A
Mg := |70l £00 @] - (2.5)
A?o Aor
2) (2)
Ao An
and one can easily notice that MJ_é can be computed in parallel. The resulting method
will be referred to as the Jacobi-Schwarz (J.S) method. When used in a Richardson
algorithm such as in (2.4), it was proved in [3] that M g applied to (2.2) and Mgras
applied to (2.1) lead to equivalent algorithms. But as we shall see from numerical ex-
periments, two-level methods applied to (2.2) or to (2.1) are not necessarily equivalent.

Note that even though the original matrix A is symmetric, the extended one A
is not. As for the preconditioners, M s and M ;s are symmetric but Mprag is not.
As a result the only case where we have both a symmetric matrix and a symmetric
preconditioner is when M 45 applies to the original matrix A. In this case, the Krylov
method we use is the CG algorithm. In the other two cases (namely M ;g applied to
the extended matrix and Mgras applied to the original system), we use GMRES [24].

Using preconditioners Mag, M ;s or Mpas, we can remove the influence of very
large eigenvalues of the coefficient matrix, which correspond to high frequency modes.
But the small eigenvalues still exist and hamper the convergence. These small eigen-
values correspond to low frequency modes and represent certain global information.
We need a suitable coarse grid space to efficiently deal with them.

3. The Coarse Grid Space Construction. A key problem is the choice of
the coarse subspace. Ideally, we can choose the deflation subspace Z which consists of
the eigenvectors associated with the small eigenvalues of the preconditioned operator.
But the lower part of the spectrum of a matrix is costly to obtain. The cost is in
any case larger than the cost of solving a linear system. Thus, there is a need to
choose the coarse space a priori. For instance in [20], Nicolaides defines the deflation

subspace Z as follows
1, ifi € Q;,
(2)i = { !

0, if i ¢ Q;,

whose matrix form is

los 0 0
Z=10 195 0|, (3.1)
0 0 lo



where 1g: is a vector of all ones, and its length equals the number of unknowns in
Qf. Recall that the subdomains (2} are nonoverlapping as shown in Figure 2.2.

In [29, 30], the projection vectors z; are chosen in a similar but more complicated
way. Definition (3.1) is also used as the aggregation-based coarse level operator in
AMK [9]. Originally (3.1) is used for disjoint sets, not for the overlapping case. In
the following, we use it in the overlapping case as well. This coarse space performs
well in the constant coefficient case. But when there are jumps in the coefficients, it
cannot prevent stagnation in the convergence.

We now propose a construction of the coarse space that will be suitable for parallel
implementation and efficient for accelerating the convergence for problems with highly
heterogeneous coefficients and arbitrary domain decompositions. We still choose Z
such that it has the form

w0 0
: 2 DR

z=| W " (3.2)
0 0 we

where d is the number of subdomains. But W? is now a rectangular matrix whose
columns are based on the harmonic extensions of the eigenvectors corresponding to
small eigenvalues of the DtN map in each subdomain §2;. Remark that the sparsity
of the coarse operator E = ZTAZ is a result of the sparsity of Z. The nonzero
components of ¥ correspond to adjacent subdomains.

More precisely, let us consider first at the continuous level the Dirichlet to Neu-
mann map DtNq,. Let v : I'; = R,

ov

DtNgq, =
Q; (’LL) Hani r,

)

where v satisfies

{C(v) = (n — div(kV))v =0, in €, 53)

v=u, on I';,

and I'; is the interface boundary. If the subdomain is not a floating one (i.e. 9§2;,N9Q #
(), it is necessary to add on the part of the global boundary, the boundary condition
from the original problem. To construct the coarse grid subspace, we use the low
frequency modes associated with the DtN operator:

DtNgq, (u) = Ak u (3.4)
with
A < 1/diam(§Y;) (3.5)

where diam(€;) is the diameter of subdomain ;.

We first motivate our choice of a coarse space based on DtN map. We write the
original Schwarz method at the continuous level, where the domain €2 is decomposed
in a one-way partitioning. The error e} between the current iterate at step n of the
algorithm and the solution g, (e}’ := uj' — ujq,) in subdomain €2; at step n of the
algorithm satisfies:



Fic. 3.1. Fast or slow convergence of the Schwarz algorithm.

Llefty=0 in Q,
e?—i-l — Zj;éi fe}l on Q,;NoY;,
where & is such that

> € =1sq, .
J#i

On the 1D example sketched in Figure 3.1, we see that the rate of convergence of
the algorithm is related to the decay of the harmonic functions e} in the vicinity of
0%); via the subdomain boundary condition. Indeed, a small value for this BC leads
to a smaller error in the entire subdomain thanks to the maximum principle.

Moreover a fast decay for this value corresponds to a large eigenvalue of the DtN
map whereas a slow decay corresponds to small eigenvalues of this map because the
DtN operator is related to the normal derivative at the interface and the overlap
is thin. Thus the small eigenvalues of the DtN map are responsible for the slow
convergence of the algorithm and it is natural to incorporate them in the coarse grid
space.

We now explain why we only keep eigenvectors with eigenvalues smaller than
1/diam(€);) in the coarse space. We start with the constant coefficient case k = 1.
In this case, the smallest eigenvalue of the DtN map is zero and it corresponds to the
constant function 1. For a shape regular subdomain, the first positive eigenvalue is of
order 1/diam(€;), see [10]. Keeping only the constant function 1 in the coarse space
leads to good numerical convergence, see figure 4.2. In the case of high contrasts
in the coefficient k, the smallest eigenvalue of the DtN map is still zero. But due
to the variation of the coefficients we may possibly have positive eigenvalues smaller
than 1/diam(Q;). In order to have a convergence behavior similar to the one of the
constant coefficient case, it is natural to keep all eigenvectors with eigenvalues smaller

than 1/diam(Q;).

To obtain the discrete form of the DtN map, we consider the variational form of
(3.3). Let’s define the bilinear form a; : H*(Q;) x H' (%) — R,

a;(w,v) == / nwv + kVw - Vo.
Q.

i

With a finite element basis {¢x}, the coefficient matrix of a Neumann boundary
value problem in domain €2; is

AD — / ndrdi + KV Gi - V.
Q;

Let I (resp. T';) be the set of indices corresponding to the interior (resp. boundary)
degrees of freedom and nr, := #(I';) the number of interface degrees of freedom. Note
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that for the whole domain €2, the coefficient matrix is given by

Ay = /mekqﬁl +kVor - V.

With block notations, we have
AY) = A, AV, = Ap; and AD =4
II 1T, il i1 Ir; IT; -

But the matrix A%?Fi refers to the matrix prior to assembly with the neighboring sub-
domains and thus cannot be simply extracted from the coefficient matrix A. In prob-
lem (3.3), we use Dirichlet boundary conditions. Let U € R"": and u := ), . U, ¢y
Let v:=3 1 c; Vi ¢k + D cp, Vi ¢ be the finite element approximation of the solution
of (3.3). Let V; = (Vi)ker, we have with obvious notations:

A[]V]‘FA]EU:O. (3.6)

A variational definition of the flux reads

0
/ Ko gy = / nuoy + kVv - Vo
T. 8n Q;

k3

for all ¢y, k € T';. So the variational formulation of the eigenvalue problem (3.4) reads
/Q‘ nuok + kVu - Vo, = )\/F' KU P (3.7
for all ¢, k € I';. Let M, r, be the weighted mass matrix
(Myr, )k = /F Ko ¢, Yk, 1 €Ty,

The compact form of equation (3.7) is
AP U+ Ap, Vi =AM, U
With (3.6), the discrete form of (3.4) is a generalized eigenvalue problem
(ADL — Ap A A ) U =AM, U (3.8)

The step by step procedure on how to construct the rectangular matrices W* in the
coarse space matrix Z, see (3.2), is as follows.
ALGORITHM 1. In parallel for all subdomains 1 <i < N,
1. Compute eigenpairs of (3.8) (Ui, \Y), (Us, Ny), ..., (UL , AL ) such that

m;? my

A <N < 1/diam () < A

Mipr =+

2. Compute their harmonic extensions

Viii= (A A UL UDT, 1<k<m,;.



3. The final formula for the rectangular matriz W* with m; columns depends on
the system to be solved
If the extended system is solved, see (2.2),

W= Vil V).
If the original system is solved, see (2.1),
Wi=[D;Vj|...|D; V}\. ].

We call this procedure the Zpon method. We also use Zpon to denote the coarse
grid space constructed by this method. Its construction is fully parallel. Similarly we
call Zn;co the method of Nicolaides or the corresponding coarse grid space. Let us
remark that when 1 = 0 and the subdomain is a floating one, the lowest eigenvalue
of the DtN map is zero and the corresponding eigenvector is a constant vector. Thus,
ZnNico and Zpon coincide. As we shall see in the next section, when a subdomain
has several jumps of the coefficient, taking Zn;., is not efficient and it is necessary to
take Zpon with more than one vector per subdomain.

Note that when we work on the original system, the definition of the coarse space
involves a partition of unity via the matrices D;. Thus the vectors of the coarse space
are able to span the zero energy modes of the original problem if there are no Dirichlet
boundary conditions.

4. Numerical Results. From a practical point of view, it is more difficult to
work on the extended system (2.2) than on the original one (2.1). Indeed, when
working on (2.2) we have to create extra data structures. For this reason, we first
consider in § 4.1 a one-way decomposition of the domain. This enables us to work
both on the original system (2.1) and on the extended one (2.2). In § 4.2 an arbitrary
decomposition is considered. We will work only on the original system (2.1).

4.1. One-way domain decomposition. In order to illustrate numerically the
behavior of the coarse space, we first consider the following model problem:

Luim (= grcli) g = o)y + ) ) utep) = Savp) in 0.) x (0.1)

where the length L of the domain is proportional to the number of subdomains.

du/on =0
I I
| |
i | o
| | 1
I I =3
o I I ’8
I i i +
5 e Q Tk £
i i >
| | ~
o )
1 |
du/on =0

Fic. 4.1. Subdomains and boundary conditions.



We use Neumann boundary condition (BC) on the top and the bottom, Dirichlet
BC on the left and (9/0n + a)u = 0, &« < 1 on the right boundary, see Figure 4.1.

All the test cases are described in Table 4.1. We first consider the constant
coefficient case with c¢(y) = d(y) = 1.0 (CONST in Table 4.1). Afterwords we will
test more difficult cases, with discontinuities in the coefficients, such as c(y) = d(y)
= val[10 * y], where val is an array that defines the heterogeneity pattern and that
depends on two parameters a and b (e.g., in the case HPL3,val=[aabbaabb a a
means there are three high-permeability layers). In our tests we take a = 10°,b = 1,
and n = 10"".

Case Remarks
CONST ¢(y) = d(y) = 1.0, constant coeflicients

HPL1  ¢(y) =d(y) = val[lO*y],val =[bbbaaaabbbd
HPL2 ¢(y) =d(y) = val[ll0xy],val=[bbaabbaabbd
HPL3  ¢(y) =d(y) =val[l0xy],val=[aabbaabbad
HPL4 c(y) =d(y) = val[l0xy],val=[abbabbabbad
HPL5 c¢(y) =d(y) = val[ll0xy|,val=[bababababad

TABLE 4.1
Test cases. b =1,a = 100000.

In addition, we use the following parameters in our tests
® Niomain represents the number of subdomains.
® Noyeriap Stands for the overlap in z-direction; correspondingly the width of
the overlap is § = (noveriap + 1)h, where h is the mesh size.

® (Ngpt +Noverlap) 1S the number of grid points in z-direction in one subdomain.

® 1y, is the number of grid points in the y-direction.
These numerical tests are performed in MATLAB. We compare the two coarse grids,
namely the Nicolaides one (3.1) and the one defined in Algorithm 1 (D2N), only for
the RAS and JS preconditioners. See 4.2 for the RAS and AS methods. We use full
GMRES as the linear solver, together with the left preconditioner Pspgp2, which is
constructed by taking Z equal to Zn;eo Or to Zpay, where Zpon is of the form (3.2).
Please note that when using the left preconditioned GMRES on Ax = b, the residual
[|b — AZ|| is returned for the approximate solution Z (Figures 4.2-4.6).

4.1.1. The original vs. extended system. We first compare the effect of the
coarse grid correction when applied to the original system (2.1) (RAS method) or to
the extended system (2.2) (JS method). We begin with the Nicolaides coarse grid
space. As expected when there is no coarse grid correction, RAS and JS perform
similarly and have a plateau in the convergence curve.

For the constant case in Figure 4.2, the piecewise coarse grid space of Nicolaides
is quite good for both the extended system and the original system. It works better
on the extended system (2.2) (JS method) than on the original system (2.1) using
RAS (22 vs. 36 iterations).

For the case with discontinuities Zp;e, is not good. For this kind of problem,
Zpan gives a much faster convergence, see Figure 4.3. Note that for the case HPL2,
the number of small eigenvalues determined by (3.5) is 2, which is equal to the number
of high permeability layers, see [29].
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FiG. 4.2. Case CONST, JS and RAS using coarse grids. Ngomain =32, Novertap=1, Napt=8§,
Nypt =16, Both Znico and Zpan work well for the constant case.
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Fi1G. 4.3. Case HPL2, JS and RAS with coarse grid correction. Ngomain =064, Novertap=1,
Napt =8, Nypt =16. ZNico does not work well, while Zpan gives a fast convergence.

We can see that our Zpsny method works well on both the extended system and
the original system but it gives better convergence on the extended system. It seems
to us that this is due to the fact that for JS we do not need a partition of unity. For
RAS this partition of unity is necessary to be able to span the zero energy modes of
the original problem. But then, the local harmonicity of the coarse space components

is lost. This the reason why we will further investigate our Zpoy method on the
extended system.

4.1.2. The robustness of the Zpsny method. In the following we test the
robustness of the approach with respect to the various parameters of the problem:
jumps of the coefficients, number of subdomains, mesh size and size of the overlap.

Figure 4.4 shows that when using a coarse space the iteration numbers are almost
constant as the number of subdomains increases. The three convergence curves with
Zpan are difficult to distinguish.

We also consider the robustness with respect to the size of the jumps. We take
as an example in Table 4.2 the case HPL2 with a ranging from 1 to 10°. Using the
criterion (3.5), in each subdomain two small eigenvectors are chosen to construct the
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Fi1G. 4.4. Case HPL3 with various number of subdomains. Ngomain=128(cross), 64(circle),
32(triangular), Noveriap=1, Nypt=16. Zpan : dotted lines, JS : solid lines.
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F1G. 4.5. Case HPL3 with various mesh sizes: 1/64 (cross), 1/32 (circle) and 1/16 (triangle),
Noverlap =1, Ndomain=16. Zpan : dotted lines, JS: solid lines.

Zpan coarse space. We see that the iteration counts are almost constant as the size
of the jump in the coefficients increases by six orders of magnitude.

Jumps in coeff | 1 [ 10 [ 102 [ 10® | 10* | 10° | 10°

Iteration counts | 15 | 24 | 10 | 10 | 10 | 11 11
TABLE 4.2
Case HPL2 with the Zpan coarse space for jumps in the coefficients ranging from 1 to 106.

Ndomain =32, novcrlap:37 nxpt:gy Nypt =16.

In Figure 4.5, we plot the convergence curves for three successive refinements of
the mesh. We see an increase in the number of iterations that can be related to the
fact that the convergence rate of the Schwarz method depends on the physical size of
the overlap. Here, we have a two element overlap and thus the physical size of the
overlap decreases as the mesh is refined.

In Figure 4.6, we consider the test HPL1 with various sizes of overlap h, 2k and
3h solved with the Zpsn coarse space or without any coarse space (JS). For both
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methods, the iteration counts are improved as the overlap is increased. This is in
agreement with the theory of the Schwarz method.

——h, Mg

+-h PADEFZ: IS+ ZDZN

-o-2h, Mg

y O 2h, P aoer2 IS+ Z,\

—A-3h, Mg

AP, ISHZ

I I I
0 20 40 60 80 100 120 140 160

FiGc. 4.6. HPL1 with various overlaps: h (cross), 2h (circle) and 3h (triangle), ngomain =32,
Ngpt = Nypt =16. Zpan : dotted lines, JS: solid lines.

From the residual curves, we see that our method is very efficient and robust.

4.1.3. Spectral analysis of the preconditioned system. In Figures 4.7 and
4.8, we display the spectra of CONST case and HPL5 case respectively for the original
system, the one level method and the two level method with the D2N coarse grid using
Papgrae. The spectrum of the preconditioned matrices has three characteristics:

e the eigenvalues are between 0 and 2;

e the spectrum is more clustered;

e for Zpon the smallest eigenvalue is well separated from the origin.
Since the small eigenvalues near the origin have a negative influence on the fast con-
vergence, we check the minimum real part of eigenvalues of six cases (see Table 4.3).

x107 eig(A)
T

+

.

elg(M;;A)
T

Of x X X X X m000KK X X XOO0K = om o ox oxoxoom || meocxx x o om s w0000KK X X 000K X X X XX 3ok

i
(] 02 04 06 08 1 12 14 16 18 2

eig(P, A)

X100 ADEF?’

F1G. 4.7. Spectra of CONST case. Ngomain =16, Noveriap =1, Napt =8, nypt =16. The 3rd is the
result of Zpan method with 1 small eigenvector of DtN taken into account in each subdomain.

4.2. General decompositions. We now solve the model problem (1.1) on the
domain ©Q = [0,1]? discretized by a P finite element method. The diffusion x is
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F1G. 4.8. Spectra of HPL5 case. Ngomain =16, Novertap=1, Napt =8, Nypt=16. The 3rd is the
result of Zpan method with 5 small eigenvectors of DtN taken into account in each subdomain. The
number of small eigenvalues is determined by (3.5).

Case CONST | HPL1 | HPL2 | HPL3 | HPL4 | HPL5
N@meig 1 1 2 3 4 5
M;dA | 2.67e-6 | 2.67e-6 | 2.67e-6 | 2.67e-6 | 2.67e-6 | 2.67¢-6

PapgrA 0.23 0.40 0.40 0.40 0.40 0.40
TABLE 4.3
The minimum real part of eigenvalues. A is the coefficient matriz of the extended system (2.2)

and Mjg is the Jacobi-Schwarz preconditioner. Ngomain =16, Noveriap =1, Napt =8, nypt=16. The
test cases are defined in Table j.1.

a function of x and y. The boundary conditions are zero-Dirichlet on the entire
boundary. The corresponding discretizations and data structures were obtained by
using the software FreeFem++ [11] in connection with Metis partitioner [14]. In
the following we will compare the AS and RAS preconditioners with and without
Nicolaides coarse space to the new preconditioner based on the harmonic extension
of the eigenvectors of the local DtN operators.

We test the method on overlapping decompositions into rectangular N x N do-
mains and on decompositions into N x N irregular domains obtained via Metis. These
overlapping decompositions are built by adding layers to non-overlapping ones. The
general non-overlapping decompositions can be generated for example, by using the
Metis partitioner.

4.2.1. Homogeneous viscosity. In this case we have x = 1 in the whole do-
main. As in the case of a one-way decomposition, the two preconditioning methods
based on Nicolaides coarse grid and DtN eigenvectors, behave in quite a similar way
whether AS or RAS are used when the viscosity is constant in the whole domain.
Here we have chosen a 4 by 4 regular subdomain decomposition. Each subdomain
has 40 nodes on each side and the overlap equals 2 elements. As expected, using the
new algorithm, the number of eigenvectors contributed by each subdomain (which is
calculated automatically) is always 1. Figure 4.9 shows all three convergence curves
for both AS and RAS. This numerically asserts that in the constant coefficient case,
the Znico and Zpon are almost identical. The small differences lie in the fact that
for Zn;co the coarse space is defined analytically whereas for Zpopn it is obtained via
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Fia. 4.9. 4 x 4 subdomains, uniform k distribution, AS (left) and RAS (right)

a numerical procedure.

4.2.2. Highly heterogeneous viscosity. We will perform the same tests as
before on two different configurations of highly heterogeneous viscosity. We consider
the following situations:

e alternating viscosity: for y such that for [9y] = 0(mod 2), x = 105; and k = 1
elsewhere. (See Figure 4.10 (left))

e skyscraper viscosity: for z and y such that for [9z] = 0(mod 2) and [9y] =
0(mod 2), Kk = 10° - ([9y] + 1); and k = 1 elsewhere. (See Figure 4.10 (right))

Isovalue Isovalue

00001 00
m592637 9
We05361
meo7895 m592106
w710527 me3647d
m763158 me5o847

W73o11
mi68421 m7g157
mo21053 ma28547
B105263¢+06 moiT368

F1G. 4.10. Heterogeneous viscosity: alternating and skyscraper cases.

Here the number of eigenvectors considered in the construction of the coarse space
is more important than in the homogeneous case (otherwise the global information
cannot be correctly captured) and it may vary as a function of the number of sub-
domains. This is illustrated in Table 4.4 for the alternating case and Table 4.5 for
the skyscraper case. Note that for each subdomain the total number of eigenvalues
is equal to the number of nodes on the interface. In these cases, typical values are
2, 3 or 4. Table 4.6 shows that using the new method convergence highly improves
convergence whether a uniform or Metis partition is used in this highly heterogeneous
coefficient case. The Nicolaides preconditioner gives comparable results to the one
level method.
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subdomain | number of used eigenvalues | total number of eigenvalues
1 2 84
2 2 125
3 2 125
4 2 82
5 3 127
6 2 172
7 2 172
8 3 127
9 3 127
10 2 172
11 2 172
12 3 127
13 2 83
14 2 127
15 2 127
16 2 85
TABLE 4.4

4 by 4 decomposition - Number of functions contributed to the coarse space by each subdomain
for the ’alternating’ test case

subdomain | number of used eigenvalues | total number of eigenvalues
1 2 84
2 2 125
3 2 125
4 2 82
5 4 127
6 4 172
7 4 172
8 4 127
9 4 127
10 4 172
11 4 172
12 4 127
13 3 83
14 4 127
15 4 127
16 3 85
TABLE 4.5

4 by 4 decomposition - Number of functions contributed to the coarse space by each subdomain
for the ’skyscraper’ test case

4.2.3. A hard test case with inclusions and channels. In order to compare
our method to existing codes we solve a test case with known difficulties: the diffusion
coefficient x takes values between 1 and approximately 1.5 x 10 and the distribution
contains both inclusions and channels. The total number of nodes will always be
256 on each side of 2. The decomposition will change however: we will successively
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AS | AS+Nico | AS+D2N || RAS | RAS+Nico | RAS+D2N
Alternating | 65 76 29 51 57 16
Metis Alt. | 101 90 37 83 67 23
Skyscraper | 344 360 18 185 183 10
Metis Sky. | 375 968 28 164 158 19
TABLE 4.6

Convergence results for the ’skyscraper’ and ’alternating’ test case

Fic. 4.11. 4 x 4 subdomains uniform (left) and Metis (right) - This shows both the subdomain
boundaries and the jumps in k for the “hard” test case

consider a 2 x 2 decomposition, a 4 x 4 decomposition and an 8 x 8 decomposition.
noverlaps will always be equal to 2. As an illustration, we have chosen to present
extensively the 4 x 4 case both with and without using the Metis partitioner.

Figure 4.11 shows together the decomposition into subdomains and the jumps in
K, Figure 4.12 shows the convergence curves for the three methods using RAS and
Table 4.7 gives in detail the number of eigenvalues per subdomain that were used to
build the coarse grid in the case of a Metis decomposition. Again the number is often
higher than 1 because the heterogeneities in x impose that more global information
on the solution be exchanged to avoid the plateau phenomenon. The convergence
curves show that this strategy is a success.

4.2.4. Continuous variations of the coefficient. This time we take an ana-
lytical function for x which is chosen as:

k(z,y) = km/3 xsin(w * 7 % (x + y) + 0.1).

In our case sy = 10% and w = 4. We chose a 2 node overlap and a total of 160
nodes per side of the global domain. We study the 4 x 4 and 8 x 8 decompositions
both with and without Metis. As an example, Figure 4.13 shows information for the
4 by 4 decomposition using Metis. Table 4.10 shows information on the approximate
condition numbers of the preconditioned operators in the Metis 8 by 8 case. This
was achieved using the Ritz values during the conjugate gradient iteration procedure
when AS is used. As expected for D2N the smallest eigenvalue is larger than in the
other cases which leads to a better condition number for the operator. Finally Table
4.11 shows the number of iterations needed to reach convergence for all three methods
in all four cases. Again D2N performs significantly better.
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Fi1G. 4.12. 4 x 4 subdomains, uniform (left) and Metis (right)- RAS convergence for the ’hard’
test case

subdomain | number of used eigenvalues | total number of eigenvalues
1 3 155
2 1 109
3 5 175
4 3 183
5 3 153
6 2 125
7 1 71
8 3 128
9 4 193
10 4 174
11 2 71
12 2 128
13 3 166
14 3 127
15 3 188
16 3 106
TABLE 4.7

Metis 4 by 4 decomposition - Number of functions contributed to the coarse space by each
subdomain for the ’hard’ test case

AS | AS+Nico | AS+D2N || RAS | RAS+Nico | RAS+D2N
2x2 103 110 22 70 70 14
2 x 2 with Metis | 76 76 22 57 57 18
4 x4 603 722 26 169 165 15
4 x 4 with Metis | 483 425 36 148 142 23
8 x 8 461 141 34 205 95 21
8 x 8 with Metis | 600 542 31 240 196 19
TABLE 4.8

Convergence results for the ’hard’ test case
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Fic. 4.13. Metis 4 X 4 subdomains - k for the “Continuous” test case (left) and convergence
history (right)

subdomain | number of used eigenvalues | total number of eigenvalues
1 2 155
2 1 109
3 2 175
4 2 183
5 2 153
6 1 125
7 1 71
8 1 128
9 2 193
10 2 174
11 2 71
12 1 128
13 2 166
14 2 127
15 2 188
16 2 106
TABLE 4.9

Number of functions contributed to the coarse space by each subdomain for the “Continuous”
test case and the 4 X 4 decomposition with Metis

4.2.5. Random « distribution. In this section we propose a test with random
coefficient. We use a log-normal distribution for the parameter . This distribution
is calculated using the Gaussian Random field generator available at the web-page
http://www-users.math.umd.edu/ bnk/bak/generate.cgi courtesy of Boris Kozintsev
and Benjamin Kedem. We choose the exponential covariance family with parameters
0 = 1and 6; = e~ > with A\ = 4Az in order for the correlation r(l) between the values
at two points separated by a distance [ to be r(l) = e~x. This gives us a normal
distribution with mean value 0 of the random variable X at each grid point. We then
define X’ = 0 X + p in order to have a y mean value and a o standard deviation. In
our example, 11 = 3 and o = 2 (see Figure 4.14 (left)). Finally, we calculate x = 10X’
giving us a log-normal random field with m ean value p,, = pln(10) and standard
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Condition number | Smallest eigenvalue | Largest eigenvalue
AS 4.566043e+-03 8.760321e-04 4.000000e+-00
AS + Nicolaides 1.127232e+02 3.547273e-02 3.998598e+-00
AS + D2N 1.469540e+-01 2.717523e-01 3.993508e+-00

TABLE 4.10

Condition numbers for the “Continuous” test case 8 x 8 decomposition with Metis

AS | AS+Nico | AS+D2N || RAS | RAS+Nico | RAS+D2N
4 x4 57 46 32 48 35 23
4 x 4 with Metis | 64 48 30 53 41 24
8 X8 461 141 34 205 95 21
8 x 8 with Metis | 600 542 31 240 196 19
TABLE 4.11

Convergence for the “Continuous” test case

deviation o, = oln(10).

The parameters of the test case are the following: 4 by 4 subdomains, 20 nodes
per subdomain edge using a Metis partition. For these values A = 4x 55 = 0.05. The
size of the overlap will be successively 1, 2 and 3 and we will compare the restricted
additive Schwarz (RAS) and additive Schwartz methods (AS). The size of the overlap
does not have a significant influence on the comparison between methods as showed
in Table 4.14. In order to improve the condition number (Table 4.13) as many as 9

out of 99 eigenvectors are used to build the coarse space, with success.

5. Conclusions. We have considered the extended (2.2) and the original (2.1)
linear systems arising from the domain decomposition method with overlapping. We
applied the two-level preconditioner using the Schwarz algorithm and the coarse grid
correction. The coarse grid space is based on the low frequency modes of the local
DtN map. Its size automatically adapts to the difficulty of the problem. With this
coarse space, we can obtain fast convergence for problems with large discontinuities
(even along the interface) and arbitrary domain decompositions. The method has the
potential to be extended to other systems of equations like elasticity but it requires
further investigations.
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