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A Coarse Grid Space Construction Based on

Local DtN Maps

Frédéric Nataf∗ Hua Xiang† Victorita Dolean‡

May 24, 2010

Abstract

Coarse grid correction is a key ingredient in order to have scalable
domain decomposition methods. In this work we construct the coarse grid
space using the low frequency modes of the subdomain DtN maps, and
apply the obtained two-level preconditioner (the additive Schwarz method
together with the new coarse grid) to the extended or the original linear
system arising from an overlapping domain decomposition. The patch
method is also added to further improve the convergence. Our method is
suitable for the parallel implementation and its efficiency is demonstrated
by numerical examples on problems with high heterogeneities for both
manual and automatic partitionings.

Some notations and definitions

A coefficient matrix of the linear system Ax = b
Z, Y full rank matrices which span the coarse grid subspaces.
E E = Y TAZ, Galerkin matrix or coarse-grid matrix
Ξ Ξ = ZE−1Y T , coarse-grid correction matrix in MG and DDM
PD PD = I −AΞ = I −AZ(Y TAZ)−1Y T

QD QD = I − ΞA = I − Z(Y TAZ)−1Y TA
PBNN PBNN = QDM−1PD + ZE−1Y T

PADEF2 PADEF2 = QDM−1 + ZE−1ZT

1 Introduction

We consider the solution of the linear system Ax = b ∈ R
p arising from the

discretization of an elliptic boundary value problem of the type

ηu− div(κ∇u) = f (1)

where κ is the diffusion tensor which can be discontinuous. When using an
iterative method in a one-level domain decomposition framework, we can meet
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a long stagnation or a slow convergence, especially when the number of sub-
domains is large. Even when κ = 1, the convergence of a one-level domain
decomposition method presents a long plateau of stagnation. Its length is re-
lated to the number of subdomains of the decomposition in one direction. For
example, we know that for the problem divided into N subdomains in a one-way
partitioning, the convergence can never be achieved in less than N−1 iterations
since the exchange of information between the subdomains is reduced to their
common interfaces. Thus, the global information transfers only from one subdo-
main to its neighbors [15, 18]. One needs a two-level method to have a scalable
algorithm, i.e., an algorithm whose convergence rate is weakly dependent on the
number of subdomains, see [26] and references therein.

Two-level domain decomposition methods are closely related to multigrid
methods and deflation corrections, see [24] and references therein. These meth-
ods are defined by two ingredients: a full rank matrix Z ∈ R

p×m with m ≪ p
and an algebraic formulation of the correction. These techniques imply solving
a reduced size problem of order m×m called a coarse grid problem. The space
spanned by the columns of Z should ideally contain the vectors responsible for
the stagnation of the one level method. We will come back later to the choice
of Z in the framework of domain decomposition methods and focus now on the
various algebraic ways to improve the convergence by using the coarse grid.

According to [24], for a domain decomposition method (DDM), one well-
known coarse grid correction preconditioner is of the form I +ZE−1ZT , where
E = ZTAZ is the coarse grid correction used to speed up the convergence. The
abstract additive coarse grid correction proposed in [20] is M−1 + ZE−1ZT ,
where M−1 is the additive Schwarz preconditioner, a sum of local solvers in
each subdomain, which can be implemented in parallel. The first term is a fine
grid solver, and the second term represents a coarse solver. Hence it is called the
two-level additive Schwarz preconditioner. The BPS preconditioner introduced
by Bramble, Paschiak and Schatz [1] is of this type. In the context of domain
decomposition methods, we mention the balancing Neumann-Neumann precon-
ditioner and the FETI algorithm. They have been extensively investigated, see
[26] and references therein. For symmetric systems the balancing preconditioner
was proposed by Mandel [16]. The abstract balancing preconditioner [16] for
nonsymmetric systems reads [8],

PBNN = QDM−1PD + ZE−1Y T . (2)

For the preconditioner PBNN , if we choose the initial approximation x0 = Ξb,
then the action of PD is not required in practice, see [26, p.48]. Note that the
multigrid (MG) V(1,1)-cycle preconditioner PMG is closely related to PBNN .
Choosing the proper smoother M in PBNN , we can ensure that PMG and PBNN

are SPD, and PMGA and PBNNA have the same spectrum [25].
For a SPD system, by choosing Y = Z, the authors in [24] define

PADEF2 = QDM−1 + ZE−1ZT , (3)

which is as robust as PBNN but usually less expensive [24]. The two-level hybrid
Schwarz preconditioner in [23, p.48] has the same form as PADEF2. In this paper
we will mainly use PADEF2, but for the nonsymmetric cases.

Given the coarse grid subspace, we can construct the two-level precondi-
toners above. An effective two-level preconditioner is highly dependent on the
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choice of coarse grid subspace. We focus now on the choice of the coarse space
Z in the context of domain decomposition methods for problems of type (1)
with heterogeneous coefficients. In this case, the coarse space is made of vectors
with support in one subdomain or one subdomain and its neighbors. When the
jumps in the coefficients are inside the subdomains (and not on the interface)
or across the interface separating the subregions, the use of a fixed number of
vectors per subdomain in Z gives good results, see [6], [17], [21], [22], [4] and
[5]. When the discontinuities are along the interfaces between the subdomains,
results are not so good.

Here, we propose to construct a coarse subspace such that the two-level
method is robust with respect to heterogeneous coefficients for an arbitrary
domain decomposition. Even if the discontinuities are along the interface like
for instance in with layered coefficients and a one-way decomposition in the
orthogonal direction (see § 4.1, the iteration counts are very stable with respect
to jumps of the coefficients. Our method is based on the low-frequency modes
associated with the Dirichlet-to-Neumann (DtN) map on each subdomain. After
obtaining the eigenvectors associated with the small eigenvalues of DtN, we use
the harmonic extension to the whole subdomain. It is quite efficient even for the
problem with large discontinuities in the coefficients. Moreover, it is suitable for
the parallel implementation. We apply such a two-level preconditioner to the
original linear system (4) and to the extended one (5) arising from the domain
decomposition method.

Using the interface conditions is another strategy to accelerate the conver-
gence [18]. One can tune the interface conditions for a given problem to improve
the convergence speed of the iterative solution method. In this paper we use
the patch method, see [15].

The paper is organized as follows. In Section 2, we introduce the two-
level preconditioners using the additive Schwarz (AS) or the restricted additive
Schwarz (RAS) with the coarse grid correction. The construction of coarse grid
spaces is presented in Section 3. In Section 4 numerical tests on the model
problem demonstrate the efficiency of our method; in § 4.3 the patch method is
used to further improve the convergence. Some conclusion remarks are given in
Section 5.

2 Algebraic Domain Decomposition Methods

Without loss of generality, we consider here a decomposition of a domain Ω into
two overlapping subdomains Ω1 and Ω2. The overlap is denoted by O := Ω1∩Ω2.

This yields a partition of the domain: Ω̄ = Ω̄
(1)
I ∪ Ō ∪ Ω̄

(2)
I where Ω

(i)
I := Ωi\Ō,

i = 1, 2. At the algebraic level this corresponds to a partition of the set of

indices N into three sets: N
(1)
I , O and N

(2)
I .

After the discretization of the BVP (1) defined in domain Ω, we obtain a
linear system of the following form

A u :=







A
(1)
II A

(1)
IO

A
(1)
OI AOO A

(2)
OI

A
(2)
IO A

(2)
II













u
(1)
I

uO

u
(2)
I






=







f
(1)
I

fO

f
(2)
I






. (4)

We can also define the extended linear system by considering twice the variables
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Figure 1: Decomposition into two overlapping subdomains.

located in the overlapping region

Ã ũ :=
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, (5)

where the subscript ’O’ stands for ’overlap’, u
(i)
O are the duplicated variables in

the overlapping domain O, u
(i)
I are variables in the subdomain Ωi

I . It is easy
to check that if AOO is invertible, there is an equivalence between problems (4)
and (5).

A classical preconditioner to problem (4) is the restricted additive Schwarz
(RAS) method, see [2]. Let Rj be the rectangular restriction matrix to subdo-

main Ωj , j = 1, 2. Define R̃j by setting some ones in Rj to zeros, such that the

operators R̃j correspond to a non-overlapping decomposition,

R̃T
1 R1 + R̃T

2 R2 = I.

Then the restricted additive Schwarz method reads

un+1 = un + (R̃T
1 A

−1
1 R1 + R̃T

2 A
−1
2 R2)(f −Aun), (6)

where Ai := RiAR
T
i , i = 1, 2. Note that the RAS preconditioner is nonsym-

metric. It leads to an iterative method that is identical to the discretization of
the continuous Jacobi-Schwarz method, see [7].

An illustration of RAS is given in Figure 2 for a three subdomain decompo-
sition, where Ωi are overlapping subdomains and Ω∗

i are nonoverlapping subdo-
mains. We define

R̃T
1 =





IΩ∗

1

0
0



 , R̃T
2 =





0
IΩ∗

2

0



 , R̃T
3 =





0
0
IΩ∗

3



 ,

R1 =
[

IΩ1
0 0

]

, R2 =
[

0 IΩ2
0
]

, R3 =
[

0 0 IΩ3

]

,

where IΩi
is the identity matrix, whose dimension equals to the number of

unknowns in Ωi.

4
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Ω2

Ω1 Ω3

Figure 2: RAS (ndomain=3, noverlap=4-1, nypt= 6, see § 4.1 for these parame-
ters). The circles and the crosses stand for the unknowns in each subdomain.

From the iterative scheme (6), we can define the preconditioner

M−1
RAS := R̃T

1 A
−1
1 R1 + R̃T

2 A
−1
2 R2.

For our overlapping domain decomposition method (5), a natural preconditioner
can be built by using its diagonal blocks. For the two subdomain case (5), the
block diagonal preconditioner MAS is

MAS :=











A
(1)
II A

(1)
IO

A
(1)
OI AOO

AOO A
(2)
OI

A
(2)
IO A

(2)
II











. (7)

and one can easily notice that M−1
AS can be computed in parallel. This method

will be referred to as the AS method. When used in a Richardson algorithm
such as in (6), it was proved in [7] that MAS applied to (5) and MRAS applied
to (4) lead to equivalent algorithms. But as we shall see from numerical exper-
iments, two-level methods applied to (5) or to (4) are not necessarily equivalent.

Using preconditioners MAS or MRAS , we can remove the very large eigenval-
ues of the coefficient matrix, which correspond to high frequency modes. But the
small eigenvalues still exist and hamper the convergence. These small eigenval-
ues correspond to low frequency modes and represent certain global information.
We need a suitable coarse grid space to efficiently deal with them.

3 The Coarse Grid Space Construction

A key problem is the choice of the coarse subspace. Ideally, we can choose the
deflation subspace Z which consists of the eigenvectors associated with the small
eigenvalues. But the lower part of the spectrum of a matrix is costly to obtain.
For sure, the cost is larger than the cost of solving a linear system. Thus, there
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is a need to choose a priori the coarse space. For instance in [19], Nicolaides
defines the deflation subspace Z as follows

(zj)i =

{

1, if i ∈ Ωj ,
0, if i /∈ Ωj .

(8)

In [27, 28], the projection vectors zi are chosen in a similar but more complicated
way. Definition (8) is also used as the aggregation-based coarse level operator
in AMG [9]. Originally (8) is used for disjoint sets, not for the overlapping case.
In the following, we use it in the overlapping case as well. This coarse space
performs well in the constant coefficient case. But when there are jumps in the
coefficients, it cannot prevent stagnation in the convergence.

We propose now a construction of the coarse space that will be suitable for
parallel implementation and efficient for accelerating the convergence for the
problem with highly heterogeneous coefficients and arbitrary domain decompo-
sitions. We still choose Z such that it has the form

Z =













w1 0 · · · 0
... w2 · · · 0
...

... · · ·
...

0 0 · · · wd













, (9)

where d is the number of subdomains. The vectors wi are based on the smallest
eigenvectors associated with the DtN map in each subdomain Ωi.

More precisely, let us consider first at the continuous level the Dirichlet to
Neumann map DtNΩi

. Let uΓi
: Γi 7→ R,

DtNΩi
(uΓi

) =
∂v

∂ni

∣

∣

∣

∣

Γi

,

where v satisfies
{

L(v) := (η − div(k∇))v = 0, in Ωi,

v = uΓi
, on Γi,

(10)

where Γi is the interface boundary. If the subdomain is not a floating one
(i.e. ∂Ωi ∩ ∂Ω 6= ∅), it is necessary to add on this part of the boundary,
the boundary condition coming from the original problem. To construct the
coarse grid subspace, we use the low frequency modes associated with the DtN
operator:

DtNΩi
(wi) = λwi

with λ small.
In order to motivate this choice of the coarse space, we write the original

Schwarz method at the continuous level, where the domain Ω is decomposed in
a one-way partitioning.

Ωi Ωi+1Ωi−1
e
n

i

e
n+1

i−1
e
n+1

i+1

Ωi Ωi+1Ωi−1 e
n

i

e
n+1

i−1 e
n+1

i+1

Figure 3: Fast or slow convergence of the Schwarz algorithm.
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The error eni := un
i −u|Ωi

in subdomain Ωi at step n of the algorithm satisfies:

L(en+1
i ) = 0 in Ωi,

en+1
i =

∑

j 6=i ξ
j
i e

n
j on Ω̄i ∩ ∂Ωj ,

where ξji is such that
∑

j 6=i

ξji = 1∂Ωi
.

On the 1D example sketched in Figure 3, we see that the rate of convergence
of the algorithm is related to the decay of the harmonic functions eni in the
vicinity of ∂Ωi. A fast decay corresponds to a large eigenvalue of the DtN map
whereas a slow decay corresponds to small eigenvalues of this map. Thus the
small eigenvalues of the DtN map are responsible for the slow convergence of
the algorithm and it is natural to incorporate them in the coarse grid space.

To obtain the discrete form of the DtN map, we consider the variational
form of (10). Let’s define the bilinear form a : H1(Ωi)×H1(Ωi) → R,

a(w, v) :=

∫

Ωi

ηwv + κ∇w · ∇v.

With a finite element basis {φk}, the coefficient matrix of a Neumann bound-
ary value problem in domain Ωi is

A
(i)
kl =

∫

Ωi

ηφkφl + κ∇φk · ∇φl.

Note that for the whole domain Ω, the coefficient matrix is given by

Akl =

∫

Ω

ηφkφl + κ∇φk · ∇φl.

In problem (10), we use Dirichlet boundary condition: v is given on Γi by uΓ.
Let vI denote the value of interior points:

AIIvI +AIΓuΓ = 0.

Hence, vI = −A−1
II AIΓuΓ. The discrete counterpart of the normal derivative is

given by

AΓIvI +A
(i)
ΓΓuΓ.

Hence we get the discrete version of DtN in subdomain Ωi,

A
(i)
ΓΓ −AΓIA

−1
II AIΓ.

Let t be an eigenvector of the DtN map corresponding to a small eigenvalue,
we use the harmonic extension

wi =

(

−A−1
II AIΓt
t

)

to construct the coarse grid space (9). If the spectrum of the DtN map has
several isolated small eigenvalues we take all of them in the coarse space. We
denote by Nsmeig the number of eigenvectors per subdomain we incorporate in
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the coarse space. We call this procedure the ZD2N method. We also use ZD2N to
denote the coarse grid space constructed by this method. Its construction is fully
parallel. Similarly we call ZNico the method of Nicolaides or the corresponding
coarse grid space. Let us remark that when η = 0 and the subdomain is a
floating one, the lowest eigenvalue of the DtN map is zero and the corresponding
eigenvector is a constant vector. Thus, if Nsmeig=1, ZNico and ZD2N coincide.
As we shall see in the next section, when a subdomain has several jumps of the
coefficient, taking ZNico is not efficient and it is necessary to take ZD2N with
more than one vector per subdomain.

4 Numerical Results

In this section, we first consider in § 4.1 a one-way decomposition of the domain,
then in § 4.2 an arbitrary decomposition and in § 4.3 the effect of changing the
interface conditions.

4.1 One-way domain decomposition

In order to illustrate numerically the behavior of the coarse space, we first
consider the following model problem:

L u :=

(

−
∂

∂x
c(y)

∂

∂x
−

∂

∂y
d(y)

∂

∂y
+ η(y)

)

u(x, y) = f(x, y) in (0, 1)2.

We use Neumann BC on the top and the bottom, Dirichlet BC on the left

Ωiu=
0

∂u/∂n =0

(∂
/∂

n
+

α)
u=

0

ΓRΓL

∂u/∂n =0

δδ

Figure 4: Subdomains and boundary conditions.

and (∂/∂n + α)u = 0, α ≪ 1 on the right boundary, see figure 4. In our tests,
we first consider the case with constant coefficients, c(y) = d(y) = 1.0. It is
the case CONST in Table 2. We also test difficult cases with discontinuities
in the coefficients. We consider the coefficient with discontinuity c(y) = d(y)
= val[10 ∗ y], where val is an array to be defined and that depends on two
parameters a and b. In our tests we take a = 100000, b = 1, and η = 10−7. For
instance, in the case HPL3 in Table 2, val = [a a b b a a b b a a]. So there are
three high-permeability layers in the case HPL3.

In addition, we use the following parameters in our tests. ndomain represents
the number of subdomains. noverlap stands for the overlap in x-direction; corre-
spondingly the width of the overlap is δ = (noverlap+1)h. Here (nypt+noverlap)
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Case Remarks

CONST c(y) = d(y) = 1.0, constant coefficients
HPL1 c(y) = d(y) = val[10 ∗ y], val = [b b b a a a a b b b]
HPL2 c(y) = d(y) = val[10 ∗ y], val = [b b a a b b a a b b]
HPL3 c(y) = d(y) = val[10 ∗ y], val = [a a b b a a b b a a]
HPL4 c(y) = d(y) = val[10 ∗ y], val = [a b b a b b a b b a]
HPL5 c(y) = d(y) = val[10 ∗ y], val = [b a b a b a b a b a]

Table 2: Test cases. b = 1, a = 100000.

gives the number of grid points in x-direction in one subdomain, and nypt is the
number of grid points in the y-direction. Nsmeig stands for the number of
eigenvectors associated small eigenvalues in each subdomain, which are used in
constructing coarse spaces. These numerical tests are performed in Matlab.
We use the full GMRES as the linear solver, together with the preconditioner
PADEF2, which is constructed by taking Z equal to ZNico or to ZD2N .

4.1.1 The extended and the original systems

We compare the effect of the coarse grid correction when applied to the original
system (4) (RAS method) or to the extended system (5) (AS method). We
begin with the Nicolaides coarse grid space. Note that the coarse subspace Z
for RAS is chosen as

Z =





1Ω∗

1
0 0

0 1Ω∗

2
0

0 0 1Ω∗

3



 ,

where 1Ω∗

i
is a vector of all ones, and its length equals to the number of unknowns

in Ω∗
i . Recall that the subdomains Ω∗

i are nonoverlapping as shown in Figure 2.
As expected when there is no coarse grid correction, RAS and AS perform

similarly and have a plateau in the convergence curve. For the constant case
in Figure 5, the piecewise coarse grid space of Nicolaides is quite good for both
the extended system and the original system. It works better on the extended
system (5) (AS method) than on the original system (4) using RAS (21 vs.
32 iterations). When we use our method ZD2N , the convergence is further
improved. Since we used Nsmeig=3, the coarse space is then larger and this is
no surprise. But ZNico is not good for the case with discontinuities. For this
kind of problem, ZD2N gives a much faster convergence, see Figure 6.

We can see that our ZD2N method works well on both the extended system
and the original system. It gives better convergence on the extended system.
In the following, we focus on the extended system.

4.1.2 The extended system and ZD2N

In this subsection, we further investigate our ZD2N method applied to the ex-
tended system since it is the configuration that gives the best results. We test
the robustness of the approach with respect to the various parameters of the
problem: jumps of the coefficients, number of subdomains, mesh size, size of
the overlap and anisotropy of the mesh.
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Figure 5: Case CONST, AS and RAS using coarse grids. ndomain=16,
noverlap=1, nypt=8, nypt=16, Nsmeig=3. Both ZNico and ZD2N work well for
the constant case.
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gives a fast convergence.
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Figure 7 shows that when using a coarse space the iteration numbers are
almost constant as the number of subdomains increases. The three convergence
curves with ZD2N are difficult to distinguish.
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Figure 7: HPL3(a=100000) and various number of subdomains. Nsmeig=3,
ndomain=32, 64, 128, noverlap=3, nypt=8, nypt=16. ZD2N : dotted lines, AS :
solid lines.

We also consider the robustness with respect to the size of the jumps. We
take as an example in table 3 the case HPL2 with a = 1, 103, 105 and 106 with
the ZD2N coarse space. We have 32 subdomains and Nsmeig=2. We see that the
iteration counts increase only slightly as the size of the jump in the coefficients
increases by six orders of magnitude.

Jump 1 103 105 106

Iteration counts 10 11 14 18

Table 3: HPL2 with the ZD2N coarse space for jumps in the coefficients ranging
from 1 to 106 . Nsmeig=2, ndomain=32, noverlap=3, nypt=8, nypt=16.

In Figure 8, we plot the convergence curves for three successive refinements
of the mesh. We see an increase in the number of iterations that can be related
to the fact that the convergence rate of the Schwarz method depends on the
physical size of the overlap. Here, we have three meshes of overlap and thus the
physical size of the overlap decreases as the mesh is refined.

In Figure 9, we consider the test HPL1 with various sizes of overlap 2h, 3h
and 4h solved with the ZD2N coarse space or without any coarse space (AS).
For both methods, the iteration counts are improved as the overlap is increased.
This is in agreement with the theory of Schwarz method.

We also consider the test HPL3 with a = 100000 and three mesh ratios
hx/hy equals to 2., 1. and 1/2. In order to have a good convergence, we have
to increase the size of the coarse space from Nsmeig equals to three up to five.
Another possibility is to apply a diagonal scaling to the matrix before building
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Figure 8: HPL3 with various mesh sizes: 1/64 (cross), 1/32 (circle) and 1/16
(triangle), ZD2N : dotted lines, AS solid lines. Nsmeig=3, ndomain=32.
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Figure 9: HPL1 with various overlaps: 2h (cross), 3h (circle) and 4h (triangle),
ZD2N : dotted lines, AS solid lines. Nsmeig=1, ndomain=32, nypt=8, nypt=16.

12



the domain decomposition method. This enables us to have a good convergence
while keeping the number of small eigenvalues (Nsmeig) equal to three which is
the number of high permeability layers in the test HPL3.

For problems with jumps in the coefficients, Nsmeig is important. IfNsmeig is
small, the coarse grid space is not large enough to capture the global information,
and it still converges slowly. We can increase Nsmeig, i.e., the size of the coarse
grid space, to improve it (see Figure 10). When using a diagonal scaling the
best choice is Nsmeig equals to the number of layers, see [27].
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Figure 10: HPL3(a=100000), the case with 3 high-permeability layers.
ndomain=64, noverlap=1, nypt=8, nypt=16. Increasing Nsmeig can improve the
convergence. We use PADEF2, constructed by ZNico, ZD2N .

From the residual curves, we see that our methods are very efficient and
robust. Next we examine the spectrum. The spectrum of preconditioned ma-
trices has two characteristics: The spectrum is more clustered, and the smallest
eigenvalue is well separated from the origin. We check the spectrum of the pre-
conditioned system using PADEF2, which are constructed by ZD2N . In Figure
11 and 12, we display the spectra of CONST case and HPL2 case respectively.
Since the small eigenvalues near the origin influence the fast convergence, we
check the minimum real part of eigenvalues of six cases (see Table 4).

Case CONST HPL1 HPL2 HPL3 HPL4 HPL5
Nsmeig 1 1 2 3 7 9

M−1Ã 2.67e-6 2.67e-6 2.67e-6 2.67e-6 2.67e-6 2.67e-6

PADEF2Ã 0.23 0.19 0.40 0.4 0.4 0.098

Table 4: The minimum real part of eigenvalues. Ã is the coefficient matrix of
the extended system (5) and M is the Schwarz preconditioner. ndomain=16,
noverlap=1, nypt=8, nypt=16. The test cases are defined in Table 2.
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Figure 11: Spectra of CONST case. ndomain=16, noverlap=1, nypt=8, nypt=16.
The 2nd is the result of ZD2N method with Nsmeig=1.
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Figure 12: Spectra of HPL2 case. ndomain=16, noverlap=1, nypt=8, nypt=16.
The 2nd is the result of ZD2N method with Nsmeig=2.
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4.2 General decompositions

We solve now the model problem (1) on the domain Ω = [0, 1]2 discretized by
a P1 finite element method. The diffusion κ is a function of x and y. The
corresponding discretizations and data structures were obtained by using the
software FreeFem++ [10] in connection with Metis partitioner [13]. In the
following we will compare the RAS preconditioner with and without Nicolaides
coarse space to the new preconditioner based on the harmonic extension of the
eigenvectors of the local DtN operators. We consider here two situations:

• homogeneous viscosity: κ = 1 in the whole domain.

• highly heterogeneous viscosity: skyscraper and alternating case, (see Fig-
ure 15), defined as follows.

skyscraper viscosity: for x and y such that for [10x] ≡ 0(mod 2) or
[10y] ≡ 0(mod 2), κ = 103 · ([10y] + 1), and κ = 1 elsewhere.

alternating viscosity: for y such that for [10y] ≡ 0(mod 2), κ = 103 ·
([10y] + 1), and κ = 1 elsewhere.

In all three cases, we first test the methods on overlapping decompositions into
rectangular N × N domains with N = 2, 4 and 8 and then on decompositions
into irregular domains obtained via Metis. These overlapping decompositions
are build by adding layers to non-overlapping ones. The general non-overlapping
decompositions can be generated for example, by using the Metis partitioner (see
Figure 13 for such a decomposition into 64 subdomains). The number of dis-
cretization points for the uniform decompositions is 14×14 in every subdomain
and an overlap of δ = 4 mesh cells. The number of unknowns increase as N2.

Decomposition into 64 domains using Metis

Figure 13: Decomposition into 64 subdomains using Metis.

Homogeneous viscosity As in a the case of a one-way decomposition, the
two preconditioning methods based on Nicolaides coarse grid and DtN eigenvec-
tors, behave in quite a similar way when the viscosity is constant in the whole
domain. If we take Nsmeig=1 (as in this case the DtN operator has one small
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eigenvalue in each subdomain) the iteration number for the two preconditioners
is very close. In order to get a significant advantage (half of the number of
iterations), one needs to consider at least Nsmeig=4. Moreover, the results are
stable in both cases when one varies the number of subdomains in each direction
(see Table 5) and the convergence history shows no significant differences for
uniform or automatic decompositions (see Figure 14).

uniform N ×N decomposition N ×N decomp. using Metis
N RAS PBNN : RAS+ZNico PBNN : RAS+ZD2N RAS PBNN : RAS+ZNico PBNN : RAS+ZD2N

2 18 17 10 27 23 12
4 41 23 12 54 32 15
8 78 25 12 111 37 16

Table 5: The homogeneous case, κ = 1, Nsmeig=4.
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Figure 14: Convergence curves for the homogeneous case. Nsmeig=4, Decom-
position into N2 subdomains (N = 4 top, N = 8 bottom) and a regular decom-
position (left) vs. Metis decomposition (right pictures).

Highly heterogeneous viscosity In this case we will perform the same tests
as before on two different configurations of highly heterogeneous viscosity, as
defined above and shown in Figure 15. Here the number of eigenvectors consid-
ered in the construction of the coarse space is much more important than in the
homogeneous case (otherwise the global information cannot be correctly cap-
tured) and it may vary as a function of the number of subdomains. Nevertheless,
even with a very low number of eigenvectors Nsmeig=4 (as in the homogeneous
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case) show a clear advantage of the DtN preconditioner over Nicolaides one: see
Table 6 and Figure 16 for the skyscraper configuration and Table 7 and Figure
17 for the alternating configuration.

IsoValue
-577.895
290.447
869.342
1448.24
2027.13
2606.03
3184.92
3763.82
4342.71
4921.61
5500.5
6079.39
6658.29
7237.18
7816.08
8394.97
8973.87
9552.76
10131.7
11578.9

viscosity
IsoValue
-51.5789
27.2895
79.8684
132.447
185.026
237.605
290.184
342.763
395.342
447.921
500.5
553.079
605.658
658.237
710.816
763.395
815.974
868.553
921.132
1052.58

viscosity

Figure 15: Heterogeneous viscosity: skyscraper and alternating cases.

uniform N ×N decomposition N ×N decomp. using Metis
N RAS PBNN : RAS+ZNico PBNN : RAS+ZD2N RAS PBNN : RAS+ZNico PBNN : RAS+ZD2N

2 112 97 24 229 203 29
4 >400 299 18 >400 >400 32
8 >400 294 18 >400 >400 23

Table 6: The skyscraper, Nsmeig=4.

uniform N ×N decomposition N ×N decomp. using Metis
N RAS PBNN : RAS+ZNico PBNN : RAS+ZD2N RAS PBNN : RAS+ZNico PBNN : RAS+ZD2N

2 30 29 11 46 41 19
4 80 58 26 116 84 25
8 180 61 31 220 110 31

Table 7: The alternating viscosity, Nsmeig=4.

A better strategy would consist in adapting Nsmeig in function of the de-
composition into subdomains. In Table 8, Nsmeig is increased as the number
of subdomains increases. We see that the results are further improved and are
very similar to the homogeneous case.

4.3 The patch method

As we have seen before, using the coarse grid space enables the capture of the
global information and greatly accelerates the convergence, for the constant
case as well as for the cases with discontinuities. Without the coarse grid space,
the information between two successive subdomains is exchanged through the
boundary. In the previous section, we used Dirichlet interface conditions. Since
the seminal work of P.L. Lions [14], it is well known that other interface condi-
tions yield better convergence rates, see [3, 11]. In this section, we test the patch
interface conditions, see [15]. They have the advantage to be defined at the al-
gebraic level and they are easy to use for operators with arbitrary coefficients.
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Figure 16: Convergence curves for the skyscraper case. Nsmeig=4, Decomposi-
tion into N2 subdomains (N = 4 top, N = 8 bottom) and a regular decompo-
sition (left) vs. Metis decomposition (right pictures).

uniform N ×N decomposition N ×N decomp. using Metis
N PBNN : RAS+ZNico PBNN : RAS+ZD2N (Nsmeig) PBNN : RAS+ZNico PBNN : RAS+ZD2N (Nsmeig)
2 97 12(6) 203 12(6)
4 299 11(8) >400 12(8)
8 294 13(10) >400 14(10)

Table 8: The skyscraper, varying Nsmeig.
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Figure 17: Convergence curves for the alternating viscosity case. Nsmeig=4,
Decomposition into N2 subdomains (N = 4 top, N = 8 bottom) and a regular
decomposition (left) vs. Metis decomposition (right pictures).
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Figure 18: Patch method.
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The principle is to approximate the Schur complement of the exterior of each
subdomain (discrete counterpart of the DtN map) by a sparse matrix obtained
by a “patch” method. At each node on the interface, is associated a patch region
which is a small part of the exterior to the subdomain, see Figure 18. The small
local Schur complement of the patch is computed and contributes locally to the
approximation of the global Schur complement. This procedure is repeated for
each node on the interface. Our tests are performed on the one-way decompo-
sition of § 4.1. The width of the patch is 5 nodes and the depth is the size of
the neighbor subdomain. Using the patch method can decrease the iteration
number. Only half of the iteration number is needed for the constant case (see
Figure 19). For the case with discontinuities, such as HPL3, the patch method
can also improve the convergence (see Figure 20).
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Figure 19: Convergence of CONST case with or without patch. Nsmeig=2,
ndomain=32. The preconditioner used here is PADEF2.

5 Conclusions

We have considered the extended (5) and the original (4) linear systems arising
from the domain decomposition method with overlapping. We applied the two-
level preconditioner using the Schwarz algorithm and the coarse grid correction.
The coarse grid space is based on the low frequency modes of the local DtN
map. Its size can be adapted to the difficulty of the problem. With this coarse
space, we can obtain fast convergence for problems with large discontinuities
(even along the interface) and arbitrary domain decompositions.
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