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Time Reversed Absorbing Condition: Application to inverse

problem

F. Assous∗, M. Kray†, F. Nataf†, E. Turkel‡

Abstract

The aim of this paper is to introduce the time reversed absorbing conditions (TRAC) in
time reversal methods. They enable to “recreate the past” without knowing the source which
has emitted the signals that are back-propagated. We present two applications in inverse
problems: the reduction of the size of the computational domain and the determination
of the location and volume of an unknown inclusion from boundary measurements. The
method does not rely on any a priori knowledge of the physical properties of the inclusion.
Numerical tests on the wave and Helmholtz equations illustrate the efficiency of the method
which proves to be very robust with respect to noise in the data.
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1 Introduction

Since the seminal paper by Fink et al. [FWCM91], time reversal is a subject of very active
research. The main idea is to take advantage of the reversibility of wave propagation phenomena
such as in acoustics or electromagnetism in a non dissipative unknown medium to back-propagate
signals to the sources that emitted them. The initial experiment, see [FWCM91], was to
refocus very precisely a recorded signal after passing through a barrier consisting of randomly
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distributed metal rods. The remarkable feature of this experiment is the concrete possibility
to focus precisely a signal after it has crossed random barriers and even without knowing its
location. There have been numerous applications of this physical principle, see[Fin09] and
references therein. The first mathematical analysis can be found in [BF02] and [BPZ02].

An interesting possibility is to “recreate the past” in a medium from time-reversed boundary
measurements. As shown experimentally in [dRF02], it is necessary to know the source that
emitted the signals to overcome the diffraction limit. The same difficulty was pointed out in
[LMF+06] when numerically studying the initial instants of an earthquake by sending back long
period time-reversed seismograms.

In this paper, we introduce a new method that enables to “recreate the past” without knowing
the source which has emitted the signals that will be back-propagated. This is made possible
by using time reversed absorbing conditions (TRAC) at the expense of removing a small region
enclosing the source. This technique has at least two applications in inverse problems:

1. the reduction of the size of the computational domain by redefining the reference surface
on which the receivers appear to be located

2. the possible reconstruction of the shape of an unknown inclusion from boundary measure-
ments

The first application is reminiscent of the redatuming method introduced in [Ber79]. In our
case, we use the original propagation equation and not a paraxial or parabolic approximation
to it. This extends the domain of validity of the redatuming approach. Concerning the second
application there is a huge literature that deals with this inverse problem. We mention the
MUSIC algorithm [The92] and its application to imaging [LD03], the sampling methods first
introduced in [CK96] see the review paper [CCM00] and references therein and the DORT
method [PMSF96]. Mathematical analysis of this kind of approach can be found in [CK98]
These methods were developed in the time-harmonic domain for impenetrable objects. The
TRAC method is designed in both the time-dependent and harmonic domains and does not
rely on any a priori knowledge of the physical properties of the inclusion. It works both for
impenetrable and translucent inclusions.

The outline of the paper is as follows. In subsections 2.1 and 2.2 we introduce the principle
of the TRAC method both in the time dependent and harmonic domains. We present in § 2.3
two applications of the method in the context of inverse problems. The end of section 2 is
devoted to the explicit derivation of the method to the wave and Maxwell equations in both the
time dependent and harmonic cases. In section 3 we give numerical applications of the TRAC
method for the wave equation and then the Helmholtz equation. We propose various criteria
for applying our method to inverse problems. We investigate the robustness with respect to the
magnitude of the noise in the data and its ability to handle penetrable inclusions.

2 The TRAC method and applications

2.1 The TRAC method in the time dependent case

We consider an incident wave U I impinging on an inclusion D characterized by different physical
properties from the surrounding medium. We denote by ∂D the boundary of this inclusion. The
total field UT can be decomposed into the incident and scattered field, so UT := U I + US . We
consider the problem in d dimensions d = 1, 2, 3 and assume that the total field satisfies a linear
hyperbolic equation (or system of equations) denoted by L, that can be written

L(UT ) = 0 in Rd (1)
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together with zero initial conditions, which will be detailed later. The scattering field US has
to satisfy a radiation condition at the infinity to ensure the uniqueness of the solution. For
the wave equation we have the Sommerfeld radiation condition, or the Silver-Müller radiation
condition for the Maxwell equations (see subsections below).

Let Ω denote a bounded domain that surrounds D with ΓR as its boundary. We assume that
the incident wave U I has compact support in time and space and that after a time Tf the total
field UT vanishes in the bounded domain Ω. Let V be a field that satisfies the wave equation.

Ω

D

Bρ

O

ΓR

Figure 1: Geometry

We denote by VR the corresponding time reversed field that also satisfies the same physical
equation. For instance, the time reversed solution uT

R of the wave equation (11) is defined by
uT

R := uT (Tf − t, ~x) see § 2.4. For the Maxwell equation (22), the time reversed electromagnetic
field is defined by (ET

R, BT
R) := (−E

T (Tf − t, ~x),BT (Tf − t, ~x) ), see § 2.6. Similar definitions
will be used for the incident and scattered fields.

Our first aim is to derive a boundary value problem (BVP) whose solution is the time
reversed field. For this purpose, we assume that we have recorded the value of the total field
UT on the boundary ΓR that encloses the domain Ω. However, we don’t know the physical
properties of the inclusion i.e. we don’t know the exact form of the operator L in the inclusion
D. Moreover, we don’t know the exact location of the inclusion D. The only things we know
are the physical properties of the surrounding medium, in other words the operator L outside
the inclusion D which is assumed to be a constant coefficient operator denoted L0. Thus, UT

R

satisfies the following equation

L0(U
T
R ) = 0 in (0, Tf ) × Ω\D (2)

We impose Dirichlet boundary conditions on ΓR equal to the time reversal of the recorded fields
and zero initial conditions. The key point is that we lack a boundary condition on the boundary
of the inclusion ∂D in order to define a well-posed BVP on the time reversed field UT

R in Ω\D.
Usually in practical applications, the shape and/or location of the inclusion D is not known nor
the boundary condition (hard or soft object) it satisfies.

To overcome all these difficulties, the classical approach consists in solving the problem (2)
in the entire domain Ω, assuming that there is no object D. Denote by W T

R this ”approximate”
time reversed solution, we have in the entire domain Ω:

L0(W
T
R ) = 0 in (0, Tf ) × Ω (3)
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with Dirichlet boundary conditions on ΓR equal to the time reversal of the recorded fields and
zero initial conditions. One can readily verify that this approximate time reversed solution W T

R

differs from UT
R .

Remark 1 Another possibility is to try to reconstruct the reversed scattered field US
R instead of

the total reverse field UT
R . In this case, the classical approach consists in solving

L0(W
S
R) = 0 in (0, Tf ) × Ω

with Dirichlet boundary conditions on ΓR equal to the time reversal of the recorded fields mi-
nus the time reversed incident field and zero initial conditions. It is easy to check that this
approximate time reversed solution WS

R differs as well from US
R.

To write a boundary value problem satisfied by UT
R without knowing the physical properties

of the inclusion D nor its exact location, we introduce B a subdomain enclosing the inclusion D
(see Figure 1). Then, we have to determine a specific boundary condition for UT

R on the boundary
∂B so that the solution to this problem will coincide with UT

R in the restricted domain Ω \ B.
In order to derive this boundary condition, we note that L0(U

I) = 0 so that the scattered
wave US satisfies 





L0(U
S) = 0 in Rd \ D

US satisfies a radiation condition at ∞
(4)

and zero initial conditions. We make use of the property that the surrounding medium Ω \D is
homogeneous. As a first step, we look for a relation satisfied by US on ∂B. Absorbing boundary
conditions (ABC) e.g. [EM77] and [BT80] construct accurate approximations to a perfectly
absorbing boundary condition. We denote by ABC an exact absorbing boundary condition,
that can be formally written as

ABC(US) = 0 on ∂B . (5)

Since UT = U I + US , we have ABC(UT − U I) = 0 or equivalently ABC(UT ) = ABC(U I).
Our main ingredient is to ”time reverse” this relation into a relation that we will denote

TRAC(UT
R ) = g(U I) on ∂B (6)

where g(U I) denotes a known function which is related to the time reversal of ABC(U I). The
way to design TRAC and g(U I) will be specified in the subsequent sections depending on the
considered problem. We shall see that the absorbing boundary condition ABC is different from
its time reverse companion TRAC that will be referred to as a TRAC (Time Reversed Absorbing
Condition). To summarize, the problem satisfied by UT

R in the restricted domain Ω \ B can be
written: 





L0(U
T
R ) = 0 in (0, Tf ) × Ω\B

TRAC(UT
R ) = g(U I) on ∂B

(7)

together with Dirichlet boundary conditions on ΓR equal to the time reversal of the recorded
fields and zero initial conditions. By solving (7), we are able to reconstruct the total field UT

at any point of the domain Ω \ B and any time in (0, Tf ).

We shall illustrate our approach by deriving equation (7) from equation (4) for several
classical examples: the wave equation and the Maxwell system. Note, that the same procedure
can be applied to the elasticity system and non linear hyperbolic problems before a shock
formation.
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2.2 The TRAC method in the harmonic case

We consider the time-harmonic counterpart of problem (1) and denote by L̂ the Fourier transform
in time of the operator L. The unknown total field U

T (~x) is decomposed into the sum of an
incident field U

I(~x) and of a scattered field U
S(~x). We have:

L̂(UT ) = 0 in Rd

U
S(~x) := U

T (~x) − U
I(~x) satisfies a Sommerfeld condition at ∞

(8)

In this context, the analog to the time reversal method is the phase conjugation technique,
see [CM91]. Let V be a field that satisfies the harmonic equation, we denote by VR the cor-
responding harmonic time reversed field that still satisfies the same harmonic equation. For
instance, for the Helmholtz equation (19) we proceed in the following way. Let v(t, ~x) be a
time dependent real valued function solution to the wave equation and vR(t, ~x) := v(−t, ~x) its
associated time reversed function. Notice that since we are in the harmonic case, there is no
notion of final time Tf as above. The Fourier transform in time of the above definition yields:

v̂R(ω, ~x) =

∫
v(−t, ~x) e−iωt dt =

∫
v(t, ~x) eiωt dt =

∫
v(t, ~x) e−iωt dt = v̂(ω, ~x) .

This identity shows that the phase conjugation is the Fourier transform of the time reversal
process in the case of the Helmholtz equation. For the harmonic Maxwell equation (29), we
proceed in a slightly different way. Recall that for the Maxwell equation (22), the time reversed
electromagnetic field was defined by (ER,BR) := (−E(−t, ~x),B(−t, ~x) ), see § 2.6. The Fourier
transform in time of the above definition yields:

(ÊR(ω, ~x), B̂R(ω, ~x)) = (−Ê(ω, ~x), B̂(ω, ~x) )

Thus, the classical “time reversal” process in the harmonic regime applied to (8) amounts to
conjugate the recorded data (and in the Maxwell case to take the opposite of the electric field)
and solve the following harmonic time reversed problem:

L̂0(W
T
R) = 0 in Ω

W
T
R = U

T
R on ΓR

(9)

which is the equivalent to (3) in the harmonic regime. Hence, following the same steps as above
for deriving equation (7) from equation (1), we get:






L̂0(U
T
R) = 0 in Ω\B

TRAC(UT
R) = ĝ(UI) on ∂B

(10)

together with Dirichlet boundary conditions on ΓR equal to the harmonic time reverse of the
recorded fields.

We shall illustrate our approach by deriving equation (10) for several classical examples: the
Helmholtz equation, the time harmonic Maxwell system. The same process can be applied to
the time harmonic elasticity system.
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2.3 Applications of the TRAC method

A first application to inverse problems is a reduction of the size of the computational domain.
Since, we are able to compute the total field UT on an artificial boundary ∂B, it is equivalent
to having the boundary ΓR moved to ∂B. As a consequence, the cost of the forward problems
involved in the identification algorithm is reduced.

A second application is to localize the inclusion by a trial and error procedure. At the initial
time t = 0, the total field UT is zero. Thus, if B encloses the inclusion D, UT

R which is exactly
the time reversal of UT is zero at the final time Tf that corresponds to the initial time of the
physical problem (1). Conversely, if after solving equation (7), UT

R is not zero at the final time
Tf , it proves that the assumption that D is a subset of B is false. Hence, by playing with the
location and size of the subdomain B, it could be possible to determine the location and volume
of the inclusion D. This technique will be the core subject of section 3.

2.4 The wave equation

We first consider the case of the three dimensional acoustic wave equation with a propagation
speed c which is constant outside an inclusion D. We denote the total field as uT which is decom-
posed as above into an incident uI and a scattered field uS . With these notations, equation (4)
reads 





∂2uS

∂t2
− c2∆uS = 0 in R3\D

uS(t, ~x) satisfies a Sommerfeld condition at ∞

homogeneous initial conditions

(11)

This problem is under-determined since we don’t specify any boundary condition on ∂D. Thus
uS is not necessarily zero. We define the time reverse total field uT

R by uT
R(t, ·) := uT (Tf − t, ·).

Since, the wave equation involves only second order time derivatives, this definition ensures that
the reverse field uT

R is a solution to the wave equation as well. In order to derive the absorbing
boundary condition (5), we consider, for the sake of simplicity, that the subdomain B is a ball
of radius ρ centered at the origin denoted Bρ. Let r be the radial coordinate, we consider the
first order Bayliss-Turkel ABC BT 1 [BT80] :

∂uS

∂t
+ c

∂uS

∂r
+ c

uS

r
= 0 (12)

Numerical applications of section 3 will show that even in two dimensions imposing

∂uS

∂t
+ c

∂uS

∂r
+ c

uS

2r
= 0

is reasonable. For ease of computations, we use an equivalent form of equation (12):

∂

∂t
(ruS) + c

∂

∂r
(ruS) = 0 . (13)

The above equation is the counterpart of equation (5) for the wave equation. We next wish to
express (6) explicitly for the time reversed equation (13). The total field uT = uI + uS satisfies

∂

∂t
(r uT (t, ·)) + c

∂

∂r
(r uT (t, ·)) =

∂

∂t
(r uI(t, ·)) + c

∂

∂r
(r uI(t, ·))

6



Using uT
R(t, ·) = uT (Tf − t, ·), we get

(−
∂

∂t
(r uT

R) + c
∂

∂r
(r uT

R))|Tf−t =
∂

∂t
(r uI(t, ·)) + c

∂

∂r
(r uI(t, ·))

or equivalently,

−
∂

∂t
(r uT

R(t, ·)) + c
∂

∂r
(r uT

R(t, ·)) = (
∂

∂t
(r uI) + c

∂

∂r
(r uI))|Tf−t

Note, that on ∂Bρ, ∂ /∂r = −∂ /∂n where n is the outward normal to the restricted domain
Ω \ Bρ. Multiplying by −1, we get

∂

∂t
(r uT

R(t, ·)) + c
∂

∂n
(r uT

R(t, ·)) = −(
∂

∂t
(r uI) − c

∂

∂n
(r uI))|Tf−t (14)

Another way to write this boundary condition is to introduce the time reversed incident field

uI
R(t, ·) := uI(Tf − t, ·) ,

so that (14) can be expressed as

∂

∂t
(r uT

R(t, ·)) + c
∂

∂n
(r uT

R(t, ·)) =
∂

∂t
(r uI

R(t, ·)) + c
∂

∂n
(r uI

R(t, ·)). (15)

This expression is the counterpart of equation (6). Since ∂r/∂n = −1, relation (15) can be
rewritten as:

∂

∂t
(uT

R(t, ·)) + c
∂

∂n
(uT

R(t, ·)) − c
uT

R(t, ·)

r
=

∂

∂t
(uI

R(t, ·)) + c
∂

∂n
(uI

R(t, ·)) − c
uI

R(t, ·)

r
. (16)

So we define the boundary condition TRAC by:

TRAC(uT
R) :=

∂

∂t
(uT

R(t, ·)) + c
∂

∂n
(uT

R(t, ·)) − c
uT

R(t, ·)

r
. (17)

Note, that due to the minus sign before the term uT
R/r, the TRAC (16) is not the BT 1

absorbing boundary condition. The time reversed problem analog to (7) reads:






∂2uT
R

∂t2
− c2∆uT

R = 0 in (0, Tf ) × Ω\Bρ

TRAC(uT
R) = TRAC(uI

R) on ∂Bρ

uT
R(t, ~x) = uT (Tf − t, ~x) on ΓR

zero initial conditions

(18)

The TRAC is not only not the standard BT 1 ABC but also has an “anti absorbing” term
(−cuT

R/r). A natural concern arises about the well-posedness of BVP (18). Although we have
not developed a general theory, we prove an energy estimate for this problem in a special
geometry, see [AKNT]. Moreover, in many computations we have never encountered stability
problems, see § 3 where a numerical procedure for inclusion identification will be deduced from
this formulation.
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2.5 The Helmholtz equation

Denote by ω the dual variable of t for the Fourier transform in time. The total field uT can be
decomposed into an incident and scattered field, i.e. uT := uI + uS . The Helmholtz equation is
derived by taking the Fourier transform in time of the wave equation, yielding:

{
−ω2uT − c2∆uT = 0 in R3

(uT − uI) satisfies a Sommerfeld radiation condition at ∞
(19)

The frequency is ω = 5 and the sound speed is c0 = 1, so the wavelength is 0.2 i.e. k = ω
c0

= 5.
The size of the domain of computation is 5 wavelengths while the radius of the inclusion is
2 wavelengths. The radius of the artificial ball can be as small as one wavelength to avoid
difficulties because of the absorbing boundary in two dimensions with a small radius.

Recall that our aim is to write a BVP whose solution is the conjugate of uT . Following § 2.2,
it is sufficient to take the Fourier transform of equation (18) to get:






−ω2uT
R − c2∆uT

R = 0 in Ω\Bρ

iω uT
R + c

∂uT
R

∂n
− c

uT
R

r
= iωuI

R + c
∂uI

R

∂n
− c

uI
R

r
on ∂Bρ

uT
R(~x) = uT (~x) on ΓR

(20)

We emphasize that the time reversed absorbing condition TRAC

TRAC(uT
R) := iω uT

R + c
∂uT

R

∂n
− c

uT
R

r
(21)

is not the BT 1 absorbing boundary condition

iω uT + c
∂uT

∂n
+ c

uT

r
.

2.6 The Maxwell equation

As a second application, we consider the case of the three dimensional Maxwell equations. For
the sake of simplicity, we assume that outside the inclusion D the medium is linear, homogeneous
and isotropic with a constant speed of light denoted by c. Denote by E the electric field and by
B the magnetic induction. Denote the total field by (ET ,BT ) which is decomposed as above
into an incident (EI ,BI) and a scattered field (ES ,BS). With these notations, the counterpart
of equation (4) reads






∂E
S

∂t
− c2∇× B

S = 0, in R3 \ D,

∂B
S

∂t
+ ∇× E

S = 0, in R3\D,

(ES(t, ~x),BS(t, ~x)) satisfies satisfies a Silver − Muller radiation condition at ∞

and zero initial conditions .

(22)

We introduce the time reversed solution

( E
T
R(t, ~x),BT

R(t, ~x) ) := (−E(Tf − t, ~x),B(Tf − t, ~x) ) . (23)
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Note, that the Maxwell system is a first order hyperbolic system, but is not invariant under a
time reversal. For this reason, we multiply the electric field by minus one so that the reversed
electromagnetic field ( E

T
R(t, ~x),BT

R(t, ~x) ) solves the to build an absorbing boundary condition
analog to (5). We still consider a subdomain B that is a ball of radius ρ centered at the origin
and denoted Bρ. We assume that the following approximate absorbing Silver-Muller boundary
condition is reasonable:

(ES ∧ ν) ∧ ν + cB
S ∧ ν = 0 (24)

where ν is the outward normal to the ball Bρ. The above equation is the counterpart of equa-
tion (5) for the Maxwell equation. The next step is to derive an explicit expression for the time
reverse of equation (24). This means that the total field satisfies

(ET ∧ ν) ∧ ν + cB
T ∧ ν = (EI ∧ ν) ∧ ν + cB

I ∧ ν (25)

Using definition (23), we get

(−E
T
R ∧ ν) ∧ ν + cB

T
R ∧ ν =

(
(EI ∧ ν) ∧ ν + cB

I ∧ ν

)

Tf−t

(26)

Note, that on ∂Bρ, n = −ν and multiplying by −1, we get

(ET
R ∧ n) ∧ n + cB

T
R ∧ n = −

(
(EI ∧ ν) ∧ ν + cB

I ∧ ν

)

Tf−t

(27)

This expression is the counterpart of (6). Finally, the time reversed problem analog to (7) reads:






∂E
T
R

∂t
− c2∇× B

T
R = 0, in Ω \ Bρ,

∂B
T
R

∂t
+ ∇× E

T
R = 0, in Ω\Bρ,

(ET
R ∧ n) ∧ n + cB

T
R ∧ n = −

(
(EI ∧ ν) ∧ ν + cB

I ∧ ν

)

Tf−t

on ∂Bρ

(E
T
R(t, ~x), BT

R(t, ~x) ) = (−E(Tf − t, ~x),B(Tf − t, ~x) ) on ΓR

and zero initial conditions

(28)

The penultimate equation in the above system expresses that we have time reversed the data
recorded on ΓR.

2.7 Time harmonic Maxwell system

We again, denote by ω the dual variable of t for the Fourier transform in time. The total field
(ET (~x),BT (~x)) can be decomposed into an incident and scattered field, (ET (~x),BT (~x)) :=
(EI(~x),BI(~x)) + (ES(~x),BS(~x)). The time harmonic Maxwell equation is written by taking
the Fourier transform in time of the Maxwell equation:






iωE
T − c2∇× B

T = 0, in R3,

iωB
T + ∇× E

T = 0, in R3,

(ET ,BT ) − (EI ,BI) satisfies satisfies a Silver − Muller radiation condition at ∞

(29)
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Recall that our aim is to write a BVP whose solution is the harmonic time reverse of (ET (~x),BT (~x)).
Following 2.2, it is sufficient to take the Fourier transform of equation (28) to get






iωE
T
R − c2∇× B

T
R = 0, in Ω \ Bρ,

iωB
T
R + ∇× E

T
R = 0, in Ω\Bρ,

(ET
R ∧ n) ∧ n + cB

T
R ∧ n = −

(
(E

I
∧ ν) ∧ ν + cB

I
∧ ν

)
on ∂Bρ

( E
T
R(~x),BT

R(~x) ) = (−E(~x),B(~x) ) on ΓR

(30)

3 Numerical applications of the TRAC method

In section 3.1, we describe the TRAC method to locate an inclusion in the two-dimensional case.
We first consider the time-dependent case based on the wave equation whereas the harmonic
case will be studied in 3.2 using the Helmholtz equation. As explained in § 2.1, the method does
not rely on any a priori knowledge of the physical properties of the inclusion. We will treat,
in the same manner, the cases of a hard, soft or translucent object. Moreover, the method will
prove to be very robust with respect to the magnitude of the noise in the data. In the harmonic
case, we compare the TRAC approach with the phase conjugation approach defined in (9).

3.1 The wave equation

We consider an inclusion D surrounded by a homogeneous and isotropic medium with a velocity
of sound denoted by c0. The inclusion is illuminated by an incident field uI . Equation (1) reads:






∂2uT

∂t2
− c2∆uT = 0 in R2

(uT (t, ~x) − uI(t, ~x)) satisfies a Sommerfeld condition at ∞

zero initial conditions

(31)

In order to create synthetic data, equation (31) is approximated by the FreeFem++ pack-
age [Hec10] with a finite element method in space. The scheme is a second order centered finite
difference scheme in time so that it can be time reversed. The computational domain is trun-
cated by using an absorbing boundary condition. The incident wave is simulated by the same
procedure with a uniform velocity of sound, c0. We introduce a boundary ΓR where the signal
is recorded. The boundary ΓR encloses a domain denoted Ω, see Fig. 1. The next stage of the
method is to introduce a “trial” domain Bρ and solve the time reversed problem (18) in Ω \Bρ.

Recall, that the principle of the method (see § 2.3) is that when the ball Bρ encloses the
inclusion D then, at the final time of the reverse simulation, the solution must be equal to
the initial condition of the forward problem i.e. zero. Conversely if at the end of the reverse
simulation the field is not zero, it shows that the ball Bρ does not enclose the inclusion D.

As a first test case, we consider an inclusion that is a soft disk and the ball is a disk of
variable radius. In figure 2, we have several lines and three columns. Each column corresponds
to a numerical time-reversed experiment and each line to a snapshot of the solution at a given
time. The top line corresponds to the initial time for the time reversed problem that is t = Tf

for the forward problem. The last line is the solution at the final time of the reversed simulation
which corresponds to the initial time t = 0 of the forward problem. In the left column, we
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Figure 2: Time reversed BVP results for a soft object: perfect time reversed solution on the left,
larger ball in the middle, smaller ball on the right. The incident signal comes from top-right.

display the perfect time reverse solution which is the reverse of the forward problem. In the
inverse problem, these data are not known. They are shown here for reference only.

In the middle column, we show the solution of the reversed problem (18) with a ball Bρ

which encloses the inclusion. As expected, the sequence of snapshots is the restriction to the
domain Ω \ Bρ of the left column. This exemplifies one application of the TRAC method: if
we know that the ball Bρ encloses the inclusion we are able to reconstruct the signal in region
that is closer to the inclusion than the line of receivers ΓR. Thus, this enables us to reduce the
size of the computational domain in an inverse problem. In this respect, the method is related
to the redatuming method, see[Ber79]. In the last column we show the solution of the reversed
problem (18) with a ball Bρ smaller than the soft disk. In contrast to the previous case, the
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sequence of snapshots differs from the left column.
For the inverse problem of locating the inclusion, we only know that at the final time the

solution has to be zero. In the middle column, this criterion is satisfied and we can thus infer
that the inclusion is included in the ball Bρ. On the other hand, when the final solution in
the last column is not zero it shows that the inclusion is not included in the ball Bρ. This
observation leads us to introduce an easy to compute criterion which is independent of the size
of the domain:

J(Bρ) :=
‖uT

R(Tf , ·)‖L∞(Ω\Bρ)

supt∈[0,Tf ] ‖u
I(t, ·)‖|L∞(Ω)

(32)

which vanishes when the artificial ball encloses the inclusion. Due to numerical errors and the
fact that the TRAC is not derived from an exact ABC, the criterion is small but not zero, see
Fig. 5.
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Figure 3: Time reversed solutions at the final time for noise on the recorded data from left to
right: 10%, 30%, 45% and 50%, for a ball larger than the inclusion on the top and a smaller
ball on the bottom

A crucial question in inverse problems is the robustness with respect to the magnitude of
noise in the data. Hence, we add a Gaussian noise by replacing the recorded data uT on ΓR by

uT := (1. + Coeff ∗ (−1. + 2. ∗ randn)) ∗ uT , (33)

where randn satisfies a centered reduced normal law and Coeff is the level of noise. The
solutions at the final time are depicted on Fig. 3. The level of noise is between 10% and 50%.
On the top line we display the results for a ball larger than the inclusion. Due to the noise, the
final solution is no longer zero but is a random signal of size related to the level on noise. In
the bottom line we display the result when the ball is smaller than the inclusion. Now, together
with a random signal there appears a structured non-zero solution which looks like the right
column of Fig. 2 without noise in the data. We can discriminate between the case where the
ball contains or not the inclusion D up to 45% of noise. Indeed in this case, J(Bρ) = .2 so
the magnitude of the final solution is 20% of the incident field when the ball Bρ encloses the
inclusion whereas J(Bρ) = .6 when the ball does not enclose the inclusion. Thus, the method
TRAC appears to be robust with respect to noise on the recorded data. We have conducted
additional experiments where the inclusion is a triangle or a square with similar results.
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In the previous tests, for the sake of simplicity, the artificial balls and the inclusion were
concentric. We now consider the case where either the artificial ball and the inclusion do not
intersect or the artificial ball crosses the object without including or being included, see Fig. 4.
Results are shown in Tables 1 and 2. In Table 1, the inclusion is between the artificial boundaries.
In Table 2, since in our tests the source emits in North-East, we place the object respectively
in North-East, North-West, South-West and South-East. The radius of the object is 1.35λ, the
larger ball is about 3λ and the smaller one is always λ. In all these cases, the criterion J(Bρ) is
discriminative since it takes values smaller than .05 when the artificial ball encloses the inclusion
whereas it lies between 0.3 and 1.0 in the other cases. In the latter case, moderate values of the
criterion (J(Bρ) = 0.3) correspond to a situation where the inclusion is in the shadow of the
ball.

Captors

“larger”
ball

“small”
ball

inclusion

Captors

“larger”
ball inclusion

“small”
ball

Figure 4: Inclusion between the artificial boundaries – Inclusion crossing the artificial boundaries

Size Size Size Results for Results for
object large ball small ball large ball small ball

2λ 5.2λ λ < 5% 100%

λ 5.2λ λ < 5% 100%

λ 3.2λ λ < 5% 100%

0.5λ 5.2λ λ < 5% 50%

0.5λ 2.2λ λ < 5% 50%

Table 1: Results for a object with decreasing size, between the artificial balls

Geographical Results for Results for
position large ball small ball

N-E < 5% 65%

N-W < 5% 70%

S-W < 5% 30%

S-E < 5% 75%

Table 2: Results for an object crossing the artificial ball

As a second test case we illustrate the TRAC method by taking translucent inclusions with

13



velocities which correspond to medical applications. The values of the velocity in the inclusion
are taken from [STX+05]: c = 1.7 (breast tumor), c = 1.14 (fibroadenoma) and c = 0.93
(surrounding tissue). We again stress that the method does not rely on any a priori knowledge
of these data. For these various inclusions, the ball and the inclusion are concentric disks and
we vary the size of the artificial balls. In Fig. 5, we plot the criterion J(Bρ) as a function of the
algebraic distance between the inclusion and the artificial balls for various translucent inclusions.
When the abscissa is negative, the ball does not enclose the inclusion. J(Bρ) is even larger when
the ball is smaller than the inclusion. The criterion increases with the distance between the ball
and the inclusion. On the other hand, when the ball encloses the inclusion (i.e. the abscissa is
positive) the criterion is smaller than 0.1 and nearly flat. Note, that as expected, the larger the
contrast between the inclusion and the surrounding medium is the larger is J(Bρ). As before
the results are independent of the shape of the inclusion.
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Figure 5: Criterion J(Bρ) vs. the algebraic distance between the inclusion and the artificial
balls for various translucent inclusions

3.2 The Helmholtz equation

For the harmonic case, we again consider an inclusion D surrounded by a homogeneous and
isotropic medium with a velocity of sound denoted by c0. The inclusion is illuminated by an
incident field uI . Equation (8) becomes:






−ω2 uT − c2∆uT = 0 in R2

(uT (~x) − uI(~x)) satisfies a Sommerfeld condition at ∞
(34)
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Figure 6: Phase conjugation for a soft square shaped inclusion of length 2λ. From left to right,
from top to bottom : perfect, phase conjugation, TRAC with a ball enclosing the inclusion,
TRAC with a ball inside the inclusion.

In order to create synthetic data, equation (34) is approximated by the FreeFem++ pack-
age [Hec10] with a finite element method in space. The computational domain is truncated by
using an absorbing boundary condition. The incident wave is simulated by the same procedure
with a uniform velocity of sound equals to c0. We then introduce a boundary ΓR where the
signal is recorded. The boundary ΓR encloses a domain denoted Ω, see Fig. 1. The next stage
of the method is to introduce a “trial” domain Bρ and solve the phase conjugated problem (20)
in Ω \ Bρ. In contrast to the time dependent case, we cannot use the criterion defined in (32)
since in the harmonic case, there is no time and thus no final time. We define, later, two new
criteria adapted to the harmonic case. We first look at the numerical simulations obtained with
artificial balls and a soft square shaped inclusion that are concentric, see Fig. 6. On the top
left figure we plot the modulus of the total field |uT | which coincides with the modulus of its
conjugate field |ūT |. On its right, we display the field obtained by the phase-conjugation method
presented in § 2.2, see equation (9). We see that there is big difference between the total field
and the field reconstructed by the phase conjugation method. The two bottom figures illustrate
the TRAC method. On the left figure, the ball encloses the square and the computed field is the
restriction of the total field. On the right figure, the ball is inside the square and the computed
field is very different from the total field.

In practice, we don’t know the total field and we have to introduce a way to measure if the
artificial ball encloses the inclusion or not. For this purpose, we introduce two different criteria.
The first one is based on Dirichlet and Neumann data and the second one is based on the
TRAC method. The latter will prove to be robust with respect to noise without requiring some
regularization techniques. For the first criterion, we assume that in addition to the total field uT

we have also recorded the value of the normal derivative ∂uT /∂n on the boundary ΓR. When
the ball encloses the inclusion, the normal derivative of the solution to the phase conjugation
problem (20) coincides with the conjugation of the corresponding recorded data. Thus, it is
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natural to introduce the following first criterion as:

JDN (Bρ) :=

∥∥∥∥
∂uT

R

∂n
−

∂ūT

∂n

∥∥∥∥
L∞(ΓR)∥∥∥∥

∂ūT

∂n

∥∥∥∥
L∞(ΓR)

(35)

The second criterion is deduced from the TRAC method itself. Indeed, the basis of the method
is that the phase conjugated scattered field

ūS := ūT − ūI

satisfies
TRAC(ūS) = TRAC(ūT − ūI) = 0 (36)

at any point outside the inclusion. In equation (20) this relation is used on the boundary of the
artificial ball Bρ. Since uT

R is computed numerically and uI is given data, that is readily available
at any point in Ω \Bρ. Thus, following the principle of the TRAC method, we introduce a new
boundary ΓJTRAC

(see Fig. 7) to design a new criterion:

JTRAC (Bρ, ΓJTRAC
) :=

∥∥TRAC(uT
R − ūI)

∥∥
L∞(ΓJTRAC

)

‖TRAC(ūI)‖L∞(ΓJTRAC
)

(37)

Notice that this criterion is not based on a direct comparison between numerical data and
recorded data in contrast to the first criterion. Hence it does not require any additional recorded
data.

Both criteria (35) and (37) are zero when the artificial ball Bρ encloses the inclusion. Since
the TRAC is not derived from an exact ABC, the above criteria are small but not zero. Since,
equation (36) is imposed on ∂Bρ in order to compute uT

R (see equation (20), we have to take
ΓJABC

different from ∂Bρ.

Ω

D

Bρ

O

ΓR

ΓJTRAC

ρ

Figure 7: Internal boundary ΓJTRAC
for the criterion JTRAC

We tested both criteria for a soft circular inclusion of radius two wavelengths (2λ) with
various noise magnitudes on the recorded data defined as in (33). The results are summarized
in Table 3.2. The results of the enclosing case correspond to a concentric artificial ball Bρ of
radius 3λ and the results of a non enclosing ball correspond to a concentric ball of radius λ. The
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first criterion JDN works only up to 5% of noise. However, the use of a filtering technique could
improve the domain of validity of this criterion. The second criterion JTRAC enables one to dis-
criminate between the enclosing and non enclosing cases up to 30% of noise even though we have
not filtered the data. This robustness can be explained by the fact that the noise comes from
boundary measurements while, the Helmholtz equation has regularizing properties so that the
computed field uT

R is much less noisy on the internal boundary ΓJTRAC
than on the boundary ΓR.

Noise Magnitude JDN JTRAC

enclosing Non enclosing enclosing Non enclosing

0% 5.04% 69.20% 6.34% 69.18%

5% 46.38% 93.55% 12.79% 71.62%

10% 103.40% 91.77% 13.55% 70.87%

20% 213.65% 231.30% 35.99% 80.23%

30% 301.46% 269.07% 51.03% 87.80%

40% 532.97% 374.67% 57.99% 84.34%

50% 644.47% 552.57% 63.28% 124.30%

Table 3: Values of the criteria vs. the noise magnitude

In the last experiment, we consider a soft object of arbitrary and non smooth shape. We
experiment with the TRAC method to detect the location of the inclusion by varying the
respective locations of the artificial ball. The results are summarized in Table 4. First we take a
large ball Bρ so that we check that the inclusion D is not too close to the boundary ΓR. Then,
we move Bρ to the left and the high value of the criterion shows us that the inclusion is not
included inside. The third and fourth show other failed attempts to enclose the inclusion. The
last column corresponds to a successful location of the inclusion. This shows the possibility by
trials and errors to recover the location and volume of the inclusion.

Cases

JTRAC 8.52% 66.09% 60.28% 28.35% 11.89%

Table 4: Criterion JTRAC for a soft inclusion and various ball locations.

4 Conclusion

The aim of this paper is to introduce the time reversed absorbing conditions (TRAC) in time
reversal methods. They enable one to “recreate the past” without knowing the source which
has emitted the signals that are back-propagated. This is made possible at the expense of
removing a small region enclosing the source. We presented two applications in inverse problems:
the reduction of the size of the computational domain and the determination of the location
and volume of an unknown inclusion from boundary measurements. We stress the fact that
in contrast to many methods in inverse problems, the method does not rely on any a priori
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knowledge of the physical properties of the inclusion. Hard, soft and translucent inclusions are
treated in the same way. Feasibility of the method was shown with both time-dependent and
harmonic examples. Moreover, the method has proved to be very robust with respect to noise
in the data.
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