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Generalized radiative transfer equation for porous medium
upscaling: application to the radiative Fourier law

Jean Tainea,∗, Fabien Belleta, Vincent Leroya, Estelle Iaconaa

aLaboratoire EM2C, École Centrale Paris - UPR 288 CNRS, Bâtiment Péclet, 92295 Châtenay-Malabry
Cedex, France

Abstract

Many porous media cannot be homogenized as Beerian semi transparent media. Ef-
fective extinction, absorption and scattering coefficients can indeed have no physical
meaning for small or intermediate optical thicknesses. A Generalized Radiative Transfer
Equation (GRTE), directly based on the extinction cumulative distribution function, the
absorption and scattering cumulative probabilities and the scattering phase function is
established for this optical thickness range. It can be solved by a statistical Monte Carlo
approach. For a phase of a porous medium that is optically thick at local scale, the GRTE
degenerates into a classical Beerian RTE. In these conditions, a radiative conductivity
tensor is directly obtained, by a perturbation method, and expressed with the radiative
coefficients of this RTE and temperature. As illustrations, exhaustive radiative conduc-
tivity results are given for a set of overlapping transparent spheres within an opaque
phase and for opaque rod bundles.
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Nomenclature

Latin symbols

Knext Knudsen number related to radiative extinction

A Specific area per unit volume of the whole porous medium

E Extinction point

g Asymmetry factor of scattering

Gext Extinction cumulative distribution function

∗Corresponding author
Email address: jean.taine@ecp.fr (Jean Taine)

Preprint submitted to International Journal of Heat and Mass Transfer April 15, 2010



gext Extinction cumulative distribution function for a Beerian medium

kR Radiative conductivity

M Current point

n Refraction index

P Cumulative probability

p Cumulative probability for a Beerian medium

pν Scattering phase function

qRi Radiative flux vector

s, s′, s1, s
′
1 Curvilinear abscissas along a ray

T Temperature

ui Director cosine of axis i

xi Coordinate of axis i

Se Emission source term

Ssc Scattering source term

S Total source term

Greek symbols

B Generalized extinction coefficient at equilibrium

K Generalized absorption coefficient at equilibrium

αh Hemispherical interface absorptivity

β Extinction coefficient

κ Absorption coefficient

Ω Solid angle

ω Albedo

Π Porosity

Σ Generalized scattering coefficient at equilibrium
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σ Scattering coefficient

θ, ϕ Euler angles

εβ+ Identification error criterion for β+

ϕR Radiative flux per unit interfacial area

Indexes

−′ At the calculation point

−+ Non dimensional

−(j) jth order of perturbation

−diff Diffuse reflection law

−h Hemispherical

−spec Specular reflection law

−1 Related to the ray to be scattered

−A Related to phase A

−B Related to phase B

−ν Frequency

−a Absorption

−b At a porous medium boundary

−ext Extinction

−e Emission

−i Direction i

−ot At optically thin limit

−sc Scattering
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1. Introduction

Accurate radiative transfer models applied to porous media are required for energy
technologies, for instance in ceramic foams for catalytic combustion, in porous materials
of solid oxides fuel cells, in reticulated ceramics and packed beds used in solar absorbers
and solar thermochemical reactors, in degraded rod bundles of a nuclear reactor core
for the modeling of a severe accident... For all these applications, the key step is the
accurate characterization of the radiative properties of the considered porous medium.
This characterization is generally based on the non proved assumption that any porous
material can be modeled by an equivalent semi transparent medium following Beer’s
laws, i.e. defined by extinction, absorption and scattering coefficients.

In the case of absorbing and scattering materials made of spheres or cylinders ran-
domly oriented, some authors [1, 2] have simulated by a Monte Carlo technique a complete
radiative transfer. They have defined the limits of validity of the independent scattering
assumption, but only from the point of view of shadow effects.

The most popular method to characterize radiative properties is a parameter identi-
fication technique comparing experimental data, usually reflected or transmitted fluxes,
and the predictions of a radiative transfer model based on the previous coefficients and
on a phase function depending on general parameters ([3, 4, 5, 6, 7, 8]). A more detailed
bibliography is given in [9] in the case of reticulated ceramics. These works are pertinent
in so far as Beer’s laws can be applied to the medium. Because of the large number of
parameters to determine, the parameter identification technique practically always leads
to a solution, but does not allow to physically validate the set of parameters that is
obtained.

Using a deterministic mechanical approach, Consalvi et al. [10] have generalized to
radiative transfer the homogenization technique developed by Whitaker [11] and Quintard
[12] for mass transfer or other heat transfer modes. This method has then been developed
by Lipinski et al. [13]. It is mainly based on mathematical theorems, and the specific
features of radiation are only taken into account by a radiative transfer equation and
boundary conditions, associated to any phase of the porous medium at local scale. The
radiation modeling is degraded, by a spatial and directional averaging technique, to the
scale of homogenization of the material system. It seems difficult, in this approach, to
account for the characteristic scales of radiation, which can be smaller than the arbitrary
chosen homogenization scale, and for spectral correlations in a gaseous phase.

A new statistical approach, called Radiative Distribution Function Identification
(RDFI), has been developed since 2004. Its aim is to directly characterize the equiv-
alent radiative properties of a porous medium, with a spatial resolution d, in so far as
both the morphology of the medium and its radiative properties at local scale, i.e. lower
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than d, are known. In these conditions, a homogenized phase of a porous medium is ex-
haustively characterized by statistical functions: the extinction cumulative distribution
function, the absorption cumulative probability or the scattering one and the scattering
phase function with sometimes an associated effective refractive optical index. These
statistical functions have been determined by an original Monte Carlo technique, which
strongly differs from the Monte Carlo approach previously cited or sometimes used in
parameter identification techniques. Indeed, there is no simulation of radiative transfer
in this technique, but a direct characterization of the radiative properties of the medium
from their statistical definitions. This approach has been first developed by Tancrez and
Taine [14], while applied to a statistically isotropic and homogeneous porous medium.
This virtual medium is made of sets of overlapping spheres with a dispersed radius dis-
tribution (for instance Gaussian), either opaque within a transparent phase (DOOS) or
transparent within an opaque phase (DOTS). These last media are close to ceramic foams
with an opaque solid phase. An important interest of the RDFI approach is to include
a quantitative validation criterion of the assumption that the equivalent medium follows
Beer’s laws. This property is, for instance, not true in the whole optical thickness range
in the case of a DOTS medium of porosity less than about 0.6. Zeghondy et al. [15, 16]
have generalized the previous model to a statistically anisotropic real porous medium, a
mullite foam of porosity close to 0.85, in a spectral range such as the solid phase is semi
transparent at local scale. In this case, anisotropic extinction, absorption and scattering
coefficients have been accurately determined and physically validated. The phase func-
tion has been directly determined. Petrasch et al. [17], Haussener et al. [18, 19] have
applied the same method to determine the Beerian radiative properties of high porosity
reticulated ceramics and packed beds used in solar absorbers and solar thermochemi-
cal reactors. Bellet et al. [20] have characterized, with the RDFI method, bundles of
opaque rods of an intact nuclear core, which is a strongly anisotropic porous medium.
The authors have shown, in this case, that an effective Beerian semi transparent medium
is not an accurate representation. An effective radiative conductivity, related to transfer
in the plane perpendicular to the rods, has also been determined for this medium from
a perturbation method of the radiative transfer equation. Gusarov [21] has developed a
similar perturbation method to calculate a radiative conductivity.

Sec.2 deals with a general characterization of the radiative properties of porous media
that do not follow Beer’s laws, for instance intermediate and low porosity foams, intact
or degraded rod bundles... In Sec.3, a generalized radiative transfer equation, directly
based on the radiative statistical distribution functions, is established. Sec.4 is devoted to
the direct determination of a radiative conductivity tensor, associated with a radiative
diffusion model, for a medium that is optically thick at local scale. Two application
examples are treated in Sec.5, dealing with a set of overlapping spheres within an opaque
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phase and with rod bundles. A conclusion is finally drawn in Sec.6.

2. General characterization of a porous medium

All the porous media that are studied here are assumed to be statistically uniform.
In the upscaling approach to follow, any non opaque phase of a porous medium, even

transparent, is homogenized by introducing an effective continuous semi transparent
medium, characterized by effective radiative properties. This effective semi transparent
medium may follow Beer’s laws, and effective extinction, absorption and scattering co-
efficients are then introduced. If it does not follow Beer’s laws and is therefore a non
Beerian effective semi transparent medium, a more general characterization is developed.

In the case of a porous medium with two phases that are respectively transparent
and opaque at local scale, a semi transparent medium, characterized by effective radiative
properties, is associated with the radiative transfer between the opaque interfaces [14].
In the case of a porous medium with semi transparent phases at local scale, effective
radiative properties are also associated with each homogenized phase, and strongly differ
from the radiative properties at local scale [15].

In any case, the radiative effective properties of a homogenized phase of a porous
medium, possibly statistically anisotropic, are completely characterized by four statistical
functions, defined in the whole system of coordinates [20]:
i) An extinction cumulative distribution function Gext ν(s′ − s, θ, ϕ), which is in fact the
cumulative distribution function of the lengths s′−s of all the intervals ME joining, in the
direction defined by (θ, ϕ), any current point M of abscissa s within the considered phase
to the associated extinction point E of abscissa s′. E can be within the phase, if this
phase is semi transparent at local scale, or, in any case, an impact point at the interface
with another phase. It is worth noticing that 1 − Gext ν(s′ − s, θ, ϕ) = τν(s′ − s, θ, ϕ),
which is the transmissivity of the homogenized phase in the direction (θ, ϕ).
ii) An absorption cumulative probability Pa ν(s′ − s, θ, ϕ), which is the probability that a
ray issued from any point M(s) of a phase in the direction (θ, ϕ) is absorbed within this
phase or at an opaque interface before a distance s′ − s from M ,
or, which is equivalent, a scattering cumulative probability Psc ν(s′ − s, θ, ϕ), which is the
probability that a ray issued from any point M(s) of a phase in the direction (θ, ϕ) is
scattered within this phase or at an interface before a distance s′ − s from M [15].
These first statistical functions obviously verify:

Gext ν(s′ − s, θ, ϕ) = Pa ν(s′ − s, θ, ϕ) + Psc ν(s′ − s, θ, ϕ). (1)

iii) A phase function pν(θ, ϕ, θ′, ϕ′), depending in the general case on the directions of
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both incident and scattered rays, respectively characterized by (θ, ϕ) and (θ′, ϕ′).
iv) An effective refractive index nν(θ, ϕ), in so far as Psc ν(s′ − s, θ, ϕ) and the other
statistical functions depend on the direction (θ, ϕ) [20]. The determination of nν(θ, ϕ) is
detailed in Appendix A.
These four independent statistical functions can be determined from the knowledge of
both the real morphology of the porous medium, obtained for instance from an X ray
[15, 17, 18] or γ ray [22] tomography, and the radiative properties of the medium at local
scale, i.e. at a spatial scale that is not taken into account by the tomography.

A statistical Monte Carlo approach is used for the direct determination of Gext ν ,
Psc ν and pν for a porous medium with opaque and transparent phases at local scale
[14, 17, 18, 20], opaque and semi transparent phases, or semi transparent phases at local
scale [15]. It is based on a huge number of rays that are shot from randomly points
within the propagation phase, in randomly chosen directions covering the whole space.
Two key conditions have to be carefully fulfilled:
i) The shooting zone must be representative of the whole porous medium (see an example
in Figs.1(a) and 1(b) for intact opaque rod bundles in triangular and square configura-
tions). The shooting zone is defined in agreement with the possible symmetries and
periodicities of the porous medium, case for instance of [20]. In porous media such as
foams, the statistical uniformity needs to be checked (see for instance [15]).

[Figure 1 about here.]

ii) All rays must be followed until their extinction (if it eventually happens).
Under these conditions, the radiative statistical functions that are obtained are represen-
tative of the radiative properties of the whole homogenized phase over the whole optical
thickness range, in the case of a statistically uniform medium.

In many cases, as discussed in the following, the homogenized phase can be con-
sidered as Beerian. In these conditions, the extinction cumulative distribution function,
called gext ν(s′−s, θ, ϕ), and the absorption and scattering cumulative probabilities, called
Pa ν(s′ − s, θ, ϕ) and Psc ν(s′ − s, θ, ϕ), are simply given by

gext ν(s′ − s, θ, ϕ) = 1− exp
[
−(s′ − s)βν(θ, ϕ)

]
, (2)

Pa ν(s′ − s, θ, ϕ) = 1− Psc ν(s′ − s, θ, ϕ) = [1− ων(θ, ϕ)]
(
1− exp

[
−(s′ − s)βν(θ, ϕ)

])
,

where the medium extinction coefficient βν(θ, ϕ), scattering coefficient σν(θ, ϕ) and
albedo ων(θ, ϕ), equal to σν(θ, ϕ)/βν(θ, ϕ), are introduced.

But all real porous media cannot be accurately modeled by equivalent Beerian semi
transparent media. In the following examples, the statistical function Gext, and conse-
quently Psc, are accurately determined with a typical relative error (standard deviation)
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smaller than 10−4.
The first example is given in Fig.2, which deals with a set of Dispersed radius Over-

lapping Transparent Spheres (DOTS) within an opaque medium.

[Figure 2 about here.]

It is a realistic model for a foam that is statistically isotropic. The quantity ln(1−Gext)
is expressed versus a non dimensional distance s+ = βOT (s′ − s), where βOT is the
extinction coefficient at the limit of an optically thin medium (see [14]). For statistically
isotropic media, βOT is equal to A/(4 Π), where A is the interfacial area per unit volume
of the porous medium and Π its porosity. It appears that Gext cannot be modeled by an
exponential function in the optical thickness range [x, 2] when the porosity is less than
0.6. The initial value x strongly depends on the porosity. This figure is also discussed in
Sec.5.1.

Another example, shown in Fig.3, is related to triangular and square configurations
of intact opaque rod bundles, which is a statistically anisotropic system encountered for
instance in a nuclear reactor core.

[Figure 3 about here.]

The Gext field strongly differs from the exponential functions associated with the Beerian
semi transparent model. This figure is also discussed in Sec.5.2.

3. Generalized Radiative Transfer Equation

A generalized formulation of the Radiative Transfer Equation (RTE), directly based
on the statistical functions Gext ν , Pa ν , Psc ν , pν and the effective refractive index nν is
required when the three first statistical functions are not exponential. The following
assumptions are made:
i) For the sake of simplicity, the possible dependence on the current direction (θ, ϕ) of
the statistical functions is omitted in this part. All the equations of Secs.3 to 4 are
nevertheless still valid when Gext ν , Pa ν , Psc ν , nν depend on (θ, ϕ).
ii) The statistical functions are spatially uniform in the homogenized phase: for example,
the transmissivity of the medium from s to s′ in the direction (θ, ϕ), 1 − Gext ν , only
depends on the distance v = s′ − s.
iii) Only the core of the porous medium is considered: if s′ − sb is the distance to the
closest boundary of the whole porous medium, Gext ν(s′− sb) is assumed to be close to 1.
A specific model is required in the radiative boundary layer, i.e. such asGext ν(s′−sb) < 1,
but it is still an open research field.
iv) All the radiation wavelengths are small compared to the typical pore size: diffraction
phenomena can then be neglected, and the laws of geometrical optics are valid.
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3.1. Physical meaning and general expression of intensity

The emission and scattering phenomena, which occur around a point M , within an
elementary cylinder of cross section dS and length ds, in an elementary solid angle dΩ
around the direction (θ, ϕ), generate a radiative flux in this direction: Sν(s, θ, ϕ) ds dS dΩ dν.
In this expression, Sν(s, θ, ϕ) is the total source term in the direction (θ, ϕ), within the
volume dS ds characterized by a temperature T (s). It includes emission and scattering
phenomena, i.e.:

Sν(s, θ, ϕ) = Se ν [T (s)] + Ssc ν(s, θ, ϕ). (3)

Consequently, an intensity Sν(s, θ, ϕ) ds, associated to this flux, is generated at the source
point M , in the direction (θ, ϕ), around the abscissa s. For a non Beerian homogenized
phase, the radiative flux at a point M ′ of abscissa s′ results from the cumulated effect
of the elementary fluxes due to all the source terms from sb, abscissa of an arbitrary far
boundary of the whole porous medium, to s′, and transmitted up to s′. The source point
M belongs, at local scale, to an opaque interface (medium with opaque and transparent
phases) or to the volume of the phase (medium with semi transparent phases), but only
to a continuum after homogenization. In any case, the transmissivity in the direction
(θ, ϕ) between M(s) and a current point of the homogenized phase M ′(s′) is then given
by 1−Gext ν(s′ − s) (see Sec.2). The intensity associated with this flux, at the abscissa
s′ in the direction (θ, ϕ), is then:

Iν(s′, θ, ϕ) =
∫ s′

sb

Sν(s, θ, ϕ) τν(s′ − s) ds =
∫ s′

sb

Sν(s, θ, ϕ)
[
1−Gext ν(s′ − s)

]
ds. (4)

The physical meaning of Iν(s′, θ, ϕ) must be emphasized. This intensity is only defined
in the virtual continuous homogenized phase, which is the result of this type of statistical
modeling [14]. This statistical homogenization of the radiation field in a phase completely
differs from the common deterministic homogenization techniques of the material system
that some authors have applied to radiation [10, 13]. But these two independent ho-
mogenization techniques are applied around the same current points of the real porous
medium.

The radiative approach described here is statistical. In an arbitrarily small volume of
the whole homogenized porous medium dV , any homogenized phase is only characterized
by a probability of presence, Π for a fluid phase, commonly called porosity, and 1 − Π
for the solid phase. Indeed, there is no defined volume associated with any homogenized
phase. Consequently, the intensity Iν(s′, θ, ϕ) associated with the homogenized phase is
continuous and, by convention, defined in dV , elementary volume element of the whole
porous medium. Consequently, it is, by convention, proportional to the porosity Π associ-
ated with the real phase. The porosity will be introduced in emission source terms only,
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as we will see later.
As there is no theoretical spatial limitation to the determination of the radiative sta-

tistical functions Gext ν , Psc ν , and pν (see Sec.2), the most important spatial limitations
encountered in the calculation of the intensity with Eq.4 are due to the temperature field.
In practice, the temperature field is calculated from the energy balance equation of the
homogenized material system.

The variations in the elementary range [s′, s′ + ds′] of the intensity associated with
extinction, absorption and scattering phenomena, called dIext ν(s′, θ, ϕ), dIa ν(s′, θ, ϕ)
and dIsc ν(s′, θ, ϕ) respectively, are given by:

dIc,ν(s′, θ, ϕ) = −
∫ s′

sb

Sν(s, θ, ϕ) d
[
Xc ν(s′ − s)

]
ds with c = ext, a or sc, (5)

where Xc ν represents Gext ν , Pa ν or Psc ν , and d [Xc ν(s′ − s)] is equal to Xc ν([s′ − s] +

ds′)−Xc ν(s′−s) =
dXc ν

dv
(s′−s, ) ds′. Indeed, in the case of extinction, for instance, the

variation of intensity due to extinction between s′ and s′ + ds′ is the difference between
intensities at s′ and s′ + ds′, to which is added the intensity that is generated by all the
source terms in [s′, s′ + ds′].

3.2. Thermal equilibrium of an optically thick phase

In thermal equilibrium conditions at temperature T , the total source term S◦ν is
spatially uniform. The intensity n2

ν Π I◦ν (T ) is also uniform; Π is the porosity of the
phase in the whole porous medium and Π I◦ν (T ) is the equilibrium intensity in vacuum.
Consequently, if we assume that the phase is optically thick from sb to s′, i.e Gext ν(s′−sb)
is close to 1, the expression of S◦ν is deduced from Eq.4:

S◦ν =
n2
ν Π I◦ν (T )∫∞

0 [1−Gext ν(v, )] dv
= Bν n

2
ν Π I◦ν (T ), (6)

where v = s′ − s is a dummy variable. This equation introduces Bν , a generalized
extinction coefficient at equilibrium:

Bν =
(∫ ∞

0
[1−Gext ν(v)] dv

)−1

. (7)

Eq.5 applied to scattering phenomena becomes, after some mathematical manipulations
involving v = s′ − s:

[dIsc ν ]◦ (s′) = −Psc ν(∞)Bν n2
ν Π I◦ν (T ) ds′

= −Σν n
2
ν Π I◦ν (T ) ds′, (8)
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which allows us to introduce the generalized scattering coefficient at equilibrium Σν , equal
to Psc ν(∞)Bν , and the corresponding albedo Psc ν(∞). In a similar manner, the absorbed
intensity at equilibrium in the range [s′, s′ + ds′] can be written, using Eqs.1 and 5:

[dIa ν ]◦ (s′) = −[1− Psc ν(∞)]Bν n2
ν( Π I◦ν (T ) ds′

= −Kν n
2
ν Π I◦ν (T ) ds′, (9)

which allows us to introduce the generalized absorption coefficient at equilibrium Kν ,
equal to [1− Psc ν(∞)]Bν .

In an application involving radiative transfer, neither the radiation field nor the mate-
rial system are in thermal equilibrium conditions. But, at local scale, the material system
is generally considered in Local Thermal Equilibrium (LTE) [23, 24], i.e. an arbitrary
small volume element dV can be characterized by a temperature T during an arbitrary
short duration dt. In so far as the thermal emission is a property of the material system,
the emission source term per unit volume, in LTE conditions at temperature T , is equal
to the absorption term:

Se ν(T ) = Kν n
2
ν( Π I◦ν (T ). (10)

3.3. Generalized Radiative Transfer Equation

The Generalized Radiative Transfer Equation (GRTE) expresses the variation of the
intensity Iν(s′, θ, ϕ) at M ′(s′) along the direction (θ, ϕ):

dIν
ds′

(s′, θ, ϕ) = −dIext ν
ds′

(s′, θ, ϕ) + Sν(s′, θ, ϕ), (11)

or, using Eq.5:

dIν
ds′

(s′, θ, ϕ) = −
∫ s′

sb

Sν(s, θ, ϕ)
dGext ν

dv
(s′ − s) ds+ Sν(s′, θ, ϕ). (12)

In Sν(s′, θ, ϕ), the emission source term Seν [T (s′)] is given by Eq.10.
The main difficulty now is to express the scattering source term Ssc ν(s′, θ, ϕ). For

the sake of simplicity, the study is limited here to a porous medium with two phases,
one opaque and one transparent at local scale. Let us consider an elementary volume dV
of the homogenized porous medium, around the point M ′ of abscissas s′ and s′1 in the
directions (θ, ϕ) and (θ1, ϕ1) respectively. Let dS′ and dS1 be the elementary sections of
this volume, respectively normal to the directions (θ, ϕ) and (θ1, ϕ1), as shown in Figs.4.
In our differential analysis, this volume dV is both equal to dS1 ds′1 and dS′ ds′.

[Figure 4 about here.]
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The power dPν(s1, θ1, ϕ1) issued from the homogenized phase belonging to an ele-
mentary volume dS1 ds1 between s1 and s1 + ds1, in the elementary solid angle dΩ1

around the direction (θ1, ϕ1), towards the elementary cross section dS1 of the control
volume dV (see Fig.4(a)), is given by:

dPν(s1, θ1, ϕ1)
dS1 ds1 dΩ1 dν

= Se ν [T (s1)] + Ssc ν(s1, θ1, ϕ1) = Sν(s1, θ1, ϕ1). (13)

The probability for this power to be scattered in the control volume dV around M ′, be-
tween the abscissa s′1 and s′1 +ds′1, in the elementary solid angle dΩ around the direction

(θ, ϕ), is d [Psc ν(s′1 − s1)]
[
pν(θ1, ϕ1, θ, ϕ)

dΩ
4π

]
. Consequently, the part dPsc ν(s1, s′, θ1, ϕ1, θ, ϕ)

of dPν(s1, θ1, ϕ1) that is scattered in the direction (θ, ϕ) by the volume dV is:

dPsc ν(s1, s′, θ1, ϕ1, θ, ϕ) (14)

=
[

dPsc ν
dv

(s′1 − s1) ds′1

] [
pν(θ1, ϕ1, θ, ϕ)

dΩ
4π

]
Sν(s1, θ1, ϕ1) dS1 ds1 dΩ1 dν.

In this last equation, dS1 ds′1 is equal to dV . The scattering source term Ssc ν(s′, θ, ϕ) at
M ′ of abscissa s′ in the direction (θ, ϕ) is obtained by summing dPsc ν(s1, s′, θ1, ϕ1, θ, ϕ)
over both the solid angle dΩ1 and s1, and dividing by dV dΩ dν, i.e.:

Ssc ν(s′, θ, ϕ) =
∫

4π

∫ s′1

s1b

dPsc ν
dv

(s′1 − s1)
pν(θ1, ϕ1, θ, ϕ)

4π
Sν(s1, θ1, ϕ1) ds1 dΩ1. (15)

It is worth noticing that in Eq.15, s′1 is the abscissa of the point M ′ in the current
direction (θ1, ϕ1). In fact, the result depends on s′, abscissa of M ′ in the direction (θ, ϕ).

Finally, the strongly implicit Generalized Radiative Transfer Equation (GRTE) as-
sociated with the homogenized phase is defined by Eq.12, in which are introduced Se ν

and Ssc ν issued from Eqs.10 and 15. In this generalized approach, the knowledge of the
intensity at a point s′ is not sufficient to compute the intensity variation in the range
[s′, s′+ds′], and consequently the radiative transfer in the system, contrary to the case of
a semi transparent medium following Beer’s laws. Indeed, the variation of the intensity
Iν(s′, θ, ϕ) at a given point and in a given direction explicitly depends on the extinction
cumulative distribution function field along the considered direction, and moreover on
the scattering cumulative probability at any point of the medium and in any direction.

3.4. Practical use of the GRTE applied to a homogenized phase

We discuss here the general case of porous media in non equilibrium, such as each
phase is characterized by a specific temperature. Moreover, the temperature of an opaque
interface between the phases a priori differs from the previous ones. As seen in Sec.3.1,
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the intensity can be defined for a homogenized phase within any volume element dV of
a porous medium around a point M . Its spatial evolution is given by the associated
GRTE, which depends:
i) on the statistical functions Gext ν , Psc ν and pν , which can been calculated without
practical limitation related to the spatial resolution of the homogenization of the radiation
field within the phase (see Sec.2),
ii) on emission source terms considered in LTE conditions of the material system. The
spatial resolution of these emission source terms is, in practice, limited by the resolution
on the temperature field within the phase, issued from the homogenization of the material
system. Indeed, an emission source term characterizes the state of the material system.

From a practical point of view, the radiative vector qRi (xj) at a pointM , of coordinates
xj in tensorial notations, is obtained from the intensity field in M by:

qRi (xj) =
∫ ∞

0

∫ 2π

0

∫ π

0
Iν(xj , θ, ϕ)ui sin θ dθ dϕdν, (16)

where ui is the unit vector associated with the direction i. Let us recall that, with
the convention introduced in Sec.3.1, the porosity of the phase is implicitly taken into
account in the expression of the intensity. The radiative power per unit volume PR(xj)
is deduced at any point M of the phase by:

PR(xj) =
∂qRi
∂xi

(xj). (17)

PR(xj) is a source term in the energy balance equation related to the phase material
system, issued from its homogenization procedure. In the case of opaque and transpar-
ent phases at local scale, the homogenized phase is a virtual semi transparent medium
which, in fact, represents random opaque interface elements. A more physical quantity,
characterizing the coupling between the radiation field and the material system, is then
the radiative flux per unit interfacial area ϕR(xj), simply given by:

ϕR(xj) =
PR(xj)
A

, (18)

where A is the interfacial area per unit volume of the whole porous medium. It is worth
noticing that, in Eq.18, PR is proportional to the porosity Π. Consequently, ϕR is
proportional to the inverse of the interfacial area per unit volume of the transparent fluid
phase. Finally, the deterministic mechanical homogenization method and the statistical
radiative one are compatible and can be used in an iterative scheme. The temperature
field, issued from the energy balance equation of the homogenized material system, allows
us to calculate the intensity field at any point of a homogenized phase, and consequently
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PR and ϕR, which are source terms in the energy balance equation and also appear in
the boundary conditions of the material system. This iterative treatment is similar to the
treatment used in the modeling of systems in which turbulent combustion and radiation
are coupled. The previous model can be applied with no difference to porous media with
interconnected or closed pores. Nevertheless, this last characteristics of the medium has
to be taken into account in the modeling of the material system.

The only practical way to solve the extremely implicit GRTE is a Monte Carlo ap-
proach, based on a statistical modeling of all the emission source terms within the system.
Emission is modeled by shooting a huge number of radiative power quanta. All these
quanta are subjected, along all their paths through the whole system, to a large number
of scattering phenomena, stochastically and directly modeled by Psc ν . These quanta
are also continuously extinguished by absorption, stochastically and directly modeled by
Pa ν . Indeed, the main interest of the Monte Carlo method is to be based on cumulative
distribution functions or cumulative probabilities, which are here directly determined
from the model.

4. Limit of a locally optically thick porous medium

A phase of a porous medium is often optically thick at a spatial scale δ such as
it can be considered practically isothermal. Examples of these media are given at the
end of Sec.2. It is established in Sec.4.1 that, in these conditions, the GRTE associated
with a homogenized phase degenerates in a classical RTE. Consequently, the perturbation
approach developed in [20], which allows us to simply characterize a Beerian homogenized
phase by a radiative conductivity from a perturbation method applied to a classical RTE,
can be applied. The corresponding Fourier law is introduced in Sec.4.2.

4.1. Asymptotic expression of the GRTE

Let us consider a homogenized phase that is optically thick at a spatial scale δ such as
it can be considered as practically isothermal. Both the total source term Sν(s′, θ, ϕ) and
the intensity Iν(s′, θ, ϕ) are uniform, for given direction and frequency, within a volume
element of size δ. From Eq.4, they are linked by

Sν(s′, θ, ϕ) = Iν(s′, θ, ϕ)

(∫ s′

s′−δ
[1−Gext ν(s′ − s)] ds

)−1

. (19)

It is worth noticing that in Eq.19, the variations of Sν(s′, θ, ϕ) and Iν(s′, θ, ϕ) versus s′

are only considered at spatial scales larger than δ; these variations are negligible between
s′ − δ and s′. As the medium is considered as optically thick within the volume element
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of size δ, we can consider that : i) the sum in Eq.19 is carried out with s varying from
−∞ to s′ (or v = s′ − s varying from 0 to ∞), and write after some transformations

Sν(s′, θ, ϕ) = Iν(s′, θ, ϕ)
(∫ ∞

0
[1−Gext ν(v)] dv

)−1

= Bν Iν(s′, θ, ϕ). (20)

ii) in practice,
dGext ν

ds′
,

dPsc ν
ds′

and
dPa ν
ds′

are equal to zero for s′ − s values larger than
δ, i.e. Gext ν , Psc ν and Pa ν have reached, in these conditions, their asymptotic values, 1,
Psc ν(∞) and 1− Psc ν(∞), respectively. Eq.12 becomes, if we use Eqs.3, 10 and 15

dIν
ds′

(s′, θ, ϕ) = − Sν(s′, θ, ϕ)

(∫ s′

s′−δ

dGext ν
ds′

(s′ − s) ds

)
(21)

+ Π Kν n
2
ν I
◦
ν [T (s′)]

+
∫

4π
Sν(s′1, θ, ϕ)

(∫ s′1

s′1−δ

dPsc ν
ds′1

(s′1 − s1) ds1

)
pν(θ1, ϕ1, θ, ϕ)

4π
dΩ1.

After simplification, we obtain, by introducing the asymptotic values of Gext ν and Psc ν

and Eqs.8 and 20

dIν
ds′

(s′, θ, ϕ) +Bν Iν(s′, θ, ϕ) = Π Kν n
2
ν I
◦
ν [T (s′)]

+
∫

4π
Σν Iν(s1, θ1, ϕ1)

pν(θ1, ϕ1, θ, ϕ)
4π

dΩ1. (22)

We find again, under the previous assumptions and for variations of s′ at spatial scales
larger than δ, the classical formulation of the RTE, in which the extinction and scattering
coefficients at equilibrium are given by Eqs.7 and 8. But Eq.22 is not valid for scales
smaller than δ, as far the medium does not follow Beer’s laws. It can only be used in
the asymptotic case of a locally thick medium, i.e., in practice, to introduce a radiative
conductivity, as developed in the following section. These properties clearly appear in
Fig.2. For an optical thickness larger than 2 to 3, Gext is exponential and follows a Beer
law, but in the semi-transparency thickness range [0, 2], this property is not true for a
porosity Π less than 0.6.

Many experimenters have encountered the same type of behavior as in Fig.2. They
often write that the extinction coefficient β, considered in a Beerian apprach, depends
on the optical thickness of the medium, typically in the range [0, 2], and choose as β
determination the asymptotic value observed for an optical thickness greater than 2.
Though this value cannot be considered as a Beerian extinction coefficient and can be used
neither in a classical RTE nor for calculating a radiative conductivity, it is nevertheless
commonly done.
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4.2. Radiative Fourier’s law

The study is here limited to the case of a porous medium with opaque and transparent
phases at local scale, of porosity Π. The interface temperature field is called Tw(xj).

In so far as Eq.22 is a classical RTE, we can follow the approach of [20], here briefly
summarized.

We introduce a non dimensional coordinate x+
j = xj/δ and a perturbation param-

eter Knextν , called extinction Knudsen number equal to (Bνδ)−1 , by analogy with the
Boltzmann’s equation formalism. Knextν is small in front of 1, in so far as the medium is
optically thick, and we assume that the solution of Eq.22 is written

Iν(x+
j , θ, ϕ) = I(0)

ν (x+
j , θ, ϕ) + I(1)

ν (x+
j , θ, ϕ), (23)

where I(0)
ν is the RTE’s solution at the zero order of perturbation versus Knext, equal

to Π n2
ν I
◦
ν [Tw(x+

j )]. The contribution to the radiative flux, given by Eq.16, of the zero

order solution I
(0)
ν is null in so far as it corresponds to LTE conditions of the radiation

field, which are similar to the LTE conditions of the material system, commonly used in
heat transfer. From a physical point of view, when the coupling of the considered phase
within a volume element, of size δ, with the surrounding volume elements are neglected,
this phase can be characterized by an equilibrium intensity, at temperature Tw(xj).

In these conditions, the solution of Eq.22 at the first order versus Knextν is obtained
using the zero order intensity in the first term of the first member of this equation and
by only keeping terms proportional to Knextν , i.e.

I(1)
ν (x+

j ) = − Knextν ui Π n2
ν

∂I◦ν
∂x+

i

[Tw(x+
j )] (24)

+
1

4π Bν

∫ π

0

∫ 2π

0
Σν I

(1)
ν (x+

j , θ1, ϕ1) pν(θ1, ϕ1, θ, ϕ) sin θ1 dθ1 dϕ1.

Equation 24 shows that the perturbation first order implicit solution I
(1)
ν , which can

be obtained by iteration, is proportional to − ui Π
∂I◦ν
∂x+

i

[Tw(x+
j )] and consequently to

− ui
∂T

∂xi
(xj). Finally, by introducing the solution I

(1)
ν of Eq.24 in Eq.16, we obtain the

radiative Fourier law
qRi (xj) = − kRil

∂T

∂xl
(xj), (25)

in which appears the conductivity tensor kRil . Due to the system symmetries, this tensor
is generally diagonal. For statistically isotropic porous media, it is simply a scalar as in
the case of the phonon conductivity theory.

Radiation is generally coupled to other heat transfer modes within the porous medium.
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We only consider here the coupling terms in the case, considered in the next section, of a
medium with opaque and transparent phases at local scale; Eq.24 is then applied to the
propagation phase, i.e. the transparent fluid phase of the real medium. Consequently, an
equivalent radiative power per unit volume is, in principle, introduced within this phase,
given by Eq.17.

In fact, as the radiative transfer occurs at the opaque interfaces, characterized by the
temperature field Tw(xi), the radiative flux per unit interfacial area within the considered
volume element is given by Eq.18, i.e. in the present conditions by

ϕR(xj) =
1
A

∂

∂xi

[
kil

∂Tw
∂xi

]
(xj), (26)

where A is the specific fluid area per unit volume of the porous medium. It is worth
noticing that this model corresponds to a porous medium in non equilibrium, charac-
terized by the temperatures associated with the solid phase TS(xi) and the transparent
fluid phase TF (xi), and also by Tw(xi). On the other hand, if the whole volume element
of the porous medium is assumed to be at equilibrium at temperature T , the simplest
way is to consider an effective radiative power per unit volume, i.e.

PR(xj) =
∂

∂xi

[
kil

∂T

∂xl

]
(xj). (27)

In the most common case, the phase function pν(µsc) of the porous medium, assumed sta-
tistically isotropic, only depends on the scattering angle cosine µsc. In these conditions,
there is an analytical expression of the radiative diffusion flux, established in Appendix
B, for an optically thick medium at local scale. The associated isotropic conductivity is
then given, for a porous medium in non equilibrium conditions, by

kR(Tw) =
4π Π

3

∫ ∞
0

n2
ν

Kν + Σν(1− gν)
dI◦ν
dTw

(Tw) dν, (28)

in which gν is the asymmetry factor of scattering, classically defined by

gν =
1
2

∫ 1

−1
pν(µsc) µsc dµsc. (29)

It is worth noticing that, to our knowledge, there is no accurate validity criterion of
the use of radiative Fourier’s law, in particular for a strongly scattering medium, case of
any porous medium. This point is a key current research field.
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5. Examples of application

5.1. Overlapping Transparent Spheres within an opaque solid phase

Statistically isotropic foams, for instance mullite in most spectral bands, can be mod-
eled by a set of DOTS. These overlapping spheres are characterized by dispersed radii
and random locations of their centers. Tancrez and Taine [14] have shown, using the
RDFI approach, that the radiative transfer between the opaque phase interfaces can be
modeled using an effective Beerian semi transparent medium within the real transparent
phase only when the medium porosity is greater than 0.6. Gext plotted in Fig.2, and
consequently β, do not depend on the frequency ν, which is a classical result. It has also
been established that the phase function pν(µsc) only depends on the scattering angle
cosine µsc. On the other hand, it is obvious that the radiative conduction model is more
valuable as the porosity is small. The purpose of this section is to develop the radiative
conductivity model for all the porosity values from results of Sec.4.2.

The cumulative extinction distribution functions Gext and phase functions pν(µsc)
obtained for DOTS configurations versus the medium porosity Π in [14] are the starting
point of this study. The extinction coefficient at equilibrium B defined by Eq.7 is also
independent of the frequency and normalized by the asymptotic value βOT associated
with an optically thin medium, equal to A/(4 Π), as in [14], i.e.

B+ =
B

βOT
=

4 ΠB

A
; β+ =

β

βOT
. (30)

[Figure 5 about here.]

B+ is obtained from Eq.7, i.e. by the calculation of the area under the curve 1 − Gext,
with a relative accuracy better than 10−4. The results are shown in Fig.5 and compared
to the previous results of [14], related to β+ and obtained from the RDFI approach, in
which a Beer law is assumed. β+ has been extracted from a least square fit of 1−Gext by
an exponential function in the range [0, 3] of βOT s, i.e. approximately in the range [0, 4.5]
of β s. The main interest of this RDFI approach is to introduce an accurate quantitative
criterion of the validity of Beer’s laws, which is the standard deviation εβ+ on β+. εβ+ is
also plotted in Fig.5. It is worth noticing that the results related to B+ and β+ converge
when the porosity increases, i.e. when 1 − Gext becomes close to an exponential. The
two determination techniques are then equivalent. In the other hand, β+ and B+ have
no physical meaning for intermediate or low porosity values, as long as 1 − Gext is far
from being exponential in the variation range [0, 2] of β s. But the determination of
B+ is useful for calculating the radiative conductivity of locally optically thick media,
especially in the case of a low porosity.
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Let us first consider a diffuse reflection law for the solid phase, defined by a hemi-
spherical absorptivity αhν . In this particular case, characterized by the phase function
given in [14], the asymmetry factor of scattering is a scalar, independent of αhν , and
consequently of ν, equal to gdiff = −0.1827.

The isotropic conductivity is then deduced from Eqs. 28 and 30, i.e.

kRdiff (Tw,Π, A) =
Π2

A

16π
3

1
B+(Π)

∫ ∞
0

n2
ν

αhν + (1− αhν)(1− gdiff )
dI◦ν
dTw

(Tw) dν, (31)

and under the assumption of a gray solid phase characterized by αh

kRdiff (Tw,Π, A) =
Π2

A

64π
3

1
B+(Π)

n2 σ T 3
w

αh + (1− αh)(1− gdiff )
. (32)

For DOTS, A is linked with the distribution of the radii R by [25]

A =
3 < R2 >

< R3 >
(1−Π) ln(

1
1−Π

), (33)

where < R2 > and < R3 > are the average values of R2 and R3 .
Let us consider now a specular reflection law, simply modeled by

αspecν = 1− ρspecν =
3
2
αhν µi, (34)

where µi is the incidence angle cosine at local scale. The scattering parameter gspecν

associated with the corresponding phase function given in [14] now depends on αhν ; it
varies in the range [−0.078, 0.15] and is given by

gspecν = 0.8913αhν
3 − 0.4110αhν

2
+ 0.1688αhν − 0.07772, (35)

result obtained by a least square fit with a relative standard deviation of 0.013. It is
worth noticing that the specular phase function is, in practice, close to an isotropic
phase function, i.e. the effect of the scattering source term is weak. A similar result has
been obtained for a diffuse reflection law.

From the asymptotic value Pa ν(∞) of the cumulative absorption probability, we have
numerically determined, paralely to Gext in the Monte Carlo approach, a normalized
absorption coefficient at equilibrium K+ equal to Kν(Π) / [B(Π) αhν ] and independent
of ν. The effective conductivity associated with the specular reflection law is then given
by Eqs. 31-32, where the quantity αhν K

+(Π) + [1− αhν K+(Π)](1− gspecν ) is substituted
for αhν + (1− αhν)(1− gdiff ).

The ratio [αhν K
+(Π) + [1−αhν K+(Π)](1− gspecν )]/[αhν + (1−αhν)(1− gdiff )] has been
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computed versus Π and αh varying in the ranges [0.1, 0.82] and [0, 2/3] respectively. It
is worth noticing that this ratio, equal to 1.098 with a discrepancy less than 0.003, is in
practice independent of both Π and αh. Consequently, conductivity results associated
with a specular reflection law can be deduced from results associated with a diffuse
reflection law using this simple multiplication factor.

5.2. Bundle of rods

The radiative properties of bundles of opaque rods, in triangular or square configura-
tion (see Figs.1(a), 1(b) and 1(c)), have been studied by Bellet et al. [20], by considering
effective anisotropic extinction, absorption and scattering coefficients, i.e. an equivalent
Beerian semi transparent medium.

But, as shown in Fig.3, this approach is a poor approximation; Gext(s′−s, θ, ϕ) is far
from being exponential, in particular in a cross section of a rod bundle characterized by
θ = π/2, for azimuthal directions ϕ corresponding to alleys parallel to the lines joining
the centers of the rod cross sections. ϕ = 0◦ corresponds to a center line; due to the
system symmetry, ϕ belongs to the range [0◦, 30◦] or [0◦, 45◦] for a triangular or a
square configuration respectively. More precisely, ln[1−Gext(s′− s, π/2, ϕ)] is plotted in
Fig.3 versus βOT (s′−s), where βOT is the Beerian extinction coefficient at the limit of an
optically thin system, equal to A/π, as introduced in [20]. Discrepancies with exponential
functions can be extremely important in Fig.3. The aim of this section is to apply to this
system, considered as optically thick at local scale, the diffusion approximation based on
the GRTE and the derived rigorous expressions of B, Kν and Σν .

We only consider, for both square and triangular configurations of opaque rod bundles,
a diffuse reflection law characterized by the hemispherical absorptivity αhν . The study is
only carried out in a cross section plane (θ = π/2), as far it has been established that,
for this infinite system, elements of a conductivity tensor cannot be defined for the rod
axis direction [20]. As B(π/2, ϕ), Kν(π/2, ϕ) and Σν(π/2, ϕ), equal to αhν B(π/2, ϕ) and
(1− αhν)B(π/2, ϕ) respectively, strongly depend on ϕ, an effective real index nν(π/2, ϕ)
depending on ϕ is calculated by the method detailed in Appendix A. For system
symmetry reasons, the emission term Kν(π/2, ϕ) n2

ν(π/2, ϕ) I◦ν (Tw) is isotropic [20].
Consequently Eq.24 and the results of Sec.4.2 can be applied.

The main difficulty of this part is to determine with accuracy the integral (area)
between 0 and ∞ of the function 1−Gext(s′ − s, π/2, ϕ) that defines B(π/2, ϕ) in Eq.7.
A critical optical thickness Bscrit at 95% (resp. 99%), shown in Fig.6a, is associated to
the distance scrit at which the calculation gives a value of 95% (resp. 99%) of the area
between 0 and ∞. Values of this optical thickness as large as 80 are required in some
particular directions, which correspond to alleys between rods, due to the low convergence
of 1−Gext.
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[Figure 6 about here.]

The strong variations of B versus ϕ in a bundle cross section are illustrated in Fig.6b.
After the determination of B, Kν and Σν , the procedure detailed in [20] has been followed
to accurately compute the radial conductivity of the rod bundles, isotropic in a cross
section due to the system symmetry. In fact, we have introduced and tabulated the
normalized quantity kR +(Π, αhν) defined in this reference, such as

kR(Tw,Π, A, αhν) =
π Π2

A

∫ ∞
0

dI◦ν
dTw

(Tw) kR +(Π, αhν) dν. (36)

The results are summarized in Table.1 versus the porosity Π and αhν for the triangular
and the square configurations. It is worth noticing that they often strongly differ from
those of [20]: this is due to the very large discrepancies of this type of system with an
effective Beerian semi transparent medium.

[Table 1 about here.]

6. Conclusion

This paper deals with homogenization of the radiation field in a porous medium, even
if the homogenized phases do not follow Beer’s laws related to extinction, absorption and
scattering. This approach is limited to media characterized by typical pore sizes larger
than the useful radiation wavelengths; diffraction and coherence effects are neglected and
the geometrical optics laws are valid. The study is also limited to statistically isotropic
and statistically uniform porous media. The developed approach is general, but has been
here mainly applied to the case of porous media with an opaque phase and a transparent
one. The main results are:

i) The radiative properties of any homogenized phase can be characterized by three
radiative statistical functions : extinction cumulative distribution function, scattering
cumulative probability and general scattering phase function; an effective refractive index
has to be introduced for statistically anisotropic porous media.

ii) The spatial resolution of this radiative homogenization is only limited by the accu-
racy on the determination of the distances from any point of a phase to any other point or
interface of this phase, in a Monte Carlo method of calculation of the previous radiative
statistical functions. In most cases, this limitation is linked to the spatial resolution of a
X or γ tomography applied to the considered porous medium. The determination of the
radiative statistical functions also requires to know the medium radiative properties at a
local scale, lower than the scales accounted for by the tomography techniques.

iii) The intensity field within any homogenized phase is expressed from a Generalized
Radiative Transfer Equation (GRTE), which depends on the three previous statistical
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functions and on the emission terms, functions of the homogenized temperature field
for a material system in Local Thermal Equilibrium (LTE) conditions. This tempera-
ture field, associated with the material system, has to be homogenized from the classical
homogenization techniques used in porous media, generally characterized by greater spa-
tial resolution scales. The two independent homogenization techniques, applied to the
radiation field and the material system, are compatible.

iv) An important established result is that, for a large optical thickness, any GRTE
degenerates in a classical Radiative Transfer Equation (RTE), even for non Beerian ho-
mogenized phases of a porous medium. This asymptotic RTE is characterized by gener-
alized extinction and scattering coefficients at equilibrium, expressed versus the radiative
statistical functions.

v) In the case of a homogenized phase optically thick at a scale such as it can be
practically considered isothermal, the radiative transfer can be modeled by a radiative
Fourier law, based on a radiative conductivity tensor. This tensor is directly deduced, by
a perturbation technique, similar to the Chapmann Enskog model, from the generalized
extinction and scattering coefficients at equilibrium. Two application examples have
been given; they are related to a set of Dispersed Opaque Transparent Spheres (DOTS)
within an opaque phase and to rod bundles.

vi) Precise validity conditions of the radiative Fourier law have to be defined for prac-
tical applications versus the temperature field, the absorption and extinction coefficients,
possibly generalized at equilibrium, and the phase function. It is a current key research
field.

Appendix A. Determination of nν(θ, ϕ)

We consider a statistically anisotropic porous medium, characterized by Bν(θ, ϕ),
Kν(θ, ϕ), Σν(θ, ϕ) and nν(θ, ϕ), all depending on the current direction (θ, ϕ). nν(θ, ϕ) can
be determined by expressing the equality between the extinction term due to scattering
and the scattering source term in equilibrium conditions of an optically thick medium at
temperature T . Using Eqs.3, 6, 10 and 15, we obtain

S◦ν(θ, ϕ) (A.1)

= Bν(θ, ϕ) n2
ν(θ, ϕ) I◦ν (T )

= Kν(θ, ϕ) n2
ν(θ, ϕ) I◦ν (T ) +

∫
4π

∫ s′1

s10

d [Psc ν(s′1 − s1, θ1, ϕ1)]
ds′1

pν(θ1, ϕ1, θ, ϕ)
4π

S◦ν(θ, ϕ) ds1 dΩ1.
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After the spatial summation over the considered optically thick medium at equilibrium,
Eq.A.1 becomes

Σν(θ, ϕ) n2
ν(θ, ϕ) I◦ν (T ) =

∫
4π

pν(θ1, ϕ1, θ, ϕ)
4π

Psc ν(∞, θ1, ϕ1) Bν(θ1, ϕ1) n2
ν(θ1, ϕ1) I◦ν (T ) dΩ1

(A.2)
and finally, using Eq.8

Σν(θ, ϕ) n2
ν(θ, ϕ) =

∫
4π

pν(θ1, ϕ1, θ, ϕ)
4π

Σν(θ1, ϕ1) n2
ν(θ1, ϕ1) dΩ1. (A.3)

This last implicit equation allows us to determine n2
ν(θ, ϕ). It is a generalization of the

equation used for a Beerian semi transparent medium (see [20]).

Appendix B. Radiative conductivity of a spatially isotropic medium

The aim of this Appendix is to express the radiative conductivity of a non Beerian
medium characterized by isotropic extinction, absorption and scattering coefficients at
equilibrium Bν , Kν and Σν , an isotropic optical index nν and also characterized by a
phase function only depending on the scattering cosine angle µsc. This approach is obvi-
ously also valid for an optically thick volume element of a Beerian medium characterized
by βν , κν and σν and nν .

We consider a volume element, of typical size δ, optically thick and isothermal at
the zero perturbation order, under the conditions defined in Sec.4.2. The first order
perturbation solution, defined by Eq.24, becomes

I(1)
ν (xj , θ, ϕ) = − n2

ν

Bν
ui
∂I◦ν
∂xi

[Tw(xj)] (B.1)

+
Σν

4π Bν

∫ π

0

∫ 2π

0
I(1)
ν (xj , θ1, ϕ1) pν(u1l ul) sin(θ1) dθ1 dϕ1.

In the last sum of this equation, u1l ul is the cosine of the scattering angle between the
directions (θ1, ϕ1) and (θ, ϕ). The spectral radiative flux defined by Eq.16 can then be
written

dqRk ν(xj) =
∫ π

0

∫ 2π

0
I(1)
ν (xj , θ, ϕ) uk sin θdθ dϕdν (B.2)

= − n
2
ν

Bν

∫ π

0

∫ 2π

0
ui
∂I◦ν
∂xi

[Tw(xj)] uk sin θ dθ dϕdν (B.3)

+
Σν

4π Bν

∫ π

0

∫ 2π

0

[∫ π

0

∫ 2π

0
I(1)
ν (xj , θ1, ϕ1) pν(u1l ul) sin θ1dθ1 dϕ1

]
uk sin θ dθ dϕdν.
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The last term of Eq.B.2 can be written by permuting the sums

Jν =
Σν

4π Bν

∫ π

0

∫ 2π

0
I(1)
ν (xj , θ1, ϕ1)

[∫ π

0

∫ 2π

0
uk pν(u1l ul) sin θ dθ dϕ

]
sin θ1dθ1 dϕ1 dν.(B.4)

For symmetry reasons, we can write∫ π

0

∫ 2π

0
uk pν(u1l ul) sin θ dθ dϕ = 4π gν u1k, (B.5)

where gν is the scattering parameter defined by Eq.29. Consequently, J becomes

Jν =
Σν gν
Bν

dqRk ν(xj) (B.6)

Finally from Eqs.B.2 -B.5 we obtain, by accounting for the orthogonality rules of the ui

qRk (xj) = − 4π
3

∫ ∞
0

n2
ν

Bν − Σν gν

∂I◦ν
∂xk

[Tw(xj)]dν, (B.7)

which leads to the radiative Fourier law

qRk (xj) = − kR ∂T
∂xk

dν, (B.8)

by introducing the radiative conductivity

kR =
4π
3

∫ ∞
0

n2
ν

Bν − Σν gν

∂I◦ν
∂Tw

[Tw(xj)] dν. (B.9)
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Π
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0.2147 8.43 8.78 9.16 9.57 10.03 10.54 11.10 11.73 12.44
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0.6000 50.18 50.52 50.88 51.27 51.71 52.18 52.71 53.30 53.96
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