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Abstract

A precise description of the singularities of the Borel transform of
solutions of a level-one linear differential system is deduced from a
proof of the summable-resurgence of the solutions by the perturbative
method of J. Ecalle. Then we compare the meromorphic classification
(Stokes phenomenon) from the viewpoint of the Stokes cocycle and
the viewpoint of alien derivatives. We make explicit the Stokes-Ramis
matrices as functions of the connection constants in the Borel plane
and we develop two examples. No assumption of genericity is made.
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1 Introduction

All along the paper we are given an ordinary linear differential system (in

2

short, a differential system or a system) of dimension n with analytic coeffi-

cients at 0 in C and rank ond]

(1)

= AW@Y  A(r) € M,(C{x}), A(0) #0

'The rank is the order of the pole x = 0 minus 1 in the system written in “solved form”

dr

dY 1



Loday-Richaud and Remy, Resurgence for level-one linear diff. systems 3

together with a formal fundamental solution at 0
(2) Y(z) = F(x)z"e@0/)
where

o F(z) € M, (C((z))), is an invertible formal meromorphic matrix,

J
o [ = @()\j[nj + Jn;)  where I, is the identity matrix of size n;

j=1
0O 1 --- 0
and J,,, = © | s an irreducible
: |
0 «r - 0
Jordan block of size n; (J,, = 0if n; = 1),
e Q(1/x) = C—Bq] 1/z)1, where the ¢}s are polynomials.

In the very general rank one case the determining polynomials ¢; are of
maximal degree equal to 1 with respect to 1/ but they could be polynomials
in a fractional power of 1/z. Our assumption of “single level equal to 17
implies that the polynomials ¢; be monomials of degree 1 in 1/z, not all
equal to a same polynomial ¢, some of them being possibly zero. We denote

I g
3) Qu/r) =D Y1,
j=1
The system
(@ 2 = Aa)Y

with formal fundamental solution }N/O( ) = a¥ eQ0/%) has analytic coefficients
and is called a normal form of System (). The fundamental solution Yb( )
is called a normal solution. 1t provides all formal invariants of System (),
i.e., invariants under formal gauge transformations ¥ — <I>( )Y with o e

GL(C((x))) B

2The formal classification over an extension C((t)) of the base field C((x)) by a ramifi-
cation x = t¥ started with Poincaré and Fabry and later Turrittin [29]. See also Malgrange
[8]. Over the base field itself it is due to Balser, Jurkat and Lutz [2]. For a shorter proof
and an improvement of the Formal Classification Theorem see [15].
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Note that, in the whole paper, we make no other assumption than the
assumption of a single level equal to one, case in which the basic theory
of resurgence takes place. In particular, no assumption of genericity, such
as distinct eigenvalues or diagonal monodromy L, is made and any kind of
resonance is allowed.

The paper deals with the analytical properties of the solutions of Sys-
tem (IJ) underlying the meromorphic classification at 0, also referred to as
Stokes phenomenon. There exists mainly two “dual” approaches to this phe-
nomenon:

e The first one , related to the theory of summation, is fully developed
in the plane of the initial variable x, which we refer to as the Laplace
plane. Various methods [16] 20, 1], 3] produce a full set of invariants in
the form of Stokes matrices. Are considered only those Stokes matrices
providing the transition between the sums (in our case, Borel-Laplace
or 1-sums) of a same formal fundamental solution ¥ (z) on each side
of its anti-Stokes (singular) directions. We call them Stokes-Ramis
matrices.

e The second one is strongly related to the theory of resurgence [10] and
produces invariants in the form of alien derivations. The alien deriva-
tives of a series fN (x) have been defined by J. Ecalle through an average
of various analytic continuations of the Borel transform f| (&) of i (x);
they have been mostly developed in the plane of the variable & which

we refer to as the Borel plane.

Much have been already said on these questions but either in situations
restricted by generic conditions or in very general ones. In particular, the
theory of resurgence was developed by J. Ecalle in the very general framework
of non-linear differential equations, difference equations and so on...where
it proves to be very efficient. In this context it seemed to us to be worth
to make explicit what is specific to the linear case, what has to be really
taken under consideration or can be made more precise, and how the various
viewpoints are connected.

The first Section is devoted to proving that the formal gauge transfor-
mation F (x) is summable-resurgent. We first sketch a proof on linear differ-
ential equations based on the Newton polygon and Ramis Index Theorems.
We develop then a proof by perturbation and majorant solutions following
J. Ecalle’s method [11].
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This latter proof allows us to display a precise description of the singu-
larities in the Borel plane (Section 2).

In Section 3 we compare the classification by the Stokes cocycle ver-
sus the classification by the alien derivations. Roughly speaking, the first
approach selects an element in a unipotent Lie group while the second one
provides its “tangent” variant in the associated Lie algebra. Moreover, for
theoretical reasons as well as for computational ones, we make explicit the
Stokes matrices in terms of the connection constants in the Borel plane.

2 Summable-resurgence

2.1 Prepared system

Before to start the calculations we prepare the system as follows.

A gauge transformation of the form Y ~— T'(x) 2™ e®/*Y where the
transformation 7'(x) has explicit computable polynomial entries in x and
1/x allows to assume that the following conditions are satisfied:

(5) F(z) = I,+ Y. Fpa™ € GL,(C[[z]]) with initial condition F(0) = I,,,

m=1

(6) 0<Re(N;) <1 for j=1,...,J,

(7) ay = )\1 =0.

Conditions (&) and (B) guaranty the unicity of F(z). Condition () is
for notational convenience. Still, the a;’s are not supposed distinct.

Any of the J column-blocks of F (x) associated with the irreducible Jor-
dan blocks of L (matrix of exponents of formal monodromy) can be positioned
at the first place by means of a permutation P on the columns of }7(:10) If
Y (z) is given in the form (@) so is the new formal fundamental solution
Y(z)P = F(z)PzP ' EPPT'QUP - Thys, we can restrict our study to the
first column-block of F(z) that we denote by f(z).

Gauge transformations and permutations of this kind will be referred to

as elementary transformations.
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2.2 Some definitions

For the convenience of the reader we recall some definitions about the notions
of resurgence and summation adapted to linear level-one differential systems.
It is worth to note that, due to the linearity, it is useless, at least for the
moment, to consider convolution algebras and lattices of singularities since
no convolution of singularities may occur. For a more general framework we
refer to [L1], I8, 26].

All along the article, given a matrix M split into blocks fitting the struc-
ture of L, we denote

e M7 the ;" row-block of M,

o M** the k' column-block of M,

o M7#* the k' column-block in the j% row-block of M,
e M7 the k™ column in the j** row-block of M,

o MUY the (" row in the j™ row-block of M.

Let Q = {aj, j = 1,...,J} denote the set of Stokes values associated
with System (Il). Theorem 2.7 below asserts, in particular, that all possible
singularities of the Borel transform f (€) of f(z) belong to €. The directions
determined by the elements of Q* = Q\{0} from 0 are called anti-Stokes
directions associated with f(z). Given a direction 6 € R/277Z let dy denote

the half line issuing from 0 with argument #. We denote

e )y = Q* N dy the set of non-zero Stokes values of System (II) with
argument 6.

The anti-Stokes directions associated with the k™ column-block of F (x) are
given by the non-zero elements of Q — a; (to normalize the k™ column-
block one has to multiply by e*a’“/m) and the anti-Stokes directions of System
(@) (i.e., associated with the full matrix F(z)) are given by the non-zero
elements of

e Q={a;—ap;1<jk<J}

The elements of €2 are the Stokes values of the homological system satisfied
by F(z) (cf. System (I2)) below).
We denote
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o 0y = Q2 ndy the set of non-zero Stokes values of System (I2) with
argument 6.

~

The adequate Riemann surface on which the Borel transform f(§) of
f(z) lives is the surface Rq defined as below.

Definition 2.1 Riemann surface Rq.

e The points of R are the homotopy classes with fixed extremities of
paths v issuing from 0 and lying in C\Q (but the starting point 0); in
particular, no path except those that are homotopic to the constant
path 0 ends at 0.

e The complex structure of Rq is the pull-back of the usual complex
structure of C\Q2* by the natural projection

f Rq — C\QF
T [Y] ~— end-point y(1).

The difference between Rgq and the universal cover of C\Q2 lies in the
fact that Rq has no branch point at 0 in the first sheet.

Definition 2.2 Resurgence.

e Resurgence in the Borel plane (in Ecalle’s language, convolutive model).

A resurgent function with singular support €2 is any function defined
and analytic on all of Rg.

e Resurgence in the Laplace plane (in Ecalle’s language, formal model).

~

A series f(z) in powers of x is said to be a resurgent series with singu-
lar support €2 when its Borel transform f(&) is a convergent series near
¢ = 0 which can be analytically continued to Rgq (in short, its Borel

transform is resurgent with singular support €2).

Let 7€e\sg and 7/_3\(;59 denote the sets of resurgent functions and of resur-
gent series with singular support 2 respectively.

A resurgent function of 756\39 is analytic at 0 on the first sheet of Rq. To
emphasize the special role played by 0 we sometimes denote the singular
support by €,0 As a Fourier operator the Borel transform exchanges multi-
plication by an exponential and translation. We denote by Rq, and @Q,w
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the spaces RQ and ResQ translated by w so that, in particular, Ro = Ra,
and ResQ = ResQ 0. If a series f( ) belongs to ResQ the Borel transform of
f(x)e™/* belongs to R6897w.

While in non linear situations it is soon necessary to endow 75(;99 with
a structure of a convolution algebra —usually a quite difficult task— in the
linear case under consideration we are going to meet, at least in this section,
only the convolution of elements of 766\39 with entire functions over C growing
at most exponentially at infinity. Let O<!(C) denote the convolution algebra
of entire functions on C with exponential growth at infinity. The set 7@9
has a natural structure of a O<!(C)+module (the star refers to the fact that
multiplication by a scalar is the convolution by an element of O<!(C)). There
corresponds, on 7,3\559, a natural structure of @-module.

Definition 2.3 v-sectorial region or v-sector

Given v > 0, smaller than half the minimal distance between the elements of
2, we call v-sectorial region or v-sector A, a domain of the Riemann surface
Rq composed of the three following parts:

e an open sector ¥, with bounded opening at infinity;
e a neighborhood of 0, say, an open disc D, centered at 0;

e a tubular neighborhood N, of a piecewise-C! path ~ connecting D, to
>, after a finite number of turns around all or part of points of €.

Moreover, the distance of D, to Q\{0} and the distance of N, U %, to
(2 has to be greater than v.
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Lemma 2.4 Let A, be a sectorial region.

There exits a constant K > 0 so that, for all & € A,, there is a piecewise-
C'-path ~¢ contained in A, and parameterized by arc length from 0 to & such
that the arc length s, of all 1 € ¢ satisfies

(8) n] < sy < Klnl.
In| denotes the modulus of (the projection of ) n in C.

ProoF. The first inequality being trivial we just have to prove that s, <
Kln].

Assume first that the path v is C*.
Let ' denote the extension of v from 0 to its beginning point, say, by a
straight line. Let & denote the end-point of v in ¥, and /|| denote the
length of 4" from 0 to &.. The transversals of v in A, have all the same finite
length.

e The property is clearly true in D, with K = 1.

e Given £ in N, consider a transversal issuing from £ and denote & its
intersection with . Let ¢ be the path made of 4/ from 0 to & followed

by the arc of transversal &)€.

For all n € 7¢, the arc length s, is less than a constant ¢ independent of
¢ (v and the transversals have finite length) and the euclidian distance
In| is greater than v. Hence, s, < £|n)|.

e Given ¢ € 3, consider the point &, at distance |£| from 0 on the ray

issued from 0 through .. Let ¢ be the path ' followed by the segment
(€:£0) and the arc &€ of the circle centered at 0 with radius |£] included
in X,.
For n € (£&o) the inequality holds with K = ¢. For 1 belonging to
the arc £¢ we deduce from the inequalities s¢, < £|&| = ¢|n| and
Sy — 8¢y < «|n|, where o denotes the opening angle of ¥, that the
inequality holds with K = ¢ + a.

The case when the path is piecewise-C! is similar and left to the reader. 1

Definition 2.5 Summable-resurgence.
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e A resurgent function ]?(f) € 7€e\sg is said to be summable-resurgent
when it grows at most exponentially at infinity on any v-sectorial region
AV of RQ

e A resurgent series f(:p) € 7:\’,\6-:99 is said to be summable-resurgent if its
Borel transform is a summable-resurgent function.

We denote respectively 7@;”11 and 7%\(;5;1111 the set of summable-resurgent

functions and the set of summable-resurgent series with singular support €2, 0.
————sum —— sum

We denote Resq, ,, the set of functions of Res,,  translated by w.

In general, the exponential type depends on the v-sectorial region A,
and is unbounded when the width of A, goes to infinity (c¢f. Remark 2.1T]).

The set 7%;121 is a O<!(C)*submodule of @Q7w.

Remark 2.6 A summable-resurgent series is both resurgent and summable
but the converse is false. Indeed, a series is summable when it satisfies the
conditions of Definition in restriction to the first sheet only.

2.3 Summable-resurgence theorem

We are now able to state the result in view in this section:

Theorem 2.7 (J. Ecalle [11])
Assume that System (1) has a single level equal to one (cf. Assumption (3))
and denote f(z) the first ny columns of F(x).

Then, fN is summable-resurgent with singular support Q,0 (recall a; = 0):

~ ~—~~— sum

f(z) € Resg

By means of elementary transformations (cf. Section 2.]) the result can
be extended to the full matrix F' replacing however 2 by €. Therefore, we
can state:

Corollary 2.8 Under the same conditions as in Theorem[2.7 the full matrix
F is summable-resurgent with singular support €2,0:

~—~~— sum

F(z) € Resg,
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The hypothesis of “single level equal to 17 is central. In a paper to come
it will be shown how to generalize this result to the case of a single level not
equal to one. In the case of several levels one has to consider several Borel
planes simultaneously.

Theorem 2.7 can be proved in different ways. We first sketch a proof
based on the Newton polygon and Ramis Index Theorem, the system being
given in the form of an equation of order n. Next, we develop a proof following
Ecalle’s method by regular perturbation of the system and majorant series.
This second approach will allow us to precisely describe the singularities of
the Borel transform (§) = f (¢) in the Borel plane which are all located in
the set Q.

2.4 Sketch proof of summable-resurgence using linear
differential equations

The formal Borel transformation B is an isomorphism from the differential

d

algebra ((C[[:c]], +, xQd—> to the differential algebra (569 Cl[¢]], +, *,§.>
x

that changes ordinary product into convolution product and changes deriva-

1
tion :czd— into multiplication by &. It also changes multiplication by — into
x x

derivation d_f allowing thus to extend the isomorphism from the meromorphic

series C[[z]][1/z] to C[6®), k € N]@® C[[¢]]. Recall that the Borel transform

m—1

of a monomial reads B(z™) = for all m > 0.

['(m)

Consider now a differential equation Dy(x) = 0 with single level one.
By the Birkhoff Algebraization Theorem [28, Th. 3.3.1] we may assume that
the operator D has rational coefficients. By means of an elementary, possibly
trivial, gauge transformation (c¢f. Section [2Z1]) we may also assume that the
equation admits a formal series solution f(z).

Multiplying D by a convenient power of 1/x if needed, the Borel trans-
formed equation ﬁg’j(ﬁ) = 0 is again an ordinary linear differential equation
with polynomial coefficients. Ramis Index Theorem [22] shows that the se-
ries f(z) is of Gevrey type of order 1. Hence, its Borel transform B(f)(€)
converges in a neighborhood of the origin £ = 0; we denote by () its sum.
A direct calculation using the characteristic equation associated with slope
1 of the Newton polygon of D shows that the singularities of 13@\(5) =0
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belong to the finite set © of the Stokes values of Dy(z) = 0. From the
Cauchy-Lipschitz theorem one can then assert that ¢(&) is resurgent with
singular support €2,0, i.e., it can be analytically continued along any path
issuing from 0 and staying in C\{2. To see that ¢(£) has exponential growth

at infinity, it suffices to notice that the equation ﬁ@(f ) = 0 has rank one at
infinity [17, Theorem 1.4].

2.5 Proof of summable-resurgence on systems follow-
ing J. Ecalle’s approach

Since, by the Cyclic Vector Theorem, equations and systems are meromor-
phically equivalent, to get the summable-resurgence of solutions of systems
there is no need for a new proof made directly on systems. However, the
proof below quoted by J. Ecalle [T1] has its own interest. In particular, it
allows us to give a precise description of the singularities of ¢(&) in the Borel
plane. A simpler case where the formal monodromy is assumed to be trivial
(L = I,) can be found in [I4]; the case of a higher level can be found in [25].

2.5.1 Setting the problem.

The conclusion of Theorem 2.7 being preserved by elementary and meromor-
phic gauge transformations, we can assume that the system is so prepared
that conditions (&), (@) and () are all satisfied.

The normal form (4) of System () reads

dy ]
9) xZE = Ao(z)Y  where Ag(z) = P a;l,, + x(\ln, + Jn,)
j=1
while the matrix A(x) of System () reads
(10) A(x) = Ag(x) + B(z) where B(0) =0

More precisely, split the matrix B(z) = [B7*(z)] into blocks fitting to the
Jordan structure of L. Then,

O(l‘) if a; #* Qg
O(z?) if a; = ai (and especially if j = k).

(11)  B™) = {

As previously said, we restrict the study to the first column-block f of
F uniquely determined by the first n; columns of the homological system

(12) o - Ao(z)F + FAy(z) = B(x)F
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~

jointly with the initial condition f(0) = I,,,, (Recall that I, ,, denotes the
identity matrix I,, truncated at its first n; columns). Hence, the system

~

(13) 2 a@)f +xf 1, = B@)F
(Recall a; = A\ = 0).

It is not clear from the Borel transformed system

(14) &f—Avef+1efl=B=f

~ ~

that the Borel transform f(£) of f(x) satisfies the conditions of Definition

~

for f(z) to be summable-resurgent.

To prove the summable-resurgence of f(a:), J. Bcalle suggests in [I1] to
regularly perturb System (I3]) by substituting aB for B, next to solve this
perturbed system in terms of a power series in the parameter a and then,
to proceed by majorant series satisfying a convenient system. There exists,
of course, many possible majorant systems. Here below, we make explicit a
possible one. We consider the very general case when L is in non diagonal
form, covering thus, all possible cases of resonances. The calculation is made
more complicated than in the diagonal case since we have to work with packs
of equations instead of individual ones but the philosophy keeps the same.

We split f(z) into row-blocks f7**(z) accordingly to the Jordan structure
of L and we refer to Section for the notations.

2.5.2 The perturbed system.

An identification of equal powers of a shows that the perturbed system

(15) 2?22 — Ag(a) [ + xfJn, = aB(x)f

equivalent, for all j € {1,...,J}, to

~

d i ~. ~.. ~ o~
(16) chch—a: — (a; + Njo) f7* —ady, f7° +afP T, = aB" f

admits a unique formal solution of the form fN(x, a) = Z . (x)a™ satisfying
mz=0

fo(z) = I, ,, and fm(z) € 2C[[z]] for all m > 1. Since there is no possible
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ambiguity we keep denoting thhe perturbed solution. The proof proceeds by
induction on m. For all j € {1,...,J}, System (L6) reads, for £ = 1,...,n;
and k =1,...,nq,

df 70,0 (k

(17) « .

—(a;+\; x)f(ﬂ)()_xfﬂﬂ) xf(ﬂ(k 1) 4 BGb)e 7t o]
and can be solved term after term following the alphabetic order on (k, n;—¢)
(one begins with the first column & = 1 and the last row ¢ = n; in each block
7)-
It turns out actually that for all j and m > 1,
~ ~ O(z™) ifa; =0
e — O m d ]se — J
2m—1 (.CL’ ) arn f2m { O(.Tm+1) if a; £0

allowing thus to rewrite the series f x, Q) Z fm " in « as a series in
m=0
x with coefficients that are polynomial in . Consequently, the unperturbed

solution f(z) corresponds to f(z,1) (unicity of f(z) and f(z,1)) and, for
all @ and in particular for @ = 1, the series f (x,) admits a formal Borel
transform f(&, a) with respect to x of the form

(18) J’C\(gaa) =0lpp, + Z Om (&)™

m=1

where ¢,,(€) denotes the Borel transform of f,,(z) for all m > 1.
For fixed j € {1,..., J} and m > 1 the system satisfied by the P OR) (&)’s

reads,forﬁzl,...,n]andk—l,..., 1,
oG5 .
(€= )= = O — 1l =
(19) .
- dBU:
905%“_1) iq wg,ﬁ),(k—l) + Tg N 90. (k) + B(g £);e (O)Qp;n(k)l

1oy S
since the Borel transform of EB(M)"(J:) [ () is equal to

d A~/ dé(jvg) hd
— [ BUDse o™ -

(BU(0) is also the coefficient of 2 in BU9(z) and is not supposed equal
to zero).

wiomh + BUO(0)pn
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It can again be solved term after term starting with the first column k£ =1
and the last row £ = n;.

Recall that for b an entire function, the convolution b+¢{™, m € N is well
defined by the integral Sg b(§ —t)t"™dt as well as b= f by Sv b(&—1t)f(t)dt along

any path v avoiding the singularities of f (here, the Borel transforms BU)
of BUH)* are entire functions since B(z) is analytic at 0).

Note also that the only singularities of System ([I9) are the Stokes values
a; € 2 and we can conclude that the ¢,,’s are resurgent functions defined on
Ra.
2.5.3 What has to be proved.

Fix now v > 0 and a v-sectorial region A, as described in Definition 2.3
We are left to prove that

(a) the Borel series f &) = A(f ,1) is convergent and can be analytically
continued to Rgq; we keep denoting f(€) the analytic continuation;

(b) 1 (€) grows at most exponentially on A, at infinity.

These properties could be directly shown to be true for the ¢,,’s. To
prove that they are true for f we use the technique of majorant series.
2.5.4 A candidate majorant system.

Instead of System ([I]) consider, for j = 1,...,J, the perturbed linear system

Jie

Cj(ﬁj” _ ]I ) = Jnjgj;- + gj;ojm — 9] T, + a|

n,ni n,ni

Sifa =0
" g1 a;

(20)
(v— A = 1|2)§7* = Jp, 27 + 27" Jo, + | B

j;'g lf a]‘ # 0

where the unknown g is, like f, a nxnj-matrix split into row-blocks §7:* fitting
the Jordan structure of L and where |B| denotes the series B in which the
coefficients of the powers of x are replaced by their module. The constants
C; > 0 are to be adequately chosen which we will do in Lemma [2.9 below.
For now, they are just arbitrary non-zero constants.

System (20), like System (1)), admits a unique formal solution §(z, o) =
Z gm(z)a™ such that go(z) = I, n, and G,,,(x) € xC[[x]] for all m > 1. Like

mz=0
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~

f(z,a), this series satisfies

5 5 O(z™) ifa; =0
G =0(™) and G = !
Jom—1 ( ) Yom { O(.Tm+1) if aj £0
and consequently, §(z,a) can be seen as a series in powers of x whose co-
efficients are polynomials in . But unlike f,,(z) in general, g,,(x) has non
negative coefficients for all m > 1.

Prove now that g(z, «) is a convergent series in (z,«) in a domain con-
taining (z,a) = (0,1).

From System (20)) written for each individual column k& we obtain, for
all 7, the linear system

: Bl :
o) (C; — Jnj)fij;(k) — a%ﬁ';(k) = 7D 4 const ifa; =0
(1/ — |\ — 1]z — Jnjx)ﬁj;(k) —a|B

iegek) = gyl if a; # 0.

(We set 370 = 0).

For z = 0 the system reduces to

22) (C; — Jnj)fij;(k) — a|B'P(0)§5®) = 7= 4 const ifa; =0
vgh k) =0 if a; # 0.

j;'(())fi';(k) = Z |B'|j”(0)§”(k) since |B'[%"(0) = 0 for all r
r|ar#0
such that a, = a; = 0 and an adequate linear combination among equations

of this system allows to cancel the terms in a.. System (22)) is thus equivalent
to a constant triangular system whose diagonal terms are either equal to C; or
to v. Having assumed C; # 0 for all j it is then a Cramer system and System
(21)) is equivalent to a system of the form (T" + M (z,))g"™® = N(g=*™")
where T is a constant invertible matrix and M is analytic in (z,«) in a strip
around x = 0 while the right hand-side is a column vector depending on
¢7*=1) and analytic in the same strip. The determinant of System (2I)) is

However, |B’

analytic in (z,«) and non-zero for x = 0 whatever « is equal to. There
exists then a bi-disc centered at (z,a) = (0,0) and containing (z,a) =
(0,1) on which the determinant does not vanish. On such a bi-disc, System
[2I) admits an analytic solution g(z,«). By unicity, its Taylor expansion

g(x, ) = > gn(x)a™ coincides with g(x, @) = ] g (z)a™.
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In particular, for & = 1, the formal solution g(z) = g(z,1) = >, Gm(2)
converges. Henceforth, its Borel transform (&) = > ¢, (§) is an entire func-
tion with exponential growth at infinity (¢,, denotes the Borel transform of
the series g,,(x) and is also an entire function with exponential growth at
infinity).

2.5.5 Majorant series and exponential growth.

Lemma 29 below shows that g(K[£]) = >, ¢ (KE]) is a majorant series for

F(©) = X om(€) on A,

Lemma 2.9
Let K > 0 be associated with the chosen v-sector A, as in Lemma[2.4).
Forallm >0, £€e A, j=1,...,J and g = 1,...,nq, the following
inequalities hold:

(23) R ()] < P (s¢) < P (K€]).

(om and ¢, are the Borel transforms of the “initial” solution fm and of the
“majorant” solution G, respectively).

PRrROOF. Recall that the functions ¢, are defined over Rq and the functions
¢m on all of C. They are then all well defined over A,.

e The series ¢,,(£) have non negative coefficients and by Lemma [2.4] we
know that we can connect ¢ to 0 by a path so that s¢ < K|{|. Hence, the
second inequality.

e Prove the first inequality. For all m > 1, the entries go(J 0:(k) (row £ of

row-block j and column k) of ¢, and gb%g) ) of ¢,, satisfy respectively

29 R Y
where
wr(g,g)-(k) _ ()OS%K-H)( ) w%z) (k+1) 4 d%é(j,z) v (k) + BUOe (0)90;1(5)1
and
(25) d(b(;z B =[x =130 = QR it a; # 0

CjpGH® = QPO fa; =0
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where

) 041): ) d =~ .
Q%l),(k) — ¢%7£+1)7(k) + gb%vg)v(k‘_l) + d_£|B|(]7£)v' % (k) + |B|(]€ ( ) 7.771(5)1

Fix £ € A, and a path ¢ in A, as in Lemma [Z4] so that
In| <s, < Kln| forallne .

We proceed by recurrence following the alphabetic order on (m,k,n; — ¢)
and we assume that for all (m/,k',n; — ') < (m,k,n; —{), the inequality
QGO E) ()| < g ( ,) holds for all n € 4¢. (It holds for m’ = 0).

We observe that w5 ™ (€)] < Q%M (s,). Indeed,

‘dé(]l) b

@) = | [ € et e s

S¢ (5:€);e
< [ e linelds snce ()] =

0

s¢ df;(m@);-
< [T - o

(since | B|U* has non negative coefficients)

d|B|6o= |
= dé— * T):L(E)l (Sf)
and the other three terms of w,(g’g);(k) are majored using the recurrence hy-

pothesis.

To conclude in the case when a; = 0 we solve Equation (24]). Hence,

S

PO = 7 [ Ll () ()

and then,

|S0££L,£),(k)(§)| < |€|Re)\j—1e—lm()\j—1)arg(§) J‘SEQ(j 0);(k ( )|T]( )| Re)\jeIm()\j)arg(n(s))ds.
0
Since points in A, have bounded arguments there exists a constant ¢ > 0

such that e mA—Darg(©+ImA)arem(*)) < ¢ for all € and n(s) € A,. It results
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that

. ¢ ;
O] < der | T aGOM s ) ds
0

. S¢ —Re)\;
< eI | () s

(by Lemma 2.4] the fact that Re\; > 0
and that €2, has non negative coefficients)

KQ%J%(IC) 1—Re\;
< C|£|Re)\j71 (Sﬁ) (ﬁ) 7

1-— Re)\j K

cK QD) (5,

h 1-— Re)\j m
(using Lemma 24l and 1 — Re); > 0)
— 60 Y i we choose O — ~— ReAs
m 0 (s¢) if we choose C T
To conclude in the case when a; # 0 we apply Gronwall Lemma to
) (7¢(s)). This achieves the proof of Lemma [2.9] 1

_ Lemma shows that g(K|¢|) = Y] om(K|€|) is a majorant series for
f(&) = 2pm(§) on A,. Since g is well defined on A, with exponential

growth at infinity the same property holds for f(¢£) which achieves the proof
of Theorem 2.7 1

Remark 2.10 It results from the above proof that the series }; ¢, (£) con-
verges uniformly to f(£) on compact sets of Rq.

Remark 2.11 We see from Lemma that when g grows exponentially
with type a, i.c., satisfies an inequality |g(¢)| < const.e® for large ¢ then
f (&) grows exponentially with type Ka. When the width of the domain A,
goes to infinity so does K; hence, the necessity for considering vr-sectorial
regions with bounded width. Also the estimates in the proof of Lemma
would no more be valid on sectors with unbounded width.

Remark 2.12 One should think at reading the previous two sections that
the proof with systems is much longer. This is not the case. If the same
level of detail were provided the proof on equations like sketched in Section
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2.4l would be much longer and also less elementary since it includes the In-
dex Theorem for rank one and the Main Asymptotic Existence Theorem at
infinity.

3 Singularities in the Borel plane

Theorem [2.7] tells us that f(a:) is a resurgent series of 7,3\59;1111 Its Borel
transform ]? (€) is then, in particular, analytic on the Riemann surface Rq,
its possible singularities being the points aq, as, ..., a; of  including a; = 0
out of the first sheet.

The form of System (I9) shows that the singularities of f should at least
involve poles since some A; are equal to 0, complex powers when some \; are
not 0 and logarithms. It is already known that, in the case of a system with
the unique level one, the singularities all belong to the Nilsson class (c¢f. [3]
for instance). In that case, the exponentials e~/ in the formal fundamental
solution 17(3:) act as translations in the Borel plane; hence, the location of
the singularities at the various points a;. In the case of higher level or in
the case of several levels that, after rank reduction, we could assume to be
all < 1 there might also occur exponentials of degree less than one. Their
action in the Borel plane would be then transcendental and would generate
irregular —no longer in the Nilsson class— singularities.

Our aim in this section is to set up a precise description of the singulari-

ties in the Borel plane related to the form of the formal fundamental solution
Y (z) = F(z)2"e?01/®) of System (T).

As previously, we restrict our study to the first n; columns fN of F. We
base the analysis on the results of Section 2.5interpreting the Borel transform

~ ~

f(&) of f(x) as a series 1 (&) = 0L ny +2 01 ©m(§) which converges uniformly
on compact sets of Rq.

Decomposing ,,, into blocks [gpﬁn] fitting the Jordan structure of L

1<j<J

(¢ has dimension n; x ny), System (I9) splits into the following .J systems:

d j?' . . . déj;. fagr
5? — (N =Dl = Jn; o 00 Iy = ——#Pm—1+B7*(0) 1

(26) (€—a;) dg

dBi S dBik ~
where £ Ol = + o and B7*(0)pg = 0.
de ];1 d¢ !

Let us first introduce some vocabulary used in resurgence theory. Work-
ing locally we place ourselves at the origin of C. As previously, we denote
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O = C{x} the space of holomorphic germs at 0 in C and O the space of
holomorphic germs at 0 on the Riemann surface C of the logarithm.

Being mostly interested in integrating solutions in the Borel plane on
both sides of the singularities, thus enclosing them in a loop, we can neglect
holomorphic terms and it is natural to consider the quotient space C = (5/ 0.
The elements of C are called micro-functions by B. Malgrange [17] by analogy
with hyper- and micro-functions defined by Sato, Kawai and Kashiwara in
higher dimensions. They are called singularities by J. Ecalle and al. and
usually denoted with a nabla, like cz, for a singularity of the function ¢ while
the space C = O/O is denoted SING, (cf. [26]). A representative of @ in O
is often denoted ¢ and is called a major of .

It is worth to consider the two natural maps

can : O — C= 5/ O  the canonical quotient map
and var : cC — 9, the variation map,

action of a positive turn around 0 defined by var g(¢) = G(€) — F(Ee~2™)
where @(£e7?™) is the analytic continuation of @(£) along a path turning
once clockwise around 0 close enough to 0 for ¢ to be defined all along (the
result is independent of the choice of a major ¢). The germ ¢ = varg is

called the minor of cz.
Let 6 denote the Dirac distribution at 0, 8™ its m!* derivative and Y = O¢ s
the Heaviside (micro-)function. One can make the following identifications:

Can(i> =9 Can(w) = §(m

271_2&‘ 27T'me+1
| | 2 |

can(n—§,> =Y Can((n_§> ) = (2n—£,—1>Y and so on. ..
271 271 211

It is sometimes useful not to work at the origin. Given w # 0 in C we denote
C, = SING, the space of the singularities at w, i.e., the space C = SING
translated from 0 to w. A function ¢ is a major of a singularity at w if
S(w + €) is a major of a singularity at 0.

3.1 Simple-moderate singularities

In this Section, we state some properties, used further on, of the singularities
—rpoles, logarithms and complex powers— which should occur in the Borel
plane. We shall see (¢f. Thm 7)) that poles, logarithms and complex powers
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are the only possible singularities arising in the Borel plane for linear systems
with the unique level one, far from being any singularity in the Nilsson class.

Definition 3.1 Simple-moderate singularities

e A singularity or micro-function 5 at 0 is said to be simple if it has a
major of the for

56) = Zoaplnpf) £ Y hy(©) WP(e)

where Ny e N, o, € C and ’f\Lp € O for all p.

e A singularity or micro-function cz at 0 is said to be simple-moderate if
it has a major which differs from a simple one by terms of the form

3 Y ) + 3D A€ € W(e)

AEA p=0 AeA p=0

where A is a finite set of numbers A € C satisfying 0 < Re\ < 1 and
forall A\e A, Nye N, a,,, € C and H), € O for all p.

e A singularity or micro-function gg at w is said to be simple or simple-
moderate if it has a major @ such that @(w+¢) be of the previous forms
respectively.

Let v be a path from 0 to & in C.
We denote u #, v(§) the convolution product along the path 7 defined by

we (@) = | u(e -0y dr

o

when the integral makes sense.

3This definition of a simple singularity is less restrictive than the one one can find in
the literature (cf. [II] or [26] for instance) where Ny is taken equal to 0. Here, we allow
powers of logarithms; still poles are required to be simple but they can be factored by
logarithms. We will see that, in the linear case when the system is prepared like in Section
2.1, simple singularities in the restrictive sense would occur only under strong assumptions
such as trivial formal monodromy. For a general level-one system, not in prepared form,
there could also occur multiple poles.
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Lemma 3.2 Convolution with powers and logarithms

Let ¢ be an entire function on C.

Let pe N and X\ € C satisfying 0 < Re A < 1.

Let w € C*, let ¢ be a function satisfying ¥(w) # 0 and holomorphic on a
domain containing 0 and w and let v¢ be a path from 0 to § avoiding w and
contained in this domain.

Then, the convolution product o . ((f — W) nP (¢ — w)@Z)) (&) ewists

and 1s, close to w, of the form
Pty ((S — WM (€ ~ w)w) (€) = (¢ —w)*P((In(¢ —w)) + ent(€)

where P(X) € C{&}X] is a polynomial with holomorphic coefficients at w
and degree

o it A#0
deg(P)_{p+1 it A=0

and where ent stands for an entire function.

Note that the power of ({ —w) in the right-hand side has increased by 1 unit
at least.
PROOF. The convolution product ¢ ., ((f —w)M P (¢ — w)w) (€) is well-

defined by the integral f 0(E—t)(t—w)* P (t—w)1)(t)dt since both (€ —t)
B3
and v (t) are holomorphic along v¢; and in the case when w = 0, the factor

tA1 is integrable at 0.

We are interested in the behavior of this function as £ goes to w.
Suppose £ so close to w that there is a disc
D,, centered at w, containing ¢ and included
in the holomorphy domain of .

Fix a on 7. so that the part sy of 7¢ from
a to & belong to D, and be homotopic to a
straight line in D, \{w}.

Up to an entire function, we can replace the convolution product under
consideration by the integral

£
gul6) = j (€ — 1) (t— W) WPt — w) (t)dt
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in C after a convenient choice of the determinations of argument and loga-

rithm. Expand ¢(§—t)1(t) as a Taylor series Z cm(§) (t—w)™in D,,. Since
m=0

#ye lies in D, then, after commutation of sum and integral, g,(§) becomes

3

0l = X en(@) [ (6=t e -y

m=0 a

3
One can check that J (t — W)™ InP(t — w)dt = Griap(€) — Giap(a)

a
where

yp=s 18 _
pE — wmﬂz WE=9) a0

p+1ln”+1(t—w) if m=A=0
For all s = 0,...,p, the series Z cm(€) % converges on D,,.
m>0
Hence, the result. 1

Lemma 3.3 Anti-derivation

Let Q(X) € M, ,(C{&}[X]) be a polynomial matriz with holomorphic
coefficients at £ = 0. We assume that the degrees of the successive columns
of Q are given by the row matric Ng =[v v+1 --- v+p—1].
Let A ¢ —N*.

The matriz function £4¢7m Q(In &) &% admits a unique anti-derivative
of the form

K(¢) =¢"e/" R(Ing) ¢

where R(X) € My, ,(C{&}X]) is a polynomial matriz with holomorphic co-
efficients at § = 0 and same column-degrees Nr = Ng as Q).

Note that the power of ¢ which can be factored increases by 1.

PROOF. Denote Q(X ZQk In* X and R(X ZRk In® X where

k=0 k=0
N=v+p-1
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The derivative of K reads
K'(€) = &Agm [((A + V)L — J) (Ry I € + -+ + Ry In € + Ry)
+ERYy N E+ -+ RiIné+ RY) + (NRylnV ' e+ + Ry)
+(RylnN e+ -+ Riln¢ + Ro)Jp] £,

Identifying the powers of In & we get the N + 1 systems
(*)x ER,+ (A + 1)Ly — Jo) Ry + RiJy = Qi — (b + 1) Riyq

for k =0,1,...,N and Ry;; = 0 which can be solved inductively starting
with £ = N. Like in Section 25, System (), can be solved iteratively
from the first to the last column and in each column, from the last row to
the first one. The fact that it admits a solution holomorphic at 0 when
A ¢ —N* results from the fact that this is true for the differential equation
£y + Ay = a(§) when a(€) is holomorphic at 0 and A ¢ —N.
When £ is greater than v set k = v+/¢. The fact that the first £ columns in Ry,
can be chosen equal to 0 results from the fact that the same property holds
for @ and, by induction, for Rj,;. Then, it holds also for the right-hand
side of System (*); and the condition on the log-degree can be satisfied.
Unicity results from the fact that, since £+ is neither a pole nor a con-
stant, a non-zero constant cannot be put in such form. 1

3.2 Singularities of ¢,,,,m > 1

Recall that the resurgent functions ,, = [gp%’]l <i<J for m > 1 are iteratively
determined, for all j, as solutions of the system

d j’. . . . d ~
j i o ()‘j - 1)90{77; - Jnj(p{”;; + SO%:L.Jnl = d_f(ij. * me—l)
satisfying convenient initial conditions corresponding to those satisfied by
the f.’s (g0 = 01pnys ©m(0) = 0 for m = 3, ¢1*(0) = 0 when a; # 0 and a
convenient non necessary 0 constant otherwise).

Lemma [3.3 provides the log-degrees of the successive columns of an anti-
derivative of the matrix M~ 1¢7w K ¢~/ when K is a generic constant
matrix, 0 < Re Ay < 1 and Ay # 0. One can check that the log-degrees are



Loday-Richaud and Remy, Resurgence for level-one linear diff. systems 26

increased by 1 when A\p = 0. They are given by

(27) N[H| -
[ n ng + 1 ng+ (n1—1)] if Ay = 0.

The behavior of ¢, at a singular point w € €2 depends on the sheet
of the Riemann surface R we are on, i.e., its depends on the path ~ of
analytic continuation followed from 0 (first sheet) towards w. Following [26]
we denote cont,p,, the analytic continuation of ¢,, along the path .

Definition 3.4

e We say that £ € C\Q is close to w € Q if there is a disc centered at w
which contains £ and no other element of €2 than w.

e We call path from 0 towards w € Q a path v = v, contained in C\{2
which goes from 0 to a point £ close to w.

Proposition 3.5 Let w € ).
For any path of analytic continuation v from 0 towards w, a major of

the singularity <pv,; of cont, ., at w exists in the form
Birlw + ) = 9L Kl € Fxemi(€) forall j=1,...,J,

with a remainder rem?:*(&) = Z g Ri:vm(ln &) where

)\k|ak:w

° kf;(w) denotes a constant nj x ny-matric (recall that ny, is the size of the
k" Jordan block of the matrixz L of the exponents of formal monodromy)
and ki;f(w) = 0 when a; # w,

. Rﬁ\km(X) denotes a polynomial matrixz with holomorphic coefficients at
0, the columns of which are of degree N[k]| (cf. notation just above).

Of course, @Ji*, k%f(w) and rem’* depend on v even though, for seek of

simplicity, the notations do not show it up.

Note that, in the remainders, the initial factor £ appears at powers like
Ar and no more A\ — 1 so that the power —1 never occurs. Note also that,
whatever are the values of A\; and Ay, we have A\; —1 < A, and this is why
the terms in the remainders will always appear as subdominant.
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Proor. For all m > 1, System (20) can be seen as an inhomogeneous
linear system in the entries of ¢,,. For any j, the general solution of the
homogeneous system reads (€ —a;)» ' (£ —a;)" kf;;:(w) (€—a;)™"™ with kf;;:(w)
an arbitrary constant n; x n; matrix and we have to prove that there is a
particular solution of the inhomogeneous system in the form of the remainder.
To this end, we integrate the system using the Lagrange method (variation
)

dg
@, the type of () depending upon m. Looking for a solution in the form
¢ = (&€ —a;)N 1€ — a;)™ K (€ — a;) '™ we obtain to determine K up to

of constants). System (26]) is of the form (£ — a;) + linear terms =

a constant the condition i (€ —a;) M (€—a;))™™ Q& —a;)™ and we
just have to find anti-derivatives for the various possible Q.
dB7e

dg

holomorphic at w. When a; # w, then w is an ordinary point for the j*

For m = 1, the inhomogenuity @ = is an entire function, hence

block of System (26]) and the inhomogenuity is holomorphic. Hence, there is a
holomorphic solution at w and we can choose 61 = 0. When a; = w, Lemma
B3 provides K in the form K = (£ — a;)™ %% (€ — ;)™ R(€) (€ — a;)'m
with R holomorphic at w and then, a particular solution ¢?*(¢) = R(€)
holomorphic at w so that we can choose the remainder rem? = 0.
For m = 2, using the superposition principle, we have to consider inho-
dBJFk
T
the solution gp’f” and then also () is holomorphic at w and we can conclude

]f;'forallk:=1,...,<]. When a; # w,

mogenuities () of the form ) =

like in the case when m = 1. From now, we forget about holomorphic terms.
When a;, = w, then gp’f” differs from a holomorphic function by terms of the
form (€ —w)M1(€ —w)Tm k:]f;('w) (€ —w) 7m. It results from Lemma 3.2 that,
modulo a holomorphic function, @ takes the form (£ —w)* P (In(¢{ —w)) with
P a n; x nj-matrix of polynomials with holomorphic coefficients the columns
of which have log-degree N[k]. In both cases, a; = w or a; # w, Lemma
provides a corresponding solution of the form (¢ — w)*R(In(§ — w)) where
R is a polynomial matrix with holomorphic coefficients at w and column-log-
degrees N|k]. ~
dBJ*
dg
cp:;'_l. The factor gp%'_l splits into two parts: the first part coming from
the general homogeneous solution is treated like in the case when m = 2;

For m > 3, the inhomogenuity contains terms of the form ) = #

the second part coming from the remainder is of a similar type but the fact
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that all powers A\ — 1 have been changed into A\. Consequently, there ap-
pears no factor (£ —w)™! and this insures the stability of the log-degree N[k]
since, from now, convolution generates no increase of the log-degree N[k]. 1

3.3 Singularities of f

We are now ready to make explicit the form of the singularities of f as a
consequence of Theorem [2.7] Proposition and an iterated application of
the variation.

Lemma below states, without proof, some useful elementary proper-
ties of the variation. We denote var? = yar ovaro --- o var.

~
p times

Lemma 3.6

1. V&I‘(%) =1.

21
2. For allpe N, 1
p— r
wl(B2)) - S

Ingyr—1
- p(n—§> + lower log-degree terms.

2m1
Consequently, Varp((lzn—éY) =pl and Varp“((l;—é)p) = 0.

3. For all A e C, var(&Y) = (1 — e72™)¢M,
Consequently, var? (£*) = (1 — e 2™ MPEX for allp e N and
var(éY) = 0 for all X € Z.

4. var(fg) = var(f) g + f var(g) — var(f) var(g).
In particular, var(fg) = fvar(g) when var(f) = 0.

5. Forall \e C and p e N,
wr(€(BE)7) = (1 - e ()7 mamingh ()

211 211 271
. | P
= (1 —e 2mN)eA (n_f) + & x lower log-degree terms.

211
Consequently,

var? (ﬁ)‘ <g)p> = (1—e 2mAypeh (g)pﬁ—é’\ x lower log-degree terms.

271 271
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Theorem 3.7 Singularity of f at £ = w
Let w e Q.
For any path of analytic continuation v from 0 towards w, a major of the

Voy ~
singularity f,, of cont, f at w exists in the form

]\c/],.(w_i_g) — é—)\j—l é—Jnj kjg;:) é"_‘]”l +Rem%;:) (g) f07“ a”j = 1, ceey J

with a remainder Remz:) &) = Z % Ri;(w) (In&) where

Aelag=w

— k:{;’) denotes a constant n; x ny-matriz (recall that ny, is the size of the k™
Jordan block of the matriz L of the exponents of formal monodromy)

and k(;') = 0 when a; # w,

Ri;z’_(w) (X) denotes a polynomial matriz with summable-resurgent coef-

———sum

ficients in Resq,_,,, the columns of which are of log-degree N[{] (cf.
Section[3.2, Formula (27)).

Recall that the major fj **. the constant matrix kfw) and the coefficients of the
remainder Ri\:;(w) depend on v even though, for seek of simplicity, we do not
show it up in the notations. Note that, in practice, kgw) can be determined
as the coefficient of the monomial ¢!,

It is worth to make explicit the following two particular cases.
e Case with diagonal formal monodromy: L = @;‘zl)\j

In this case, fj ** reduces to just one entry which we denote fj.

Plo+8 ="+l ) me+ >, & ()

5 )\[9&0|ag:w

J

where &/ | is a constant, h
(w) (w

) and all hﬁ\[(w) are summable-resurgent
———sum
functions of Res_,,. Moreover,

— kfw)=0whenaj7éworAj7éO,

— h{w) = 0 when there exists no ¢ such that a, = w and A\, = 0.

e Case with trivial formal monodromy: L = O,,
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J

5 Ky
flw+¢§) = T +h(w)(f) In¢

where k{w) is a constant and h{w) a summable-resurgent function of
——sum

Resq . Moreover,

— k{w) = 0 when a; # w,

— h{w) = 0 when there exists no ¢ such that a, = w.

Thus, under the condition that there exists no A\, # 0 associated with

v ~
ay = w, the singularity f, of f at w is simple in the restrictive sense (cf.
Definition Bl and its footnote).

PROOF. — Prove first the weaker result that asserts that the singularity of
f at w has the given form with holomorphic coefficients at 0.
Given 0 < v < vy and € > 0, we consider the domains

A, ={r<|{<wrn}inC
and Al ={v<|{| <, 0 —c—2nN' <arg({) <0+ e+ 2r}

a lift of the ring A, to N’'+1 consecutive sheets of the Riemann surface of the
logarithm at 0. The number N’ will be determined later; it has to be finite
and large enough. The argument 6 fixes the sheet on which f is studied.
We assume v, so small that the disc || < 14 lies at a distance at least v from
(2 — w)\ {0},

We fix j. From Proposition we can write

cont,* (w + &) = Z Z RMP(€) €Y InP € + % i ROP(€) InP &
p=0

AEZ p=0

where the pairs (A, p) are supposed distinct modulo Z and finitely many.
Denote A the set of all exponents \ appearing in these summations. Elements
in A are equal to either a Ay or \; —1 when \; ¢ Z and a; = w. When \; =0

and a; = w, instead of introducing A = A\; —1 = —1 we factor — so that

no polar part occurs in the coefficients h%P(£). We denote py the highest
log-degree p associated with .

From Proposition we know that all coefficients h)P(€) are holomorphic
at 0 and we have to prove that f (w + &) has the same form as the ¢,,’s
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and holomorphic coefficients at 0. The proof mostly relies on the uniform
convergence of the series >, _; ¢, to ]? — 01, ,, on any compact set avoiding
Q (¢f Remark 2I0). For simplicity, we skip writing “cont,” although we
consider analytic continuations along ~.

Suppose, to begin, that all majors ¢7:* are equal to 0 which means that all
©*(w+€) are holomorphic functions h?*(€) at 0 and then, all holomorphic on
the same disc |¢| < 1 previously chosen. Since the series Y} @l (w+¢&) =

Y=o M (§) converges uniformly to Fi*(w + &) on compact sets avoiding

() —w (Theorem 27, Remark PZI0) the function f7*(w + &) = Ym0 Ml () 1s
a holomorphic function on the punctured disc 0 < [¢| < v4. Its Laurent series
is the sum of the Laurent series of the h/*(£)’s; hence, it displays no polar
part and fj”(w + £) can be continued into a holomorphic function A7*(£) on
the disc |£] < v1. We can conclude, in this case, that a major of ]? is also
equal to zero: fj"(w + &) = 0.

Given (A, p), to prove that the series ), o h?(§) converges to a holo-
morphic function h*?(€) about w we proceed as above after having reduced
all @l*(w + £) to hP(£) by means of iterated variations as indicated below.
We can then conclude by the same arguments as above since the uniform
convergence property keeps valid for the variations as well.

We base the reduction on the properties of the variation stated in Lemma
the variation of In” £ iterated p times produces a non-zero constant and
it produces 0 in one more step; the iterated variation of * In” ¢ when \ ¢ Z
generates a dominant term of the same form times a non zero constant.

Fix A e A.

It is sufficient to consider the case of the monomials h}Pr (€) £* In”> € of high-
est log-degree. Indeed, we can then proceed iteratively on the descending
log-degrees terms after cancellation of the highest log-degree terms.

Here is a possible way to reduce ¢/»*(w + &) to h\P>(€):

For each N € A, N # X successively, multiply by ¢, take the variation
py + 1 times and multiply by ¢V, thus canceling all terms factored by &'
We are left with only terms in &* In” &, for p = 0,1,...,px. Multiply by
¢ and take the variation py times. We get so h)\P*(€) up to a non-zero
constant.

We can now estimate a convenient value for N’: the process, to be valid,
requires that N’ be as large as the total number of variations used.

This ends the proof of the fact that the singularity of cont, f at w has
the given form with holomorphic coefficients at 0. In particular, the constant

matrices k{w) are given by k‘(:) = Dim>1 ki:(w)'
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— The proof of the fact that the coefficients h?j; (€) are actually summa-

ble-resurgent functions in 736\8;111; is straightforward from the fact that their
germs at the origin are equal to iterated variations of functions themselves

——— sum

in Resq_,,. 1

3.4 Principal major and connection constants

Let § € R/27Z be an anti-Stokes direction and w € €y a Stokes value in
direction 6 associated with f(z).

The constants kgw) and the polynomials Ri\:,(w) found in Theorem [B.7]
depend, as already said, on the path of analytic continuation . and mean-

while, on the chosen determination of the argument around w.

e We consider a path 4" from 0 towards w defined as follows:
+ =

vt o= 7; goes along the straight line [0,w]
from 0 towards w and bypasses all intermedi- o 3
13

ate singular points w’ € Qyn]0,w] to the right 0

as shown on the figure.

e We choose the principal determination of the variable £ around uﬂ

Theorem [B.7] allows to set the following definition.

Definition 3.8 Principal major

We call principal major of f at w € Qy the major f*(w + &) of Cont7+(f)
when the principal determination of the variable £ is chosen.

According to Theorem 3.7 for j = 1,...,J and convenient constant matrices

k(’:j *; it reads

(28 P = TR DL R (Ing)

Aelag=w

Moreover, in case there exists ¢ such that \;, = 0 and a, = w, we assume

that R, Zw)(O) = 0 so that the principal major never contains a holomorphic

term.

4 Any choice is convenient. However, to be compatible, on the Riemann sphere, with
the usual choice 0 < arg(¢ = 1/§) < 27 of the principal determination at infinity we
suggest to choose —27 < arg(£) < 0 as principal determination about 0 as well as about
any w at finite distance.
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With the requested conditions the principal major of f at w is uniquely
determined. We denote k* Wlth a dot to indicate the choice of the principal
determination.

By means of elementary transformations (cf. Section [2.1]) we can extend
the previous results and definitions to any of the k™ column-blocks of ﬁ’(f )
changing the Stokes values a, into a;, — a; (actually, with respect to ]? (&), ay
stands for a; — a; with a; = 0) and the exponents of formal monodromy A,
into Ay — \r.. We can then reformulate Theorem [3.7] as follows.

Corollary 3.9 Let 6 € R/27Z be an anti-Stokes direction and w € 2y a
Stokes value in direction 6 associated with System (1).

To the choice of the principal determination of the wvariable & there I8
a unique constant matrizc K+*) such that the principal major P ofF at w
reads

(29) ﬁ+(w+§)—g§ K *)f + Rem™ (In¢€)

The matrix K(J;*) s a constant n x n-matrix satisfying K(J;J*;C =0 for all (j; k)
such that a; — ay, # w. In particular, all diagonal blocks are equal to zero.

The remainder Rem™ (In €) is a linear combination of polynomials in In & with
summable-resurgent coefficients weighted by subdominant complex powers of

¢

Definition 3.10 Matrix of the connection constants
The n x n-matrix

+ +
(30) K= ) K.,

wey

is called (principal) matriz of the connection constants of F in direction 6.

A n; x ng-block Kgij;k of Kot is equal to 0 when a; — a;, does not belong to
Q. The possibly non-zero entries of K. are also called principal multipliers
of connection in direction 6.

Note that we still need no other structure on 7@9 and C than the
structure of O<!(C)+module and, in particular, there is no need yet to develop
a structure of a convolution algebra.
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4 Meromorphic invariants: Stokes cocycle or
alien derivatives

The classifying set for the local meromorphic classification at 0 of connec-
tions endowed with an isomorphism of their formalized (i.e., formal gauge
transformations £ ) in a given formal class was given by Y. Sibuya [27, 2§]
and B. Malgrange [16] in terms of a non-Abelian 1-cohomology set. Actu-
ally, this classifying set can be given a structure of a unipotent Lie group
and it is isomorphic to the direct product of the Stokes-Ramis groups in each
anti-Stokes direction associated with the connection (¢f. D.G. Babbitt and
V.S. Varadarajan [I] for an abstract proof and M. Loday-Richaud [13] for a
constructive one). Indeed, in each 1-cohomology class there exists a unique
special cocycle, called Stokes cocycle, whose components coincide with the
Stokes-Ramis automorphisms independently defined as the defects of analyt-
icity of F in each anti-Stokes direction [23]; [13, Prop. II1.2.1, Th. I11.2.8].

To any formal class and associated anti-Stokes direction the Stokes-
Ramis automorphisms form a free Lie group conjugate to a group of unipotent
triangular matrices submitted to some vanishing conditions ([I3] Def. 1.4.12).
Its Lie algebra is conjugate to an algebra of nilpotent matrices submitted to
similar vanishing conditions and the exponential map sends it homeomorphi-
cally onto the Stokes-Ramis group. It is then equivalent to characterize a
meromorphic class by giving its image in the Stokes-Ramis groups (i.e., its
Stokes cocycle or its Stokes matrices after the choice of a C-basis of solutions)
or its image in the Lie algebra, tangent space of the Stokes-Ramis groups at
the identity (i.e., its alien derivatives).

Here below, we perform these descriptions in more details and we provide
an explicit formula for the Stokes matrices in the Laplace plane in terms of
the connection matrices in the Borel plane.

Note. From now, each time a determination of the argument is required,
we choose the principal determination fixed similarly in the Laplace and in
the Borel plane (¢f. Footnote ). Given an anti-Stokes direction ¢ € R/27Z
we denote 8* € R the chosen determination of § and w* the Stokes value w
in direction # with the same determination. We keep denoting the variables
x,&, ... while indicating arg(x) ~ 6* arg(§) ~ 6*,....
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4.1 Stokes cocycle

Let us start with a description of the Stokes-Ramis automorphisms, compo-
nents of the Stokes cocycle, from the viewpoint of summation.

Recall (cf. Section 2.2)) that the anti-Stokes directions attached to the
first ny columns f of the gauge transformation F' are defined as the direc-
tions of the various non-zero Stokes values of System (), i.e., the Stokes
values belonging to Q* = {ay,...,a;}\{0} (see notations of Section 2.2)). To
the ¢ column-block of F' the set  must be translated to € — ag. We keep
denoting € = {a;—a, # 0} the set of all non-zero Stokes values attached to E.

Given 0 € R/2nZ let dy denote the half line issuing from 0 with argument 6
and set €y = Q* N dy and Qy = Q* N dy.

4.1.1 Stokes automorphisms as gauge transformations

When 6 is not an anti-Stokes direction for F (i.e., Qp = ) then F can be

applied a Borel-Laplace integral J F (£)e ¥/d¢ in direction 6 (cf. Theorem
dg
2.7 for instance) and in neighboring, not anti-Stokes, directions giving thus

rise to an analytic function sy(F') defined and 1-Gevrey asymptotic to F' on
a sector Xy ~. bisected by # with opening larger than 7. The function se(ﬁ’)
is called 1-sum or Borel-Laplace sum of F in direction 6.

When 6 is an anti-Stokes direction for F' the Borel-Laplace integral does
not exist anymore in general. However, taking the limit as € tends to 0 of
the Borel-Laplace sums in directions # — ¢ and 6 + ¢ one defines, by analytic
continuation, two analytic functions, 1-Gevrey asymptotic to Fona germ of
half-plane ¥y . bisected by 0.

We call sum off’ to the right of 6 and we denote
)/ Sp+ (ﬁ) the analytic continuation to Xy . of sp_. (ﬁ)
=" as € tends to 0. We call sum ofﬁ’ to the left of 6 de-

noted sy (F) the analytic continuation of s (F).

5 The denominations to the right and to the left fit the natural orientation around
0 on the Riemann sphere. Our choice of the signs + and — in syp+ and sy- may look
inappropriate to such an orientation but our will is to fit the usual notations at infinity.
Indeed, positioning the singularity at 0 or at infinity exchanges the orientation on the
Riemann sphere. The Borel transform at 0 does not exchange the orientation while it
does it at infinity. In both cases, we can refer to the fact that the sums sg+ and sg-
correspond to Laplace integrals in the Borel plane along a path following a line dg and
passing the Stokes values positively for syg+ and negatively for sg- (cf. Fig. Section E3).
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The Stokes phenomenon stems from the fact that the two lateral sums

~ ~

se+ (F') and sg- (F') are not analytic continuations from each other in general.
The defect of analyticity is quantified by the Stokes automorphisms

(31) Sty.p = so—(F) ' 0 sy (F)

in each anti-Stokes direction #. Thus defined, the Stokes automorphism of
F in direction 6 is an automorphism of the normal form (H); precisely, a
gauge transformation, 1-Gevrey flat on 2y ., which leaves invariant System
). The Stokes automorphism Sty.;» depends on F and 6 and it does not
depend on the choice of a determination of the argument near 6 € R/277Z.

4.1.2 Matrix representations

One can give the Stokes automorphism 5%, j matrix representations in
GL(n,C) by associating with the (formal) normal solution Yy(z) = z%e201/*)
an actual one near 6 by means of a choice of a determination of the argument
in the Laplace plane:

We change the formal power z into an actual function near 6 by choos-
ing the principal determination of the argument. We get thus an actual
function, still denoted x, defined and analytic for arg(x) close to #* (denote
arg(r) ~ 6*). In our case of a single level equal to one, the polynomi-
als ¢j(1/x) in Q(1/x) do not require any choice of a determination of the
argument. However, a formal exponential determines an actual exponen-
tial only up to a multplicative Constantﬁ. We fix such a constant once for
all, for instance, by choosing the function denoted e?(/*) in the usual ana-
lytic meaning. We denote Yj p+(x) the fundamental solution such defined for
arg(zr) ~ 0*.

To the actual normal solution Y g« (), there correspond two analytic fun-
damental solutions 59—(]5)}/079* () and 59+(ﬁ)Y079* (x) of System (d). There
exists then a unique constant invertible matrix (called Stokes-Ramis matriz
or simply Stokes matm’aﬁ), which we denote I,, + Cy+, such that

~ ~

(32) s+ (F) Yoo+ (x) = s9- (F) Yo+ () (I + Cipv)

6 What is called formal exponential e? is “the” formal solution of the differential equa-
tion ¥’ — p’y = 0, which is well defined only up to a multiplicative scalar.

7 In the literature, a Stokes matriz has often a more general meaning where one allows
to compare any two asymptotic solutions whose domains of definition overlap. We exclude
such a generality here.
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and the Stokes automorphism St,  is given a matrix representation by the
formula

St@;ﬁ = Sp- (ﬁ)_l Sg+ (ﬁ) = xLeQ(l/x) ([n + Ce*)e—Q(l/x)x—L

(33)

*

for arg(x) ~ 6

Thus, although the Stokes automorphisms, components of the Stokes
cocycle, are intrinsically determined from F , their matrix representations as
constant invertible matrices are defined only up to the choice of an actual
normal solution Yj ¢«(x) in each anti-Stokes direction. As it is clear from For-
mula (B3] this indetermination results in the conjugacy action of the formal

2™ in the normal so-

monodromy (change of “formal determination” = — xe
lution) and of the exponential torus (see Section [£.4]). Temporarily, we forget
about the action of the exponential torus by systematically associating with
a formal exponential e? the analytic function denoted the same way (choice
of the arbitrary constant equal to 1) so that, a (formal) normal solution be-
ing given, our unique freedom lies in the choice of the determination of the
argument of the variable x in a neighborhood of the direction 6, i.e., the
choice of a determination 6* of 6.

The Stokes automorphism St, 3 is unipotent (i.e., its matrix Cy« is nilpo-

tent whatever the choice of a determination of 6*) due to the fact that so- (F)

~

and sg+ (F') are both 1-Gevrey asymptotic to the same matrix F. Indeed, a
n; X ng block Cg’f is 0 as soon as a; — a; ¢ §2. In particular, the diagonal
blocks are equal to 0 and one can put Cy« in triangular form by conveniently

reordering the Stokes values a; (c¢f. [13, Consequence 1.4.8]).

Formula (33)) has an “additive” form

~ ~

(34) so+ (F) () — so- (F)(x) = sg- (F)(z) & QW) Cpo e~ Q) =L
for arg(x) ~ 0*

which will be used later.

4.1.3 Stokes automorphims acting on formal solutions

The Stokes-Ramis matrix I, + Cp« was introduced in Formula (B2]) as the
matrix of a linear map

~ ~

o (F) Yo (@) > 50+ (F) Your ()
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associating sums to the right with sums to the left in direction #*. The map
is defined and bijective in the space of actual solutions of System (II) over a
germ of half plane X .

Coming back from the actual normal solution Yj ¢+ () to the formal one
Yo(z) = 2"e®@® the previous map can be read as a bijective linear map

(35) Ster : F(x) 2" QW s F(z) 2" QW)L + Cps)

in the space of formal solutions of System (Il). Such a map depends on 6*
and no more only on 6.

One also calls the map Sty« a Stokes automorphism in direction #*. The
Stokes cocycle of System () is equivalent to the collection of the Stokes
maps Stg« for #* running over arguments of the anti-Stokes directions in a
fundamental domain, say the principal one —27 < arg < 0.

Note that, to the first column-block fN made of formal power series (recall
a; = A = 0), there does not correspond a power series in general. In Section
4.4l in order to define alien derivations, we will extend such a map into
an automorphism of a differential algebra containing the formal solutions of

System ().

o+
4.2 Maps A,

Given w € Q* recall that w* denotes its principal determination with argu-
ment 6*.
The Stokes automorphism Sty can be split into a sum of linear maps

+
A+, each of them taking into account the contribution of a different Stokes

value w € 2% as follows: their matrices, also denoted A.;*, are obtained from
Cy+ by keeping unchanged the blocks C’g’f such that a; —a, = w and equating
all other blocks to 0. ..

Obviously, Cy« = Z A+ and Formula (34]) reads, for arg(z) ~ 6*,

wey

(36) so+ (F)(2) — sg-(F)(2) = so- (F)(2) Z e Wl gl A; L

wey

.+
In restriction to the first ny columns and denoting ¢, the first n; columns
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.+
of A+, we obtain, for arg(x) ~ 6*,

(37) 59*(f)(4’7) - 56*(?)(37) = Sef(ﬁ)(ic) Z e wlw gL 5; N

wey

4.3 Stokes-Ramis versus connection matrices
The left hand side of Formula (87) can be seen as the Laplace integral

~

(38) s (D) =0 () = | Fopereac

dg
/

Yo

where, as shown on the figure, 7,
is a Hankel type path going along
the straight line dy from infinity
to 0 and back to infinity passing

positively all singularities w € €2y on
The two branches of ;) along dyg are dis-

jointly drawn to point out that they do both ways.
not belong to the same sheet of the Rie-
mann surface Rq.

The exponential growth of f in direction 6 guaranties the convergence of
the integral for z in a disc adherent to 0 with dy as a diameter (a Borel disc)
(cf. [21] for example).

Without changing the value of the integra]ﬁ the path 7; can be deformed
into the union ), = Uuen,Vp(w)
of Hankel type paths 7j(w) with
asymptotic direction # around each

singular point w € .

By means of translations from w to 0 and using the fact that holomorphic
functions at w contributes 0 to the integral around w we can replace f by its
principal majors f*(w + £) at each w obtaining so

8 Contrarily to Formula (37) which only requires the 1-summabilty of the series f , the
individual resurgence and 1-summability are not sufficient here. We do need summable-
resurgence.
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~

(39) o0 () —s0- () = 3 e f Frlw+ €)etlde

wWENy

where, as shown on the figure, vy is a Hankel type path

around 0 in direction 6.

We claim that we can identify this linear combination of exponentials

e™“/" to the linear combination in the right hand side of Formula (37).

*

Proposition 4.1 Given w € Qy, the following identity holds for arg(zr) ~ 6*:
ot

(40) Frlw+ e dde = sg- (F)(z) # 60 a1,

Yo

PRrROOF. The equality is obviously true when there is only one singular point
w on the half line dy. Assume then that there are at least two singular points
on dg.

The Borel transform f(€) of f(z) belongs to 7@;”11 and has simple moderate
singularities. From Theorem B.7 we know that any major f (w4 &) at w is

a polynomial in In ¢ with summable-resurgent coefficients, possibly factored
by complex powers £*~'. The Laplace integral § Fr(w + €e~¥/7d¢ in the
left hand side is then a polynomial in Inx whose coefficients are 1-Gevrey
asymptotic functions on a germ of half plane bisected by the direction 6. De-
forming the path vy so as to move the asymptotic direction to a neighboring
direction 6+ ¢ we get 1-Gevrey asymptotic coefficients on a sector of opening

3
10 — 5,0 + 5 + <[, that is, 1-sums of 1-summable series in direction 6 + 3

(integer power series, possibly factored by non integer powers z*).
The same property holds for the right hand side and therefore, we can
conclude by the variant of Watson Lemma below. |

Lemma 4.2 (A variant of Watson Lemma)

Let 0 € R/27Z.

Suppose that, to each w € y, there is a linear combination P,(Inx) of
polynomials in Inx with summable-resurgent coefficients in 7/?,\6:‘5;111; possibly
weighted by complex powers of x, the powers being distinct modulo Z.

Then, an identity Z P,(Inx)e™/® = 0 implies the nullity of each P,,

wENy
i.e., the nullity of each summable-resurgent coefficient in P,,.
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PRrROOF. By means of a rotation of the variable z we can assume that 6§ = 0
so that all w are positive numbers. We range them by increasing order:
Wy < Wy < -+ < w,. If we factor e “/* the identity becomes

P, (Inx)+ Y P, (In x)e @ =,
(=2

Taking the asymptotic expansion at 0 on the positive real line of both sides
of the identity proves that the asymptotic expansion of P, (In z) at 0 is 0.
The same property holds for the coefficients of each power of In x. These
coefficients are 1-summable powers series in which the sequence of exponents
is a finite union of arithmetic sequences. Watson Lemma applies to such a
situation (¢f. [19, Thm 2.4.1.4.ii]) implying the unicity of the 1-sum. Hence,
P,, = 0. The nullity of the other polynomials P, follows by recursion. 1

Theorem 4.3 Connection-to-Stokes Formula
Given 6 € R/27Z an anti-Stokes direction, the data of the Stokes-Ramis
matriz Cy« and of the connection matriz K. are equivalent and the two

matrices are related by the relation

Cope = f ! PR et
7 €

where o is a Hankel type path around R* run over by & after the choice of
the principal determination of its argument.

ProOOF. Note that Cy- and K 9** have the same block-structure with the same

blocks of zeros and same arbitrary non-zero blocks. The map K. — Cy- is
a linear map between two linear spaces of same dimension and to prove that
it is bijective it is enough to prove that it is injective.

Suppose Cp« = 0; then, the two lateral sums sy« (F) and so-(F) glue
together and the Borel transform F(€) of F/(z) has no singularity on the line
dp. Hence, K. = 0.

To prove the relation linking Cy« to K. it is sufficient to compare the
first column-blocks ¢y« and k. (¢f. Section 2.1]) and to prove that

1
o= | zetmpeteta
Y
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with the choice of the principal determination of argument along ~,.
Equating the dominant terms in Identity (40) and using Theorem B.7 we
obtain the new identity

wt g™t = J ul kfou e dy
2

6
= ot f hkL e tde ™ (setting u = x€)
Y0

where for argxz = 6*, the path of integration 7y has become the classical
Hankel path 7y around the non-negative real axis with argument from —27
to 0. Hence the result. 1

In restriction to the blocks attached to a given w we obtain the following
statement.

o+
Corollary 4.4 For all w € Q2*, the data of A,+ and of K(Z*) are equivalent
and the two matrices are related by

. 1 B B
Ape= | &Kl & etde

70

where ~yy stands for a Hankel type path around RY run over by & after the
choice of the principal determination of its argument.

It can be useful, especially for effective numerical calculations to expand
each entry of the Connection-to-Stokes Formula. The following corollary
provides such an expanded form.

Let MUk denote the entry row £ of row-block j and column r in column-
block k of a n x n-matrix M split into blocks fitting the structure of L.

Corollary 4.5 The various entries of the Connection-to-Stokes Formula read

. nj—f+r—1
Cg(ﬂ*l);(km) _ Z Kp(\j — M) HISJ,Z);(k,T)

p=0

. dp efiﬂ't

K+(j,£+£’);(k,r’+l)

HUORr) — 2 (_1)7’7177"’ 0 )
p N pr
P (r—1— )¢
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4.4 Alien derivations

As already said in the introduction of Section ], the classifying set of mero-
morphic classes of formal gauge transformations of a given normal system is
naturally endowed with a structure of a Lie group. In this section, we explain
how the dotted alien derivations can be defined as infinitesimal generators of
this Lie group.

Alien derivations were first given a definition through the Borel plane by
J. Ecalle ([10,12], ¢f. also [I8,26]). They have been defined as an average of
analytic continuations in the Borel plane followed by a Laplace transform, the
weights of the averaging being related to the Campbell-Hausdorf Formula. It
is equivalent to see them as the homogeneous components of the logarithm
of graded Stokes automorphisms (c¢f. [10], [I8, Th 1.6.2], [26, Lemma 5 and
pp. 35-38]). This is the viewpoint we adopt here, a viewpoint already used
in [24] 21]. To perform it we need

e to define an algebra where the Stokes automorphisms make sense and
where the alien derivatives will live (to give them a chance of being
“derivatives” we cannot keep working in vector spaces),

e to define a graduation on the Stokes automorphisms.

Our aim being to define alien derivations of the solutions of System ([I)
we proceed as follows.

4.4.1 The algebra

Consider the finitely many Stokes values Q = {ay,...,a;} associated with
System ([Il) and the Z-module ZS2 they generate. The lattice Z{2 may be dense
in C (¢f. the example of the hypergeometric equation D3, below) and it
contains Q = {a; — a,}. Simultaneously, consider the set A = {\y, ..., A\;} of
exponents of formal monodromy of System ([I]) and the lattice ZA it generates.

We introduce the set HNZAZQ of all series solutions of linear differential
equations with meromorphic coefficients, single level 0 or 1, exponents of
formal monodromy in ZA and Stokes values in ZS). Note that all (convergent)
meromorphic series at 0 belong to 'HNZAZQ.

Proposition 4.6 The set H = H~ZA7ZQ 1s a differential sub-algebra of the
algebra of all formal meromorphic series at x = 0.
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Consequently, its counter-part H in the Borel plane is a convolution alge-
bra where multiplication by 1/¢ is the derivation; its elements have simple-
moderate singularities at finitely many points of ZS).

PROOF. The set H is stable with respect to sums and products. Indeed,
given two series solutions of linear differential equations D1y = 0 and Doy = 0
respectively, their sum satisfies a linear equation Dy = 0 where D is the left
smaller common multiple of D; and D,, the exponents of formal monodromy
and the Stokes values being the union of those of the initial equations. Their
product satisfies a linear differential equation Ay = 0 where A is the sym-
metric tensor product of D; and D, and where the exponents of formal
monodromy and the Stokes values are the two by two sums of those of the
initial equations.

The set H is stable under derivation with respect to x since the derivative of
an element fNof H satisfies an equation of the same type obtained by conve-
niently derivating a differential equation satisfied by f ) 1

To prove directly in the Borel plane that His a convolution algebra is
not so easy. Given f and § in H with finite singular supports Q( f ) and Q(9g)
respectively, the main point is to prove that the convolution f +¢ which is well
defined near 0 can be continued to the whole Riemann surface R, AP +9E)"
To this end, one could generalize the technique of two intertwined combs
to build R-symmetrically contractile paths (¢f. [20, Lemma 3, Figures 5
and 10]): one should start here with a comb with upwards nails at €( f), a
comb with downwards nails at —€(g), symmetric of Q(g) with respect to
0, and an elastic rope tied to the two nails 0 to materialize the convenient
paths of analytic continuation when one moves the second comb. We won’t
formalize such a proof. Exponential growth at infinity and simple-moderate
singularities are preserved by convolution.

In order to define alien derivatives of the entries of the gauge transfor-
mation F () we limit ourselves to consider the differential sub-algebra H P
of H generated by the entries of F(z). Formula (33) as noticed at the end
of Section shows that the Stokes automorphism Sty does not act inside
H 7 since the image of a formal series may involve complex powers of z, loga-
rithms and exponentials. It is thus natural to extend the differential algebra
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H 7 into the polynomial algebra of “resurgent symbols”ﬁ

~

ﬁﬁ% =M [(x)\)AeZAa Inz, (ew/m)wem]-

This is the differential algebra we are willing to work in. The coefficients are
formal 1-summable series, 2%, Inz, e “/*
the usual rules. The derivation is d/dx.

are formal indeterminates satisfying

4.4.2 Extended Stokes automorphisms

Let 6 € R/277Z be an anti-Stokes direction associated with System (I]) and
0* € R its principal determination.

In Section 1.3l we described the Stokes automorphism as a map acting
on formal solutions by means of a choice of a determination of the argument
0*. Such a definition can be extended into an automorphism of the differential
algebra H 7y, as follows.

Proposition 4.7 (Extended Stokes automorphism)
The Stokes automorphism Sty can be extended into a differential unipotent
automorphism, still denoted Stys, of the differential algebra Hpy, by setting:

— power factors x*, logarithms and exponentials are kept fized,
~ F is changed into F 2" eF0/) (I, + Cpe) e @D gL,

PROOF. Any resurgent symbol of H 7y, has a unique expression of the
form 25] 2 InP7 e /" the sum running on finitely many distinct triples
(Aj,pj,wj) € ZA x N x ZQ if we assume, in addition, that 0 < R®); < 1
for all j (and §; # 0). It can be isomorphically sent to the actual resurgent

symbol Z so- () () 2 I (z) e /" for argw € |0* — g, 0" + g[ With this
isomorphism the map Sty+ as defined in the proposition reads as the map
D so- (@)@ e WP (@) e 0 o 3 s (§) (@) 2 TP () e

in the space of actual resurgent symbols of the form

Z so-(J;)(x) 2 InP7 (x)e /" with §; € ﬁﬁ% and argz € |6 — g, 0" + g[

9For non-linear situations one has to consider resurgent symbols with infinitely many
exponential terms.
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if one expands sg+(g;)(z) according to Formula (37) (Since g; is 1-summable
it has a well-defined Stokes phenomenon and the result does not depend on
the way g; is expanded in terms of the entries of F ). Since summations sy-
and sg+ are automorphisms of differential algebras so is Sty-. The reciprocal
map St;} is obtained by keeping the same space of actual resurgent symbols
while exchanging the roles of sy~ and sy+ and then the Stokes matrix I,, +Cy-
by its inverse (I,, + Cp+)~"

The extended Stokes automorphism keeps being unipotent. Indeed, this
results from the fact that it is already unipotent when acting in the space
of formal solutions of System (Il) (its matrix I, + Cp- is unipotent). This
can also be seen as follows: if F & is an entry of F then Sto(Fjr)(z) =
ﬁjk(x) + Y grvw(@) 2 Inf (7)€ —afs where the sum runs on ﬁmtely many A
and ¢ and finitely many w in €. The coefficients g, ., are themselves ele-
ments of H - The Stokes values of gy /., are among those of F translated
by —w hence none is left on the half-line dy after finitely many applications
of Sty. 1

With this extended definition we can now write
(41) Sto (F(2)) = F(z) 2" e?M) (L, + Cp)e @0/

instead of Stg«(F(z) 2" 2™ = F(z) 2" 2% (I, + Cp) only (cf. [3H)).

4.4.3 Graduation on the Stokes automorphisms

The graduation is built so as to discriminate between the different sub-

o+
matrices A_. of the Stokes matrix Cyp« (c¢f. Section [£.2). This is done using
the exponential torus T of System ().

Here is how to define 7 (c¢f. [21} 20]): Let by,...,b, be a basis of the
lattice Z2. The polynomials py(1/z) = —by/x,...,p,(1/x) = —b,/x form a
basis of the Z-module generated by the determining polynomials q1, qs, . . . , ¢
of the diagonal of Q(1/x). The exponential torus takes into account the in-
determination of a formal exponential e’ by associating with e” its complex
multiples e (see Footnote[d]). To define the exponential torus 7 one intro-
duces v indeterminates A = (A1, A2,...,A,) and associates \je?’ with each
ePi. One can extend 7T to the algebra H 7y, by letting it act trivially on
power series, complex _powers of x and logarithms. We obtain thus a family
of automorphisms of 7—[~~ with v parameters.
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For j =1,2,...,n, denote m; = (mj1, mjo,...,m;,) the components of the

g 's with respect to the p,’'s. With respect to the formal fundamental solution
F (z) 2L 91/ the exponential torus has a matrix representation of the form

(42) Ty = diag(A™, A™2, ..., A™)

where the notation \** stands for the product A7 A5 ... A\, Its action on
the Stokes automorphism Stg. generates a group G, of unipotent matrices
I, + Ty Cop T ! with v parameters. These matrices are polynomials in the
parameters )\, and their inverses. Keep denoting €2y the set of non-zero
Stokes values a; — a;, on the line dy (c¢f. Section 2.2). To each Stokes value
w e Qy there is a unique collection m(w) = (my(w), ..., m,(w)) of weights

L] +
such that Z my(w) pr(x) = —% . One can check that the matrix A, (cf.
x
r=1
Section [1.2)) is the coefficient of the monomial A2 i Ty Co- Ty 1,

L] +
(43) TyCo Ty = D Ay A2

4.4.4 Definition of the alien derivations

As a unipotent graded group the group G, admits infinitesimal generators
Aw* in the sense that

(44) [n + TA Cg* T;l = exp ( Z Aw* Am(w)> )
a UJEQQ
Definition 4.8 (dotted and undotted alien derivations)

e The dotted alien derivations Aw* are the transformations with matrix the
coefficient of ™) in the expansion of the logarithm In (I nt T\ Co Ty 1)

(matrix in the chosen basis of formal solutions ﬁ(:p) at QW)

(45) (L, + Ty Co Ty ) = Y Aue A2

wey

e The alien derivation A+ is defined by A, = etw/ Aw

When w does not belong to €2y for any 6 the alien derivations Aw* and
A+ are equal to 0.
Like St,. the dotted alien derivations act trivially on ” and e?1/7) 5o that

Aur (ﬁ(x)) = F(x)zlev/* Ay z
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and

Ay (F(z) = F(z) 2" A 7"
The alien derivations are derivations by construction and they commute with
the usual derivation d/dx.

We end this section with a remark on the various choices made.

We saw that the meromorphic classifying set is given by the Stokes automor-
phisms St, 7 defined, for all anti-Stokes direction, as gauge transformations
of the normal form. To look at the Stokes automorphisms Sty« defined as
linear maps on the space of formal solutions of System () and get their
extended forms we needed to choose a determination of the argument and
an actual form of the formal exponentials. With different choices the Stokes
matrix is conjugate under the iterated action of the formal monodromy with
matrix M = 227 with respect to Yy = 2?2 and under the action of
the exponential torus 7. The same conjugacy actions must be taken into
account when performing the analytic classification with alien derivations.

4.4.5 Bridge equation

The “definition” formula above rewritten in the form
(46) Ay (ﬁ’(:z:)xL) — F(z) 2" A

can be seen as Ecalle’s Bridge Equation. The name “bridge” comes from
the fact that the equation links alien derivatives (left hand side of the bridge
equation) to ordinary derivatives (right hand side of the bridge equation).
Indeed, the right hand side can be seen as an ordinary derivative as follows.
We consider only the first n; columns, the calculation for the &k block of
columns being the same after multiplication by e®/*. Introduce the general
solution (also said formal integral) of System (1) which has the form

Flz) x™ My + Z P (1) Mye e
we{az,...,ay}

where the ¢’s are formal-log series and the M’s are arbitrary constant ma-
trices. The alien derivative of fN(:L‘) x™ at w is the derivative of this general
solution with respect to e “/* considered as an independent variabld'd, with
a convenient choice of the matrices M (Ecalle’s analytic invariants Aw*).

10 TIn the case of scalar solutions of an equation instead of a system, J. Ecalle takes
derivatives with respect to the constants. Since, here, the constant coefficients of the
various exponentials are matrices it is more convenient to derivate with respect to the
exponentials themselves.
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In Ecalle’s approach, alien derivatives are defined as an average of ana-
lytic continuations in the Borel plane followed by a Laplace transform. The
Bridge Equation results from the fact that dotted alien derivatives commute
with the derivation d/dx. In this approach, it is nothing more than the
definition formula.

4.5 The example of the generalized hypergeometric
equation Dj3

We consider the generalized hypergeometric equation of order 13
(47) Diza(y) = (55%_#}’> _ffﬂ (55%_(’/3’_1»}’:0

where p and the v;’s are complex parameter. Its Newton polygon at 0
has a slope 0 of length 1 and a slope 1/12 of length 12. Putting x = ¢'? the
equation becomes

13

d d
(48)  Duzaly) = (;—Qtd—i - My> 1] (letﬁ — (v, — 1)) y = 0.
i=1

We keep using the equation itself taking benefit of having a quite simple
equation but we could as well commute to the companion system.
The hypergeometric equation (8] is of single level 1. Its determining
polynomials ¢q, ¢o, . . ., q13 are calculated in [9] and are
=0 ¢ =-12/t g3 = —12¢/t g = —12¢%/t
g5 = —12¢%/t  q¢ = 12"t qr = —120°/t
qs = —12C6/t qo = —12C7/t dio = —12C8/t
g =12t g =—-12¢"t g3 = —12¢" /t

where ¢ stands for the twelfth primitive root of unit ¢ = e*™/12. A formal
fundamental solution F'(t) t*e?01/) reads
(49) [ ﬁl(t) 120 par (1/1) ﬁz(t) F2x pa(1/t) L ﬁm(t) 4122 eqlg(l/t)]
1 /13 >
where \ = E(? —i—,u—j;uj).

"The irregular singular point, usually put at infinity (cf. [9]), is here located at 0.
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+q5 From the fact that the minimal polynomial
Yo ™| el of ¢ is the cyclotomic polynomial X*—X?+1
q7/. ’\q:s we deduce that a basis for the lattice built
QB=\ ¢ ]qQ » on the ¢;’s is given by
QQ‘\ /'QIS
q10~— nq{.QIQ pL=q =—12/t po = q3 = —12(/t

ps=qu=—12C3/t  py=gq5 =—12C*/t

Note that the lattice built on the coefficients 12,12¢, 12¢2,12¢? is dense in
C. However, only finitely many values are Stokes values for D3 ;.
In the p-basis the determining polynomials read

=0 ¢ =nm q3 = P2 qs = P3 g5 = P4
g6 = P3— D1 g7 = P4 — P2
s = —P1 q9 = —DP2 qi0 = —P3 qi1 = —P4

qi2 = —P3 + D1 Q13 = —P4 + P2

so that, denoting A = (A1, A2, A3, \4), the matrix of the exponential torus is
given by
) A3 Ay 11 1T 1 A A
Ty=d (17)\7)\7)\7)\7_7_7_7_7_7_7_7_>'

G A PVED VP VD VD D VAP VW
Let us consider the anti-Stokes direction # = 0 with principal determination
0* = 0 and denote Cj the corresponding Stokes matrix.
Let £, denote the elementary 13 x 13-matrix the entries of which are all 0
but the one at row j and column ¢ which is equal to 1.
The Stokes values w supported by the half line dy, issued from 0 with argu-
ment 0 (i.e., w € §), are

w = 12 associated with g1 —gs = ¢2 —q1 = ¢4 —¢6 = q12 — G0 =
w = 12+4/3 associated with ¢5 — ¢z = q13 — qo = V31
w = 24 associated with ¢o — gs = 2 p;
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and consequently, the Stokes matrix satisfies

DOT = (9B + DBy + WO By + 210 By 1) Ay
)\2

+ (0(3’7)E3,7 + C(lg’g)E137g) )\—2

4

+ (0(2’8) E278> )\%

since one has also the relations ¢35 — g7 = ¢13 — g9 = 2ps — p4. In other words,
we obtain:

ANPS = 6(1’8)E1,8 + 0(2’1)E2,1 + 0(4’6)E4,6 + 0(12’10)E12,10,
AlQ\/ﬁ = 0(3’7)E3,7 + 0(13’9)E13,97
A24 = 0(2’8)E2,8-

Note that ThCyT ' does not depend on the parameter A3 which, in turn,
would appear in Th\C_;T} . The Stokes multipliers ¢V are made explicit in
term of Barnes integrals in [9].

We know from the previous section that the alien derivations in the various
Stokes values belonging to €2, are given in terms of the Stokes multipliers
above by taking the logarithm of I 3 + T\CoT . From the relations

[ ] +
(Agp)? = @D 18 By ¢ and

e+ o+ . e+ o+

+ ° + ° +
A12A12\/§=A12\/§A12=A12AQ4= e = (A24)2 = (0 we obtain

In (113 + TACOTgl)

o D 1/ o+ 2
= (A12 )\1+A12\/§ )\_z+A24)\%>—§(A12 )\1_|_> 4+ ..
2

o + o + A .+ 1 o+
= Ay A1+ A12\/5 2 + (A24 _§(A12)2))‘%

A
Hence,
Am = A; = OE g+ cBVEy; + HOE, ¢ + 1210F,
(50) Auﬁ = A;ﬁ = BNEy 7 + 130 Ey5
Ay - A; _%( . 1+2)2 _ (0(2,8) _ 2D C(1,8)) o
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We can develop these formulee by writing Alg (ﬁ’) — Pl 12/t Alg =t
or Alg(ﬁ) — FtE Alg t~% and so on. .., i.e.,

-

App(FY) = F2¢1200m0 (2.1 Arp(F%) = F* 49
(51) A
A12\/§(F7) — [3 6(3,7) A12\/§(F9) _ 13 6(13’9)
Doy (F%) = 2 (29 - 10@1),3(1,8))
2

\

all other alien derivatives on the real positive line being 0.
Equations (BI]) can be seen as Ecalle bridge equations.

Remark 4.9 We end this example with a comment on, for instance, the
last formula in (B0) compared to those of [26, Lemma 5] deduced directly
from the definition of alien derivations by analytic continuation in the Borel
plane. If we consider that there is on dy = R™ the three singularities w; =
12, wy = 124/3 and w3 = 24 then our formula does not fit the expression given
in Lemma 5 of [26] for A,,. To fit it in, we should actually re—introd1120e the
AT\

A3

missing singular point w; = 24 — 124/3 attached to the monomial

.o+
although with a null coefficient A, = 0— which combined with the monomial
2

A
)\—2 attached to 124/3 gives the monomial A? attached to 24. Set wy = 12, ws =
4

124/3, ws = 24 and the calculation, in both cases, gives the same result
1 2
Ay, = A, - §(A:2 + AL AL+ AL AL
1A+2A+ AT AT AT L AT AT 2 1A+4
+§( w1 w2+ w1 Swa w1+ wa wl)_z w1
if one takes into account the fact that Af = 0.

4.6 An example with resonance

We consider the system

() T

OO = O
O~ 8 O
_8 O O
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and its formal fundamental solution Y (z) = F(z) 2% e?(/*) where

e Q(1/z) = diag(0, —1/x, —1/x, —1/x), (Hence, the system has the unique
level 1 and the Stokes values +1),

0

o O O

1
fa
7

0

O O =

o O = O

0

(1) (L is not diagonal; hence the resonance),

0
00
0 0]. : P 2
| | 18 @ power series satisfying F'(z) = I, + O(x*).
01

The system admits the two anti-Stokes directions # = 0 and § = 7. Obvi-
ously, the Stokes matrix in direction 7 is trivial: Iy + C; = I .

We consider the anti-Stokes direction § = 0 supporting the unique Stokes
value w = 1. Our aim is the calculation of the alien derivation A; in terms
of the Stokes multipliers in direction § = 0. Actually, although System (&)
is quite a little bit involved since it exhibits resonance, it is simple enough to
allow an exact calculation of the Stokes multipliers as below. We will then
be able to give an exact calculation for Aj.

One can check that the series fj’s are the unique solutions of the system

(52)

satisfying the condition f](:v) = O(z?).

fjareg

iven by

-

~

f2(1+8)

~

f3(1+§)

~

fa(1+8)

\

24/ _ fo = 22+afs
dz
d . .
{ 245 _ fs = 2*+zxfy
dz
dfs  »
2@J4 _ .2
L d Ja T

It results that their Borel transforms

1 1
5(6—7T2+4m’)+(2+7ri)ln£+§ln2§) +3

(2+m’)+ln§> + 2

—_

M =N =] e
+
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and consequently, the connection matrix K (’;) is given by

0 0 0 0
ky=1(6—72+4m) 0 0 0
Kt =
o)
ky = 2 + i 0 0 0
ky =1 0 0 0

From Corollary we deduce that the Stokes multipliers 082’1), 083’1) and

084’1) are
.

O = ko(0) by + £1(0) ks + $r2(0) Ky
{ 08371) = /{0(0) k’g + K1 (0) k34
| &Y = w00k
p —imt
Recall that k,()\) = QWi% (Ffl t)) and then,
t=X
HQ(O) = 27

\ k1(0) = 272 — 2miy

ko(0) = —drPy — T 4 9y

\

where v = 0.5772 ... is the Euler constant. We obtain

062’1) = (6 —37m® —dny +1y%) i
CY = om(2— )i
084’1) = 2m

The lattice built on the unique polynomial ¢(1/z) = —1/x is generated
by ¢ itself and the matrix of the exponential torus is Ty = diag(1, A\, A, \).
The action of the exponential torus on Iy + Cj results in Ty (I + CO)T;1 =
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L] +
I+ Cyand ln(I4+T,\COT/\_1) = ACy. Thus, A; = Cj and the alien derivation
Ar= Cy. We can write A (F) = FalCyzLeV* or Ay(F) = Fal Cya L,

i.€.,
¥ 1
A(f) = V4PV ma + 50347” In?
Av(fs) = C’és’l) + 0(54’1) Inx
Av(fy) = 5V
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