
HAL Id: hal-00491615
https://hal.science/hal-00491615

Preprint submitted on 13 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A bidirectional/multi-queue algorithm for the
bi-objective multimodal viable shortest path problem
Fallou Gueye, Christian Artigues, Marie-José Huguet, Frédéric Schettini,

Laurent Dezou

To cite this version:
Fallou Gueye, Christian Artigues, Marie-José Huguet, Frédéric Schettini, Laurent Dezou. A
bidirectional/multi-queue algorithm for the bi-objective multimodal viable shortest path problem.
2010. �hal-00491615�

https://hal.science/hal-00491615
https://hal.archives-ouvertes.fr

A bidirectional/multi-queue algorithm for the

bi-objective multimodal viable shortest path

problem

Fallou Gueye1,2,3,Christian Artigues1,2, Marie-José Huguet1,2, F. Schettini3, L. Dezou3

1CNRS; LAAS; 7 avenue du Colonel Roche, F-31077 Toulouse, France
2Université de Toulouse ; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France

3MobiGIS; ZAC Proxima, rue de Lannoux, 31310 Grenade Cedex France
fgueye@mobigis.fr, artigues@laas.fr, huguet@laas.fr

Abstract

Taking into account the multimodality of urban transportation networks for com-
puting the itinerary of an individual passenger introduces a number of additional con-
straints such as restriction and/or preferences in using some modes. Such constraints
are gathered under the concept of viable path modeled by a deterministic finite state
automaton. In this paper we propose several polynomial algorithms to tackle a bi-
objective problem where the goal is to find all the non-dominated viable paths under
the two objectives “travel time” and ”number of modal transfers”. These algorithms
are a variant of a topological label-setting algorithm provided by Lozano and Storchi
[5], a new multi-queue algorithm, as well as its bidirectional variant. The different
algorithms are compared on a real network. The results show that the proposed al-
gorithms are efficient and well suited for practical use. The proposed bidirectional
algorithm outperforms other algorithms.
keywords: bi-objective viable shortest path, multi-modal transportation, multi-queue
label setting algorithms, deterministic and non-deterministic finite state automaton,
bidirectional search

1 Introduction and problem definition

Taking into account the multimodality of urban transportation networks for individual
passenger’s itinerary computation introduces a number of additional constraints such as
restriction and/or preferences in using some modes. Such constraints are gathered under
the concept of a viable path. In this paper we propose algorithms to tackle a bi-objective
problem where the goal is to find all the non-dominated viable paths under the two ob-
jectives, namely, “travel time” and ”number of modal transfers”. The problem has been
previously considered by Lozano and Storchi [5] who proposed an extension of the topo-
logical algorithm proposed by Pallottino and Scutellà [7]. Section 2 describes precisely the
considered bi-objective multimodal viable shortest path problem. In section 3, we briefly
review the state-of-the-art models and methods to deal with the multimodal character-
istics. In Section 4, we propose several algorithms to solve the problem: a topological
label-setting algorithm based on the Lozano and Storchi algorithm which incrementally
compute solutions from 0 to a maximum number of transfers, a multi-queue algorithm

1

which computes firstly the shortest path with the highest number of transfers and then
the other paths with less transfers, as well as a bidirectional variant of the multi-queue
algorithm. In Section 6, the different algorithms are compared on a real network.

2 The bi-objective multimodal viable shortest path problem
(BI-MM-V-SPP)

2.1 Problem definition

We consider a layered network G(V,E) such that each layer corresponds to a mode m ∈M .
For our experimental evaluation on a real network, we consider the case where M =
{wa, bu, pr,me} (walking, bus, private car, metro). A mode mi ∈ M is defined for each
node i ∈ V and a travel time dij is associated to each arc (i, j) ∈ E. An arc (i, j) such that
mi 6= mj is called a transfer arc. A viable (or feasible) path is a path in G from an origin
node O to a destination node D verifying in addition some multimodal restrictions. In
terms of multimodal characteristics, a path in G is described by a sequence (or string) of
modes, e.g. pr, wa, bu, wa. Among all mode strings of modes, only a subset of strings are
acceptable according to a passenger’s preferences. A generic way of representing feasibility
of the mode sequences is through the use of a finite state automaton (FSA) that validates
or not the mode string. A path issuing a valid mode string is named a viable path (as in
[5]), i.e. a feasible path satisfying the multimodal restrictions.

The input finite state automaton is given by a 5-uple A = (S,M, δ, s0, F) where S =
{1, . . . , |S|} is the set of states, s0 is the initial state, F is the set of final states and
δ : M × M × S → S is the transition function such that δ(m,m′, s) gives the state
obtained when traversing from state s an arc (i, j) with mi = m and mj = m′. A path is
viable if it starts with O (in state s0) and reaches D in a state s ∈ F .

We consider both the “minimum time” and “minimum number of transfers” objectives.
We first recall definitions on multiobjective optimization [4] applied to our problem. Let
time(p) denote the travel time along a path p. Let ntr(p) denote the number of transfers
along p. An efficient (or Pareto-optimal) solution is a feasible O-D path p such that
there is no other path p′ verifying either time(p′) ≤ time(p) and ntr(p′) < nbtr(p), or
time(p′) < time(p) and ntr(p′) ≤ nbtr(p). In the objective space, a non-dominated
point is a pair (t, k) such that there exists an efficient path p verifying time(p) = t and
ntr(p) = k.

Considering the bi-objective “minimum time” and “minimum number of transfers”
O-D viable path problem, the goal is to find all non-dominated points, and, for each of
them, a single efficient path.

2.2 Example of modelling path viability through finite state automatons

We consider at first the deterministic finite state automaton with |S| = 5 represented in the
left part of Figure 1 and given by Lozano and Storchi [5]. Transition arcs between states
are labeled by a mode m ∈ M where M = {wa, bu, pr,me} ∪ {O} (walking, bus, private
car, metro) and mode at the origin (mO = O). This automaton represents constraints on
metro and private modes. The considered intineraries are assumed to be from home to
another place. Hence, the private mode can be taken only from O and, once left, cannot
be taken again. For the metro, one assume that it can be taken at any time but, once left,
cannot be taken again. A transition from state s to state s′ labeled by m ∈ M describes

2

pr

wa, bu

me me

wa

wa, buwa, bu

pr

wa

s2

s1

s4s3s0
pr

wa, bu

me me

me

wa

wa, buprwa, bu

s2

s3

s1

s4 s5s0

wa, bu

wa

Figure 1: Original and reduced deterministic finite state automaton

the transition function of a traversed arc (i, j) in such a way that s′ = δ(mi,mj , s) with
mj = m.

If a mode m does not appear as a possible transition of a given state s, any transition
towards this mode is forbidden. The state at origin is s0. State s1 means that private
car was not taken at O and so mode pr is forbidden for the remaining of the travel, while
metro has not been taken yet. State s2 means that private car was taken at O and has not
been left yet. State s3 means that private cannot be taken anymore since it has already
been taken and left while metro mode has not been taken yet. In state s4 metro has been
taken but not left. In state s5, metro has been left. We consider the acceptable final states
are reduced to F = {s1, s3, s5} (displayed in grey in Figure 1). Indeed, state s4 models
the presence of the user in the metro, so she/he must leave the metro to reach her/his
destination. State s2 means the private car is currently being used and must be left in a
parking area to reach the destination.

The worst case time complexity of the algorithms proposed in the following sections
is a function of the number of states. Hence, avoiding redundant states is an important
issue. Given the specifications of path viability, the automaton proposed by Lozano and
Storchi [5] displayed in the left part of Figure 1 can be reduced as we can prove that states
s1 and s3 are equivalent. This is done through state-based dominance rules explained in
Section 4.2). Hence the automaton displayed in the right part of Figure 1 describes the
same viable path as the one proposed in [5] with a smaller number of states (|S| = 4 and
F = {s1, s4}). So this automaton will be the part of the data of our case-study.

3 Literature review

A basic version of the considered problem is the case where there is no multimodal re-
strictions (all mode strings are valid and all paths are viable). Pallottino and Scutellà [7]
observe that the possible values for the “minimum number of transfers” is discrete and
finite from 0 to kmax if kmax denotes an upper-bound on the number of transfers. They
propose a so-called topological algorithm computing the minimum time paths in increas-
ing order of the number of transfers k. The overall time complexity is O(|E|nkmax). Note
that kmax is bounded from above by n.

Besides the number of transfers objective, multimodality may induces constraints or
user preferences in successive modes appearing in a path. A first class of approaches

3

models such path viability constraints by means of mode-dependent travel times and
mode-dependent switching delays, in a time-dependent context [10].

Another class of approaches consider the network is layered such that arcs and node a
each layer correspond to a particular mode while transfer arcs link the nodes of different
layers to model mode switch. The label-constrained shortest-path problem [1, 2, 8, 9]
allows to tackle in a general way this characteristics. Without considering explicitely the
modes, this extension of the shortest path problem considers a graph G(V,E), an alphabet
Σ and a regular language L. Each arc (i, j) is valuated by a travel time dij and an element
of the alphabet aij ∈ Σ. The problem consists of finding a shortest path p from O to D
such that the concatenated labels along the path form a word of L. The regular language
can be used to model path viability in terms of mode. Barett et al [1] provide a simple
example modeling the viable paths consisting in walking from O, then taking a bus with
no transfer and, lastly, walking to D by the regular expression w*bw*, where w, b ∈ Σ
represent walking and bus arcs respectively.

A regular language can be represented by a non-deterministic finite state automaton
(FSA) A = (S,Σ, δ, s0, F) with a set of states S an initial state s0 and a set of final states
F , and a transition function δ : Σ × S → 2S . Barett et al. [2] prove the problem is
polynomial using the product graph G×A with nodes (i, s) for each i ∈ V and s ∈ S such
that there is an arc from (i, s) to (j, s′) if there is an arc (i, j) in E and a transition such that
s′ ∈ δ(aij , s). Under this definition the problem resorts to finding a shortest path between
(O, s0) and (D, s) with s ∈ F . In [1, 8, 9], practical implementation issues of this method
are discussed. Barett et al. [1] propose A∗ and bidirectional accelerations. Considering
deterministic FSA as input, Sherali et al. [9] extend the problem to time-dependence and
propose a strongly polynomial algorithm for FIFO graphs. Sherali et al. [8] further extend
the problem to approach-dependent travel times and propose a label-setting algorithm
which consistently outperforms a label correcting algorithm designed for the same problem.
Independently of this class of approaches that consider only the minimum time criterion,
Lozano and Storchi [5] present an extension of the bi-objective multimodal shortest path
problem (see [7] and Section 4.3) to path viability modeled by a FSA and a mode-layered
graph. The proposed algorithm is a direct extension of the Palottino and Scutellà [7]
topological method. We describe this algorithm in Section 2. Last, Bielli et al [3] consider
a simplified version of the FSA model but include time-dependent arcs and time penalties
for turning movements. The objective is to compute the K− shortest paths under an upper
bound of the maximum allowed number of transfers. The method can also be defined as
an extension of the topological Pallottino and Scutellà algorithm, with labels on arcs.
Experimental validations are limited to small networks. The largest one, presented in [3],
involves 1000 nodes and 2830 arcs and the K-shortest path algorithm runs in 6.5s on a
Pentium II with 64 MB RAM. To our knowledge, no realistic computational experiments
were carried out for the bi-objective multimodal shortest path problem. One of main
purposes of this paper is to carry out such experiments.

4 Algorithms for the BI-MM-V-SPP

4.1 Label setting algorithms

The proposed algorithms use labels to represent paths. Let (i, s, k) denote a label repre-
senting a path from the source to node i in state s and using k transfers. Each label has
two attributes: tkis which denotes the arrival time on i and pk

is which denotes the predeces-

4

sor label of (i, s, k) on the path. When (j, s′, k′) = pk
is it means that (a) arc (j, i) is used

on the path and that (b) the state of the path on j is s′ with s′ = δ(mj ,mi, s) and that
(c) there is k′ used transfers with k′ = k if mi = mj and k = k′+ 1 if mi 6= mj . Note that
no algorithm needs to store more than one label (i, s, k) for fixed i,s and k. Consequently,
the considered bi-objective problem is polynomial and all the proposed algorithms are
of polynomial time complexity. We opt for the label setting principle which is a simple
extension of Dijkstra algorithm incorporating the multimodal restrictions and the number
of transfers computations, described hereafter.

Initially, a label (O, s0, 0) is generated with t0OS0
= 0 and p0

OS0
= (O, s0, 0). The label

is stored in a convenient data structure Q (see the different algorithms in the subsequent
sections). The label setting process is then applied until Q becomes empty. At each
iteration, the label (i, s, k) with minimum tkis is removed from Q as tkis is the shortest time
from O to i in state s with number of transfers k. Then, the direct successors of node i in
G are scanned. For each successor j, we first check if taking arc (i, j) is feasible according
to multimodal restrictions which is true if s′ = δ(mi,mj , s) 6= ∅. If label extension through
j is viable, we set the number of transfers k′ at j to k if mi = mj or to k + 1 otherwise.
We obtain a label (j, s′, k′). we set tkjs′ := tkis + dij and pk′

js′ := (i, s, k) if the label was
never visited or if tkjs′ < tkis + dij . The the label is inserted in Q if some dominance rules
do not apply. Otherwise the label is discarded.

4.2 Dominance rules and state reduction

We can state dominance rules allowing to discard labels. The basic dominance rule is
linked to the bi-objective optimization.

Proposition 4.1 (Basic dominance rule) Consider two disctinct labels (i, s, k) and
(i, s, k′). If k ≤ k′ and tkis ≤ tk

′
is , (i, s, k′) can be discarded.

Obviously, under the described conditions, any O-D path issued from (i, s, k) is non-
dominated by any O-D path issued from (i, s, k′).
The state-based dominance rule strengthens the basic dominance rule considering label
extension possibilities in terms of multimodal restrictions. We consider a binary relation
� on the states such that s � s′ means that s yields more extension possibilities than s′.
More precisely s � s′ if for any mode pair (m,m′) ∈ M one of the following conditions
holds

δ(m,m′, s′) = ∅
δ(m,m′, s′) = δ(m,m′, s)
δ(m,m′, s) = s ∧ δ(m,m′, s′) = s′

Proposition 4.2 (State-based dominance rule) Consider two disctinct labels (i, s, k)
and (i, s′, k′). If k ≤ k′, tkis ≤ tk

′
is , s � s′ (i, s′, k′) can be discarded.

From the state-based dominance rule, we also derive the following state merging con-
ditions that were used to reduce the automaton initially proposed by Lozano and Storchi
[5], as explained in Section 2.

Proposition 4.3 If s � s′ and s′ � s, s and s′ can be merged into a single state

We remark in Figure 1 that states s1 and s3 verify the above-described condition.

5

1

1

1
1

1

5 5

5

3

2 4

5

Figure 2: A bi-objective multimodal shortest path problem

4.3 Topological label-setting (TLS) algorithm

The topological Pallottino and Scutellà [7] algorithm was extended by Lozano and Storchi
algorithm [5] to path viability. We describe below the algorithm TLS.

Under the topological principle, the data structure Q storing labels is made of two
priority queues Qnow and Qnext. Labels are generated according to the increasing number
of transfers. Initially, Qnow contains label (O, s0, 0) while Qnext is empty. At a typical
iteration, the minimum time label (i, s, k) is taken from Qnow. Each non-dominated ex-
tended label (j, s′, k′), j being a direct successor of i, is queued into Qnow if k = k′ and
into Qnext if k′ = k + 1. As soon as the destination D is dequeued from Qnow or Qnow

becomes empty, Qnow is set to Qnext and Qnext is emptied. The algorithm stops when
Qnext is already empty meaning that no non-dominated labels with k + 1 transfers could
be found, or when a maximum number of transfers is reached.

The basic dominance rule to decide whether (j, s′, k′) is kept or discarded can be
performed in O(1): for a given pair (i, s), we have only to keep track of the shortest
time found so far to reach (i, s) with k′ ≤ k tranfers, denoted lastlabelis, and the label
is dominated if tk

′
js′ ≥ lastlabels, as the previously encountered label cannot have more

transfers.
The algorithm pseudo code is given in Appendix (Algorithm 1).
We now establish the complexity of our implementation of TLS using binary heaps for

Qnow and Qnext. Let kmax denotes the maximum allowed number of transfers. Note kmax

is bounded from above by n. For a given number of transfers k, at most n|S| labels (i, s, k)
are selected as minimum time labels in Qnow. For each of them, there are two operations
: (a) deletion from Qnow and (b) successor scan and insertion in Qnow or Qnext. Deletion
from the binary heap takes log n|S| time. Successor scan with the basic dominance rule
(in O(1)) and possible insertion (in O(log n|S|) takes |FSi| log n|S| time where FSi is the
set of direct successors of i. Hence there are a maximum number of na = n|S| log n|S|
(a) operations and a maximum number of nb = |S||E| log n|S| with nb >> na. It follows
that the worst-case time complexity of TLS with the basic dominance rule and binary
heap implementation is O(kmax|S||E| log n|S|). Running the state-based dominance rule
takes in addition —S— operations for each successor so we obtain in this case a worst-case
complexity of O(kmax|S||E|(log n|S|+ |S|)).

To illustrate the TLS algorithm behavior, consider the bi-objective multimodal shortest
path problem from node 1 to node 5, represented in Figure 2 (there are no multimodal
restrictions). There are 2 modes and 5 nodes and the shortest path is obtained for the
maximum number of transfers k = 4.

We present below the by step-by-step execution of Algorithm TLS.
k = 0

i = 1, Qnow = {3}, t03 = 5, Qnext = {2}, t12 = 1

6

i = 3, lastlabel3 = 5, Qnow = {5}, t05 = 10 Qnext = {2, 4}, t14 = 6
i = 5, lastlabel5 = 10 (shortest path with 0 transfer)
k = 1, Qnow = {2, 4}, t12 = 1, t12 = 6, Qnext = ∅
i = 2, lastlabel2 = 1, Qnow = {4}, Qnext = {3}, t23 = 2
i = 4, lastlabel4 = 6, Qnow = ∅, Qnext = {3, 5}, t25 = 7
k = 2, Qnow = {3, 5}, t23 = 2, t25 = 7
i = 3, lastlabel3 = 2, Qnow = {5}, Qnext = {4}, t34 = 3
i = 5, lastlabel5 = 7 (shortest path with 2 transfers)
k = 3, Qnow = {4}, t34 = 3
i = 4, lastlabel4 = 3, Qnow = ∅, Qnext = {5}, t45 = 4
k = 4, Qnow = {5}, t45 = 4
i = 5 lastlabel5 = 4 (shortest path with 4 transfers)
k = 5, Qnow = ∅

4.4 Multi-queue label-setting (MQLS) algorithm

The topological algorithm TLS computes the non-dominated shortest paths in increasing
order of the number of transfers. We propose an alternative multi-queue algorithm that
computes the shortest paths in increasing order of the time criterion values. Instead of
considering Qnow and Qnext, we build incrementally a list Q = {Q0, Q1, . . .} of priority
queues (implemented as binary heaps) such that Qk ∈ Q contains labels representing paths
with k transfers. More precisely, Q0 is initialized with label (O, s0, 0), all other Qk being
empty. The upper bound of the number of transfers K is set to kmax. At each iteration
the label (i, s, k) with minimum travel time is taken among all non-empty priority queues.
If a destination label (D, s, k) is dequeued, priority queues Qk′ with k′ > k are discarded
and K is set to k − 1, as the shortest path with k transfers to D is found. Otherwise,
non-dominated labels (j, s′, k′) such that k′ ≤ K issued from (i, s, k) are inserted in the
corresponding priority queue Qk′ . Algorithm stops when the shortest path with 0 transfer
is found or all queues are emptied. The algorithm pseudo code is given in Appendix
(Algorithm 2).

Now we determine the algorithm complexity, using binary heaps for each Qk ∈ Q.
At most kmaxn|S| labels are dequeued (marked), and for each of them a minimum search
operation in the kmax queues (a) is followed by a deletion operation in O(log n|S|) (b)
and a successor scan operation (c). For each scanned successor, a dominance check (c.1)
is possibly followed by an insertion operation in the appropriate queue (c.2). The basic
dominance check can be made here in at most kmax operations as all labels (j, s′, k′′)
with k′′ ≤ k′ must be checked. So the successor scan operation (c) as an O(|FSi|(kmax +
log(n|S|)) worst-case time complexity. Taking account of (a) and (b) operations we obtain
a worst-case complexity of

O(kmax|S| (nkmax + n log n|S|+ |E|kmax + |E| log n|S|) = O(kmax|S||E| (kmax + log n|S|) .

The time complexity is increased compared to the topological algorithm by a kmax fac-
tor. When the state-based dominance rule is applied, the number of operations for
dominance check is multiplied by |S|, so we obtain a worsdt case time complexity of
O(kmax|S||E| (kmax|S|+ log n|S|) .

Considering the example of figure 2, we show hereafter the step-by-step execution of
this algorithm for which the shortest path is found at earlier iterations compared to the
TLS algorithm.

7

Algorithm 2:
Q0 = {1}
i = 1, k = 0, Q0 = {3}, t03 = 5, Q1 = {2}, t12 = 1
i = 2, k = 1, Q1 = {4}, t14 = 6, Q2 = {3}, t23 = 2
i = 3, k = 2, Q2 = {5}, t25 = 7, Q3 = {4}, t34 = 3
i = 4, k = 3, Q3 = ∅, Q4 = {5}, t45 = 4
i = 5, k = 4, Q4 = ∅ (shortest path with 4 transfers)
i = 3, k = 0 Q0 = {5}, t05 = 10
i = 4, k = 1, Q1 = ∅
i = 5, k = 2, Q2 = ∅ (shortest path with 2 tranfers)
i = 5, k = 0, Q0 = ∅ (shortest path with 0 tranfers)

We show the equivalence of TLS and MQLS in the sense they both have the nice
feature described by the following property. As in the standard Dijkstra algorithm, a
label is “marked” as soon as it is dequeued from Q.

Proposition 4.4 The set of labels (i, s, k) marked by TLS or MQLS for a given (i, s)
maps the set of all non-dominated points for the biobjective O− i viable path problem with
s as final state.

In particular, setting i = D and s ∈ F , we see that TLS and MQLS generates one and
only one path for each non-dominated point.

5 Bidirectional Algorithm

We propose an adaptation of MQLS in a bidirectional way taking advantage of the multi-
queue characteristics and the FSA. The proposed bidirectional algorithm (FB-MQLS)
maintains, in a similar way as in MQLS algorithm, two priority queue lists FQ for the
forward search and BQ for the backward search such that FQk contains forward labels
ftki,s representing paths reaching i in state s with k transfers and BQk contains backward
labels btki,s representing paths originating from i with k transfers in state s. There are two
main issues in designing a bidirectional algorithm for the considered multimodal problem.

The first issue is linked to modeling backward path viability. We exhibit below two
different possibilities.

The first possibility is simply to reverse the arcs in the finite state automaton. Gen-
erally, the obtained state automaton is non-deterministic (see left part of Fig.3). The
start state (at destination) is S5. Final states are s1 (departure by walk or bus) and s2
(departure by private car). Transition function δ(mi,mj , s) gives a set of possible states.
For example δ(D,wa, s5) = {s1, s4} (where D = mD). This means what when arriving
by walk at the destination, it could be or not that the metro was taken (state s4) or note
(state s1). In practice, each time a label extension uses an arc that yields several possible
successor states (in the backward path), all the corresponding labels are generated. Note
that such an indetermism may yield pairs (i,s) that may never reach the origin, inducing
useless computations.

The second possibility is to use a deterministic finite state automaton for the backward
search. This is always possible as there exist algorithms that transform a non-deterministic
finite state automaton equivalent to any deterministic one. An issue then is to generate
the deterministic automaton with a minimal number of states. We display in right part

8

wa, bu

wa me

me

wa, bu

pr

s2

s1

s4s3

pr

s5
wa, bu

wa, bu

wa, bu

s4 s5
wa, bu

me

s3

pr

prs2

me

s1

wa, bu

wa

wa

Figure 3: Non-deterministic and deterministic backward finite state automaton

of Fig.3 a possible deterministic FSA for backward path involving the same number of
states.

The second issue is linked to connection consequences between a forward label and a
backward label in terms of number of transfers. In this case the interest of the multi-queue
implementation appears. Indeed, when a connection is made between a label ftki,s and a
label btqi,s , if condition

ftki,s + btqi,s ≤ min
(i′,s′,k′)∈FQ

ftk
′

i′,s′ + min
(i′,s′,k′)∈BQ

btk
′

i′,s′

holds, all priority queues FQk′ and BQk′ with k′ ≥ k + q can be discarded.
FQ is initalized to a single priority queue F0 with a single label (O, s0, 0) and BQ is

initialized to a single priority queue B0 with a labels (D, sD, 0). The upper bound of the
number of transfers K is set to kmax. The main loop computes the minimum time forward
label (if , sf , kf) and the minimum time backward label (ib, sb, kb). The search proceeds
from the minimum time label among them (i, s, k). The minimum time label (i, s, k) is
removed from its priority queue (FQk or BQk).

Then label extension is performed in a similar way as in Algorithm MQLS, except that,
for each new label (j, s′, k′), a connection with the opposite direction search is searched
by scanning all labels (j, s′, k′′) with k′ + k′′ ≤ K which possibly yield an O −D path of
less than K transfers. If such a connection is established, the path time (ftk

′
j,s′ + btk

′′
j,s′ or

btk
′

j,s′+ftk
′′

j,s′) is compared against the best O−D path already found with k′+k′′ transfers
whose time is stored in an array Lk′+k′′ to possibly update it.

In this case, an optimality test can be performed by comparing the minimum time Lk∗

obtained among the extensions, with a lower bound given by the sum of the minimum
forward and backward label times (ftk

f

if ,sf + btk
b

ib,sb). If the test is positive, Lk∗ is the best

path time for k∗ transfers and priority queues FQk̃ and BQk̃ with k̃ ≥ k∗ can be discarded.
Algorithm FB-MQLS pseudo code is given in the Appendix (Algorithm 3).

6 Computational Experiments

6.1 Network and data set

The aim of these experiments is to compare TLS, MQLS and FB-MQLS both on deter-
ministic (FB-MQLS-D) and non deterministic (FB-MQLS-ND) FSA and to evaluate the
efficiency of the dominance rules.

9

The experimental comparisons were carried out on a real-world multimodal network
covering a part of the urban area of Toulouse (France) with 63048 nodes and 159368 arcs.
Considered modes are bus, metro, walking and private vehicle. Timetables for buses and
metro are approximate by a average travel time for each corresponding arc in the network.
In this network, private vehicle can only stop at parking nodes (which is consistent with
the FSA). Table 1 details the different layers of the graph in terms of modes, nodes and
arcs.

Modes Nodes Arcs
Bus 6170 6646

Metro 75 72
Street 56774 146280

Transfer - 6370
Parking 29 -
Total 63 048 159 368

Table 1: Network data

Experiments concern 100 origin-destination pairs whuch have been randomly generated
relatively far apart. kmax is set to 10 transfers. About global results (the same obtained
by all algorithms), average minimum (maximum) travel times are of about 178 (818) min.
Solutions have from 0 to 8 modal transfers, with an average of 2.5 transfers. The number of
non-dominated solutions vary from 5 to 7 with 5.68 non-dominated solutions per itinerary
on average.

All algorithms have been implemented in C++ on an 2.47 GHz Intel Xeon processor
W3520 with 4GB RAM under linux fedora 11.

6.2 Results

In a first set of experiments, algorithms TLS, MQLS, FB-MQLS-D, FB-MQLS-ND are
evaluated without dominance rule, only by checking that previously computed cost for a
label (j, s′, k′) is improved at label extension. Table 2 presents the results obtained for
these four algorithms. Row Times gives the average CPU time for the 100 runs in mil-
liseconds. Row #Enqueued displays the average number of nodes enqueued in the heaps
during the search. Row #Visited provides the average number of visited nodes (scanned
successors).

TLS MQLS FB-MQLS-D FB-MQLS-ND
Times 5294.85 6226.82 5178.89 5376.74

#Enqueued 1 208 870 1 188 140 854 603 880 149
#Visited 2 771 740 2 771 740 2 004 260 2 064 240

Table 2: Comparison of the proposed algorithms without dominance rule

The results show that MQLS algorithm works slowly that TLS although the number
of visited label is the same. However, the bidirectional algorithms based on MQLS and
deterministic FSA are more efficient than TLS: improvements about 2.18% in terms of
CPU time, 29.31% in terms in Enqueued nodes and 27.69% in terms of visited nodes are

10

experienced. Moreover, the FB-MQLS algorithm based on non-deterministic FSA is less
efficient that the FB-MQLS algorithm based on deterministic automaton.

In the second set of experiments, we consider the same algorithms with the basic
dominance rule. The results are displayed in Table 3. In each row, we note between
parenthesis the relative deviation with the previous results without dominance checks.
The basic dominance rule greatly improves all algorithms in terms of CPU time and
number of enqueued and visited nodes. TLS, MQLS and FB-MQLS-D algorithms obtain
the higher improvement (more than 60%). With the basic dominance rule, MQLS produces
less nodes than TLS (about 3% improvement) but it is still slowly (about 5%). But the
bidirectional variant of MQML based on deterministic FSA remains the most efficient.

TLS MQLS FB-MQLS-D FB-MQLS-ND
Times 2000.65 (-62.21%) 2105.47 (-66.19%) 1929.79 (-62.74%) 1991.68 (-62.96%)

#Enqueued 484 120 (-59.95%) 459 116 (-61.36%) 348 016 (-59.28%) 373 791 (-57.53%)
#Visited 1 108 970 (-59.99%) 1 072 390 (-61.31%) 818 587 (-59.16%) 879 154 (-57.41%)

Table 3: Comparison of the proposed algorithms with basic dominance rule

In the third set of experiments, the state-based dominance rule is integrated in all
algorithms. Table 4 displays the results and the deviation comparatively to the second
set of experiments. The improvement is more important for MQLS and the bidirectional
variants (about 12%) than for TLS. The most efficient is still the FB-MQLS-D algorithm.
Moreover, with the proposed state-based dominance rule, MQLS algorithm slightly im-
proves the TLS one (less than 2% in terms of CPU time and about 11% in number of
nodes.

TLS MQLS FB-MQLS-D FB-MQLS-ND
Times 1972.88 (-1.39%) 1934.36 (-8,63%) 1707.5 (-11.52%) 1733.3 (-12.97%)

#Enqueued 463 091 (-4.34%) 401 938 (-12.45%) 306 206 (-12.01%) 331 888 (-11.21%)
#Visited 1 061 310 (-4.30%) 936 292 (-12.69%) 717 902 (-12.3%) 778 247 (-11.48%)

Table 4: Comparison of the proposed algorithms with state-based dominance rule

7 Conclusion

We have proposed several algorithms to solve the single-source, single-destination bi-
objective multimodal viable shortest path problem where path viability is modeled by
a finite state automaton. The considered objectives were the number of transfers and the
total travel time. The proposed algorithms are all polynomial in the number of states.
In this work, several improvements were brought to the topological Lozano and Storchi
algorithm [5] (TLS). We proposed a new multi-queue algorithm (MQLS) for which a bidi-
rectional variant can be easily derived (FB-MQLS). New dominance rules based on the
analysis of the finite state automaton were given. In the bidirectional variant, we consider
both non-deterministic finite state automaton (which is the reversal of the automaton used
in the forward search) and a deterministic variant of this automaton.

11

An experimental study was carried out on a real-world multimodal network including
walk, bus, metro and private vehicle modes. For each problem instance, the set of non-
dominated points was found by all algorithms in an short CPU time, allowing their use
inside an end-user application which is currently being developped by Mobigis. Algorithms
will be integrated in the geographical information system ArcGIS 9.3.1 through which
necessary data will be collected and itineraries displayed.

The dominance rules allowed to reduce both the CPU times and the number of visited
labels for all algorithms. The most efficient algorithm is the bidirectional one based on
the multi-queue concept and the deterministic state automaton.

For futher research, stronger dominance rules could be exhibited, for other special
cases of the state automaton.

An extension to multimodality of time-dependent aspects and the related accelera-
tion techniques, such as the one proposed by Nannicini et al [6], is a promosing research
direction.

Other multi-objective problems in the multimodal context are of interest and will be
the subject of further research, although the complexity of the problem could increase.

References

[1] C. Barett, K. Bisset, M. Holzer, G. Konjevod, M. Marathe, and D. Wagner. Engineer-
ing label-constrained shortest-path algorithms. In 4th International Conference on
Algorithmic Aspects in Information and Management, AAIM 2008, Shanghai, China,
volume 5034 of Lecture Notes in Computer Science, pages 27–37, 2008.

[2] C. Barett, R. Jacob, and M. Marathe. Formal-language-constrained path problems.
SIAM Journal on Computing, 30(3):809–837, 2000.

[3] M. Bielli, A. Boulmakoul, and H. Mouncif. Object modeling and path computation for
multimodal travel systems. European Journal of Operational Research, 175(3):1705–
1730, 2006.

[4] M. Ehrgott. Multicriteria optimization, 2nd edition, Springer, 2005.

[5] A. Lozano and G. Storchi. Shortest viable path algorithm in multimodal networks.
Transportation Research Part A : Policy and Practice, 35(3):225–241, 2001.

[6] G. Nannicini, D. Delling, D. Schultes, and L. Liberti. Bidirectional a* search for time-
dependent fast paths. In 7th International Workshop on Experimental algorithms.
WEA 2008 Provincetown, MA, USA proceedings, volume 5038 of Lecture notes in
computer science, pages 334–346. Springer, 2008.

[7] S. Pallottino and M. G. Scutellà. Shortest path algorithms in transportation models :
Classical and innovative aspects. In P. Marcotte and S. Nguyen, editors, Equilibrium
and Advanced Transportation Modelling, pages 245–281. Kluwer Academic Publishers,
1998.

[8] H. D. Sherali and C. Jeenanunta. The approach dependent, time-dependent, label-
constrained shortest path problem. Networks, 48(2):57–67, 2006.

12

[9] H.D. Sherali, A.G. Hobeika, and S. Kangwalklai. Time-dependent, label-constrained,
shortest path problems with applications. Transportation Science, 37(3):278–293, 2003.

[10] A. Ziliaskopoulos and W. Wardell. An intermodal optimum path algorithm for multi-
modal networks with dynamic arc travel times and switching delays. European Journal
of Operational Research, 125(3):486–502, 2000.

Appendix

7.1 TLS pseudo-code

Algorithm 1 Topological label-setting algorithm (TLS)
Require: G(V,E), O, D, dij ,∀(i, j) ∈ E, kmax

1: Set Qnow := {(O, s0, 0)}, t0O,s0
:= 0, p0

O,sO
:= 0, tkis := ∞, ∀i ∈ V \ {O},∀s ∈ S,∀k =

0, . . . , kmax

2: Set Qnext := ∅, lastlabeli,s =∞, ∀i ∈ V \ {O}, ∀s ∈ S
3: Set k := 0
4: while Qnow 6= ∅ and k ≤ kmax do
5: repeat
6: set (i, s, k) := argmin{tkjs′ |(j, s′, k) ∈ Qnow} and set Qnow := Qnow \ {(i, s, k)}
7: if (i 6= D or s 6∈ F) and tkis < lastlabeli,s then
8: set lastlabelis := tkis
9: for j ∈ FS(i) do

10: set s′ := δ(mi,mj , s)
11: if s′ 6= ∅ and ∀s′′ � s′, lastlabelj,s′′ > tkis + dij then
12: if mi = mj then
13: set tkjs′ := tkis + dij , pk

js′ := (i, s, k) and Qnow := Qnow ∪ {(j, s′, k)}
14: set lastlabeljs′ := tkjs′
15: else if mi 6= mj and k + 1 <= kmax then
16: set tk+1

js′ := tkis + dij , pk+1
js′ := (i, s, k) and Qnext := Qnext ∪ {(j, s′, k+ 1)}

17: end if
18: end if
19: end for
20: end if
21: until Qnow = ∅ or (i = D and s ∈ F)
22: if i = D and s ∈ F , store tkDs and pk

Ds (shortest path with k transfers).
23: Set k := k + 1, Qnow := Qnext and Qnext := ∅
24: end while

7.2 MQLS pseudo-code

7.3 FB-MQLS pseudo-code

x, X, X , δ, b are notation symbols instanciated to represent the selected direction where
XQ ∈ {FQ,BQ}, XQk ∈ {FQk, BQk}, xtki,s ∈ {ftki,s, btki,s}, xpk

i,s ∈ {fpk
i,s, bp

k
i,s}, δ(m,m,′ s) ∈

{δf (m,m′, s), δb(m,m′, s)}, bij(t) ∈ {t+ dij , t+ dji}. The selection of the notation symbol

13

Algorithm 2 Multi-queue label setting algorithm (MQLS)
Require: G(V,E), O, D, dij ,∀(i, j) ∈ E, kmax

1: Set Q = {Q0 := {(O, s0, 0)}}, t0O,s0
:= 0, p0

O,s0
:= (0, s0, 0), t0i,s :=∞, ∀i ∈ V , ∀s ∈ S,

(i, s) 6= (0, s0)
2: set K = kmax

3: repeat
4: set (i, s, k) := argmin{tk′i′,s′ |(i′, s′, k′) ∈ Q} and set Qk := Qk \ {(i, s, k)}
5: if i = D and s ∈ F then
6: store tki,s and pk

i,s as the shortest path with k transfers. Discard all Qk′ with
k′ ≥ k. set K := k − 1

7: else
8: for j ∈ FS(i) do
9: set s′ := δ(mi,mj , s)

10: if mi = mj then
11: set k′ = k
12: else
13: set k′ = k + 1
14: end if
15: if k′ ≤ K and s′ 6= ∅ and ∀s′′ � s′, ∀k′′ ≤ k′, tk′′j,s′′ > tkis + dij then
16: set tk

′
j,s′ := tki,s + dij , pk′

j,s′ := (i, s, k) and Qk′ := Qk′ ∪ {(j, s′, k′)}
17: end if
18: end for
19: end if
20: until K < 0 or Q = ∅

14

is made at steps 7-13. We assume here a deterministic FSA with initial state for the back-
ward pass denoted sD. SF is the set of forward states while SB is the set of backward
states. deltaf is the forward transition function and deltab is the backward transition
function.

15

Algorithm 3 Bidirectional multi-queue algorithm (FB-MQLS)
Require: G(V,E), O, D, dij ,∀(i, j) ∈ E, kmax {Initial forward and backward labels}
1: Set FQ = {FQ0 := {(O, s0, 0)}}, ft0O,s0

:= 0, fp0
O,s0

:= (0, s0, 0), ft0i,s := ∞, ∀i ∈ V ,
∀s ∈ SF , (i, s) 6= (0, s0)

2: Set BQ = {BQ0 := {(D, sD, 0)}}, bt0O,sD
:= 0, fp0

O,sD
:= (D, sD, 0). Set bt0i,s := ∞,

∀i ∈ V , ∀s ∈ SB, i 6= 0 or s 6= sD.
3: set K = kmax

{Main Loop: start by getting minimum time label among all priority queues}
4: repeat
5: Let (if , sf , kf) := argmin{ftk′i′,s′ |(i′, s′, k′) ∈ FQ}
6: Let (ib, sb, kb) := argmin{btk′i′,s′ |(i′, s′, k′) ∈ BQ}

{Direction setting}
7: if ftk

f

if ,sf ≤ btk
b

ib,sb then
8: set (i, s, k) := (if , sf , kf)
9: set x = f , X = F , X = F , x = b, δ = δf , bij(t) = t+ dij

10: else
11: set (i, s, k) := (ib, sb, kb)
12: set x = b, X = B, X = B, x = f , δ = δb, bij(t) = t+ dji

13: end if
14: XQk := XQk \ {(i, s, k)}

{Extension checking}
15: for j ∈ XS(i) do
16: set s′ := δ(mi,mj , s)
17: if mi = mj then
18: set k′ = k
19: else
20: set k′ = k + 1
21: end if
22: if k′ ≤ K and s′ 6= ∅ and bij(xtki,s) < xtk

′
j,s′ , ∀k′′ ≤ k′, s′′ � s′ then

23: set xtk
′

j,s′ := bij(xtki,s), xp
k′
j,s′ := (i, s, k) and XQk′ := XQk′ ∪ {(j, s′, k′)}

{Connection checking}
24: set minconnection:=∞; set k∗ = −1
25: for (j, s′, k′′) ∈ XQ, k′ + k′′ ≤ K do
26: if Lk′+k′′ > xtk

′
j,s′ + xtk

′′
j,s′ then

27: set Lk′+k′′ := xtk
′

j,s′ + xtk
′′

j,s′

28: if Lk′+k′′ <minconnection then
29: set minconnection:= Lk′+k′′ ; set k∗ := k′ + k′′

30: end if
31: end if
32: end for
33: end if
34: end for

{Opimality test}
35: if k∗ 6= −1 and Lk∗ ≤ ftkf

if ,sf + btk
b

ib,sb then
36: store Lk∗ as the shortest path with k∗ transfers. Discard all FQk̃ and BQk̃ with

k̃ ≥ k∗. set K := k∗ − 1
37: end if
38: until K < 0 or FQ = BQ = ∅

16

