
HAL Id: hal-00491614
https://hal.science/hal-00491614

Preprint submitted on 13 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resurgence, Stokes phenomenon and alien derivatives
for level-one linear differential systems.

Michèle Loday-Richaud, Pascal Remy

To cite this version:
Michèle Loday-Richaud, Pascal Remy. Resurgence, Stokes phenomenon and alien derivatives for level-
one linear differential systems.. 2010. �hal-00491614�

https://hal.science/hal-00491614
https://hal.archives-ouvertes.fr


Resurgence, Stokes phenomenon and
alien derivatives for level-one linear

differential systems.
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Abstract

A precise description of the singularities of the Borel transform of
solutions of a level-one linear differential system is deduced from a
proof of the summable-resurgence of the solutions by the perturbative
method of J. Écalle. Then we compare the meromorphic classification
(Stokes phenomenon) from the viewpoint of the Stokes cocycle and
the viewpoint of alien derivatives. We make explicit the Stokes-Ramis
matrices as functions of the connection constants in the Borel plane
and we develop two examples. No assumption of genericity is made.
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1 Introduction

All along the paper we are given an ordinary linear differential system (in

short, a differential system or a system) of dimension n with analytic coeffi-

cients at 0 in C and rank one1

(1) x2
dY

dx
� ApxqY Apxq PMnpCtxuq, Ap0q � 0

1The rank is the order of the pole x � 0 minus 1 in the system written in “solved form”
dY

dx
� 1

x2
ApxqY .
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together with a formal fundamental solution at 0

(2) rY pxq � rF pxqxLeQp1{xq
where
 rF pxq PMn

�
Cppxqq�, is an invertible formal meromorphic matrix,
 L � Jà

j�1

pλjInj
� Jnj

q where Inj
is the identity matrix of size nj

and Jnj
� �����0 1 � � � 0

...
. . .

. . .
...

...
. . . 1

0 � � � � � � 0

����� is an irreducible

Jordan block of size nj pJnj
� 0 if nj � 1q,
 Qp1{xq � Jà

j�1

qjp1{xqInj
where the q1js are polynomials.

In the very general rank one case the determining polynomials qj are of

maximal degree equal to 1 with respect to 1{x but they could be polynomials

in a fractional power of 1{x. Our assumption of “single level equal to 1”

implies that the polynomials qj be monomials of degree 1 in 1{x, not all

equal to a same polynomial q, some of them being possibly zero. We denote

(3) Qp1{xq � Jà
j�1

�aj
x
Inj
.

The system

(4) x2
dY

dx
� A0pxq Y

with formal fundamental solution rY0pxq � xL eQp1{xq has analytic coefficients

and is called a normal form of System (1). The fundamental solution rY0pxq
is called a normal solution. It provides all formal invariants of System (1),

i.e., invariants under formal gauge transformations Y ÞÑ rΦpxqY with rΦ P
GLn

�
Cppxqq� 2.

2The formal classification over an extension Cpptqq of the base field Cppxqq by a ramifi-
cation x � tp started with Poincaré and Fabry and later Turrittin [29]. See also Malgrange
[8]. Over the base field itself it is due to Balser, Jurkat and Lutz [2]. For a shorter proof
and an improvement of the Formal Classification Theorem see [15].
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Note that, in the whole paper, we make no other assumption than the

assumption of a single level equal to one, case in which the basic theory

of resurgence takes place. In particular, no assumption of genericity, such

as distinct eigenvalues or diagonal monodromy L, is made and any kind of

resonance is allowed.

The paper deals with the analytical properties of the solutions of Sys-

tem (1) underlying the meromorphic classification at 0, also referred to as

Stokes phenomenon. There exists mainly two “dual” approaches to this phe-

nomenon:

• The first one , related to the theory of summation, is fully developed

in the plane of the initial variable x, which we refer to as the Laplace

plane. Various methods [16, 20, 1, 13] produce a full set of invariants in

the form of Stokes matrices. Are considered only those Stokes matrices

providing the transition between the sums (in our case, Borel-Laplace

or 1-sums) of a same formal fundamental solution rY pxq on each side

of its anti-Stokes (singular) directions. We call them Stokes-Ramis

matrices.

• The second one is strongly related to the theory of resurgence [10] and

produces invariants in the form of alien derivations. The alien deriva-

tives of a series rfpxq have been defined by J. Écalle through an average

of various analytic continuations of the Borel transform pfpξq of rfpxq;
they have been mostly developed in the plane of the variable ξ which

we refer to as the Borel plane.

Much have been already said on these questions but either in situations

restricted by generic conditions or in very general ones. In particular, the

theory of resurgence was developed by J. Écalle in the very general framework

of non-linear differential equations, difference equations and so on. . . where

it proves to be very efficient. In this context it seemed to us to be worth

to make explicit what is specific to the linear case, what has to be really

taken under consideration or can be made more precise, and how the various

viewpoints are connected.

The first Section is devoted to proving that the formal gauge transfor-

mation rF pxq is summable-resurgent. We first sketch a proof on linear differ-

ential equations based on the Newton polygon and Ramis Index Theorems.

We develop then a proof by perturbation and majorant solutions following

J. Écalle’s method [11].
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This latter proof allows us to display a precise description of the singu-

larities in the Borel plane (Section 2).

In Section 3 we compare the classification by the Stokes cocycle ver-

sus the classification by the alien derivations. Roughly speaking, the first

approach selects an element in a unipotent Lie group while the second one

provides its “tangent” variant in the associated Lie algebra. Moreover, for

theoretical reasons as well as for computational ones, we make explicit the

Stokes matrices in terms of the connection constants in the Borel plane.

2 Summable-resurgence

2.1 Prepared system

Before to start the calculations we prepare the system as follows.

A gauge transformation of the form Y ÞÑ T pxq x�λ1 ea1{xY where the

transformation T pxq has explicit computable polynomial entries in x and

1{x allows to assume that the following conditions are satisfied:

(5) rF pxq � In�
m̧¥1

Fmx
m P GLnpCrrxssq with initial condition rF p0q � In,

(6) 0 ¤ Repλjq   1 for j � 1, . . . , J,

(7) a1 � λ1 � 0.

Conditions (5) and (6) guaranty the unicity of rF pxq. Condition (7) is

for notational convenience. Still, the aj ’s are not supposed distinct.

Any of the J column-blocks of rF pxq associated with the irreducible Jor-

dan blocks of L (matrix of exponents of formal monodromy) can be positioned

at the first place by means of a permutation P on the columns of rY pxq. IfrY pxq is given in the form (2) so is the new formal fundamental solutionrY pxqP � rF pxqPxP�1LP eP
�1Qp1{xqP . Thus, we can restrict our study to the

first column-block of rF pxq that we denote by rfpxq.
Gauge transformations and permutations of this kind will be referred to

as elementary transformations.
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2.2 Some definitions

For the convenience of the reader we recall some definitions about the notions

of resurgence and summation adapted to linear level-one differential systems.

It is worth to note that, due to the linearity, it is useless, at least for the

moment, to consider convolution algebras and lattices of singularities since

no convolution of singularities may occur. For a more general framework we

refer to [11, 18, 26].

All along the article, given a matrixM split into blocks fitting the struc-

ture of L, we denote

• M j;
 the jth row-block of M ,

• M 
;k the kth column-block of M ,

• M j;k the kth column-block in the jth row-block of M ,

• M j;pkq the kth column in the jth row-block of M ,

• M pj,ℓq;
 the ℓth row in the jth row-block of M .

Let Ω � taj , j � 1, . . . , Ju denote the set of Stokes values associated

with System (1). Theorem 2.7 below asserts, in particular, that all possible

singularities of the Borel transform pfpξq of rfpxq belong to Ω. The directions

determined by the elements of Ω� � Ωzt0u from 0 are called anti-Stokes

directions associated with rfpxq. Given a direction θ P R{2πZ let dθ denote

the half line issuing from 0 with argument θ. We denote

• Ωθ � Ω� X dθ the set of non-zero Stokes values of System (1) with

argument θ.

The anti-Stokes directions associated with the kth column-block of rF pxq are
given by the non-zero elements of Ω � ak (to normalize the kth column-

block one has to multiply by e�ak{x) and the anti-Stokes directions of System

(1) (i.e., associated with the full matrix rF pxq) are given by the non-zero

elements of

• Ω � t aj � ak ; 1 ¤ j, k ¤ Ju.
The elements of Ω are the Stokes values of the homological system satisfied

by rF pxq (cf. System (12) below).

We denote



Loday-Richaud and Remy, Resurgence for level-one linear diff. systems 7

• Ωθ � Ω� X dθ the set of non-zero Stokes values of System (12) with

argument θ.

The adequate Riemann surface on which the Borel transform pfpξq ofrfpxq lives is the surface RΩ defined as below.

Definition 2.1 Riemann surface RΩ.

• The points of RΩ are the homotopy classes with fixed extremities of

paths γ issuing from 0 and lying in CzΩ (but the starting point 0); in

particular, no path except those that are homotopic to the constant

path 0 ends at 0.

• The complex structure of RΩ is the pull-back of the usual complex

structure of CzΩ� by the natural projection

π :

"
RΩ ÝÑ CzΩ�rγs ÞÑ end-point γp1q.

The difference between RΩ and the universal cover of CzΩ lies in the

fact that RΩ has no branch point at 0 in the first sheet.

Definition 2.2 Resurgence.

• Resurgence in the Borel plane (in Ecalle’s language, convolutive model).

A resurgent function with singular support Ω is any function defined

and analytic on all of RΩ.

• Resurgence in the Laplace plane (in Ecalle’s language, formal model).

A series rfpxq in powers of x is said to be a resurgent series with singu-

lar support Ω when its Borel transform pfpξq is a convergent series near

ξ � 0 which can be analytically continued to RΩ (in short, its Borel

transform is resurgent with singular support Ω).

Let yResΩ and �ResΩ denote the sets of resurgent functions and of resur-

gent series with singular support Ω respectively.

A resurgent function of yResΩ is analytic at 0 on the first sheet of RΩ. To

emphasize the special role played by 0 we sometimes denote the singular

support by Ω, 0 As a Fourier operator the Borel transform exchanges multi-

plication by an exponential and translation. We denote by RΩ,ω and yResΩ,ω
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the spaces RΩ and yResΩ translated by ω so that, in particular, RΩ � RΩ,0

and yResΩ � yResΩ,0. If a series rfpxq belongs to �ResΩ the Borel transform ofrfpxqe�ω{x belongs to yResΩ,ω.

While in non linear situations it is soon necessary to endow yResΩ with

a structure of a convolution algebra —usually a quite difficult task— in the

linear case under consideration we are going to meet, at least in this section,

only the convolution of elements of yResΩ with entire functions over C growing

at most exponentially at infinity. Let O¤1pCq denote the convolution algebra

of entire functions on C with exponential growth at infinity. The set yResΩ
has a natural structure of a O¤1pCq�module (the star refers to the fact that

multiplication by a scalar is the convolution by an element of O¤1pCq). There
corresponds, on �ResΩ, a natural structure of O-module.

Definition 2.3 ν-sectorial region or ν-sector

Given ν ¡ 0, smaller than half the minimal distance between the elements of

Ω, we call ν-sectorial region or ν-sector ∆ν a domain of the Riemann surface

RΩ composed of the three following parts:

• an open sector Σν with bounded opening at infinity;

• a neighborhood of 0, say, an open disc Dν centered at 0;

• a tubular neighborhood Nν of a piecewise-C1 path γ connecting Dν to

Σν after a finite number of turns around all or part of points of Ω.

Moreover, the distance of Dν to Ωzt0u and the distance of Nν Y Σν to

Ω has to be greater than ν.
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Lemma 2.4 Let ∆ν be a sectorial region.

There exits a constant K ¡ 0 so that, for all ξ P ∆ν , there is a piecewise-

C1-path γξ contained in ∆ν and parameterized by arc length from 0 to ξ such

that the arc length sη of all η P γξ satisfies

(8) |η| ¤ sη ¤ K|η|.|η| denotes the modulus of (the projection of) η in C.

Proof. The first inequality being trivial we just have to prove that sη ¤
K|η|.

Assume first that the path γ is C1.

Let γ1 denote the extension of γ from 0 to its beginning point, say, by a

straight line. Let ξe denote the end-point of γ in Σν and ℓ|ξe| denote the

length of γ1 from 0 to ξe. The transversals of γ in Nν have all the same finite

length.

• The property is clearly true in Dν with K � 1.

• Given ξ in Nν , consider a transversal issuing from ξ and denote ξ0 its

intersection with γ. Let γξ be the path made of γ1 from 0 to ξ0 followed

by the arc of transversal
"
ξ0ξ.

For all η P γξ, the arc length sη is less than a constant c independent of

ξ (γ and the transversals have finite length) and the euclidian distance|η| is greater than ν. Hence, sη ¤ c
ν
|η|.

• Given ξ P Σν , consider the point ξ0 at distance |ξ| from 0 on the ray

issued from 0 through ξe. Let γξ be the path γ
1 followed by the segmentpξeξ0q and the arc

"
ξ0ξ of the circle centered at 0 with radius |ξ| included

in Σν .

For η P pξeξ0q the inequality holds with K � ℓ. For η belonging to

the arc
"
ξ0ξ we deduce from the inequalities sξ0 ¤ ℓ|ξ0| � ℓ|η| and

sη � sξ0 ¤ α|η|, where α denotes the opening angle of Σν , that the

inequality holds with K � ℓ� α.

The case when the path is piecewise-C1 is similar and left to the reader. l
Definition 2.5 Summable-resurgence.
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• A resurgent function pfpξq P yResΩ is said to be summable-resurgent

when it grows at most exponentially at infinity on any ν-sectorial region

∆ν of RΩ.

• A resurgent series rfpxq P �ResΩ is said to be summable-resurgent if its

Borel transform is a summable-resurgent function.

We denote respectively yRessumΩ and �RessumΩ the set of summable-resurgent

functions and the set of summable-resurgent series with singular support Ω, 0.

We denote yRessumΩ,ω the set of functions of yRessumΩ translated by ω.

In general, the exponential type depends on the ν-sectorial region ∆ν

and is unbounded when the width of ∆ν goes to infinity (cf. Remark 2.11).

The set yRessumΩ,ω is a O¤1pCq�submodule of yResΩ,ω.

Remark 2.6 A summable-resurgent series is both resurgent and summable

but the converse is false. Indeed, a series is summable when it satisfies the

conditions of Definition 2.5 in restriction to the first sheet only.

2.3 Summable-resurgence theorem

We are now able to state the result in view in this section:

Theorem 2.7 (J. Écalle [11])

Assume that System (1) has a single level equal to one (cf. Assumption (3))

and denote rfpxq the first n1 columns of rF pxq.
Then, rf is summable-resurgent with singular support Ω, 0 (recall a1 � 0):rfpxq P �RessumΩ

.

By means of elementary transformations (cf. Section 2.1) the result can

be extended to the full matrix rF replacing however Ω by Ω. Therefore, we

can state:

Corollary 2.8 Under the same conditions as in Theorem 2.7 the full matrixrF is summable-resurgent with singular support Ω, 0:rF pxq P �Ressum
Ω

.
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The hypothesis of “single level equal to 1” is central. In a paper to come

it will be shown how to generalize this result to the case of a single level not

equal to one. In the case of several levels one has to consider several Borel

planes simultaneously.

Theorem 2.7 can be proved in different ways. We first sketch a proof

based on the Newton polygon and Ramis Index Theorem, the system being

given in the form of an equation of order n. Next, we develop a proof following

Écalle’s method by regular perturbation of the system and majorant series.

This second approach will allow us to precisely describe the singularities of

the Borel transform ϕpξq � pfpξq in the Borel plane which are all located in

the set Ω.

2.4 Sketch proof of summable-resurgence using linear

differential equations

The formal Borel transformation rB is an isomorphism from the differential

algebra
�
Crrxss,�, 
, x2 d

dx

	
to the differential algebra

�
δ ` Crrξss,�, Æ, ξ
	

that changes ordinary product into convolution product and changes deriva-

tion x2
d

dx
into multiplication by ξ. It also changes multiplication by

1

x
into

derivation
d

dξ
allowing thus to extend the isomorphism from the meromorphic

series Crrxssr1{xs to Crδpkq, k P Ns ` Crrξss. Recall that the Borel transform

of a monomial reads Bpxmq � ξm�1

Γpmq for all m ¡ 0.

Consider now a differential equation Dypxq � 0 with single level one.

By the Birkhoff Algebraization Theorem [28, Th. 3.3.1] we may assume that

the operator D has rational coefficients. By means of an elementary, possibly

trivial, gauge transformation (cf. Section 2.1) we may also assume that the

equation admits a formal series solution rfpxq.
Multiplying D by a convenient power of 1{x if needed, the Borel trans-

formed equation pDpypξq � 0 is again an ordinary linear differential equation

with polynomial coefficients. Ramis Index Theorem [22] shows that the se-

ries rfpxq is of Gevrey type of order 1. Hence, its Borel transform rBp rfqpξq
converges in a neighborhood of the origin ξ � 0; we denote by ϕpξq its sum.

A direct calculation using the characteristic equation associated with slope

1 of the Newton polygon of D shows that the singularities of pDpypξq � 0
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belong to the finite set Ω of the Stokes values of Dypxq � 0. From the

Cauchy-Lipschitz theorem one can then assert that ϕpξq is resurgent with

singular support Ω, 0, i.e., it can be analytically continued along any path

issuing from 0 and staying in CzΩ. To see that ϕpξq has exponential growth
at infinity, it suffices to notice that the equation pDpypξq � 0 has rank one at

infinity [17, Theorem 1.4].

2.5 Proof of summable-resurgence on systems follow-
ing J. Écalle’s approach

Since, by the Cyclic Vector Theorem, equations and systems are meromor-

phically equivalent, to get the summable-resurgence of solutions of systems

there is no need for a new proof made directly on systems. However, the

proof below quoted by J. Écalle [11] has its own interest. In particular, it

allows us to give a precise description of the singularities of ϕpξq in the Borel

plane. A simpler case where the formal monodromy is assumed to be trivial

(L � In) can be found in [14]; the case of a higher level can be found in [25].

2.5.1 Setting the problem.

The conclusion of Theorem 2.7 being preserved by elementary and meromor-

phic gauge transformations, we can assume that the system is so prepared

that conditions (5), (6) and (7) are all satisfied.

The normal form (4) of System (1) reads

(9) x2
dY

dx
� A0pxqY where A0pxq � Jà

j�1

ajInj
� xpλjInj

� Jnj
q

while the matrix Apxq of System (1) reads

(10) Apxq � A0pxq �Bpxq where Bp0q � 0

More precisely, split the matrix Bpxq � �
Bj;kpxq� into blocks fitting to the

Jordan structure of L. Then,

(11) Bj;kpxq � # Opxq if aj � ak

Opx2q if aj � ak (and especially if j � kq.
As previously said, we restrict the study to the first column-block rf ofrF uniquely determined by the first n1 columns of the homological system

(12) x2
d rF
dx

� A0pxq rF � rFA0pxq � Bpxq rF
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jointly with the initial condition rfp0q � In,n1
(Recall that In,n1

denotes the

identity matrix In truncated at its first n1 columns). Hence, the system

(13) x2
d rf
dx

� A0pxq rf � x rfJn1
� Bpxq rf.

(Recall a1 � λ1 � 0).

It is not clear from the Borel transformed system

(14) ξ pf � pA0 � pf � 1 � pfJn1
� pB � pf

that the Borel transform pfpξq of rfpxq satisfies the conditions of Definition

2.5 for rfpxq to be summable-resurgent.

To prove the summable-resurgence of rfpxq, J. Écalle suggests in [11] to

regularly perturb System (13) by substituting αB for B, next to solve this

perturbed system in terms of a power series in the parameter α and then,

to proceed by majorant series satisfying a convenient system. There exists,

of course, many possible majorant systems. Here below, we make explicit a

possible one. We consider the very general case when L is in non diagonal

form, covering thus, all possible cases of resonances. The calculation is made

more complicated than in the diagonal case since we have to work with packs

of equations instead of individual ones but the philosophy keeps the same.

We split rfpxq into row-blocks rf j;
pxq accordingly to the Jordan structure

of L and we refer to Section 2.2 for the notations.

2.5.2 The perturbed system.

An identification of equal powers of α shows that the perturbed system

(15) x2
d rf
dx

� A0pxq rf � x rfJn1
� αBpxq rf

equivalent, for all j P t1, . . . , Ju, to
(16) x2

d rf j;

dx

� paj � λjxq rf j;
 � xJnj
rf j;
 � x rf j;
Jn1

� αBj;
 rf
admits a unique formal solution of the form rfpx, αq �

m̧¥0

rfmpxqαm satisfyingrf0pxq � In,n1
and rfmpxq P xCrrxss for all m ¥ 1. Since there is no possible
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ambiguity we keep denoting rf the perturbed solution. The proof proceeds by

induction on m. For all j P t1, . . . , Ju, System (16) reads, for ℓ � 1, . . . , nj

and k � 1, . . . , n1,

(17) x2
d rf pj,ℓq;pkqm

dx
�paj�λjxq rf pj,ℓq;pkqm � x rf pj,ℓ�1q;pkq

m �x rf pj,ℓq;pk�1q
m �Bpj,ℓq;
 rf 
;pkq

m�1

and can be solved term after term following the alphabetic order on pk, nj�ℓq
(one begins with the first column k � 1 and the last row ℓ � nj in each block

j).

It turns out actually that for all j and m ¥ 1,rf j;

2m�1 � Opxmq and rf j;


2m � # Opxmq if aj � 0

Opxm�1q if aj � 0

allowing thus to rewrite the series rfpx, αq �
m̧¥0

rfmpxqαm in α as a series in

x with coefficients that are polynomial in α. Consequently, the unperturbed

solution rfpxq corresponds to rfpx, 1q (unicity of rfpxq and rfpx, 1q) and, for

all α and in particular for α � 1, the series rfpx, αq admits a formal Borel

transform pfpξ, αq with respect to x of the form

(18) pfpξ, αq � δIn,n1
�

m̧¥1

ϕmpξqαm

where ϕmpξq denotes the Borel transform of rfmpxq for all m ¥ 1.

For fixed j P t1, . . . , Ju andm ¥ 1 the system satisfied by the ϕ
pj,ℓq;pkq
m pξq’s

reads, for ℓ � 1, . . . , nj and k � 1, . . . , n1,

(19)

$'''&'''% pξ � ajqdϕpj,ℓq;pkqm

dξ
� pλj � 1qϕpj,ℓq;pkqm �

ϕpj,ℓ�1q;q
m � ϕpj,ℓq;pk�1q

m � d pBpj,ℓq;

dξ

� ϕ
;pkq
m�1 � pBpj,ℓq;
p0qϕ
;pkq

m�1

since the Borel transform of
1

x
Bpj,ℓq;
pxq rf 
;pkq

m�1pxq is equal to
d

dξ

� pBpj,ℓq;
 � ϕ
;pkq
m�1

	pξq � d pBpj,ℓq;

dξ

� ϕ
;pkq
m�1 � pBpj,ℓq;
p0qϕ
;pkq

m�1

( pBpj,ℓq;
p0q is also the coefficient of x in Bpj,ℓq;
pxq and is not supposed equal

to zero).
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It can again be solved term after term starting with the first column k � 1

and the last row ℓ � nj .

Recall that for b an entire function, the convolution b � ξm, m P N is well

defined by the integral
³ξ
0
bpξ� tqtmdt as well as b� pf by

³
γ
bpξ� tq pfptqdt along

any path γ avoiding the singularities of pf (here, the Borel transforms pBpj,kq;

of Bpj,kq;
 are entire functions since Bpxq is analytic at 0).

Note also that the only singularities of System (19) are the Stokes values

aj P Ω and we can conclude that the ϕm’s are resurgent functions defined on

RΩ.

2.5.3 What has to be proved.

Fix now ν ¡ 0 and a ν-sectorial region ∆ν as described in Definition 2.3.

We are left to prove that

(a) the Borel series pfpξq � pfpξ, 1q is convergent and can be analytically

continued to RΩ; we keep denoting pfpξq the analytic continuation;

(b) pfpξq grows at most exponentially on ∆ν at infinity.

These properties could be directly shown to be true for the ϕm’s. To

prove that they are true for pf we use the technique of majorant series.

2.5.4 A candidate majorant system.

Instead of System (16) consider, for j � 1, . . . , J , the perturbed linear system

(20)

$'&'% Cjprgj;
 �Ij;
n,n1
q � Jnj

rgj;
 � rgj;
Jn1
� 2Ij;
n,n1

Jn1
� α

|B|j;

x

rg if aj � 0pν � |λj � 1|xqrgj;
 � Jnj
xrgj;
 � xrgj;
Jn1

� α|B|j;
rg if aj � 0

where the unknown rg is, like rf , a n�n1-matrix split into row-blocks rgj;
 fitting
the Jordan structure of L and where |B| denotes the series B in which the

coefficients of the powers of x are replaced by their module. The constants

Cj ¡ 0 are to be adequately chosen which we will do in Lemma 2.9 below.

For now, they are just arbitrary non-zero constants.

System (20), like System (16), admits a unique formal solution rgpx, αq �
m̧¥0

rgmpxqαm such that rg0pxq � In,n1
and rgmpxq P xCrrxss for all m ¥ 1. Like
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2m�1 � Opxmq and rgj;
2m � # Opxmq if aj � 0

Opxm�1q if aj � 0

and consequently, rgpx, αq can be seen as a series in powers of x whose co-

efficients are polynomials in α. But unlike rfmpxq in general, rgmpxq has non
negative coefficients for all m ¥ 1.

Prove now that rgpx, αq is a convergent series in px, αq in a domain con-

taining px, αq � p0, 1q.
From System (20) written for each individual column k we obtain, for

all j, the linear system

(21)

$'&'% pCj � Jnj
qrgj;pkq � α

|B|j;

x

rg
;pkq � rgj;pk�1q � const if aj � 0�
ν � |λj � 1|x� Jnj

x
	rgj;pkq � α|B|j;
rg
;pkq � xrgj;pk�1q if aj � 0.

(We set rgj;p0q � 0).

For x � 0 the system reduces to

(22)

# pCj � Jnj
qrgj;pkq � α|B1|j;
p0qrg
;pkq � rgj;pk�1q � const if aj � 0

νrgj;pkq � 0 if aj � 0.

However, |B1|j;
p0qrg
;pkq � ¸
r | ar�0

|B1|j;rp0qrgr;pkq since |B1|j;rp0q � 0 for all r

such that ar � aj � 0 and an adequate linear combination among equations

of this system allows to cancel the terms in α. System (22) is thus equivalent

to a constant triangular system whose diagonal terms are either equal to Cj or

to ν. Having assumed Cj � 0 for all j it is then a Cramer system and System

(21) is equivalent to a system of the form pT � xMpx, αqqg
;pkq � Npg
;pk�1qq
where T is a constant invertible matrix and M is analytic in px, αq in a strip

around x � 0 while the right hand-side is a column vector depending on

gj;pk�1q and analytic in the same strip. The determinant of System (21) is

analytic in px, αq and non-zero for x � 0 whatever α is equal to. There

exists then a bi-disc centered at px, αq � p0, 0q and containing px, αq �p0, 1q on which the determinant does not vanish. On such a bi-disc, System

(21) admits an analytic solution gpx, αq. By unicity, its Taylor expansion

gpx, αq � ° gmpxqαm coincides with rgpx, αq � °rgmpxqαm.
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In particular, for α � 1, the formal solution rgpxq � rgpx, 1q � °rgmpxq
converges. Henceforth, its Borel transform pgpξq � °φmpξq is an entire func-

tion with exponential growth at infinity (φm denotes the Borel transform of

the series rgmpxq and is also an entire function with exponential growth at

infinity).

2.5.5 Majorant series and exponential growth.

Lemma 2.9 below shows that pgpK|ξ|q � °φmpK|ξ|q is a majorant series forpfpξq � °ϕmpξq on ∆ν .

Lemma 2.9

Let K ¡ 0 be associated with the chosen ν-sector ∆ν as in Lemma 2.4.

For all m ¥ 0, ξ P ∆ν , j � 1, . . . , J and q � 1, . . . , n1, the following

inequalities hold:

(23) |ϕj;pkq
m pξq| ¤ φj;pkq

m psξq ¤ φj;pkq
m pK|ξ|q.

(ϕm and φm are the Borel transforms of the “initial” solution rfm and of the

“majorant” solution rgm respectively).

Proof. Recall that the functions ϕm are defined over RΩ and the functions

φm on all of C. They are then all well defined over ∆ν .
 The series φmpξq have non negative coefficients and by Lemma 2.4 we

know that we can connect ξ to 0 by a path so that sξ ¤ K|ξ|. Hence, the

second inequality.
 Prove the first inequality. For all m ¥ 1, the entries ϕ
pj,ℓq;pkq
m (row ℓ of

row-block j and column k) of ϕm and φ
pj,ℓq;pkq
m of φm satisfy respectively

(24) pξ � ajq d
dξ
ϕpj,ℓq;pkqm � pλj � 1qϕpj,ℓq;pkqm � ωpj,ℓq;pkqm

where

ωpj,ℓq;pkqm � ϕpj,ℓ�1q;pkq
m � ϕpj,ℓq;pk�1q

m � d

dξ
pBpj,ℓq;
 � ϕ
;pkq

m�1 � pBpj,ℓq;
p0qϕ
;pkq
m�1

and

(25)

$''&''% ν
dφ

pj,ℓq;pkq
m

dξ
� |λj � 1|φpj,ℓq;pkqm � Ω

pj,ℓq;pkq
m if aj � 0

Cjφ
pj,ℓq;pkq
m � Ω

pj,ℓq;pkq
m if aj � 0



Loday-Richaud and Remy, Resurgence for level-one linear diff. systems 18

where

Ωpj,ℓq;pkq
m � φpj,ℓ�1q;pkq

m � φpj,ℓq;pk�1q
m � d

dξ
| pB|pj,ℓq;
 � φ
;pkq

m�1 � | pB|pj,ℓq;
p0qφ
;pkq
m�1.

Fix ξ P ∆ν and a path γξ in ∆ν as in Lemma 2.4 so that|η| ¤ sη ¤ K|η| for all η P γξ.
We proceed by recurrence following the alphabetic order on pm, k, nj � ℓq
and we assume that for all pm1, k1, nj � ℓ1q   pm, k, nj � ℓq, the inequality|ϕpj,ℓ1q;pk1qm1 pηq| ¤ φ

pj,ℓ1q;pk1q
m1 psηq holds for all η P γξ. (It holds for m1 � 0).

We observe that |ωpj,ℓq;pkqm pξq| ¤ Ω
pj,ℓq;pkq
m psξq. Indeed,���d pBpj,ℓq;


dξ
� ϕ
;pkq

m�1pξq��� � ��� » sξ

0

d pBpj,ℓq;

dξ

pξ � ηpsqqϕ
;pkq
m�1pηpsqqη1psqds���¤ » sξ

0

d| pB|pj,ℓq;

dξ

p|ξ � ηpsq|q|ϕ
;pkq
m�1pηpsqq|ds psince |η1psq| � 1q¤ » sξ

0

d| pB|pj,ℓq;

dξ

psξ � sqφ
;pkq
m�1psqdspsince | pB|pj,ℓq;
 has non negative coefficientsq� d| pB|pj,ℓq;


dξ
� φ
;pkq

m�1psξq
and the other three terms of ω

pj,ℓq;pkq
m are majored using the recurrence hy-

pothesis.

To conclude in the case when aj � 0 we solve Equation (24). Hence,

ϕpj,ℓq;pkqm pξq � ξλj�1

» sξ

0

ωpj,ℓq;pkqm pηpsqqηpsq�λjη1psqds
and then,|ϕpj,ℓq;pkqm pξq|¤ |ξ|Reλj�1e�Impλj�1qargpξq » sξ

0

Ωpj,ℓq;pkq
m psq|ηpsq|�ReλjeImpλjqargpηpsqqds.

Since points in ∆ν have bounded arguments there exists a constant c ¡ 0

such that e�Impλj�1qargpξq�Impλjqargpηpsqq ¤ c for all ξ and ηpsq P ∆ν . It results
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that|ϕpj,ℓq;pkqm pξq| ¤ c|ξ|Reλj�1

» sξ

0

Ωpj,ℓq;pkq
m psq|ηpsq|�Reλjds¤ c|ξ|Reλj�1Ωpj,ℓq;pkq

m psξq » sξ

0

� s
K

	�Reλj

ds

(by Lemma 2.4, the fact that Reλj ¥ 0
and that Ωm has non negative coefficientsq¤ c|ξ|Reλj�1KΩ

pj,ℓq;pkq
m psξq

1� Reλj

�sξ
K

	1�Reλj¤ cK

1� Reλj
Ωpj,ℓq;pkq

m psξq
(using Lemma 2.4 and 1� Reλj ¡ 0q� φ

pj,ℓq;pkq
m psξq if we choose Cj � 1� Reλj

cK
.

To conclude in the case when aj � 0 we apply Grönwall Lemma to

ϕ
pj,ℓq;pkq
m pγξpsqq. This achieves the proof of Lemma 2.9. l

Lemma 2.9 shows that pgpK|ξ|q � °
φmpK|ξ|q is a majorant series forpfpξq � °

ϕmpξq on ∆ν . Since pg is well defined on ∆ν with exponential

growth at infinity the same property holds for pfpξq which achieves the proof

of Theorem 2.7. l
Remark 2.10 It results from the above proof that the series

°
ϕmpξq con-

verges uniformly to pfpξq on compact sets of RΩ.

Remark 2.11 We see from Lemma 2.9 that when pg grows exponentially

with type a, i.e., satisfies an inequality |pgpξq| ¤ const.ea|ξ| for large ξ thenpfpξq grows exponentially with type Ka. When the width of the domain ∆ν

goes to infinity so does K; hence, the necessity for considering ν-sectorial

regions with bounded width. Also the estimates in the proof of Lemma 2.9

would no more be valid on sectors with unbounded width.

Remark 2.12 One should think at reading the previous two sections that

the proof with systems is much longer. This is not the case. If the same

level of detail were provided the proof on equations like sketched in Section
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2.4 would be much longer and also less elementary since it includes the In-

dex Theorem for rank one and the Main Asymptotic Existence Theorem at

infinity.

3 Singularities in the Borel plane

Theorem 2.7 tells us that rfpxq is a resurgent series of �RessumΩ . Its Borel

transform pfpξq is then, in particular, analytic on the Riemann surface RΩ,

its possible singularities being the points a1, a2, . . . , aJ of Ω including a1 � 0

out of the first sheet.

The form of System (19) shows that the singularities of pf should at least

involve poles since some λj are equal to 0, complex powers when some λj are

not 0 and logarithms. It is already known that, in the case of a system with

the unique level one, the singularities all belong to the Nilsson class (cf. [3]

for instance). In that case, the exponentials e�aj{x in the formal fundamental

solution rY pxq act as translations in the Borel plane; hence, the location of

the singularities at the various points aj . In the case of higher level or in

the case of several levels that, after rank reduction, we could assume to be

all ¤ 1 there might also occur exponentials of degree less than one. Their

action in the Borel plane would be then transcendental and would generate

irregular —no longer in the Nilsson class— singularities.

Our aim in this section is to set up a precise description of the singulari-

ties in the Borel plane related to the form of the formal fundamental solutionrY pxq � rF pxqxLeQp1{xq of System (1).

As previously, we restrict our study to the first n1 columns rf of rF . We

base the analysis on the results of Section 2.5 interpreting the Borel transformpfpξq of rfpxq as a series pfpξq � δIn,n1
�°m¥1 ϕmpξq which converges uniformly

on compact sets of RΩ.

Decomposing ϕm into blocks
�
ϕj,

m

�
1¤j¤J

fitting the Jordan structure of L

(ϕj,

m has dimension nj �n1), System (19) splits into the following J systems:

(26) pξ�ajqdϕj,

m

dξ
�pλj�1qϕj,


m�Jnj
ϕj,

m�ϕj,


m Jn1
� d pBj;


dξ
�ϕm�1� pBj;
p0qϕm�1

where
d pBj;

dξ

� ϕm�1 � J̧

k�1

d pBj;k

dξ
� ϕk;


m�1 and pBj;
p0qϕ0 � 0.

Let us first introduce some vocabulary used in resurgence theory. Work-

ing locally we place ourselves at the origin of C. As previously, we denote
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O � Ctxu the space of holomorphic germs at 0 in C and rO the space of

holomorphic germs at 0 on the Riemann surface rC of the logarithm.

Being mostly interested in integrating solutions in the Borel plane on

both sides of the singularities, thus enclosing them in a loop, we can neglect

holomorphic terms and it is natural to consider the quotient space C � rO{O.

The elements of C are called micro-functions by B. Malgrange [17] by analogy

with hyper- and micro-functions defined by Sato, Kawai and Kashiwara in

higher dimensions. They are called singularities by J. Ecalle and al. and

usually denoted with a nabla, like
∇

ϕ, for a singularity of the function ϕ while

the space C � rO{O is denoted sing0 (cf. [26]). A representative of
∇

ϕ in rO
is often denoted qϕ and is called a major of ϕ.

It is worth to consider the two natural maps

can : rO ÝÑ C � rO{O the canonical quotient map

and var : C ÝÑ rO the variation map,

action of a positive turn around 0 defined by var
∇

ϕpξq � qϕpξq � qϕpξe�2πiq
where qϕpξe�2πiq is the analytic continuation of qϕpξq along a path turning

once clockwise around 0 close enough to 0 for qϕ to be defined all along (the

result is independent of the choice of a major qϕ). The germ pϕ � var
∇

ϕ is

called the minor of
∇

ϕ.

Let δ denote the Dirac distribution at 0, δpmq itsmth derivative and Y � B�1
ξ δ

the Heaviside (micro-)function. One can make the following identifications:

can
� 1

2πiξ

	 � δ can
�p�1qmm!

2πiξm�1

	 � δpmq
can

� ln ξ
2πi

	 � Y can

�� ln ξ
2πi

	2
 � �2ln ξ
2πi

� 1
	
Y and so on . . .

It is sometimes useful not to work at the origin. Given ω � 0 in C we denote

Cω � singω the space of the singularities at ω, i.e., the space C � sing0

translated from 0 to ω. A function qϕ is a major of a singularity at ω ifqϕpω � ξq is a major of a singularity at 0.

3.1 Simple-moderate singularities

In this Section, we state some properties, used further on, of the singularities

—poles, logarithms and complex powers— which should occur in the Borel

plane. We shall see (cf. Thm 3.7) that poles, logarithms and complex powers
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are the only possible singularities arising in the Borel plane for linear systems

with the unique level one, far from being any singularity in the Nilsson class.

Definition 3.1 Simple-moderate singularities

• A singularity or micro-function
∇

ϕ at 0 is said to be simple if it has a

major of the form3qϕpξq � N0̧

p�0

αp

lnppξq
ξ

� N0�1

p̧�1

phppξq lnppξq
where N0 P N, αp P C and php P O for all p.

• A singularity or micro-function
∇

ϕ at 0 is said to be simple-moderate if

it has a major which differs from a simple one by terms of the form

λ̧PΛ Nλ̧

p�0

αλ,p ξ
λ�1 lnppξq �

λ̧PΛ Nλ̧

p�0

pHλ,ppξq ξλ lnppξq
where Λ is a finite set of numbers λ P C satisfying 0   Reλ   1 and

for all λ P Λ, Nλ P N, αλ,p P C and pHλ,p P O for all p.

• A singularity or micro-function
∇

ϕ at ω is said to be simple or simple-

moderate if it has a major qϕ such that qϕpω�ξq be of the previous forms

respectively.

Let γ be a path from 0 to ξ in C.

We denote u �γ vpξq the convolution product along the path γ defined by

u �γ vpξq � »
γ

upξ � tq vptq dt,
when the integral makes sense.

3This definition of a simple singularity is less restrictive than the one one can find in
the literature (cf. [11] or [26] for instance) where N0 is taken equal to 0. Here, we allow
powers of logarithms; still poles are required to be simple but they can be factored by
logarithms. We will see that, in the linear case when the system is prepared like in Section
2.1, simple singularities in the restrictive sense would occur only under strong assumptions
such as trivial formal monodromy. For a general level-one system, not in prepared form,
there could also occur multiple poles.
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Lemma 3.2 Convolution with powers and logarithms

Let ϕ be an entire function on C.

Let p P N and λ P C satisfying 0 ¤ Reλ   1.

Let ω P C�, let ψ be a function satisfying ψpωq � 0 and holomorphic on a

domain containing 0 and ω and let γξ be a path from 0 to ξ avoiding ω and

contained in this domain.

Then, the convolution product ϕ �γξ �pξ � ωqλ�1 lnppξ � ωqψ	pξq exists

and is, close to ω, of the form

ϕ �γξ �pξ � ωqλ�1 lnppξ � ωqψ	pξq � pξ � ωqλP �plnpξ � ωq�� entpξq
where P pXq P CtξurXs is a polynomial with holomorphic coefficients at ω

and degree

degpP q � " p if λ � 0
p� 1 if λ � 0

and where ent stands for an entire function.

Note that the power of pξ�ωq in the right-hand side has increased by 1 unit

at least.

Proof. The convolution product ϕ �γξ �pξ � ωqλ�1 lnppξ � ωqψ	pξq is well-
defined by the integral

»
γξ

ϕpξ�tqpt�ωqλ�1 lnppt�ωqψptqdt since both ϕpξ�tq
and ψptq are holomorphic along γξ; and in the case when ω � 0, the factor

tλ�1 is integrable at 0.

We are interested in the behavior of this function as ξ goes to ω.

Suppose ξ so close to ω that there is a disc

Dω centered at ω, containing ξ and included

in the holomorphy domain of ψ.

Fix a on γξ so that the part aγξ of γξ from

a to ξ belong to Dω and be homotopic to a

straight line in Dωztωu.
Up to an entire function, we can replace the convolution product under

consideration by the integral

gapξq � » ξ

a

ϕpξ � tq pt� ωqλ�1 lnppt � ωqψptqdt
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in C after a convenient choice of the determinations of argument and loga-

rithm. Expand ϕpξ�tqψptq as a Taylor series
m̧¥0

cmpξq pt�ωqm in Dω. Since

aγξ lies in Dω then, after commutation of sum and integral, gapξq becomes

gapξq �
m̧¥0

cmpξq » ξ

a

pt � ωqm�λ�1 lnppt� ωq dt.
One can check that

» ξ

a

pt � ωqm�λ�1 lnppt � ωq dt � Gm�λ,ppξq � Gm�λ,ppaq
where

Gm�λ,ppξq � $'''&'''% p! pξ � ωqm�λ

p̧

s�0

p�1qp�s

s!

lnspξ � ωqpm� λqp�s�1
if m� λ � 0

1

p� 1
lnp�1pt� ωq if m � λ � 0

For all s � 0, . . . , p, the series
m̧¡0

cmpξq pt � ωqm�λpm� λqp�s�1
converges on Dω.

Hence, the result. l
Lemma 3.3 Anti-derivation

Let QpXq P Mm,ppCtξurXsq be a polynomial matrix with holomorphic

coefficients at ξ � 0. We assume that the degrees of the successive columns

of Q are given by the row matrix NQ � rν ν � 1 � � � ν � p� 1s.
Let Λ R �N�.

The matrix function ξΛξ�Jm Qpln ξq ξJp admits a unique anti-derivative

of the form

Kpξq � ξΛ�1ξ�Jm Rpln ξq ξJp
where RpXq P Mm,ppCtξurXsq is a polynomial matrix with holomorphic co-

efficients at ξ � 0 and same column-degrees NR � NQ as Q.

Note that the power of ξ which can be factored increases by 1.

Proof. Denote QpXq � Ņ

k�0

Qk ln
kX and RpXq � Ņ

k�0

Rk ln
kX where

N � ν � p� 1.
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The derivative of K reads

K 1pξq � ξΛξ�Jm

��pΛ� 1qIm � Jm
�pRN lnN ξ � � � � �R1 ln ξ �R0q�ξpR1

N lnN ξ � � � � �R1
1 ln ξ �R1

0q � pNRN lnN�1 ξ � � � � �R1q�pRN lnN ξ � � � � �R1 ln ξ �R0qJp� ξJp.
Identifying the powers of ln ξ we get the N � 1 systemsp�qk ξ R1

k � �pΛ� 1qIm � Jm
�
Rk �RkJp � Qk � pk � 1qRk�1

for k � 0, 1, . . . , N and RN�1 � 0 which can be solved inductively starting

with k � N . Like in Section 2.5, System p�qk can be solved iteratively

from the first to the last column and in each column, from the last row to

the first one. The fact that it admits a solution holomorphic at 0 when

Λ R �N� results from the fact that this is true for the differential equation

ξ y1 � λ y � apξq when apξq is holomorphic at 0 and λ R �N.
When k is greater than ν set k � ν�ℓ. The fact that the first ℓ columns in Rk

can be chosen equal to 0 results from the fact that the same property holds

for Qk and, by induction, for Rk�1. Then, it holds also for the right-hand

side of System p�qk and the condition on the log-degree can be satisfied.

Unicity results from the fact that, since ξΛ�1 is neither a pole nor a con-

stant, a non-zero constant cannot be put in such form. l
3.2 Singularities of ϕm,m ¥ 1

Recall that the resurgent functions ϕm � �ϕj,

m

�
1¤j¤J

form ¥ 1 are iteratively

determined, for all j, as solutions of the systemp26q pξ � ajqdϕj,

m

dξ
� pλj � 1qϕj,


m � Jnj
ϕj,

m � ϕj,


m Jn1
� d

dξ

� pBj;
 � ϕm�1

�
satisfying convenient initial conditions corresponding to those satisfied by

the rfm’s (ϕ0 � δIn,n1
, ϕmp0q � 0 for m ¥ 3, ϕj,


2 p0q � 0 when aj � 0 and a

convenient non necessary 0 constant otherwise).

Lemma 3.3 provides the log-degrees of the successive columns of an anti-

derivative of the matrix ξλk�1 ξJnk K ξ�Jn1 when K is a generic constant

matrix, 0 ¤ Reλk   1 and λk � 0. One can check that the log-degrees are
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increased by 1 when λk � 0. They are given by

(27) Nrks � $&% rpnk�1q pnk�1q � 1 � � � pnk�1q � pn1�1qs if λk � 0r nk nk � 1 � � � nk � pn1�1q s if λk � 0.

The behavior of ϕm at a singular point ω P Ω depends on the sheet

of the Riemann surface RΩ we are on, i.e., its depends on the path γ of

analytic continuation followed from 0 (first sheet) towards ω. Following [26]

we denote contγϕm the analytic continuation of ϕm along the path γ.

Definition 3.4

• We say that ξ P CzΩ is close to ω P Ω if there is a disc centered at ω

which contains ξ and no other element of Ω than ω.

• We call path from 0 towards ω P Ω a path γ � γξ contained in CzΩ
which goes from 0 to a point ξ close to ω.

Proposition 3.5 Let ω P Ω.

For any path of analytic continuation γ from 0 towards ω, a major of

the singularity
∇γ

ϕm of contγϕm at ω exists in the formqϕj;

m pω � ξq � ξλj�1 ξJnj k

j;

m;pωq ξ�Jn1 � remj;


m pξq for all j � 1, . . . , J,

with a remainder remj;

m pξq � ¸

λk|ak�ω

ξλk R
j;

λk,m

pln ξq where
• k

j;

m;pωq denotes a constant nj�n1-matrix (recall that nk is the size of the

kth Jordan block of the matrix L of the exponents of formal monodromy)

and kj;

m;pωq � 0 when aj � ω,

• R
j;

λk ,m

pXq denotes a polynomial matrix with holomorphic coefficients at

0, the columns of which are of degree Nrks (cf. notation just above).

Of course, qϕj;

m , k

j;

m;pωq and remj;


m depend on γ even though, for seek of

simplicity, the notations do not show it up.

Note that, in the remainders, the initial factor ξ appears at powers like

λk and no more λk � 1 so that the power �1 never occurs. Note also that,

whatever are the values of λj and λk, we have λj � 1   λk and this is why

the terms in the remainders will always appear as subdominant.
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Proof. For all m ¥ 1, System (26) can be seen as an inhomogeneous

linear system in the entries of ϕm. For any j, the general solution of the

homogeneous system reads pξ�ajqλj�1pξ�ajqJnj k
j;

m;pωq pξ�ajq�Jn1 with kj;


m;pωq
an arbitrary constant nj � n1 matrix and we have to prove that there is a

particular solution of the inhomogeneous system in the form of the remainder.

To this end, we integrate the system using the Lagrange method (variation

of constants). System (26) is of the form pξ � ajqdϕj;

m

dξ
� linear terms �

Q, the type of Q depending upon m. Looking for a solution in the form

ϕ � pξ � ajqλj�1pξ � ajqJnj K pξ � ajq�Jn1 we obtain to determine K up to

a constant the condition
dK

dξ
� pξ � ajq�λjpξ � ajq�Jnj Q pξ � ajqJn1 and we

just have to find anti-derivatives for the various possible Q.

For m � 1, the inhomogenuity Q � d pBj;

dξ

is an entire function, hence

holomorphic at ω. When aj � ω, then ω is an ordinary point for the jth

block of System (26) and the inhomogenuity is holomorphic. Hence, there is a

holomorphic solution at ω and we can choose qϕj,

1 � 0. When aj � ω, Lemma

3.3 provides K in the form K � pξ � ajq�λj�1pξ � ajq�Jnj Rpξq pξ � ajqJn1

with R holomorphic at ω and then, a particular solution ϕ
j;

1 pξq � Rpξq

holomorphic at ω so that we can choose the remainder remj
1 � 0.

For m � 2, using the superposition principle, we have to consider inho-

mogenuities Q of the formQ � d pBj;k

dξ
�ϕk;


1 for all k � 1, . . . , J . When ak � ω,

the solution ϕk;

1 and then also Q is holomorphic at ω and we can conclude

like in the case when m � 1. From now, we forget about holomorphic terms.

When ak � ω, then ϕk;

1 differs from a holomorphic function by terms of the

form pξ�ωqλk�1pξ�ωqJnk k
k;

1;pωq pξ�ωq�Jn1 . It results from Lemma 3.2 that,

modulo a holomorphic function, Q takes the form pξ�ωqλkP
�
lnpξ�ωq� with

P a nj�n1-matrix of polynomials with holomorphic coefficients the columns

of which have log-degree Nrks. In both cases, aj � ω or aj � ω, Lemma 3.3

provides a corresponding solution of the form pξ � ωqλkR
�
lnpξ � ωq� where

R is a polynomial matrix with holomorphic coefficients at ω and column-log-

degrees Nrks.
For m ¥ 3, the inhomogenuity contains terms of the form Q � d pBj;k

dξ
�

ϕ
k;

m�1. The factor ϕk;


m�1 splits into two parts: the first part coming from

the general homogeneous solution is treated like in the case when m � 2;

the second part coming from the remainder is of a similar type but the fact
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that all powers λ � 1 have been changed into λ. Consequently, there ap-

pears no factor pξ�ωq�1 and this insures the stability of the log-degree Nrks
since, from now, convolution generates no increase of the log-degree Nrks. l
3.3 Singularities of pf
We are now ready to make explicit the form of the singularities of pf as a

consequence of Theorem 2.7, Proposition 3.5 and an iterated application of

the variation.

Lemma 3.6 below states, without proof, some useful elementary proper-

ties of the variation. We denote varp � var � var � � � � � varloooooooooomoooooooooon
p times

.

Lemma 3.6

1. var
� ln ξ
2πi

	 � 1.

2. For all p P N,

var
�� ln ξ

2πi

	p	 � p�1̧

r�0

p�1qp�r�1Cr
p

� ln ξ
2πi

	r� p
� ln ξ
2πi

	p�1 � lower log-degree terms.

Consequently, varp
�� ln ξ

2πi

	p	 � p! and varp�1
�� ln ξ

2πi

	p	 � 0.

3. For all λ P C, varpξλq � p1� e�2πiλqξλ.
Consequently, varppξλq � p1� e�2πiλqpξλ for all p P N and

varpξλq � 0 for all λ P Z.

4. varpfgq � varpfq g � f varpgq � varpfq varpgq.
In particular, varpfgq � f varpgq when varpfq � 0.

5. For all λ P C and p P N,

var
�
ξλ
� ln ξ
2πi

	p	 � p1� e�2πiλqξλ� ln ξ
2πi

	p � e�2πiλξλvar
�� ln ξ

2πi

	p	� p1� e�2πiλqξλ� ln ξ
2πi

	p � ξλ � lower log-degree terms.

Consequently,

varp
�
ξλ
� ln ξ
2πi

	p	 � p1�e�2πiλqpξλ� ln ξ
2πi

	p�ξλ�lower log-degree terms.
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Theorem 3.7 Singularity of pf at ξ � ω

Let ω P Ω.

For any path of analytic continuation γ from 0 towards ω, a major of the

singularity
∇γ

fω of contγ pf at ω exists in the formqf j;
pω�ξq � ξλj�1 ξJnj k
j;
pωq ξ�Jn1 �Remj;
pωqpξq for all j � 1, . . . , J

with a remainder Remj;
pωqpξq � ¸
λℓ|aℓ�ω

ξλℓ R
j;

λℓ;pωqpln ξq where� k

j;
pωq denotes a constant nj�n1-matrix (recall that nk is the size of the kth

Jordan block of the matrix L of the exponents of formal monodromy)

and kj;
pωq � 0 when aj � ω,� R
j;

λℓ;pωqpXq denotes a polynomial matrix with summable-resurgent coef-

ficients in yRessumΩ�ω, the columns of which are of log-degree Nrℓs (cf.

Section 3.2, Formula (27)).

Recall that the major qf j;
, the constant matrix kj;
pωq and the coefficients of the

remainder Rj;

λℓ;pωq depend on γ even though, for seek of simplicity, we do not

show it up in the notations. Note that, in practice, kj;
pωq can be determined

as the coefficient of the monomial ξλj�1.

It is worth to make explicit the following two particular cases.

• Case with diagonal formal monodromy: L � `n
j�1

λj

In this case, qf j;
 reduces to just one entry which we denote qf j.qf jpω� ξq � k
jpωq
ξ

�hjpωqpξq ln ξ� ¸
λℓ�0 | aℓ�ω

ξλℓ�1 h
j

λℓ;pωqpξq
where kjpωq is a constant, hjpωq and all hj

λℓ;pωq are summable-resurgent

functions of yRessumΩ�ω. Moreover,

– k
jpωq � 0 when aj � ω or λj � 0,

– h
jpωq � 0 when there exists no ℓ such that aℓ � ω and λℓ � 0.

• Case with trivial formal monodromy: L � On
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jpωq
ξ

� h
jpωqpξq ln ξ

where kjpωq is a constant and h
jpωq a summable-resurgent function ofyRessumΩ�ω. Moreover,

– k
jpωq � 0 when aj � ω,

– h
jpωq � 0 when there exists no ℓ such that aℓ � ω.

Thus, under the condition that there exists no λℓ � 0 associated with

aℓ � ω, the singularity
∇

fω of pf at ω is simple in the restrictive sense (cf.

Definition 3.1 and its footnote).

Proof. — Prove first the weaker result that asserts that the singularity ofpf at ω has the given form with holomorphic coefficients at 0.

Given 0   ν   ν1 and ε ¡ 0, we consider the domains

∆ν � tν   |ξ|   ν1u in C

and ∆1
ν � tν   |ξ|   ν1, θ � ε� 2πN 1   argpξq   θ � ε� 2πu

a lift of the ring ∆ν to N
1�1 consecutive sheets of the Riemann surface of the

logarithm at 0. The number N 1 will be determined later; it has to be finite

and large enough. The argument θ fixes the sheet on which pf is studied.

We assume ν1 so small that the disc |ξ| ¤ ν1 lies at a distance at least ν frompΩ� ωqzt0u.
We fix j. From Proposition 3.5 we can write

contγϕ
j,

m pω � ξq �

λ̧RZ pλ̧

p�0

hλ,pm pξq ξλ lnp ξ � 1

ξ

p0̧

p�0

h0,pm pξq lnp ξ

where the pairs pλ, pq are supposed distinct modulo Z and finitely many.

Denote Λ the set of all exponents λ appearing in these summations. Elements

in Λ are equal to either a λℓ or λj � 1 when λj R Z and aj � ω. When λj � 0

and aj � ω, instead of introducing λ � λj � 1 � �1 we factor
1

ξ
so that

no polar part occurs in the coefficients h0,pm pξq. We denote pλ the highest

log-degree p associated with ξλ.

From Proposition 3.5 we know that all coefficients hλ,pm pξq are holomorphic

at 0 and we have to prove that pfpω � ξq has the same form as the ϕm’s
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and holomorphic coefficients at 0. The proof mostly relies on the uniform

convergence of the series
°

m¥1 ϕm to pf � δIn,n1
on any compact set avoiding

Ω (cf. Remark 2.10). For simplicity, we skip writing “contγ” although we

consider analytic continuations along γ.

Suppose, to begin, that all majors qϕj,

m are equal to 0 which means that all

ϕj,

m pω�ξq are holomorphic functions hj,
m pξq at 0 and then, all holomorphic on

the same disc |ξ|   ν1 previously chosen. Since the series
°

m¥0 ϕ
j,

m pω� ξq �°

m¥0 h
j,

m pξq converges uniformly to pf j,
pω � ξq on compact sets avoiding

Ω�ω (Theorem 2.7, Remark 2.10) the function pf j,
pω� ξq � °m¥0 h
j,

m pξq is

a holomorphic function on the punctured disc 0   |ξ|   ν1. Its Laurent series

is the sum of the Laurent series of the hj,
m pξq’s; hence, it displays no polar

part and pf j,
pω � ξq can be continued into a holomorphic function hj,
pξq on
the disc |ξ|   ν1. We can conclude, in this case, that a major of pf is also

equal to zero: qf j,
pω � ξq � 0.

Given pλ, pq, to prove that the series
°

m¥0 h
λ,p
m pξq converges to a holo-

morphic function hλ,ppξq about ω we proceed as above after having reduced

all ϕj,

m pω � ξq to hλ,pm pξq by means of iterated variations as indicated below.

We can then conclude by the same arguments as above since the uniform

convergence property keeps valid for the variations as well.

We base the reduction on the properties of the variation stated in Lemma

3.6: the variation of lnp ξ iterated p times produces a non-zero constant and

it produces 0 in one more step; the iterated variation of ξλ lnp ξ when λ R Z

generates a dominant term of the same form times a non zero constant.

Fix λ P Λ.

It is sufficient to consider the case of the monomials hλ,pλm pξq ξλ lnpλ ξ of high-

est log-degree. Indeed, we can then proceed iteratively on the descending

log-degrees terms after cancellation of the highest log-degree terms.

Here is a possible way to reduce ϕj,

m pω � ξq to hλ,pλm pξq:

For each λ1 P Λ, λ1 � λ successively, multiply by ξ�λ1, take the variation

pλ1 � 1 times and multiply by ξλ
1
, thus canceling all terms factored by ξλ

1
.

We are left with only terms in ξλ lnp ξ, for p � 0, 1, . . . , pλ. Multiply by

ξ�λ and take the variation pλ times. We get so hλ,pλm pξq up to a non-zero

constant.

We can now estimate a convenient value for N 1: the process, to be valid,

requires that N 1 be as large as the total number of variations used.

This ends the proof of the fact that the singularity of contγ pf at ω has

the given form with holomorphic coefficients at 0. In particular, the constant

matrices kj;
pωq are given by kj;
pωq � °m¥1 k
j;

m:pωq.
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— The proof of the fact that the coefficients hλ,ppωqpξq are actually summa-

ble-resurgent functions in yRessumΩ�ω is straightforward from the fact that their

germs at the origin are equal to iterated variations of functions themselves

in yRessumΩ�ω. l
3.4 Principal major and connection constants

Let θ P R{2πZ be an anti-Stokes direction and ω P Ωθ a Stokes value in

direction θ associated with rfpxq.
The constants kj;
pωq and the polynomials Rj;


λℓ,pωq found in Theorem 3.7

depend, as already said, on the path of analytic continuation γξ and mean-

while, on the chosen determination of the argument around ω.
 We consider a path γ� from 0 towards ω defined as follows:

γ� � γ�ξ goes along the straight line r0, ωs
from 0 towards ω and bypasses all intermedi-

ate singular points ω1 P ΩθXs0, ωs to the right

as shown on the figure.
 We choose the principal determination of the variable ξ around ω4.

Theorem 3.7 allows to set the following definition.

Definition 3.8 Principal major

We call principal major of pf at ω P Ωθ the major qf�pω � ξq of contγ�p pfq
when the principal determination of the variable ξ is chosen.

According to Theorem 3.7, for j � 1, . . . , J and convenient constant matrices

k�j;
pωÆq it reads
(28) qf�j;
pω � ξq � ξλj�1 ξJnj k�j;
pωÆq ξ�Jn1 � ¸

λℓ|aℓ�ω

ξλℓ R�j;

λℓ;pωÆqpln ξq

Moreover, in case there exists ℓ such that λℓ � 0 and aℓ � ω, we assume

that R�j;

0;pωÆqp0q � 0 so that the principal major never contains a holomorphic

term.

4 Any choice is convenient. However, to be compatible, on the Riemann sphere, with
the usual choice 0 ¤ argpζ � 1{ξq   2π of the principal determination at infinity we
suggest to choose �2π   argpξq ¤ 0 as principal determination about 0 as well as about
any ω at finite distance.
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With the requested conditions the principal major of pf at ω is uniquely

determined. We denote k�pωÆq with a dot to indicate the choice of the principal

determination.

By means of elementary transformations (cf. Section 2.1) we can extend

the previous results and definitions to any of the kth column-blocks of pF pξq
changing the Stokes values aℓ into aℓ � ak (actually, with respect to pfpξq, aℓ
stands for aℓ � a1 with a1 � 0) and the exponents of formal monodromy λℓ
into λℓ � λk. We can then reformulate Theorem 3.7 as follows.

Corollary 3.9 Let θ P R{2πZ be an anti-Stokes direction and ω P Ωθ a

Stokes value in direction θ associated with System (1).

To the choice of the principal determination of the variable ξ there is

a unique constant matrix K�pωÆq such that the principal major qF� of pF at ω

reads

(29) qF�pω � ξq � 1

ξ
ξLK�pωÆq ξ�L � Rem�pln ξq

The matrix K�pωÆq is a constant n�n-matrix satisfying K�j;kpωÆq � 0 for all pj; kq
such that aj � ak � ω. In particular, all diagonal blocks are equal to zero.

The remainder Rem�pln ξq is a linear combination of polynomials in ln ξ with

summable-resurgent coefficients weighted by subdominant complex powers of

ξ.

Definition 3.10 Matrix of the connection constants

The n� n-matrix

(30) K�
θÆ �

ω̧PΩθ

K�pωÆq
is called (principal) matrix of the connection constants of pF in direction θ.

A nj � nk-block K
�j;k

θÆ of K�
θÆ is equal to 0 when aj � ak does not belong to

Ωθ. The possibly non-zero entries of K�
θÆ are also called principal multipliers

of connection in direction θ.

Note that we still need no other structure on yResΩ and C than the

structure ofO¤1pCq�module and, in particular, there is no need yet to develop

a structure of a convolution algebra.
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4 Meromorphic invariants: Stokes cocycle or

alien derivatives

The classifying set for the local meromorphic classification at 0 of connec-

tions endowed with an isomorphism of their formalized (i.e., formal gauge

transformations pF ) in a given formal class was given by Y. Sibuya [27, 28]

and B. Malgrange [16] in terms of a non-Abelian 1-cohomology set. Actu-

ally, this classifying set can be given a structure of a unipotent Lie group

and it is isomorphic to the direct product of the Stokes-Ramis groups in each

anti-Stokes direction associated with the connection (cf. D.G. Babbitt and

V.S. Varadarajan [1] for an abstract proof and M. Loday-Richaud [13] for a

constructive one). Indeed, in each 1-cohomology class there exists a unique

special cocycle, called Stokes cocycle, whose components coincide with the

Stokes-Ramis automorphisms independently defined as the defects of analyt-

icity of pF in each anti-Stokes direction [23]; [13, Prop. III.2.1, Th. III.2.8].

To any formal class and associated anti-Stokes direction the Stokes-

Ramis automorphisms form a free Lie group conjugate to a group of unipotent

triangular matrices submitted to some vanishing conditions ([13] Def. I.4.12).

Its Lie algebra is conjugate to an algebra of nilpotent matrices submitted to

similar vanishing conditions and the exponential map sends it homeomorphi-

cally onto the Stokes-Ramis group. It is then equivalent to characterize a

meromorphic class by giving its image in the Stokes-Ramis groups (i.e., its

Stokes cocycle or its Stokes matrices after the choice of a C-basis of solutions)

or its image in the Lie algebra, tangent space of the Stokes-Ramis groups at

the identity (i.e., its alien derivatives).

Here below, we perform these descriptions in more details and we provide

an explicit formula for the Stokes matrices in the Laplace plane in terms of

the connection matrices in the Borel plane.

Note. From now, each time a determination of the argument is required,

we choose the principal determination fixed similarly in the Laplace and in

the Borel plane (cf. Footnote 4). Given an anti-Stokes direction θ P R{2πZ
we denote θÆ P R the chosen determination of θ and ωÆ the Stokes value ω

in direction θ with the same determination. We keep denoting the variables

x, ξ, . . . while indicating argpxq � θÆ, argpξq � θÆ, . . . .
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4.1 Stokes cocycle

Let us start with a description of the Stokes-Ramis automorphisms, compo-

nents of the Stokes cocycle, from the viewpoint of summation.

Recall (cf. Section 2.2) that the anti-Stokes directions attached to the

first n1 columns rf of the gauge transformation rF are defined as the direc-

tions of the various non-zero Stokes values of System (1), i.e., the Stokes

values belonging to Ω� � ta1, . . . , aJuzt0u (see notations of Section 2.2). To

the ℓth column-block of rF the set Ω must be translated to Ω � aℓ. We keep

denoting Ω � taj�aℓ � 0u the set of all non-zero Stokes values attached to rF .
Given θ P R{2πZ let dθ denote the half line issuing from 0 with argument θ

and set Ωθ � Ω� X dθ and Ωθ � Ω� X dθ.

4.1.1 Stokes automorphisms as gauge transformations

When θ is not an anti-Stokes direction for rF (i.e., Ωθ � H) then rF can be

applied a Borel-Laplace integral

»
dθ

pF pξqe�ξ{xdξ in direction θ (cf. Theorem

2.7, for instance) and in neighboring, not anti-Stokes, directions giving thus

rise to an analytic function sθp rF q defined and 1-Gevrey asymptotic to rF on

a sector Σθ,¡π bisected by θ with opening larger than π. The function sθp rF q
is called 1-sum or Borel-Laplace sum of rF in direction θ.

When θ is an anti-Stokes direction for rF the Borel-Laplace integral does

not exist anymore in general. However, taking the limit as ε tends to 0 of

the Borel-Laplace sums in directions θ� ε and θ� ε one defines, by analytic

continuation, two analytic functions, 1-Gevrey asymptotic to rF on a germ of

half-plane Σθ,π bisected by θ.

We call sum of rF to the right of θ and we denote

sθ�p rF q the analytic continuation to Σθ,π of sθ�εp rF q
as ε tends to 0. We call sum of rF to the left of θ de-

noted sθ�p rF q the analytic continuation of sθ�εp rF q. 5

5 The denominations to the right and to the left fit the natural orientation around
0 on the Riemann sphere. Our choice of the signs � and � in sθ� and sθ� may look
inappropriate to such an orientation but our will is to fit the usual notations at infinity.
Indeed, positioning the singularity at 0 or at infinity exchanges the orientation on the
Riemann sphere. The Borel transform at 0 does not exchange the orientation while it
does it at infinity. In both cases, we can refer to the fact that the sums sθ� and sθ�
correspond to Laplace integrals in the Borel plane along a path following a line dθ and
passing the Stokes values positively for sθ� and negatively for sθ� (cf. Fig. Section 4.3).



Loday-Richaud and Remy, Resurgence for level-one linear diff. systems 36

The Stokes phenomenon stems from the fact that the two lateral sums

sθ�p rF q and sθ�p rF q are not analytic continuations from each other in general.

The defect of analyticity is quantified by the Stokes automorphisms

(31) Stθ; rF � sθ�p rF q�1 � sθ�p rF q .

in each anti-Stokes direction θ. Thus defined, the Stokes automorphism ofrF in direction θ is an automorphism of the normal form (4); precisely, a

gauge transformation, 1-Gevrey flat on Σθ,π, which leaves invariant System

(4). The Stokes automorphism Stθ; rF depends on rF and θ and it does not

depend on the choice of a determination of the argument near θ P R{2πZ.
4.1.2 Matrix representations

One can give the Stokes automorphism Stθ; rF matrix representations in

GLpn,Cq by associating with the (formal) normal solution rY0pxq � xLeQp1{xq
an actual one near θ by means of a choice of a determination of the argument

in the Laplace plane:

We change the formal power xL into an actual function near θ by choos-

ing the principal determination of the argument. We get thus an actual

function, still denoted xL, defined and analytic for argpxq close to θÆ (denote
argpxq � θÆ). In our case of a single level equal to one, the polynomi-

als qjp1{xq in Qp1{xq do not require any choice of a determination of the

argument. However, a formal exponential determines an actual exponen-

tial only up to a multplicative constant6. We fix such a constant once for

all, for instance, by choosing the function denoted eQp1{xq in the usual ana-

lytic meaning. We denote Y0,θÆpxq the fundamental solution such defined for

argpxq � θÆ.
To the actual normal solution Y0,θÆpxq, there correspond two analytic fun-

damental solutions sθ�p rF qY0,θÆpxq and sθ�p rF qY0,θÆpxq of System (1). There

exists then a unique constant invertible matrix (called Stokes-Ramis matrix

or simply Stokes matrix7), which we denote In � CθÆ, such that

(32) sθ�p rF q Y0,θÆpxq � sθ�p rF q Y0,θÆpxqpIn � CθÆq
6 What is called formal exponential ep is “the” formal solution of the differential equa-

tion y1 � p1y � 0, which is well defined only up to a multiplicative scalar.
7 In the literature, a Stokes matrix has often a more general meaning where one allows

to compare any two asymptotic solutions whose domains of definition overlap. We exclude
such a generality here.
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and the Stokes automorphism Stθ; rF is given a matrix representation by the

formula

(33)
St

θ; rF � sθ�p rF q�1 sθ�p rF q � xLeQp1{xqpIn � CθÆqe�Qp1{xqx�L

for argpxq � θÆ .

Thus, although the Stokes automorphisms, components of the Stokes

cocycle, are intrinsically determined from rF , their matrix representations as

constant invertible matrices are defined only up to the choice of an actual

normal solution Y0,θÆpxq in each anti-Stokes direction. As it is clear from For-

mula (33) this indetermination results in the conjugacy action of the formal

monodromy (change of “formal determination” x ÞÑ xe2πi in the normal so-

lution) and of the exponential torus (see Section 4.4). Temporarily, we forget

about the action of the exponential torus by systematically associating with

a formal exponential eq the analytic function denoted the same way (choice

of the arbitrary constant equal to 1) so that, a (formal) normal solution be-

ing given, our unique freedom lies in the choice of the determination of the

argument of the variable x in a neighborhood of the direction θ, i.e., the

choice of a determination θÆ of θ.
The Stokes automorphism St

θ; rF is unipotent (i.e., its matrix CθÆ is nilpo-
tent whatever the choice of a determination of θÆ) due to the fact that sθ�p rF q
and sθ�p rF q are both 1-Gevrey asymptotic to the same matrix rF . Indeed, a

nj � nℓ block Cj,ℓ
θÆ is 0 as soon as aj � aℓ R Ωθ. In particular, the diagonal

blocks are equal to 0 and one can put CθÆ in triangular form by conveniently

reordering the Stokes values aj (cf. [13, Consequence I.4.8]).

Formula (33) has an “additive” form

(34) sθ�p rF qpxq � sθ�p rF qpxq � sθ�p rF qpxq xL eQp1{xq CθÆ e�Qp1{xq x�L

for argpxq � θÆ
which will be used later.

4.1.3 Stokes automorphims acting on formal solutions

The Stokes-Ramis matrix In � CθÆ was introduced in Formula (32) as the

matrix of a linear map

sθ�p rF q Y0,θÆpxq ÞÑ sθ�p rF q Y0,θÆpxq
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associating sums to the right with sums to the left in direction θÆ. The map

is defined and bijective in the space of actual solutions of System (1) over a

germ of half plane Σθ,π.

Coming back from the actual normal solution Y0,θÆpxq to the formal onerY0pxq � xLeQpxq the previous map can be read as a bijective linear map

(35) StθÆ : rF pxq xL eQp1{xq ÞÑ rF pxq xL eQp1{xqpIn � CθÆq
in the space of formal solutions of System (1). Such a map depends on θÆ
and no more only on θ.

One also calls the map StθÆ a Stokes automorphism in direction θÆ. The
Stokes cocycle of System (1) is equivalent to the collection of the Stokes

maps StθÆ for θÆ running over arguments of the anti-Stokes directions in a

fundamental domain, say the principal one �2π   arg ¤ 0.

Note that, to the first column-block rf made of formal power series (recall

a1 � λ1 � 0), there does not correspond a power series in general. In Section

4.4, in order to define alien derivations, we will extend such a map into

an automorphism of a differential algebra containing the formal solutions of

System (1).

4.2 Maps

 �

∆ωÆ
Given ω P Ω� recall that ωÆ denotes its principal determination with argu-

ment θÆ.
The Stokes automorphism StθÆ can be split into a sum of linear maps
�

∆ωÆ , each of them taking into account the contribution of a different Stokes

value ω P Ω� as follows: their matrices, also denoted

�
∆ωÆ , are obtained from

CθÆ by keeping unchanged the blocks Cj,ℓ
θÆ such that aj�aℓ � ω and equating

all other blocks to 0.

Obviously, CθÆ �
ω̧PΩθ


�
∆ωÆ and Formula (34) reads, for argpxq � θÆ,

(36) sθ�p rF qpxq � sθ�p rF qpxq � sθ�p rF qpxq
ω̧PΩθ

e�ω{x xL 
�
∆ωÆ x�L

In restriction to the first n1 columns and denoting

�
δωÆ the first n1 columns
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of

�
∆ωÆ , we obtain, for argpxq � θÆ,

(37) sθ�p rfqpxq � sθ�p rfqpxq � sθ�p rF qpxq
ω̧PΩθ

e�ω{x xL 
�
δωÆ x�J1

.

4.3 Stokes-Ramis versus connection matrices

The left hand side of Formula (37) can be seen as the Laplace integral

(38) sθ�p rfqpxq � sθ�p rfqpxq � »
γ1
θ

pfpζqe�ζ{xdζ
The two branches of γ1θ along dθ are dis-
jointly drawn to point out that they do
not belong to the same sheet of the Rie-
mann surface RΩ.

where, as shown on the figure, γ1θ
is a Hankel type path going along

the straight line dθ from infinity

to 0 and back to infinity passing

positively all singularities ω P Ωθ on

both ways.

The exponential growth of pf in direction θ guaranties the convergence of

the integral for x in a disc adherent to 0 with dθ as a diameter (a Borel disc)

(cf. [21] for example).

Without changing the value of the integral8 the path γ1θ can be deformed

into the union γ1θ � YωPΩθ
γ1θpωq

of Hankel type paths γ1θpωq with

asymptotic direction θ around each

singular point ω P Ωθ.

By means of translations from ω to 0 and using the fact that holomorphic

functions at ω contributes 0 to the integral around ω we can replace pf by its

principal majors qf�pω � ξq at each ω obtaining so

8 Contrarily to Formula (37) which only requires the 1-summabilty of the series rf , the
individual resurgence and 1-summability are not sufficient here. We do need summable-
resurgence.
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(39) sθ�p rfq � sθ�p rfq �
ω̧PΩθ

e�ω{x »
γθ

qf�pω� ξqe�ξ{xdξ
where, as shown on the figure, γθ is a Hankel type path

around 0 in direction θ.

We claim that we can identify this linear combination of exponentials

e�ω{x to the linear combination in the right hand side of Formula (37).

Proposition 4.1 Given ω P Ωθ, the following identity holds for argpxq � θÆ:
(40)

»
γθ

qf�pω � ξqe�ξ{xdξ � sθ�p rF qpxq xL 
�
δωÆ x�J1.

Proof. The equality is obviously true when there is only one singular point

ω on the half line dθ. Assume then that there are at least two singular points

on dθ.

The Borel transform pfpξq of rfpxq belongs to yRessumΩ and has simple moderate

singularities. From Theorem 3.7 we know that any major qfpω � ξq at ω is

a polynomial in ln ξ with summable-resurgent coefficients, possibly factored

by complex powers ξλ�1. The Laplace integral
³
γθ
qf�pω � ξqe�ξ{xdξ in the

left hand side is then a polynomial in ln x whose coefficients are 1-Gevrey

asymptotic functions on a germ of half plane bisected by the direction θ. De-

forming the path γθ so as to move the asymptotic direction to a neighboring

direction θ�ε we get 1-Gevrey asymptotic coefficients on a sector of openingsθ � π
2
, θ � π

2
� εr, that is, 1-sums of 1-summable series in direction θ � ε

2
(integer power series, possibly factored by non integer powers xλ).

The same property holds for the right hand side and therefore, we can

conclude by the variant of Watson Lemma below. l
Lemma 4.2 (A variant of Watson Lemma)

Let θ P R{2πZ.
Suppose that, to each ω P Ωθ, there is a linear combination Pωpln xq of

polynomials in ln x with summable-resurgent coefficients in �RessumΩ�ω possibly

weighted by complex powers of x, the powers being distinct modulo Z.

Then, an identity
ω̧PΩθ

Pωpln xq e�ω{x � 0 implies the nullity of each Pω,

i.e., the nullity of each summable-resurgent coefficient in Pω.
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Proof. By means of a rotation of the variable x we can assume that θ � 0

so that all ω are positive numbers. We range them by increasing order:

ω1   ω2   � � �   ωr. If we factor e�ω1{x the identity becomes

Pω1
pln xq � ŗ

ℓ�2

Pωℓ
pln xqe�pωℓ�ω1q{x � 0.

Taking the asymptotic expansion at 0 on the positive real line of both sides

of the identity proves that the asymptotic expansion of Pω1
pln xq at 0 is 0.

The same property holds for the coefficients of each power of ln x. These

coefficients are 1-summable powers series in which the sequence of exponents

is a finite union of arithmetic sequences. Watson Lemma applies to such a

situation (cf. [19, Thm 2.4.1.4.ii]) implying the unicity of the 1-sum. Hence,

Pω1
� 0. The nullity of the other polynomials Pω follows by recursion. l

Theorem 4.3 Connection-to-Stokes Formula

Given θ P R{2πZ an anti-Stokes direction, the data of the Stokes-Ramis

matrix CθÆ and of the connection matrix K�
θÆ are equivalent and the two

matrices are related by the relation

CθÆ � »
γ0

1

ξ
ξLK�

θÆ ξ�L e�ξdξ

where γ0 is a Hankel type path around R� run over by ξ after the choice of

the principal determination of its argument.

Proof. Note that CθÆ and K�
θÆ have the same block-structure with the same

blocks of zeros and same arbitrary non-zero blocks. The map K�
θÆ ÞÑ CθÆ is

a linear map between two linear spaces of same dimension and to prove that

it is bijective it is enough to prove that it is injective.

Suppose CθÆ � 0; then, the two lateral sums sθ�p rF q and sθ�p rF q glue

together and the Borel transform pF pξq of rF pxq has no singularity on the line

dθ. Hence, K
�
θÆ � 0.

To prove the relation linking CθÆ to K�
θÆ it is sufficient to compare the

first column-blocks cθÆ and k�θÆ (cf. Section 2.1) and to prove that

cθÆ � »
γ0

1

ξ
ξL k�θÆ ξ�J1 e�ξdξ
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with the choice of the principal determination of argument along γ0.

Equating the dominant terms in Identity (40) and using Theorem 3.7 we

obtain the new identity

xL cθÆ x�J1 � »
γθ

uL k�θÆ u�J1e�u{xdu� xL
»
γ0

ξL k�θÆ ξ�J1e�ξdξ x�J1 psetting u � xξq
where for arg x � θÆ, the path of integration γθ has become the classical

Hankel path γ0 around the non-negative real axis with argument from �2π
to 0. Hence the result. l

In restriction to the blocks attached to a given ω we obtain the following

statement.

Corollary 4.4 For all ω P Ω�, the data of

�
∆ωÆ and of K�pωÆq are equivalent

and the two matrices are related by
�
∆ωÆ� »

γ0

1

ξ
ξLK�pωÆq ξ�L e�ξdξ

where γ0 stands for a Hankel type path around R� run over by ξ after the

choice of the principal determination of its argument.

It can be useful, especially for effective numerical calculations to expand

each entry of the Connection-to-Stokes Formula. The following corollary

provides such an expanded form.

LetM pj,ℓq;pk,rq denote the entry row ℓ of row-block j and column r in column-

block k of a n� n-matrix M split into blocks fitting the structure of L.

Corollary 4.5 The various entries of the Connection-to-Stokes Formula read

C
pj,ℓq;pk,rq
θÆ � nj�ℓ�r�1

p̧�0

κppλj � λkqH pj,ℓq;pk,rq
p

where κppλj � λkq � 2πi
dp

dtp

� e�iπt

Γp1� tq	���t�λj�λk

and

H pj,ℓq;pk,rq
p � ¸

ℓ1�r1�p�r�1

p�1qr�1�r1K�pj,ℓ�ℓ1q;pk,r1�1q
θpr � 1� r1q! ℓ1! �
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4.4 Alien derivations

As already said in the introduction of Section 4, the classifying set of mero-

morphic classes of formal gauge transformations of a given normal system is

naturally endowed with a structure of a Lie group. In this section, we explain

how the dotted alien derivations can be defined as infinitesimal generators of

this Lie group.

Alien derivations were first given a definition through the Borel plane by

J. Écalle ([10, 12], cf. also [18, 26]). They have been defined as an average of

analytic continuations in the Borel plane followed by a Laplace transform, the

weights of the averaging being related to the Campbell-Hausdorf Formula. It

is equivalent to see them as the homogeneous components of the logarithm

of graded Stokes automorphisms (cf. [10], [18, Th I.6.2], [26, Lemma 5 and

pp. 35-38]). This is the viewpoint we adopt here, a viewpoint already used

in [24, 21]. To perform it we need

• to define an algebra where the Stokes automorphisms make sense and

where the alien derivatives will live (to give them a chance of being

“derivatives” we cannot keep working in vector spaces),

• to define a graduation on the Stokes automorphisms.

Our aim being to define alien derivations of the solutions of System (1)

we proceed as follows.

4.4.1 The algebra

Consider the finitely many Stokes values Ω � ta1, . . . , aJu associated with

System (1) and the Z-module ZΩ they generate. The lattice ZΩmay be dense

in C (cf. the example of the hypergeometric equation D13,1 below) and it

contains Ω � taj � aℓu. Simultaneously, consider the set Λ � tλ1, . . . , λJu of
exponents of formal monodromy of System (1) and the lattice ZΛ it generates.

We introduce the set rHZΛ,ZΩ of all series solutions of linear differential

equations with meromorphic coefficients, single level 0 or 1, exponents of

formal monodromy in ZΛ and Stokes values in ZΩ. Note that all (convergent)

meromorphic series at 0 belong to rHZΛ,ZΩ.

Proposition 4.6 The set rH � rHZΛ,ZΩ is a differential sub-algebra of the

algebra of all formal meromorphic series at x � 0.
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Consequently, its counter-part pH in the Borel plane is a convolution alge-

bra where multiplication by 1{ξ is the derivation; its elements have simple-

moderate singularities at finitely many points of ZΩ.

Proof. The set rH is stable with respect to sums and products. Indeed,

given two series solutions of linear differential equationsD1y � 0 andD2y � 0

respectively, their sum satisfies a linear equation Dy � 0 where D is the left

smaller common multiple of D1 and D2, the exponents of formal monodromy

and the Stokes values being the union of those of the initial equations. Their

product satisfies a linear differential equation ∆y � 0 where ∆ is the sym-

metric tensor product of D1 and D2 and where the exponents of formal

monodromy and the Stokes values are the two by two sums of those of the

initial equations.

The set rH is stable under derivation with respect to x since the derivative of

an element rf of rH satisfies an equation of the same type obtained by conve-

niently derivating a differential equation satisfied by rf . l
To prove directly in the Borel plane that pH is a convolution algebra is

not so easy. Given pf and pg in pH with finite singular supports Ωp pfq and Ωppgq
respectively, the main point is to prove that the convolution pf �pg which is well

defined near 0 can be continued to the whole Riemann surface R
Ωp pf q�Ωppgq.

To this end, one could generalize the technique of two intertwined combs

to build R-symmetrically contractile paths (cf. [26, Lemma 3, Figures 5

and 10]): one should start here with a comb with upwards nails at Ωp pfq, a
comb with downwards nails at �Ωppgq, symmetric of Ωppgq with respect to

0, and an elastic rope tied to the two nails 0 to materialize the convenient

paths of analytic continuation when one moves the second comb. We won’t

formalize such a proof. Exponential growth at infinity and simple-moderate

singularities are preserved by convolution.

In order to define alien derivatives of the entries of the gauge transfor-

mation rF pxq we limit ourselves to consider the differential sub-algebra rH rF
of rH generated by the entries of rF pxq. Formula (35) as noticed at the end

of Section 4.1.3 shows that the Stokes automorphism Stθ does not act insiderH rF since the image of a formal series may involve complex powers of x, loga-

rithms and exponentials. It is thus natural to extend the differential algebra
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� rH rF �pxλqλPZΛ, ln x, pe�ω{xqωPZΩ�.

This is the differential algebra we are willing to work in. The coefficients are

formal 1-summable series, xλ, lnx, e�ω{x are formal indeterminates satisfying

the usual rules. The derivation is d{dx.
4.4.2 Extended Stokes automorphisms

Let θ P R{2πZ be an anti-Stokes direction associated with System (1) and

θÆ P R its principal determination.

In Section 4.1.3, we described the Stokes automorphism as a map acting

on formal solutions by means of a choice of a determination of the argument

θÆ. Such a definition can be extended into an automorphism of the differential

algebra rH rF rY0
as follows.

Proposition 4.7 (Extended Stokes automorphism)

The Stokes automorphism StθÆ can be extended into a differential unipotent

automorphism, still denoted StθÆ , of the differential algebra rH rF rY0
by setting:

– power factors xλ, logarithms and exponentials are kept fixed,

– rF is changed into rF xL eQp1{xqpIn � CθÆq e�Qp1{xq x�L.

Proof. Any resurgent symbol of rH rF rY0
has a unique expression of the

form
¸rgj xλj lnpj x e�ωj{x the sum running on finitely many distinct triplespλj , pj, ωjq P ZΛ � N � ZΩ if we assume, in addition, that 0 ¤ ℜλj   1

for all j (and rgj � 0). It can be isomorphically sent to the actual resurgent

symbol
¸

sθ�prgjqpxq xλj lnpjpxq e�ωj{x for arg x P �θÆ� π

2
, θÆ� π

2

�
. With this

isomorphism the map StθÆ as defined in the proposition reads as the map¸
sθ�prgjqpxq xλj lnpjpxq e�ωj{x ÞÑ¸

sθ�prgjqpxq xλj lnpj pxq e�ωj{x
in the space of actual resurgent symbols of the form¸

sθ�prgjqpxq xλj lnpj pxqe�ωj{x with rgj P rH rF rY0
and arg x P �θÆ � π

2
, θÆ � π

2

�
9For non-linear situations one has to consider resurgent symbols with infinitely many

exponential terms.
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if one expands sθ�prgjqpxq according to Formula (37) (Since rgj is 1-summable

it has a well-defined Stokes phenomenon and the result does not depend on

the way rgj is expanded in terms of the entries of rF ). Since summations sθ�
and sθ� are automorphisms of differential algebras so is StθÆ . The reciprocal

map St�1
θÆ is obtained by keeping the same space of actual resurgent symbols

while exchanging the roles of sθ� and sθ� and then the Stokes matrix In�CθÆ
by its inverse pIn � CθÆq�1.

The extended Stokes automorphism keeps being unipotent. Indeed, this

results from the fact that it is already unipotent when acting in the space

of formal solutions of System (1) (its matrix In � CθÆ is unipotent). This

can also be seen as follows: if rFj,k is an entry of rF then Stθp rFj,kqpxq �rFj,kpxq � ° gλ,ℓ,ωpxq xλ lnℓpxq e�ω{x where the sum runs on finitely many λ

and ℓ and finitely many ω in Ωθ. The coefficients gλ.ℓ.ω are themselves ele-

ments of rH rF rY0
. The Stokes values of gλ.ℓ.ω are among those of rF translated

by �ω hence none is left on the half-line dθ after finitely many applications

of Stθ. l
With this extended definition we can now write

(41) StθÆp rF pxqq � rF pxq xL eQp1{xqpIn � CθÆqe�Qp1{xq x�L

instead of StθÆp rF pxq xL eQp1{xqq � rF pxq xL eQp1{xqpIn � CθÆq only (cf. (35)).

4.4.3 Graduation on the Stokes automorphisms

The graduation is built so as to discriminate between the different sub-

matrices


∆
�
ωÆ of the Stokes matrix CθÆ (cf. Section 4.2). This is done using

the exponential torus T of System (1).

Here is how to define T (cf. [21, 20]): Let b1, . . . , bν be a basis of the

lattice ZΩ. The polynomials p1p1{xq � �b1{x, . . . , pνp1{xq � �bν{x form a

basis of the Z-module generated by the determining polynomials q1, q2, . . . , qn
of the diagonal of Qp1{xq. The exponential torus takes into account the in-

determination of a formal exponential ep by associating with ep its complex

multiples λep (see Footnote 6). To define the exponential torus T one intro-

duces ν indeterminates λ � pλ1, λ2, . . . , λνq and associates λje
pj with each

epj . One can extend T to the algebra rH rF rY0
by letting it act trivially on

power series, complex powers of x and logarithms. We obtain thus a family

of automorphisms of rH rF rY0
with ν parameters.
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For j � 1, 2, . . . , n, denote mj � pmj,1, mj,2, . . . , mj,νq the components of the

qj ’s with respect to the pr’s. With respect to the formal fundamental solutionrF pxq xL eQp1{xq the exponential torus has a matrix representation of the form

(42) Tλ � diagpλm1 , λm2 , . . . , λmnq
where the notation λm stands for the product λm1

1 λm2

2 . . . λmν
ν . Its action on

the Stokes automorphism StθÆ generates a group Gλ of unipotent matrices

In � Tλ CθÆ T�1
λ with ν parameters. These matrices are polynomials in the

parameters λr and their inverses. Keep denoting Ωθ the set of non-zero

Stokes values aj � ak on the line dθ (cf. Section 2.2). To each Stokes value

ω P Ωθ there is a unique collection mpωq � pm1pωq, . . . , mνpωqq of weights
such that

ν̧

r�1

mrpωq prpxq � �ω
x
. One can check that the matrix



∆
�
ωÆ (cf.

Section 4.2) is the coefficient of the monomial λmpωq in TλCθÆ T�1
λ :

(43) TλCθÆ T�1
λ �

ω̧PΩθ



∆

�
ωÆ λmpωq.

4.4.4 Definition of the alien derivations

As a unipotent graded group the group Gλ admits infinitesimal generators

∆ωÆ in the sense that

(44) In � TλCθÆ T�1
λ � exp

�
ω̧PΩθ



∆ωÆ λmpωq	.

Definition 4.8 (dotted and undotted alien derivations)
 The dotted alien derivations


∆ωÆ are the transformations with matrix the

coefficient of λmpωq in the expansion of the logarithm ln
�
In�TλCθÆ T�1

λ

�
(matrix in the chosen basis of formal solutions rF pxq xL eQp1{xq).
(45) ln

�
In � Tλ CθÆ T�1

λ

� �
ω̧PΩθ



∆ωÆ λmpωq
 The alien derivation ∆ωÆ is defined by ∆ωÆ � e�ω{x 


∆ωÆ .
When ω does not belong to Ωθ for any θ the alien derivations



∆ωÆ and

∆ωÆ are equal to 0.

Like St�θÆ the dotted alien derivations act trivially on xL and eQp1{xq so that

∆ωÆ � rF pxq� � rF pxq xLe�ω{x 


∆ωÆ x�L.
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and

∆ωÆ� rF pxq� � rF pxq xL 

∆ωÆ x�L.

The alien derivations are derivations by construction and they commute with

the usual derivation d{dx.
We end this section with a remark on the various choices made.

We saw that the meromorphic classifying set is given by the Stokes automor-

phisms Stθ, rF defined, for all anti-Stokes direction, as gauge transformations

of the normal form. To look at the Stokes automorphisms StθÆ defined as

linear maps on the space of formal solutions of System (1) and get their

extended forms we needed to choose a determination of the argument and

an actual form of the formal exponentials. With different choices the Stokes

matrix is conjugate under the iterated action of the formal monodromy with

matrix xM � x2πiL with respect to rY0 � xL eQp1{xq and under the action of

the exponential torus T . The same conjugacy actions must be taken into

account when performing the analytic classification with alien derivations.

4.4.5 Bridge equation

The “definition” formula above rewritten in the form

(46) ∆ωÆ� rF pxqxL� � rF pxq xL 

∆ωÆ

can be seen as Écalle’s Bridge Equation. The name “bridge” comes from

the fact that the equation links alien derivatives (left hand side of the bridge

equation) to ordinary derivatives (right hand side of the bridge equation).

Indeed, the right hand side can be seen as an ordinary derivative as follows.

We consider only the first n1 columns, the calculation for the kth block of

columns being the same after multiplication by eak{x. Introduce the general

solution (also said formal integral) of System (1) which has the formrfpxq xL1M0 � ¸
ωPta2,...,aJuφωÆpxqMωÆ e�ω{x

where the φ’s are formal-log series and the M ’s are arbitrary constant ma-

trices. The alien derivative of rfpxq xL1 at ω is the derivative of this general

solution with respect to e�ω{x considered as an independent variable10, with

a convenient choice of the matrices M (Écalle’s analytic invariants


∆ωÆ).

10 In the case of scalar solutions of an equation instead of a system, J. Écalle takes
derivatives with respect to the constants. Since, here, the constant coefficients of the
various exponentials are matrices it is more convenient to derivate with respect to the
exponentials themselves.
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In Écalle’s approach, alien derivatives are defined as an average of ana-

lytic continuations in the Borel plane followed by a Laplace transform. The

Bridge Equation results from the fact that dotted alien derivatives commute

with the derivation d{dx. In this approach, it is nothing more than the

definition formula.

4.5 The example of the generalized hypergeometric
equation D13,1

We consider the generalized hypergeometric equation of order 13

(47) D13,1pyq � �xdy
dx

� µy
	� x

13¹
j�1

�
x
d

dx
� pνj � 1q	y � 0

where µ and the νj’s are complex parameters11. Its Newton polygon at 0

has a slope 0 of length 1 and a slope 1/12 of length 12. Putting x � t12 the

equation becomes

(48) D13,1pyq � � 1

12
t
dy

dt
� µy

	� t12
13¹
j�1

� 1

12
t
d

dt
� pνj � 1q	 y � 0.

We keep using the equation itself taking benefit of having a quite simple

equation but we could as well commute to the companion system.

The hypergeometric equation (48) is of single level 1. Its determining

polynomials q1, q2, . . . , q13 are calculated in [9] and are

q1 � 0 q2 � �12{t q3 � �12ζ{t q4 � �12ζ2{t
q5 � �12ζ3{t q6 � �12ζ4{t q7 � �12ζ5{t
q8 � �12ζ6{t q9 � �12ζ7{t q10 � �12ζ8{t
q11 � �12ζ9{t q12 � �12ζ10{t q13 � �12ζ11{t

where ζ stands for the twelfth primitive root of unit ζ � e2πi{12. A formal

fundamental solution rF ptq tLeQp1{tq reads
(49)

� rF 1ptq t12µ eq1p1{tq rF 2ptq t�12λ eq2p1{tq � � � rF 13ptq t�12λ eq13p1{tq�
where λ � 1

12

�13
2
� µ� 13̧

j�1

νj

	
.

11The irregular singular point, usually put at infinity (cf. [9]), is here located at 0.
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From the fact that the minimal polynomial

of ζ is the cyclotomic polynomialX4�X2�1
we deduce that a basis for the lattice built

on the qj ’s is given by

p1 � q2 � �12{t p2 � q3 � �12ζ{t
p3 � q4 � �12ζ2{t p4 � q5 � �12ζ3{t

Note that the lattice built on the coefficients 12, 12ζ, 12ζ2, 12ζ3 is dense in

C. However, only finitely many values are Stokes values for D13,1.

In the p-basis the determining polynomials read

q1 � 0 q2 � p1 q3 � p2 q4 � p3 q5 � p4

q6 � p3 � p1 q7 � p4 � p2

q8 � �p1 q9 � �p2 q10 � �p3 q11 � �p4
q12 � �p3 � p1 q13 � �p4 � p2

so that, denoting λ � pλ1, λ2, λ3, λ4q, the matrix of the exponential torus is

given by

Tλ � diag
�
1, λ1, λ2, λ3, λ4,

λ3

λ1
,
λ4

λ2
,
1

λ1
,
1

λ2
,
1

λ3
,
1

λ4
,
λ1

λ3
,
λ2

λ4

	
.

Let us consider the anti-Stokes direction θ � 0 with principal determination

θÆ � 0 and denote C0 the corresponding Stokes matrix.

Let Ej,ℓ denote the elementary 13 � 13-matrix the entries of which are all 0

but the one at row j and column ℓ which is equal to 1.

The Stokes values ω supported by the half line d0, issued from 0 with argu-

ment 0 (i.e., ω P Ω0), are

ω � 12 associated with q1 � q8 � q2 � q1 � q4 � q6 � q12 � q10 � p1

ω � 12
?
3 associated with q3 � q7 � q13 � q9 � ?

3 p1

ω � 24 associated with q2 � q8 � 2 p1
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and consequently, the Stokes matrix satisfies

TλC0T
�1
λ � �

cp1,8qE1,8 � cp2,1qE2,1 � cp4,6qE4,6 � cp12,10qE12,10

	
λ1��cp3,7qE3,7 � cp13,9qE13,9

	 λ22
λ4��cp2,8qE2,8

	
λ21

since one has also the relations q3� q7 � q13� q9 � 2p2� p4. In other words,

we obtain:

∆
�
12 � cp1,8qE1,8 � cp2,1qE2,1 � cp4,6qE4,6 � cp12,10qE12,10,


∆
�
12
?
3 � cp3,7qE3,7 � cp13,9qE13,9,


∆
�
24 � cp2,8qE2,8.

Note that TλC0T
�1
λ does not depend on the parameter λ3 which, in turn,

would appear in TλC�πT
�1
λ . The Stokes multipliers cpj,ℓq are made explicit in

term of Barnes integrals in [9].

We know from the previous section that the alien derivations in the various

Stokes values belonging to Ω0 are given in terms of the Stokes multipliers

above by taking the logarithm of I13 � TλC0T
�1
λ . From the relationsp 


∆
�
12q2 � cp2,1q cp1,8qE2,8 and


∆
�
12



∆

�
12
?
3� 


∆
�
12
?
3



∆

�
12� 


∆
�
12



∆

�
24� � � � � p 


∆
�
24q2 � 0 we obtain

ln
�
I13 � TλC0T

�1
λ

�� � 

∆

�
12 λ1� 


∆
�
12
?
3

λ22
λ4
� 


∆
�
24 λ

2
1

	� 1

2

� 

∆
�
12 λ1 � � � �	2 � � � �� 


∆
�
12 λ1� 


∆
�
12
?
3

λ22
λ4

� � 

∆
�
24 �1

2
p 

∆
�
12q2	λ21.

Hence,

(50)



∆12 � 


∆
�
12 � cp1,8qE1,8 � cp2,1qE2,1 � cp4,6qE4,6 � cp12,10qE12,10


∆12
?
3 � 


∆
�
12
?
3 � cp3,7qE3,7 � cp13,9qE13,9


∆24 � 

∆
�
24 �1

2
p 

∆

�
12q2 � �

cp2,8q � 1

2
cp2,1q cp1,8q	E2,8
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We can develop these formulæ by writing


∆12 p rF q � rF tL e�12{t 


∆12 t
�L

or ∆12p rF q � rF tL 

∆12 t

�L and so on. . . , i.e.,

(51)

$''''''''&''''''''%
∆12p rF 1q � rF 2 t�12pλ�µq cp2,1q ∆12p rF 6q � rF 4 cp4,6q
∆12p rF 8q � rF 1 t12pλ�µq cp1,8q ∆12p rF 10q � rF 12 cp12,10q
∆12

?
3p rF 7q � rF 3 cp3,7q ∆12

?
3p rF 9q � rF 13 cp13,9q

∆24p rF 8q � rF 2
�
cp2,8q � 1

2
cp2,1qcp1,8q	

all other alien derivatives on the real positive line being 0.

Equations (51) can be seen as Écalle bridge equations.

Remark 4.9 We end this example with a comment on, for instance, the

last formula in (50) compared to those of [26, Lemma 5] deduced directly

from the definition of alien derivations by analytic continuation in the Borel

plane. If we consider that there is on d0 � R� the three singularities ω1 �
12, ω2 � 12

?
3 and ω3 � 24 then our formula does not fit the expression given

in Lemma 5 of [26] for ∆ω3
. To fit it in, we should actually re-introduce the

missing singular point ω1 � 24 � 12
?
3 attached to the monomial

λ21λ4

λ22
—

although with a null coefficient


∆
�
ω1
� 0— which combined with the monomial

λ22
λ4

attached to 12
?
3 gives the monomial λ21 attached to 24. Set ω2 � 12, ω3 �

12
?
3, ω4 � 24 and the calculation, in both cases, gives the same result

∆ω4
� ∆�

ω4
� 1

2
p∆�

ω2

2 �∆�
ω1
∆�

ω3
�∆�

ω3
∆�

ω1
q�1

3
p∆�

ω1

2
∆�

ω2
�∆�

ω1
∆�

ω2
∆�

ω1
�∆�

ω2
∆�

ω1

2q � 1

4
∆�

ω1

4

if one takes into account the fact that ∆�
ω1
� 0.

4.6 An example with resonance

We consider the systempSq x2
dY

dx
� ���� 0 0 0 0

x2 1 x 0
x2 0 1 x

x2 0 0 1

���� Y
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and its formal fundamental solution rY pxq � rF pxq xL eQp1{xq where
• Qp1{xq � diagp0,�1{x,�1{x,�1{xq, (Hence, the system has the unique

level 1 and the Stokes values �1),
• L � ����0 0 0 0

0 0 1 0
0 0 0 1
0 0 0 0

���� (L is not diagonal; hence the resonance),

• rF pxq � ����� 1 0 0 0rf2 1 0 0rf3 0 1 0rf4 0 0 1

����� is a power series satisfying rF pxq � I4 �Opx2q.
The system admits the two anti-Stokes directions θ � 0 and θ � π. Obvi-

ously, the Stokes matrix in direction π is trivial: I4 � Cπ � I4.

We consider the anti-Stokes direction θ � 0 supporting the unique Stokes

value ω � 1. Our aim is the calculation of the alien derivation ∆1 in terms

of the Stokes multipliers in direction θ � 0. Actually, although System pSq
is quite a little bit involved since it exhibits resonance, it is simple enough to

allow an exact calculation of the Stokes multipliers as below. We will then

be able to give an exact calculation for ∆1.

One can check that the series rfj’s are the unique solutions of the system
(52)

$'''''''&'''''''%
x2
d rf2
dx

� rf2 � x2 � x rf3
x2
d rf3
dx

� rf3 � x2 � x rf4
x2
d rf4
dx

� rf4 � x2

satisfying the condition rfjpxq � Opx2q. It results that their Borel transformspfj are given by

(53)

$'''''''&'''''''%
pf2p1� ξq � 1

ξ

�1
2
p6� π2 � 4πiq � p2� πiq ln ξ � 1

2
ln2 ξ

	� 3pf3p1� ξq � 1

ξ

�p2� πiq � ln ξ
	� 2pf4p1� ξq � 1

ξ
� 1
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and consequently, the connection matrix K�p1q is given by

K�p1q �
������������

0 0 0 0

k2 � 1
2
p6� π2 � 4πiq 0 0 0

k3 � 2� πi 0 0 0

k4 � 1 0 0 0

������������ .

From Corollary 4.5 we deduce that the Stokes multipliers C
p2,1q
0 , C

p3,1q
0 and

C
p4,1q
0 are $''''''&''''''% C

p2,1q
0 � κ0p0q k2 � κ1p0q k3 � 1

2
κ2p0q k4

C
p3,1q
0 � κ0p0q k3 � κ1p0q k4

C
p4,1q
0 � κ0p0q k4

Recall that κppλq � 2πi
dp

dtp

� e�iπt

Γp1� tq	���
t�λ

and then,$''''''&''''''% κ0p0q � 2πi

κ1p0q � 2π2 � 2πiγ

κ2p0q � �4π2γ � 7π3i
3
� 2πγ2i

where γ � 0.5772 . . . is the Euler constant. We obtain

C
p2,1q
0 � p6π � 1

6
π3 � 4πγ � πγ2q i

C
p3,1q
0 � 2πp2� γq i

C
p4,1q
0 � 2πi

.

The lattice built on the unique polynomial qp1{xq � �1{x is generated

by q itself and the matrix of the exponential torus is Tλ � diagp1, λ, λ, λq.
The action of the exponential torus on I4 � C0 results in TλpI4 � C0qT�1

λ �
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I4�λC0 and lnpI4�TλC0T
�1
λ q � λC0. Thus,



∆
�
1 � C0 and the alien derivation


∆1� C0. We can write


∆1 p rF q � rF xL C0 x

�L e�1{x or ∆1p rF q � rF xL C0 x
�L,

i.e.,

∆1p rf2q � C
p2,1q
0 � C

p3,1q
0 ln x� 1

2
C
p4,1q
0 ln2 x

∆1p rf3q � C
p3,1q
0 � C

p4,1q
0 ln x

∆1p rf4q � C
p4,1q
0

.
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