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Time Reversed Absorbing Condition: Application to Inverse
Problems

F. Assous* M. Kray! F. Nataf! E. Turkel*

Abstract

The aim of this paper is to introduce the time-reversed absorbing conditions (TRAC) in
time-reversal methods. They enable one to “recreate the past” without knowing the source
which has emitted the signals that are back-propagated. We present two applications in
inverse problems: the reduction of the size of the computational domain and the determi-
nation, from boundary measurements, of the location and volume of an unknown inclusion.
The method does not rely on any a priori knowledge of the physical properties of the inclu-
sion. Numerical tests with the wave and Helmholtz equations illustrate the efficiency of the
method. This technique is fairly insensitive with respect to noise in the data.
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1 Introduction

Since the seminal paper by Fink et al. [FWCM91], time reversal is a subject of very active
research. The main idea is to take advantage of the reversibility of wave propagation phenomena,
for example in acoustics or electromagnetism in a non-dissipative but unknown medium, to back-
propagate signals to the sources that emitted them. The initial experiment, see [FWCM91], was
to refocus, very precisely, a recorded signal after passing through a barrier consisting of randomly
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distributed metal rods. The remarkable feature of this experiment is the practical possibility
to precisely focus a signal after it has crossed random barriers and even without knowing its
location. There have been numerous applications of this physical principle, see [Fin09] and
references therein. The first mathematical analysis can be found in [BF02] and [BPZ02].

As shown experimentally in [dRF02], it is necessary to know the source that emitted the
signals to overcome the diffraction limit. The same difficulty was pointed out in [LMEFT06]
when numerically studying the initial instants of an earthquake by sending back long period
time-reversed seismograms.

We will introduce a new method that enables one to “recreate the past” without knowing
the source which has emitted the signals that will be back-propagated. This is made possible by
using time reversed absorbing conditions (TRAC) after removing a small region enclosing the
source. This technique has at least two applications in inverse problems:

1. the reduction of the size of the computational domain by redefining the reference surface
on which the receivers appear to be located

2. the location of an unknown inclusion from boundary measurements

The first application is reminiscent of the redatuming method introduced in [Ber79)]. In our case,
we use the wave equation and not a paraxial or parabolic approximation to it. This extends the
domain of validity of the redatuming approach. Concerning the second application there is a
huge literature that deals with this inverse problem. We mention the MUSIC algorithm [The92]
and its application to imaging [LD03], the sampling methods first introduced in [CK96], see the
review paper [CCMO00Q] and references therein, and the DORT method [PMSF96]. Mathematical
analysis of this kind of approach can be found in [CK98|]. These methods were developed in
the time-harmonic domain for impenetrable inclusions. The TRAC method is designed in both
the time-dependent and harmonic domains and does not rely on any a priori knowledge of the
physical properties of the inclusion. It works both for impenetrable and penetrable inclusions.

The outline of the paper is as follows. In sections [2.1] and we introduce the principle of
the TRAC method both in the time dependent and harmonic domains. We present in section
two applications of the method in the context of inverse problems. The end of section [2]is
devoted to the explicit derivation of the method to the wave and Maxwell equations in both
the time dependent and harmonic cases. In section [3| we give numerical applications of the
TRAC method for the wave equation and the Helmholtz equation. We propose various criteria
for applying our method to inverse problems. We investigate the sensitivity with respect to the
magnitude of the noise in the data and its ability to handle penetrable inclusions.

2 The TRAC method and applications

2.1 The TRAC method in the time dependent case

We consider an incident wave U! impinging on an inclusion D characterized by different physical
properties from the surrounding medium. We denote by dD the boundary of this inclusion. The
total field UT can be decomposed into the incident and scattered field, so U := Ul + U®. We
consider the problem in d dimensions d = 1,2, 3 and assume that the total field satisfies a linear
hyperbolic equation (or system of equations) denoted by £, that can be written

L{UT)=0in R? (1)

together with zero initial conditions, which will be detailed later. The scattering field U° has
to satisfy a radiation condition at the infinity to ensure the uniqueness of the solution. For



the wave equation we use the Sommerfeld radiation condition, or the Silver-Miiller radiation
condition for the Maxwell equations (see sections below).

Let ©2 denote a bounded domain that surrounds D with I'g as its boundary. We assume that
the incident wave U! has compact support in time and space and that after a time T the total
field UT vanishes in the bounded domain . Let V be a field that satisfies equation . We

Figure 1: Geometry

denote by Vg the corresponding time-reversed field that also satisfies the same physical equation.
The time-reversed solution ug of the wave equation is defined by uﬁ = uT(Tf —t, @), see
section For the Maxwell equation , the time-reversed electromagnetic field is defined by
(EL, BL) = (—ET(Tf —t,7), BT(Tf —t,%) ), see section Similar definitions will be used
for the incident and scattered fields.

Our first aim is to derive a boundary value problem (BVP) whose solution is the time-
reversed field. For this purpose, we assume that we have recorded the value of the total field UT
on the boundary I' that encloses the domain 2. However, we don’t assume to know the physical
properties of the inclusion or the exact location of the body i.e. we don’t know the exact form
of the operator £ inside the inclusion D. The only things we know are the physical properties
of the surrounding medium, in other words the operator £ outside D. There L is assumed to
be a constant coeflicient operator denoted Ly. Thus, U};; satisfies the following equation

Lo(UE) =01in (0,Ty) x Q\D. (2)

We impose Dirichlet boundary conditions on I'g equal to the time-reversal of the recorded fields
and zero initial conditions. The key point is that we lack a boundary condition on the boundary
of the inclusion 9D in order to define a well-posed BVP on the time-reversed field U}, in Q\D.
For inverse problems, the shape and/or location of the inclusion D is not known and sometimes
the type of boundary condition (hard or soft inclusion) on the body is also not known.

To overcome these difficulties, the classical approach for example solves the problem in
the entire domain (2, assuming that there is no inclusion D, see [LME"06] and references therein.
Denote by Wg this “approximate” time-reversed solution, we have in the entire domain €:

Lo(WE) =01in (0,Ty) x Q (3)

with Dirichlet boundary conditions on I'g equal to the time reversal of the recorded fields and
zero initial conditions. One can readily verify that this approximate time-reversed solution Wg
differs from U};.



Remark 1 Another possibility is to try to reconstruct the reversed scattered field U quz instead of
the total reversed field Ug. In this case, the classical approach consists in solving

Lo(Wg) =01in (0,Tf) x

with Dirichlet boundary conditions on I'p equal to the time reversal of the recorded fields mi-
nus the time-reversed incident field and zero initial conditions. It is easy to check that this
approximate time-reversed solution Wg differs as well from Ug.

To derive a boundary value problem satisfied by U};; without knowing the physical properties
of the inclusion D or its exact location, we introduce B a subdomain enclosing the inclusion D,
see Figure ([l Then, we have to determine a specific boundary condition for U}g on the boundary
OB so that the solution to this problem will coincide with U} in the restricted domain Q \ B.

In order to derive this boundary condition, we note that Lo(U?) = 0 so that the scattered

wave U® satisfies
Lo(U%)=0in R4\ D
(4)

U* satisfies a radiation condition at oo

and zero initial conditions. We make use of the property that the surrounding medium Q\ D is
homogeneous. As a first step, we look for a relation satisfied by U® on 9B. Numerical absorbing
boundary conditions e.g. [EM77] and [BT80] construct accurate approximations to a perfectly
absorbing boundary condition. We denote by ABC an absorbing boundary condition, that can

be formally written as
ABC(U®) =0 on dB. (5)

Since UT = U + U, we have ABC(UT — U') = 0 or equivalently ABC(UT) = ABC(U).
Our main ingredient is to time-reverse this relation into a relation that we will denote

TRAC(U}) = g(U!) on 0B (6)

where g(U') denotes a known function which is related to the time reversal of ABC(U'). The
design of TRAC and g(U') will be specified in the subsequent sections depending on the spe-
cific problem. We shall see that the absorbing boundary condition ABC is different from its
time-reverse companion TRAC that will be referred to as a TRAC (Time Reversed Absorbing
Condition). To summarize, the problem satisfied by U} in the restricted domain 2\ B can be
written:

Lo(UL)=01n (0,T) x Q\B

(7)
TRAC(UL) = g(U!) on 0B

together with Dirichlet boundary conditions on I'g equal to the time-reversal of the recorded
fields and zero initial conditions. By solving @, we are able to reconstruct the total field UT
at any point of the domain 2\ B and any time in (0, T}).

We shall illustrate our approach by deriving equation from equation for several
classical examples: the wave equation and the Maxwell system. The same procedure can be
applied to the elasticity system and non-linear hyperbolic problems before a shock formation.



2.2 The TRAC method in the harmonic case

We consider the time-harmonic counterpart of problem ({1)) and denote by L the Fourier transform
in time of the operator £. The unknown total field U* (&) is decomposed into the sum of an
incident field U7 (%) and of a scattered field U (&). We have:

(8)

US (%) := UT(%) — U!(Z) satisfies a Sommerfeld condition at oo .

In this context, the analog to the time-reversal method is the phase conjugation technique,
see [CM9I]. Let V be a field that satisfies the harmonic equation. We denote by Vg the
corresponding harmonic time-reversed field that still satisfies the same harmonic equation. For
the Helmholtz equation we proceed in the following way. Let v(t,Z) be a time dependent
real valued function solution to the wave equation and vg(t, Z) := v(—t, %) its associated time-
reversed function. Since we consider the harmonic case, there is no notion of a final time T as
above. The Fourier transform in time of the above definition yields:

Ur(w, @) = /U(—t, T)e " dt = /v(t, Z) et dt = /U(t, T) e~ Wt dt = v(w, 7).

This identity shows that the phase conjugation is the Fourier transform of the time-reversal
process in the case of the Helmholtz equation. For the harmonic Maxwell equation , we
proceed in a slightly different way. Recall that for the Maxwell equation , the time-reversed
electromagnetic field was defined by (Egr, Br) := (—E(—t,Z), B(—t,Z) ), see section The
Fourier transform in time of the above definition yields:

< =

(ER(W7f)a BR(W’f)) = (_E(Wa f)v B(w7f) )

Thus, the classical time-reversal process in the harmonic regime applied to amounts to
conjugating the recorded data (and in the Maxwell case to take the opposite of the electric field)
and solving the following harmonic time-reversed problem:
Lo(WL) =0in Q

f o

Wgz Ug onI'p

which is the equivalent to in the harmonic regime. Hence, following the same steps as above
for deriving equation from equation , we get:

Lo(UL) =0 in Q\B
- (10)

TRAC(U%) = g(U) on OB

together with Dirichlet boundary conditions on I'g equal to the harmonic time-reverse of the
recorded fields.

We shall illustrate our approach by deriving equation for several classical examples: the
Helmholtz equation and the time harmonic Maxwell system. The same process can be applied
to the time harmonic elasticity system.



2.3 Derivation of the TRAC method

A first application to inverse problems is a reduction of the size of the computational domain.
Since, we are able to compute the total field UT on an artificial boundary 0B, it is equivalent
to having the boundary I'r moved to 0B. As a consequence, the cost of the forward problems
involved in the identification algorithm is reduced.

A second application is to localize the inclusion by a trial and error procedure. At the initial
time t = 0, the total field U7 is zero. Thus, if B encloses the inclusion D, Ulg which is exactly
the time-reversal of U7 is zero at the final time Ty that corresponds to the initial time of the
physical problem . Conversely, if after solving equation , Ulg is not zero at the final time
T}, it proves that the assumption that D is a subset of B is false. Hence, by playing with the
location and size of the subdomain B, it could be possible to determine the location and volume
of the inclusion D. This technique will be the core subject of section

2.4 The wave equation

We first consider the case of the three dimensional acoustic wave equation with a propagation
speed ¢ which is constant outside an inclusion D. We denote the total field as u” which is
decomposed into an incident u! and a scattered field «°. With these notations, equation
reads:

2,5
3817;; — Au® =0in R}\D
u’(t, ) satisfies a Sommerfeld condition at oo (11)

homogeneous initial conditions.

This problem is under-determined since we don’t specify any boundary condition on dD. Thus
u® is not necessarily zero. We define the time-reversed total field u} by uk(t,-) := uT (T} —t, ).
Since, the wave equation involves only second order time derivatives, this definition ensures that
the reverse field u% is a solution to the wave equation as well. In order to derive the absorbing
boundary condition (5)), we consider, for the sake of simplicity, that the subdomain B is a ball
of radius p centered at the origin denoted B,. Let r be the radial coordinate, we consider the
first order Bayliss-Turkel ABC BT* [BT80, BGT82]:
ou’ ou’ u’

For ease of the derivation in three dimensions, we use an equivalent form of equation ({12]):

;(ru5)+c;(rus):0. (13)

The above equation is the counterpart of equation for the wave equation. We next wish to
express @ explicitly for the time-reversed equation . The total field u” = u! + u° satisfies

0 0

() + e o (a1, ) = o

0
= (rul (1)) + ¢ 5 (rul(1,9))

Using uh(t,-) = uT (T — t,-), we get

P+ e S (rub)ley e = Tl (1)) + e o (ral(1,)

0
(_&( ot or



or equivalently,

() + e 5 (ruf(t, )

(Ol + ¢ S ru o

Note, that on 0B,, 0 /Or = —0 /On where n is the outward normal to the restricted domain
Q\ B,. Multiplying by —1, we get

©(ruft, ) + oo (ruk(t,) = (o (ru) e o (rul Yy o (14)

Another way to write this boundary condition is to introduce the time-reversed incident field
I T
up(t, ) ==u (T —t,-),
so that can be expressed as

© () o o (rub(t,) = S (ru(t, ) + e - (ruk(t, ). (15)

This expression is the counterpart of equation @ Since Or/0n = —1, relation can be
rewritten as:

0 0 uk(t,- 0 0 ub(t, -
0 bt ) e (e, ) B0 2 Dt )+ e Ll ) - ) g
So we define the boundary condition TRAC by:
0 0 uk(t,-
TRAC(R) = L (uh(t.) + e -y, )) - D (7)

Note, that due to the minus sign before the term ug/r, the TRAC is not the BT!
absorbing boundary condition. The time-reversed problem analog to reads:

0*uky B
ot?
TRAC(uk) = TRAC(ul) on 0B,

A Auk =0in (0,T7) x Q\B,

ub(t,7) = uT(Ty —t,%) on Tg

zero initial conditions.

The TRAC is not only not the standard BT! ABC but also has an “anti absorbing” term

(—cug /7). A natural concern arises about the well-posedness of BVP . Although we have not

developed a general theory, we prove an energy estimate for this problem in a special geometry,

see [AKNT10]. In many computations we have never encountered stability problems. In section
a numerical procedure for inclusion identification will be deduced from this formulation.

The generalization of to two space dimensions is straightforward, see [BT80, BGT82].

In the above computation, it is sufficient to replace r by +/r and 1/r by 1/(2r) and reads:

S S S

%+c%+c;:0. (19)

In the above derivation we have assumed that the surface B is a sphere or a circle. Since we

are finding an approximate location of the inclusion this is usually sufficient. For an elongated



body a ball can be replaced by an ellipse or spheroidal surface. Absorbing boundary conditions
for these cases have been developed in [MTHOS, MT09, BDSG09]. For more general surfaces
several absorbing conditions have been developed, for example [ABB99, [KTU87]. Comparisons
between many options are presented in [MTHOS, MT09]. As shown above, a first order TRAC
method simply reverses the sign of the non-differentiated term of the corresponding first order
absorbing boundary condition. Thus, a first order TRAC for a general bounding surface in two
dimensions is given by:

CK

uh(t, ) + e (bt ) — St ) (20)

Ty .

0
= a(

where « is the curvature of the bounding surface B.

2.5 The Helmholtz equation

Denote by w the dual variable of ¢ for the Fourier transform in time. The total field u” can be
decomposed into an incident and scattered field, i.e. u” := u! + «%. The Helmholtz equation is
derived by taking the Fourier transform in time of the wave equation, yielding:

—w2ul — 2AuT =0 in R3
(21)

(u? — u') satisfies a Sommerfeld radiation condition at oco.

Recall that our aim is to write a BVP whose solution is the conjugate of u’. Following
section it is sufficient to take the Fourier transform of equation to get:

—w?uh — *Auk = 0in Q\B,

o T T o 1 1
iwu%—i—c%—c%{:iwué—l—c%—cuf on 0B, (22)
uh(Z) =u’(Z) on Tp.

We emphasize that the time-reversed absorbing condition TRAC
o T T
TRAC(u}h) :=iwuk + ¢ Sl LY | given (23)
on r
is not the BT absorbing boundary condition
.7 out  ul )
wu +c—4—+c— = given.
on r

As before, generalizations to two dimensions and other shapes for B are straightforward.

2.6 The Maxwell equation

As a second case, we consider the three dimensional Maxwell equations. For the sake of simplic-
ity, we assume that outside the inclusion D the medium is linear, homogeneous and isotropic
with a constant speed of light denoted by c¢. Denote by E the electric field and by B the
magnetic induction. Denote the total field by (ET,BT) which is decomposed as above into



an incident (E!, B!) and a scattered field (E®, B®). With these notations, the counterpart of
equation reads

( S
%—CQVXBS:O, in R3\ D,
aBS S : 3
W+VXE :0, IDR\D, (24)

(E°(t, %), B%(t, Z)) satisfies a Silver — Miiller radiation condition at oo

| and zero initial conditions.
We introduce the time-reversed solution
(ER(t,7), BR(t,7)) == (—E(Ty —t,7), B(Ty — t,7)). (25)

Note, that the Maxwell system is a first order hyperbolic system, but is not invariant un-
der a time-reversal. So, we multiply the electric field by (—1) so that the electromagnetic
field ( EL(t, Z), BL(t,Z) ) solves a time-reversable equation and we can construct an absorbing
boundary condition analog to . We still consider a subdomain B that is a ball of radius p
centered at the origin and denoted B,. We assume that the following approximate absorbing
Silver-Miiller boundary condition is reasonable:

(E°xv)xv+c¢BYxv=0 (26)

where v is the outward normal to the ball B,. The above equation is the counterpart of equa-
tion for the Maxwell equation. The next step is to derive an explicit expression for the time
reverse of equation (26)). This means that the total field satisfies

(E' xv)xv+eB xv=(E'xv)xv+cB xv. (27)
Using definition , we get
(—EEXV)XV—kcB%xy:((EIXV)XV+CBI><1/> . (28)
Tf,t
Note, that on 0B,, n = —v and multiplying by —1, we get
(ngn)xn+cB£xn:—<(EI><y)xu—l—cBIXV) . (29)
Tp—t
This expression is the counterpart of @ Finally, the time-reversed problem analog to reads:
OE%,
Tf—CQVngzo, in Q\ B,,
0B

5 TV E%L =0, in Q\B,,
(30)
(E%Xn)Xn—f—cBan:—((Ele/)XV+CBIXV> on 0B,
Tr—t
(Eﬁ(tuf)ng(tf)) = (_E(Tf _taf)aB(Tf _tvf)) onI'p

and zero initial conditions.

The penultimate equation in the above system expresses that we have time-reversed the data
recorded on I'g.



2.7 Time harmonic Maxwell system

We again, denote by w the dual variable of ¢ for the Fourier transform in time. The total field
(ET(£), BT (£)) can be decomposed into an incident and scattered field, (ET (%), BT (%)) :=
(El(Z), BI(Z)) + (E°(&), B°(Z)). The time-harmonic Maxwell equation is written by taking
the Fourier transform in time of the Maxwell equation:

iwET —?V x BT =0, in R3,
iwBT +V x ET =0, in R, (31)
(ET,BT) — (E', B) satisfies a Silver — Miiller radiation condition at co.

Recall that our aim is to write a BVP whose solution is the harmonic time reverse of (E* (Z), BT (1)).
Following it is sufficient to take the Fourier transform of equation to get

iwE%, — *V x B, =0, in Q\ B,,

iwBh +V x Ef, =0, in Q\B,,

(ngn)xn—l—cngn:—((Elxu)><1/—|—cBI><1/> on 0B,

(ER(%), BR(7)) = (—E(%), B(Z)) on I'x.

3 Numerical applications of the TRAC method

In section we describe the TRAC method to locate a scatterer in the two-dimensional case
together with computational results. We first consider the time-dependent wave equation. The
Helmholtz equation will be studied in As explained in section the method does not rely
on any a priori knowledge of the physical properties of the inclusion. We will treat, in the same
manner, the cases of a hard, soft or penetrable inclusion. In the harmonic case, we compare the
TRAC approach with the phase conjugation approach presented in @

3.1 The wave equation

We consider an inclusion D surrounded by a homogeneous and isotropic medium with a velocity
of sound denoted by ¢g. The scatterer is illuminated by an incident field u!. Equation reads:
0%u”

ot2

(u”'(t, %) — u!(t, 7)) satisfies a Sommerfeld condition at oo

— AU =0 in R?

(33)

zero initial conditions.

In order to create synthetic data, equation is approximated by the FreeFem++ pack-
age [HecIO] which implements a finite element method in space. In the paper the small size of
the domain enables us to use a standard P! finite element method. The advancement in time
is given by a second order central finite difference scheme so that it is time reversible also on
the numerical level. The computational domain is truncated by using an absorbing boundary
condition. The incident wave is simulated by the same procedure with a uniform velocity of

10



sound, cg. We introduce a boundary I'p where the signal is recorded. The boundary I'r encloses
a domain denoted 2, see Fig. [1] The next stage of the method is to introduce a “trial” domain
B, and solve the time-reversed problem in Q\ B,.

The principle of the method (see sectz’on is that when the ball B, encloses the inclusion
D then, at the final time of the reverse simulation, the solution must be equal to the initial
condition of the forward problem i.e. zero. Conversely, if at the end of the reverse simulation
the field is not zero, it shows that the ball B, does not enclose the inclusion D.

As a first test case, we consider an inclusion that is a soft disk and B, is a disk of variable
radius. In Fig. 2] we have several lines and three columns. Each column corresponds to a
numerical time-reversed experiment and each line corresponds to a snapshot of the solution
at a given time. The top line corresponds to the initial time for the time-reversed problem,
equivalent to ¢ = T for the forward problem. The last line is the solution at the final time of
the reversed simulation which corresponds to the initial time ¢ = 0 for the forward problem. In
the left column, we display the perfect time reverse solution which is the reverse of the forward
problem. For the inverse problem, the data is not known. It is shown for reference only.

In the middle column, we display the solution of the reversed problem with a ball B,
which encloses the inclusion. As expected, the sequence of snapshots is the restriction to the
domain Q\ B, of the left column. This exemplifies one application of the TRAC method: if we
know that the ball B, encloses the inclusion we are able to reconstruct the signal in a region
that is closer to the inclusion than the line of receivers I'g. This allows the reduction of the size
of the computational domain. In this respect, the method is related to the redatuming method,
see [Ber79]. In the last column we show the solution of the reversed problem with a ball
B, smaller than the soft disk. In contrast to the previous case, the sequence of snapshots differs
from the left column.

For the inverse problem of locating the scatterer, we only know that at the final time the
solution should be zero. In the middle column, this criterion is satisfied and we can thus infer
that the inclusion D is included in the ball B,. On the other hand, when the final solution in
the last column is not zero it shows that D is not included in the ball B,. This observation
leads to an easy to compute criterion which is independent of the size of the domain:

g (Tr, )l oo\ B,)
supefo,1y] 1w/ (£, )L ()

J(B,) == (34)

which vanishes when the artificial ball encloses the inclusion. Due to numerical errors and the
fact that the TRAC' is not an exact ABC, the criterion is small but not zero, see Fig.

Inverse problems are frequently ill-posed. Hence, a crucial question is the sensitivity of the
method with respect to noise in the data. Therefore, we shall add Gaussian noise by replacing
the recorded data u” on I'g by

ul := (1. + Coeff * (=1. + 2. x randn)) * u” (35)

where randn satisfies a centered reduced normal law and Coeff is the level of noise. The
solutions at the final time are depicted on Fig. [3l The level of noise is between 10% and 50%.
On the top line we display the results for a ball larger than the inclusion. Due to the noise, the
final solution is no longer zero but is a random signal of size related to the level on noise. In
the bottom line we display the result when the ball is smaller than the inclusion. Now, together
with a random signal there appears a structured non-zero solution which looks like the right
column of Fig. 2] without noise in the data. We can discriminate between the case where the ball
contains or does not contain the inclusion D up to 45% of noise. Indeed in this case, J(B,) = 0.2

11



Figure 2: Time reversed BVP snapshots for a soft inclusion with an incident signal of the forward
problem (not shown here) coming from the top-right. On the left: perfect time-reversed solution,
in the middle: time-reversal with larger ball, on the right: time-reversal with a smaller ball.

so the magnitude of the final solution is 20% of the incident field when the ball B, encloses the
inclusion whereas J(B,) = 0.6 when the ball does not enclose the inclusion. Thus, the method
TRAC appears to be relatively insensitive to noise on the recorded data.

In the previous tests, for the sake of simplicity, the artificial balls and the inclusion were

12



Figure 3: Time reversed solutions at the final time for noise on the recorded data from left to
right: 10%, 30%, 45% and 50%, for a ball larger than the inclusion on the top and a smaller
ball on the bottom

concentric. We now consider the case where either the artificial ball and the inclusion D do not
intersect or the artificial ball crosses D without including or being included, see Fig. [dl Results
are shown in Tables [I] and 2l In Table [T the inclusion is between the artificial boundaries.
Since in our tests the source emits from the North-East, we place the inclusion respectively in
North-East, North-West, South-West and South-East for Table[2] The radius of the inclusion is
1.35), the radius of the larger ball is about 3A and the radius of the smaller one is always A. In
all these cases, the criterion J(B,) discriminates between the possibilities since it takes values
smaller than 0.05 when the artificial ball encloses the inclusion whereas it lies between 0.3 and
1.0 in the other cases. Moderate values of the criterion (J(B,) = 0.3) correspond to a situation
where the inclusion is in the shadow of the ball.

.. Receivers

inclusion

Figure 4: (a) Inclusion between the artificial boundaries (b) Inclusion crossing the artificial
boundaries.

As a second test case we illustrate the TRAC method by taking penetrable inclusions with
speeds that correspond to medical applications. The values of the speed in the inclusion are taken
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radius radius radius Results for | Results for
inclusion | large ball | small ball || large ball small ball
2 5.2) A < 5% 100%
A 5.2\ A < 5% 100%
A 3.2\ A < 5% 100%
0.5\ 5.2\ A < 5% 50%
0.5\ 2.2\ A < 5% 50%

Table 1: Results of J(B,) for inclusions that do not intersect the artificial balls, see Fig. 4| (a).

Geographical || Results for | Results for

position large ball | small ball
N-E < 5% 65%
N-W < 5% 70%
S-W <5% 30%
S-E < 5% 5%

Table 2: Results of J(B,) for an inclusion crossing the artificial balls, see Fig. 4] (b)

from [STXT05]: ¢ = 1.7 (breast tumor), ¢ = 1.14 (fibroadenoma) and ¢ = 0.93 (surrounding
tissue). We again stress that the method does not rely on any a priori knowledge of the data.
For these inclusions, the ball and the inclusion are concentric disks and we vary the size of the
artificial balls. In Fig. |5, we plot the criterion J(B,) as a function of the distance between the
inclusion and the artificial balls for various penetrable bodies. When the abscissa is negative,
the ball does not enclose the inclusion. J(B,) is even larger when the ball is smaller than the
inclusion. The criterion increases with the distance between the ball and the inclusion. On the
other hand, when the ball encloses the inclusion (i.e. the abscissa is positive) the criterion is
smaller than 0.1 and nearly flat. Note, that as expected, the larger the contrast between the
inclusion and the surrounding medium the larger is J(B,). We have done other experiments
with inclusions of various shapes. One such example is given later for the Helmholtz equation.
In all cases, the results are independent of the shape of the inclusion as long as its size is greater
than one wavelength.

In conclusion, when we enclose the body with B, then J(B,) is small. When the ball does
not include the body D then the size of J(B,) indicates the distance between the scatterer and
the artificial ball.

3.2 The Helmholtz equation

For the harmonic case, we again consider a scatterer D surrounded by a homogeneous and
isotropic medium with a velocity of sound denoted by ¢g. The inclusion is illuminated by an
incident field v!. Equation becomes:

—w?ul — AAu? =0 in R?
(36)
(uT'(£) — u!(Z)) satisfies a Sommerfeld condition at oo.

In order to create synthetic data, equation is approximated by the FreeFem++ pack-
age |[HeclO] which constructs a finite element method in space. The computational domain is
truncated by using an absorbing boundary condition. The incident wave is simulated by the
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Figure 5: Criterion J(B,) vs. the algebraic distance between the inclusion and the artificial
balls for various penetrable inclusions

Figure 6: Phase conjugation for a soft square shaped inclusion of length 2 A. From left to right,
from top to bottom : perfect, phase conjugation, TRAC with a ball enclosing the inclusion,
TRAC with a ball inside the inclusion.
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same procedure with a uniform velocity of sound equal to ¢g. We then introduce a boundary
I'r where the signal is recorded. The boundary I'r encloses a domain denoted {2, see Fig.
The next stage of the method is to introduce a “trial” domain B, and solve the phase con-
jugated problem in Q\ B,. In contrast to the time dependent case, we cannot use the
criterion defined in since in the harmonic case, there is no time and thus no final time.
We define, later, two new criteria adapted to the harmonic case. We first look at the numerical
simulations obtained with artificial balls and a soft square shaped inclusion that are concentric,
see Fig. @ On the top left figure we plot the modulus of the total field |u”| which coincides
with the modulus of its conjugate field |@’|. On the right, we display the field obtained by the
phase-conjugation method presented in Section see equation @ We see that there is a large
difference between the total field and the field reconstructed by the phase conjugation method.
The two bottom figures illustrate the TRAC method. On the left figure, the ball encloses the
square and the computed field is the restriction of the total field. On the right figure, the ball
is inside the square and the computed field is very different from the total field.

In practice, we don’t know the total field and we have to introduce a way to measure whether
the artificial ball encloses the inclusion or not. For this purpose, we introduce two different
criteria. The first one is based on Dirichlet and Neumann data and the second one is based on
the use of absorbing boundary conditions. The latter will prove to be more robust with respect
to noise without requiring regularization techniques. For the first criterion, we assume that in
addition to the total field u? we have also recorded the value of the normal derivative du’ /dn on
the boundary I'gr. When the ball encloses the inclusion, the normal derivative of the solution to
the phase conjugation problem coincides with the conjugation of the corresponding recorded
data. Thus, we introduce the following first criterion:

on On || poo(r
Jpn(B,) == s (Cr) (37)
Ha,n L>(Tg)

The second criterion is derived from the use of absorbing boundary conditions. Indeed, the basis
of the method is that the phase conjugated scattered field

a° =al —a!

satisfies
TRAC(@°) = TRAC(a? —a!) =0 (38)

at any point outside the inclusion. In equation this relation is used on the boundary of
the artificial ball B,. Since u” is computed numerically and u! is given data, that is readily
available at any point in Q \ B,. Eq. can be computed at any point in 2. Thus, following
the principle of the TRAC method, we introduce a new boundary I'j, .. (see Fig. @ to design
a new criterion:

ITRACCR — @ ey (39)

B, T =
TanetBe Laane) = T IRACE e, )

Note, that this criterion is not based on a direct comparison between numerical data and recorded
data in contrast to the first criterion. Hence, it does not require any additional recorded data.

Both criteria and should be zero when the artificial ball B, encloses the inclusion.
Since the TRAC is not derived from an exact ABC, the above criteria are small but not zero.
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Figure 7: Boundary I';, . inside the region for the new criterion Jpc.

Since, equation is imposed on 9B, in order to compute ug (see equation ), we have to
take I'j, ;. different from 0B,,.

We tested both criteria for a soft circular inclusion of radius two wavelengths (2 \) with var-
ious noise magnitudes on the recorded data defined as in . The radius of the artificial ball
can be as small as one wavelength and still avoid difficulties because of the absorbing boundary,
with a small radius. The results are summarized in Table [3] The results of the enclosing case
correspond to a concentric artificial ball B, of radius 3 A and the results of a non enclosing ball
correspond to a concentric ball of radius A\. The first criterion Jpy works only up to 5% of
noise. However, the use of a filtering technique could improve the domain of validity of this
criterion. The second criterion Japc enables one to discriminate between the enclosing and non
enclosing cases up to 30% noise even though we have not filtered the data. This robustness can
be explained by the fact that the noise comes from boundary measurements while, the Helmholtz
equation has regularizing properties so that the computed field ug is much less noisy on the
internal boundary I';, ., than on the boundary I'g.

Noise Magnitude JpN JaBc
enclosing ‘ Non enclosing || enclosing ‘ Non enclosing
0% 5.04% 69.20% 6.34% 69.18%
5% 46.38% 93.55% 12.79% 71.62%
10% 103.40% 91.77% 13.55% 70.87%
20% 213.65% 231.30% 35.99% 80.23%
30% 301.46% 269.07% 51.03% 87.80%
40% 532.97% 374.67% 57.99% 84.34%
50% 644.47% 552.57% 63.28% 124.30%

Table 3: Values of the various criteria for several levels of noise.

In the last experiment, we consider a soft inclusion of arbitrary and non smooth shape. We
use the TRAC method to detect the location of the inclusion by varying the respective locations
of the artificial ball. The results are summarized in Table {4l First we take a large ball B, so that
we check that the inclusion D is not too close to the boundary I'g. Then, we move B, to the left.
The high value of the criterion shows us that the inclusion D is not included inside. The third
and fourth show other failed attempts to enclose the inclusion. The last column corresponds to
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a successful location of the inclusion. This shows the possibility, by trial and error, to recover
the approximate location of the inclusion.

Cases

/ N b N\ # \
\ i \ \ =
/ \ [/O" [ C} \ / \ / \‘
| | | | ! |
\ / &/ \ / \ / &/
N 7

JaBC

8.52%

66.09% 60.28% 28.35% 11.89%

Table 4: Criterion Japc for a soft inclusion and various ball locations.

4 Conclusion

We introduce the time-reversed absorbing conditions (7RAC) for time-reversal methods. They
enable one to “recreate the past” without knowing the source which has emitted the signals that
are back-propagated. This is made possible by removing a small region surrounding the source.
We present two applications in inverse problems: the reduction of the size of the computational
domain and the determination of the location of an unknown inclusion from boundary mea-
surements. We stress that in contrast to many methods in inverse problems, this method does
not rely on any a priori knowledge of the physical properties of the inclusion. Hard, soft and
penetrable inclusions are treated in the same way. The feasibility of the method was shown with
both time-dependent and harmonic examples. Moreover, the method has proved to be fairly
insensitive with respect to noise in the data.
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