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Resurgence, Stokes phenomenon and alien derivatives

for level-one linear differential systems.

Introduction

All along the paper we are given an ordinary linear differential system (in short, a differential system or a system) of dimension n with analytic coefficients at 0 in C and rank one1 

(1)

x 2 dY dx AÔxÕY

AÔxÕ È M n ÔCØxÙÕ, AÔ0Õ 0

1 x 2 AÔxÕ Y .
together with a formal fundamental solution at 0

(2)

Ö Y ÔxÕ Ö F ÔxÕx L e QÔ1ßxÕ
where Ö F ÔxÕ È M n CÔÔxÕÕ ¨, is an invertible formal meromorphic matrix, L J j 1

Ôλ j I n j J n j Õ where I n j is the identity matrix of size n j and J n j q j Ô1ßxÕI n j where the q ½ j s are polynomials.

In the very general rank one case the determining polynomials q j are of maximal degree equal to 1 with respect to 1ßx but they could be polynomials in a fractional power of 1ßx. Our assumption of "single level equal to 1" implies that the polynomials q j be monomials of degree 1 in 1ßx, not all equal to a same polynomial q, some of them being possibly zero. We denote

(3) QÔ1ßxÕ GL n CÔÔxÕÕ ¨2. 2 The formal classification over an extension CÔÔtÕÕ of the base field CÔÔxÕÕ by a ramification x t p started with Poincaré and Fabry and later Turrittin [START_REF] Turrittin | Convergent solutions of ordinary linear homogeneous differential equations in the neighborhood of an irregular singular point[END_REF]. See also Malgrange [START_REF] Deligne | Singularités irrégulières. Documents Mathématiques[END_REF]. Over the base field itself it is due to Balser, Jurkat and Lutz [START_REF] Balser | A general theory of invariants for meromorphic differential equations[END_REF]. For a shorter proof and an improvement of the Formal Classification Theorem see [START_REF] Loday-Richaud | Rank reduction, normal forms and Stokes matrices[END_REF].

Note that, in the whole paper, we make no other assumption than the assumption of a single level equal to one, case in which the basic theory of resurgence takes place. In particular, no assumption of genericity, such as distinct eigenvalues or diagonal monodromy L, is made and any kind of resonance is allowed.

The paper deals with the analytical properties of the solutions of System [START_REF] Babbitt | Local moduli for meromorphic differential equations[END_REF] underlying the meromorphic classification at 0, also referred to as Stokes phenomenon. There exists mainly two "dual" approaches to this phenomenon:

• The first one , related to the theory of summation, is fully developed in the plane of the initial variable x, which we refer to as the Laplace plane. Various methods [START_REF] Malgrange | La classification des connexions irrégulières à une variable[END_REF][START_REF] Martinet | Elementary acceleration and multisummability[END_REF][START_REF] Babbitt | Local moduli for meromorphic differential equations[END_REF][START_REF] Loday-Richaud | Stokes phenomenon, multisummability and differential Galois groups[END_REF] produce a full set of invariants in the form of Stokes matrices. Are considered only those Stokes matrices providing the transition between the sums (in our case, Borel-Laplace or 1-sums) of a same formal fundamental solution Ö Y ÔxÕ on each side of its anti-Stokes (singular) directions. We call them Stokes-Ramis matrices.

• The second one is strongly related to the theory of resurgence [START_REF] Écalle | Les algèbres de fonctions résurgentes[END_REF] and produces invariants in the form of alien derivations. The alien derivatives of a series Ö f ÔxÕ have been defined by J. Écalle through an average of various analytic continuations of the Borel transform Ô f ÔξÕ of Ö f ÔxÕ;

they have been mostly developed in the plane of the variable ξ which we refer to as the Borel plane.

Much have been already said on these questions but either in situations restricted by generic conditions or in very general ones. In particular, the theory of resurgence was developed by J. Écalle in the very general framework of non-linear differential equations, difference equations and so on. . . where it proves to be very efficient. In this context it seemed to us to be worth to make explicit what is specific to the linear case, what has to be really taken under consideration or can be made more precise, and how the various viewpoints are connected.

The first Section is devoted to proving that the formal gauge transformation Ö F ÔxÕ is summable-resurgent. We first sketch a proof on linear differential equations based on the Newton polygon and Ramis Index Theorems. We develop then a proof by perturbation and majorant solutions following J. Écalle's method [START_REF] Écalle | Les fonctions résurgentes, l'équation du pont et la classification des objets locaux[END_REF]. This latter proof allows us to display a precise description of the singularities in the Borel plane (Section 2).

In Section 3 we compare the classification by the Stokes cocycle versus the classification by the alien derivations. Roughly speaking, the first approach selects an element in a unipotent Lie group while the second one provides its "tangent" variant in the associated Lie algebra. Moreover, for theoretical reasons as well as for computational ones, we make explicit the Stokes matrices in terms of the connection constants in the Borel plane.

2 Summable-resurgence

Prepared system

Before to start the calculations we prepare the system as follows.

A gauge transformation of the form Y T ÔxÕ x ¡λ 1 e a 1 ßx Y where the transformation T ÔxÕ has explicit computable polynomial entries in x and 1ßx allows to assume that the following conditions are satisfied:

(5) Ö

F ÔxÕ I n ô m 1 F m x m È GL n ÔCÖÖx××Õ with initial condition Ö F Ô0Õ I n , (6) 
0 ReÔλ j Õ 1 for j 1, . . . , J,

a 1 λ 1 0.

Conditions [START_REF] Balser | Formal power series and linear systems of meromorphic ordinary differential equations[END_REF] and [START_REF] Braaksma | Multisummability and Stokes multipliers of linear meromorphic differential equations[END_REF] guaranty the unicity of Ö F ÔxÕ. Condition [START_REF] Braaksma | The Stokes phenomenon in exact asymptotics[END_REF] is for notational convenience. Still, the a j 's are not supposed distinct. Any of the J column-blocks of Ö F ÔxÕ associated with the irreducible Jordan blocks of L (matrix of exponents of formal monodromy) can be positioned at the first place by means of a permutation P on the columns of Ö Y ÔxÕ. If Ö Y ÔxÕ is given in the form (2) so is the new formal fundamental solution Ö Y ÔxÕP Ö F ÔxÕPx P ¡1 LP e P ¡1 QÔ1ßxÕP . Thus, we can restrict our study to the first column-block of Ö F ÔxÕ that we denote by Ö f ÔxÕ.

Gauge transformations and permutations of this kind will be referred to as elementary transformations.

Some definitions

For the convenience of the reader we recall some definitions about the notions of resurgence and summation adapted to linear level-one differential systems. It is worth to note that, due to the linearity, it is useless, at least for the moment, to consider convolution algebras and lattices of singularities since no convolution of singularities may occur. For a more general framework we refer to [START_REF] Écalle | Les fonctions résurgentes, l'équation du pont et la classification des objets locaux[END_REF][START_REF] Malgrange | Introduction aux travaux de J. Écalle[END_REF][START_REF] Sauzin | Resurgent functions and splitting problems[END_REF].

All along the article, given a matrix M split into blocks fitting the structure of L, we denote • M j; the j th row-block of M,

• M ;k the k th column-block of M,

• M j;k the k th column-block in the j th row-block of M,

• M j;ÔkÕ the k th column in the j th row-block of M,

• M Ôj,ℓÕ; the ℓ th row in the j th row-block of M. The anti-Stokes directions associated with the k th column-block of Ö F ÔxÕ are given by the non-zero elements of Ω ¡ a k (to normalize the k th columnblock one has to multiply by e ¡a k ßx ) and the anti-Stokes directions of System (1) (i.e., associated with the full matrix Ö F ÔxÕ) are given by the non-zero elements of

• Ω Ø a j ¡ a k ; 1 j, k JÙ.

The elements of Ω are the Stokes values of the homological system satisfied by Ö F ÔxÕ (cf. System (12) below).

We denote • The points of R Ω are the homotopy classes with fixed extremities of paths γ issuing from 0 and lying in CÞΩ (but the starting point 0); in particular, no path except those that are homotopic to the constant path 0 ends at 0.

• Ω θ Ω ¦ d θ
• The complex structure of R Ω is the pull-back of the usual complex structure of CÞΩ ¦ by the natural projection

π : R Ω CÞΩ ¦ Öγ× end-point γÔ1Õ.
The difference between R Ω and the universal cover of CÞΩ lies in the fact that R Ω has no branch point at 0 in the first sheet.

Definition 2.2 Resurgence.

• Resurgence in the Borel plane (in Ecalle's language, convolutive model).

A resurgent function with singular support Ω is any function defined and analytic on all of R Ω .

• Resurgence in the Laplace plane (in Ecalle's language, formal model).

A series Ö

f ÔxÕ in powers of x is said to be a resurgent series with singular support Ω when its Borel transform Ô f ÔξÕ is a convergent series near ξ 0 which can be analytically continued to R Ω (in short, its Borel transform is resurgent with singular support Ω).

Let Ý

Res Ω and Res Ω denote the sets of resurgent functions and of resurgent series with singular support Ω respectively.

A resurgent function of Ý

Res Ω is analytic at 0 on the first sheet of R Ω . To emphasize the special role played by 0 we sometimes denote the singular support by Ω, 0 As a Fourier operator the Borel transform exchanges multiplication by an exponential and translation. We denote by R Ω,ω and Ý

Res Ω,ω the spaces R Ω and Ý Res Ω translated by ω so that, in particular, R Ω R Ω,0 and Ý

Res Ω

Ý

Res Definition 2.3 ν-sectorial region or ν-sector Given ν 0, smaller than half the minimal distance between the elements of Ω, we call ν-sectorial region or ν-sector ∆ ν a domain of the Riemann surface R Ω composed of the three following parts:

• an open sector Σ ν with bounded opening at infinity;

• a neighborhood of 0, say, an open disc D ν centered at 0;

• a tubular neighborhood N ν of a piecewise-C 1 path γ connecting D ν to Σ ν after a finite number of turns around all or part of points of Ω.

Moreover, the distance of D ν to ΩÞØ0Ù and the distance of N ν Σ ν to Ω has to be greater than ν.

Lemma 2.4 Let ∆ ν be a sectorial region.

There exits a constant K 0 so that, for all ξ È ∆ ν , there is a piecewise-C 1 -path γ ξ contained in ∆ ν and parameterized by arc length from 0 to ξ such that the arc length s η of all η È γ ξ satisfies

(8) η s η K η .
η denotes the modulus of (the projection of ) η in C.

Proof. The first inequality being trivial we just have to prove that s η K η . Assume first that the path γ is C 1 .

Let γ ½ denote the extension of γ from 0 to its beginning point, say, by a straight line. Let ξ e denote the end-point of γ in Σ ν and ℓ ξ e denote the length of γ ½ from 0 to ξ e . The transversals of γ in N ν have all the same finite length.

• The property is clearly true in D ν with K 1.

• Given ξ in N ν , consider a transversal issuing from ξ and denote ξ 0 its intersection with γ. Let γ ξ be the path made of γ ½ from 0 to ξ 0 followed by the arc of transversal ξ 0 ξ.

For all η È γ ξ , the arc length s η is less than a constant c independent of ξ (γ and the transversals have finite length) and the euclidian distance η is greater than ν. Hence, s η c ν η .

• Given ξ È Σ ν , consider the point ξ 0 at distance ξ from 0 on the ray issued from 0 through ξ e . Let γ ξ be the path γ ½ followed by the segment Ôξ e ξ 0 Õ and the arc ξ 0 ξ of the circle centered at 0 with radius ξ included in Σ ν .

For η È Ôξ e ξ 0 Õ the inequality holds with K ℓ. For η belonging to the arc ξ 0 ξ we deduce from the inequalities s ξ 0 ℓ ξ 0 ℓ η and s η ¡ s ξ 0 α η , where α denotes the opening angle of Σ ν , that the inequality holds with K ℓ α.

The case when the path is piecewise-C 1 is similar and left to the reader. Ð Definition 2.5 Summable-resurgence.

• A resurgent function Ô f ÔξÕ È Ý
Res Ω is said to be summable-resurgent when it grows at most exponentially at infinity on any ν-sectorial region ∆ ν of R Ω .

• A resurgent series Ö f ÔxÕ È Res Ω is said to be summable-resurgent if its Borel transform is a summable-resurgent function.

We denote respectively Ý Res

sum Ω

and Res

sum Ω

the set of summable-resurgent functions and the set of summable-resurgent series with singular support Ω, 0. We denote Ý Res sum Ω,ω the set of functions of Ý Res sum Ω translated by ω.

In general, the exponential type depends on the ν-sectorial region ∆ ν and is unbounded when the width of ∆ ν goes to infinity (cf. Remark 2.11).

The set Ý Res

sum

Ω,ω is a O 1 ÔCÕ¦submodule of Ý
Res Ω,ω .

Remark 2.6 A summable-resurgent series is both resurgent and summable but the converse is false. Indeed, a series is summable when it satisfies the conditions of Definition 2.5 in restriction to the first sheet only.

Summable-resurgence theorem

We are now able to state the result in view in this section:

Theorem 2.7 (J. Écalle [START_REF] Écalle | Les fonctions résurgentes, l'équation du pont et la classification des objets locaux[END_REF]) Assume that System (1) has a single level equal to one (cf. Assumption (3)) and denote Ö f ÔxÕ the first n 1 columns of Ö F ÔxÕ.

Then, Ö f is summable-resurgent with singular support Ω, 0 (recall a 1 0):

Ö f ÔxÕ È Res sum Ω .
By means of elementary transformations (cf. Section 2.1) the result can be extended to the full matrix Ö F replacing however Ω by Ω. Therefore, we can state: Corollary 2.8 Under the same conditions as in Theorem 2.7 the full matrix Ö F is summable-resurgent with singular support Ω, 0:

Ö F ÔxÕ È Res sum Ω .
The hypothesis of "single level equal to 1" is central. In a paper to come it will be shown how to generalize this result to the case of a single level not equal to one. In the case of several levels one has to consider several Borel planes simultaneously. Theorem 2.7 can be proved in different ways. We first sketch a proof based on the Newton polygon and Ramis Index Theorem, the system being given in the form of an equation of order n. Next, we develop a proof following Écalle's method by regular perturbation of the system and majorant series.

This second approach will allow us to precisely describe the singularities of the Borel transform ϕÔξÕ Ô f ÔξÕ in the Borel plane which are all located in the set Ω.

Sketch proof of summable-resurgence using linear differential equations

The ΓÔmÕ for all m 0.

Consider now a differential equation DyÔxÕ 0 with single level one. By the Birkhoff Algebraization Theorem [START_REF] Sibuya | Linear differential equations in the complex domain: problems of analytic continuation[END_REF]Th. 3.3.1] we may assume that the operator D has rational coefficients. By means of an elementary, possibly trivial, gauge transformation (cf. Section 2.1) we may also assume that the equation admits a formal series solution Ö f ÔxÕ.

Multiplying D by a convenient power of 1ßx if needed, the Borel transformed equation Ô DÔ yÔξÕ 0 is again an ordinary linear differential equation with polynomial coefficients. Ramis Index Theorem [START_REF] Ramis | Théorèmes d'indices Gevrey pour les équations différentielles ordinaires[END_REF] shows that the series Ö f ÔxÕ is of Gevrey type of order 1. Hence, its Borel transform Ö BÔ Ö f ÕÔξÕ converges in a neighborhood of the origin ξ 0; we denote by ϕÔξÕ its sum. A direct calculation using the characteristic equation associated with slope 1 of the Newton polygon of D shows that the singularities of Ô DÔ yÔξÕ 0 belong to the finite set Ω of the Stokes values of DyÔxÕ 0. From the Cauchy-Lipschitz theorem one can then assert that ϕÔξÕ is resurgent with singular support Ω, 0, i.e., it can be analytically continued along any path issuing from 0 and staying in CÞΩ. To see that ϕÔξÕ has exponential growth at infinity, it suffices to notice that the equation Ô DÔ yÔξÕ 0 has rank one at infinity [START_REF] Malgrange | Fourier transform and differential equations[END_REF]Theorem 1.4].

Proof of summable-resurgence on systems following J. Écalle's approach

Since, by the Cyclic Vector Theorem, equations and systems are meromorphically equivalent, to get the summable-resurgence of solutions of systems there is no need for a new proof made directly on systems. However, the proof below quoted by J. Écalle [START_REF] Écalle | Les fonctions résurgentes, l'équation du pont et la classification des objets locaux[END_REF] has its own interest. In particular, it allows us to give a precise description of the singularities of ϕÔξÕ in the Borel plane. A simpler case where the formal monodromy is assumed to be trivial (L I n ) can be found in [START_REF] Loday-Richaud | Solutions formelles des systèmes différentiels linéaires méromorphes et sommation[END_REF]; the case of a higher level can be found in [START_REF] Remy | Résurgence des systèmes différentiels linéaires et calcul des matrices de Stokes[END_REF].

Setting the problem.

The conclusion of Theorem 2.7 being preserved by elementary and meromorphic gauge transformations, we can assume that the system is so prepared that conditions (5), ( 6) and [START_REF] Braaksma | The Stokes phenomenon in exact asymptotics[END_REF] As previously said, we restrict the study to the first column-block Ö f of Ö F uniquely determined by the first n 1 columns of the homological system (12)

x 2 d Ö F dx ¡ A 0 ÔxÕ Ö F Ö F A 0 ÔxÕ BÔxÕ Ö F
Loday-Richaud and Remy, Resurgence for level-one linear diff. systems 13 jointly with the initial condition Ö f Ô0Õ I n,n 1 (Recall that I n,n 1 denotes the identity matrix I n truncated at its first n 1 columns). Hence, the system (13)

x 2 d Ö f dx ¡ A 0 ÔxÕ Ö f x Ö f J n 1 BÔxÕ Ö f .
(Recall a 1 λ 1 0). It is not clear from the Borel transformed system

(14) ξ Ô f ¡ Ô A 0 ¦ Ô f 1 ¦ Ô f J n 1 Ô B ¦ Ô f that the Borel transform Ô f ÔξÕ of Ö f
ÔxÕ satisfies the conditions of Definition 2.5 for Ö f ÔxÕ to be summable-resurgent.

To prove the summable-resurgence of Ö f ÔxÕ, J. Écalle suggests in [START_REF] Écalle | Les fonctions résurgentes, l'équation du pont et la classification des objets locaux[END_REF] to regularly perturb System (13) by substituting αB for B, next to solve this perturbed system in terms of a power series in the parameter α and then, to proceed by majorant series satisfying a convenient system. There exists, of course, many possible majorant systems. Here below, we make explicit a possible one. We consider the very general case when L is in non diagonal form, covering thus, all possible cases of resonances. The calculation is made more complicated than in the diagonal case since we have to work with packs of equations instead of individual ones but the philosophy keeps the same.

We split Ö f ÔxÕ into row-blocks Ö f j; ÔxÕ accordingly to the Jordan structure of L and we refer to Section 2.2 for the notations.

The perturbed system.

An identification of equal powers of α shows that the perturbed system (15)

x 2 d Ö f dx ¡ A 0 ÔxÕ Ö f x Ö f J n 1 αBÔxÕ Ö f
equivalent, for all j È Ø1, . . . , JÙ, to (16) Note also that the only singularities of System [START_REF] Malgrange | Sommation des séries divergentes[END_REF] are the Stokes values a j È Ω and we can conclude that the ϕ m 's are resurgent functions defined on R Ω .

x 2 d Ö f j; dx ¡ Ôa j λ j xÕ Ö f j; ¡ xJ n j Ö f j; x Ö f j; J n 1 αB j; Ö f admits a unique formal solution of the form Ö f Ôx, αÕ ô m 0 Ö f m ÔxÕα m satisfying Ö f 0 ÔxÕ I n,
°³ ³ ³ ² ³ ³ ³ ± Ôξ ¡ a j Õ dϕ Ôj,ℓÕ;ÔkÕ m dξ ¡ Ôλ j ¡ 1Õϕ Ôj,ℓÕ;ÔkÕ m ϕ Ôj,ℓ 1Õ;q m ¡ ϕ Ôj,ℓÕ;Ôk¡1Õ m d Ô B Ôj,ℓÕ; dξ ¦ ϕ ;ÔkÕ

What has to be proved.

Fix now ν 0 and a ν-sectorial region ∆ ν as described in Definition 2.3.

We are left to prove that f ÔξÕ grows at most exponentially on ∆ ν at infinity. These properties could be directly shown to be true for the ϕ m 's. To prove that they are true for Ô f we use the technique of majorant series.

A candidate majorant system.

Instead of System (16) consider, for j 1, . . . , J, the perturbed linear system (20)

°³ ² ³ ± C j ÔÖ g j; ¡I j; n,n 1 Õ J n j Ö g j; Ö g j; J n 1 ¡ 2I j; n,n 1 J n 1 α B j; x Ö g if a j 0 Ôν ¡ λ j ¡ 1 xÕÖ g j; J n j xÖ g j; xÖ g j; J n 1 α B j; Ö g if a j 0
where the unknown Ö g is, like Ö f , a n¢n 1 -matrix split into row-blocks Ö g j; fitting the Jordan structure of L and where B denotes the series B in which the coefficients of the powers of x are replaced by their module. The constants C j 0 are to be adequately chosen which we will do in Lemma 2.9 below. For now, they are just arbitrary non-zero constants. System [START_REF] Martinet | Elementary acceleration and multisummability[END_REF], like System [START_REF] Malgrange | La classification des connexions irrégulières à une variable[END_REF], admits a unique formal solution Ö gÔx, αÕ OÔx m Õ and Ö

ô m 0 Ö g m ÔxÕα m such that Ö g 0 ÔxÕ I n,
g j; 2m OÔx m Õ if a j 0 OÔx m 1 Õ if a j 0
and consequently, Ö gÔx, αÕ can be seen as a series in powers of x whose coefficients are polynomials in α. But unlike Ö f m ÔxÕ in general, Ö g m ÔxÕ has non negative coefficients for all m 1.

Prove now that Ö gÔx, αÕ is a convergent series in Ôx, αÕ in a domain containing Ôx, αÕ Ô0, 1Õ.

From System (20) written for each individual column k we obtain, for all j, the linear system ( 21)

°³ ² ³ ± ÔC j ¡ J n j ÕÖ g j;ÔkÕ ¡ α B j; x Ö g ;ÔkÕ Ö g j;Ôk¡1Õ const if a j 0 ¡ ν ¡ λ j ¡ 1 x ¡ J n j x © Ö g j;ÔkÕ ¡ α B j; Ö g ;ÔkÕ xÖ g j;Ôk¡1Õ if a j 0.
(We set Ö g j;Ô0Õ 0). For x 0 the system reduces to [START_REF] Ramis | Théorèmes d'indices Gevrey pour les équations différentielles ordinaires[END_REF] ÔC j ¡ J n j ÕÖ g j;ÔkÕ ¡ α B ½ j; Ô0ÕÖ g ;ÔkÕ Ö g j;Ôk¡1Õ const if a j 0 νÖ g j;ÔkÕ 0 if a j 0.

However, B ½ j; Ô0ÕÖ g ;ÔkÕ ô r ar 0 B ½ j;r Ô0ÕÖ g r;ÔkÕ since B ½ j;r Ô0Õ 0 for all r such that a r a j 0 and an adequate linear combination among equations of this system allows to cancel the terms in α. System ( 22) is thus equivalent to a constant triangular system whose diagonal terms are either equal to C j or to ν. Having assumed C j 0 for all j it is then a Cramer system and System ( 21) is equivalent to a system of the form ÔT xMÔx, αÕÕg ;ÔkÕ NÔg ;Ôk¡1Õ Õ where T is a constant invertible matrix and M is analytic in Ôx, αÕ in a strip around x 0 while the right hand-side is a column vector depending on g j;Ôk¡1Õ and analytic in the same strip. The determinant of System ( 21) is analytic in Ôx, αÕ and non-zero for x 0 whatever α is equal to. There exists then a bi-disc centered at Ôx, αÕ Ô0, 0Õ and containing Ôx, αÕ Ô0, 1Õ on which the determinant does not vanish. On such a bi-disc, System 2.5.5 Majorant series and exponential growth.

Lemma 2.9 below shows that

Ô gÔK ξ Õ φ m ÔK ξ Õ is a majorant series for Ô f ÔξÕ ϕ m ÔξÕ on ∆ ν .
Lemma 2.9 Let K 0 be associated with the chosen ν-sector ∆ ν as in Lemma 2.4. For all m 0, ξ È ∆ ν , j 1, . . . , J and q 1, . . . , n 1 , the following inequalities hold:

(23) ϕ j;ÔkÕ m ÔξÕ φ j;ÔkÕ m Ôs ξ Õ φ j;ÔkÕ m ÔK ξ Õ.
(ϕ m and φ m are the Borel transforms of the "initial" solution Ö f m and of the "majorant" solution Ö g m respectively).

Proof. Recall that the functions ϕ m are defined over R Ω and the functions φ m on all of C. They are then all well defined over ∆ ν .

The series φ m ÔξÕ have non negative coefficients and by Lemma 2.4 we know that we can connect ξ to 0 by a path so that s ξ K ξ . Hence, the second inequality.

Prove the first inequality. For all m 1, the entries ϕ Ôj,ℓÕ;ÔkÕ Fix ξ È ∆ ν and a path γ ξ in ∆ ν as in Lemma 2.4 so that η s η K η for all η È γ ξ . We proceed by recurrence following the alphabetic order on Ôm, k, n j ¡ ℓÕ and we assume that for all Ôm ½ , k

½ , n j ¡ ℓ ½ Õ Ôm, k, n j ¡ ℓÕ, the inequality ϕ Ôj,ℓ ½ Õ;Ôk ½ Õ m ½ ÔηÕ φ Ôj,ℓ ½ Õ;Ôk ½ Õ m ½ Ôs η Õ holds for all η È γ ξ . (It holds for m ½ 0).
We observe that ω Ôj,ℓÕ;ÔkÕ

m ÔξÕ Ω Ôj,ℓÕ;ÔkÕ m Ôs ξ Õ. Indeed, § § § d Ô B Ôj,ℓÕ; dξ ¦ ϕ ;ÔkÕ m¡1 ÔξÕ § § § § § § ÷ s ξ 0 d Ô B Ôj,ℓÕ; dξ Ôξ ¡ ηÔsÕÕϕ ;ÔkÕ m¡1 ÔηÔsÕÕη ½ ÔsÕds § § § ÷ s ξ 0 d Ô B Ôj,ℓÕ; dξ Ô ξ ¡ ηÔsÕ Õ ϕ ;ÔkÕ m¡1 ÔηÔsÕÕ ds Ôsince η ½ ÔsÕ 1Õ ÷ s ξ 0 d Ô B Ôj,ℓÕ; dξ Ôs ξ ¡ sÕφ ;ÔkÕ m¡1 ÔsÕds Ôsince Ô B Ôj,ℓÕ; has non negative coefficientsÕ d Ô B Ôj,ℓÕ; dξ ¦ φ ;ÔkÕ m¡1 Ôs ξ Õ
and the other three terms of ω Ôj,ℓÕ;ÔkÕ m are majored using the recurrence hypothesis.

To conclude in the case when a j 0 we solve Equation [START_REF] Ramis | Confluence et résurgence[END_REF]. Hence, 

ϕ Ôj,ℓÕ;ÔkÕ m ÔξÕ ξ λ j ¡1 ÷ s ξ 0 ω Ôj,ℓÕ;ÔkÕ m ÔηÔsÕÕηÔsÕ ¡λ j η ½ ÔsÕds
c ξ Reλ j ¡1 KΩ Ôj,ℓÕ;ÔkÕ m Ôs ξ Õ 1 ¡ Reλ j ¡ s ξ K © 1¡Reλ j cK 1 ¡ Reλ j Ω Ôj,ℓÕ;ÔkÕ m Ôs ξ Õ (using Lemma 2.4 and 1 ¡ Reλ j 0Õ φ Ôj,ℓÕ;ÔkÕ m Ôs ξ Õ if we choose C j 1 ¡ Reλ j cK .
To conclude in the case when a j 0 we apply Grönwall Lemma to ϕ Ôj,ℓÕ;ÔkÕ m Ôγ ξ ÔsÕÕ. This achieves the proof of Lemma 2.9. Remark 2.11 We see from Lemma 2.9 that when Ô g grows exponentially with type a, i.e., satisfies an inequality Ô gÔξÕ const.e a ξ for large ξ then Ô f ÔξÕ grows exponentially with type Ka. When the width of the domain ∆ ν goes to infinity so does K; hence, the necessity for considering ν-sectorial regions with bounded width. Also the estimates in the proof of Lemma 2.9 would no more be valid on sectors with unbounded width.

Ð Lemma 2.9 shows that Ô gÔK ξ Õ φ m ÔK ξ Õ is a majorant series for Ô f ÔξÕ ϕ m ÔξÕ on ∆ ν . Since Ô g is
Remark 2.12 One should think at reading the previous two sections that the proof with systems is much longer. This is not the case. If the same level of detail were provided the proof on equations like sketched in Section 2.4 would be much longer and also less elementary since it includes the Index Theorem for rank one and the Main Asymptotic Existence Theorem at infinity.

3 Singularities in the Borel plane

Theorem 2.7 tells us that Ö f ÔxÕ is a resurgent series of Res sum Ω . Its Borel transform Ô
f ÔξÕ is then, in particular, analytic on the Riemann surface R Ω , its possible singularities being the points a 1 , a 2 , . . . , a J of Ω including a 1 0 out of the first sheet.

The form of System [START_REF] Malgrange | Sommation des séries divergentes[END_REF] shows that the singularities of Ô f should at least involve poles since some λ j are equal to 0, complex powers when some λ j are not 0 and logarithms. It is already known that, in the case of a system with the unique level one, the singularities all belong to the Nilsson class (cf. [START_REF] Balser | Transfer of connection problems for first level solutions of meromorphic differential equations, and associated Laplace transforms[END_REF] for instance). In that case, the exponentials e ¡a j ßx in the formal fundamental solution Ö Y ÔxÕ act as translations in the Borel plane; hence, the location of the singularities at the various points a j . In the case of higher level or in the case of several levels that, after rank reduction, we could assume to be all 1 there might also occur exponentials of degree less than one. Their action in the Borel plane would be then transcendental and would generate irregular -no longer in the Nilsson class-singularities.

Our aim in this section is to set up a precise description of the singularities in the Borel plane related to the form of the formal fundamental solution [START_REF] Babbitt | Local moduli for meromorphic differential equations[END_REF].

Ö Y ÔxÕ Ö F ÔxÕx L e QÔ1ßxÕ of System
As previously, we restrict our study to the first n 1 columns Ö f of Ö F . We base the analysis on the results of Section 2.5 interpreting the Borel transform

Ô f ÔξÕ of Ö f ÔxÕ as a series Ô f ÔξÕ δI n,n 1 m 1 ϕ m ÔξÕ which converges uniformly on compact sets of R Ω .
Decomposing ϕ m into blocks ϕ j, m 1 j J fitting the Jordan structure of L (ϕ j, m has dimension n j ¢n 1 ), System [START_REF] Malgrange | Sommation des séries divergentes[END_REF] splits into the following J systems: [START_REF] Sauzin | Resurgent functions and splitting problems[END_REF] Let δ denote the Dirac distribution at 0, δ ÔmÕ its m th derivative and Y ¡1

Ôξ¡a j Õ dϕ j, m dξ ¡Ôλ j ¡1Õϕ j, m ¡J n j ϕ j, m ϕ j, m J n 1 d Ô B j; dξ ¦ϕ m¡1 Ô B j; Ô0Õϕ m¡1 where d Ô B j; dξ ¦ ϕ m¡1 J ô k 1 d Ô B j;k dξ ¦ ϕ k;
ξ δ the Heaviside (micro-)function. One can make the following identifications:

can ¡ 1 2πiξ © δ can ¡ Ô¡1Õ m m! 2πiξ m 1 © δ ÔmÕ can ¡ ln ξ 2πi © Y can ¢ ¡ ln ξ 2πi © 2 ª ¡ 2 ln ξ 2πi ¡ 1 ©
Y and so on . . .

It is sometimes useful not to work at the origin. Given ω 0 in C we denote C ω sing ω the space of the singularities at ω, i.e., the space C sing 0 translated from 0 to ω. A function Õ ϕ is a major of a singularity at ω if Õ ϕÔω ξÕ is a major of a singularity at 0.

Simple-moderate singularities

In this Section, we state some properties, used further on, of the singularities -poles, logarithms and complex powers-which should occur in the Borel plane. We shall see (cf. Thm 3.7) that poles, logarithms and complex powers are the only possible singularities arising in the Borel plane for linear systems with the unique level one, far from being any singularity in the Nilsson class. • A singularity or micro-function ∇ ϕ at 0 is said to be simple-moderate if it has a major which differs from a simple one by terms of the form

ô λÈΛ N λ ô p 0 α λ,p ξ λ¡1 ln p ÔξÕ ô λÈΛ N λ ô p 0 Ô H λ,p ÔξÕ ξ λ ln p ÔξÕ
where Λ is a finite set of numbers λ È C satisfying 0 Reλ 1 and for all λ È Λ, N λ È N, α λ,p È C and Ô H λ,p È O for all p.

• A singularity or micro-function ∇ ϕ at ω is said to be simple or simplemoderate if it has a major Õ ϕ such that Õ ϕÔω ξÕ be of the previous forms respectively.

Let γ be a path from 0 to ξ in C.

We denote u ¦ γ vÔξÕ the convolution product along the path γ defined by

u ¦ γ vÔξÕ ÷ γ uÔξ ¡ tÕ vÔtÕ dt,
when the integral makes sense. 3 This definition of a simple singularity is less restrictive than the one one can find in the literature (cf. [START_REF] Écalle | Les fonctions résurgentes, l'équation du pont et la classification des objets locaux[END_REF] or [START_REF] Sauzin | Resurgent functions and splitting problems[END_REF] for instance) where N 0 is taken equal to 0. Here, we allow powers of logarithms; still poles are required to be simple but they can be factored by logarithms. We will see that, in the linear case when the system is prepared like in Section 2.1, simple singularities in the restrictive sense would occur only under strong assumptions such as trivial formal monodromy. For a general level-one system, not in prepared form, there could also occur multiple poles. and ψÔtÕ are holomorphic along γ ξ ; and in the case when ω 0, the factor t λ¡1 is integrable at 0.

We are interested in the behavior of this function as ξ goes to ω. Suppose ξ so close to ω that there is a disc D ω centered at ω, containing ξ and included in the holomorphy domain of ψ. Fix a on γ ξ so that the part a γ ξ of γ ξ from a to ξ belong to D ω and be homotopic to a straight line in D ω ÞØωÙ.

Up to an entire function, we can replace the convolution product under consideration by the integral 

g a ÔξÕ ÷ ξ a ϕÔξ ¡ tÕ Ôt ¡ ωÕ λ¡1 ln p Ôt ¡ ωÕ ψÔtÕdt

One can check that

÷ ξ a Ôt ¡ ωÕ m λ¡1 ln p Ôt ¡ ωÕ dt G m λ,p ÔξÕ ¡ G m λ,p ÔaÕ where G m λ,p ÔξÕ °³ ³ ³ ² ³ ³ ³ ± p! Ôξ ¡ ωÕ m λ p ô s 0 Ô¡1Õ p¡s s! ln s Ôξ ¡ ωÕ Ôm λÕ p¡s 1 if m λ 0 1 p 1 ln p 1 Ôt ¡ ωÕ if m λ 0
For all s 0, . . . , p, the series

ô m 0 c m ÔξÕ Ôt ¡ ωÕ m λ Ôm λÕ p¡s 1 converges on D ω .
Hence, the result.

Ð Lemma 3.3 Anti-derivation

Let QÔXÕ È M m,p ÔCØξÙÖX×Õ be a polynomial matrix with holomorphic coefficients at ξ 0. We assume that the degrees of the successive columns of Q are given by the row matrix

N Q Öν ν 1 ¤ ¤ ¤ ν p ¡ 1×. Let Λ Ê ¡N ¦ .
The matrix function ξ Λ ξ ¡Jm QÔln ξÕ ξ Jp admits a unique anti-derivative of the form

KÔξÕ ξ Λ 1 ξ ¡Jm RÔln ξÕ ξ Jp
where RÔXÕ È M m,p ÔCØξÙÖX×Õ is a polynomial matrix with holomorphic coefficients at ξ 0 and same column-degrees N R N Q as Q.

Note that the power of ξ which can be factored increases by 1.

Proof. Denote QÔXÕ N ô k 0 Q k ln k X and RÔXÕ N ô k 0 R k ln k X where N ν p ¡ 1.
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The derivative of K reads

K ½ ÔξÕ ξ Λ ξ ¡Jm ÔΛ 1ÕI m ¡ J m ¨ÔR N ln N ξ ¤ ¤ ¤ R 1 ln ξ R 0 Õ ξÔR ½ N ln N ξ ¤ ¤ ¤ R ½ 1 ln ξ R ½ 0 Õ ÔNR N ln N ¡1 ξ ¤ ¤ ¤ R 1 Õ ÔR N ln N ξ ¤ ¤ ¤ R 1 ln ξ R 0 ÕJ p ξ Jp .
Identifying the powers of ln ξ we get the N 1 systems

Ô¦Õ k ξ R ½ k ÔΛ 1ÕI m ¡ J m ¨Rk R k J p Q k ¡ Ôk 1ÕR k 1
for k 0, 1, . . . , N and R N 1 0 which can be solved inductively starting with k N. Like in Section 2.5, System Ô¦Õ k can be solved iteratively from the first to the last column and in each column, from the last row to the first one. The fact that it admits a solution holomorphic at 0 when Λ Ê ¡N ¦ results from the fact that this is true for the differential equation ξ y ½ λ y aÔξÕ when aÔξÕ is holomorphic at 0 and λ Ê ¡N.

When k is greater than ν set k ν ℓ. The fact that the first ℓ columns in R k can be chosen equal to 0 results from the fact that the same property holds for Q k and, by induction, for R k 1 . Then, it holds also for the right-hand side of System Ô¦Õ k and the condition on the log-degree can be satisfied.

Unicity results from the fact that, since ξ Λ 1 is neither a pole nor a constant, a non-zero constant cannot be put in such form.

Ð

Singularities of ϕ m , m 1

Recall that the resurgent functions ϕ m ϕ j, m 1 j J for m 1 are iteratively determined, for all j, as solutions of the system

Ô26Õ Ôξ ¡ a j Õ dϕ j, m dξ ¡ Ôλ j ¡ 1Õϕ j, m ¡ J n j ϕ j, m ϕ j, m J n 1 d dξ Ô B j; ¦ ϕ m¡1
satisfying convenient initial conditions corresponding to those satisfied by the Ö f m 's (ϕ 0 δI n,n 1 , ϕ m Ô0Õ 0 for m 3, ϕ j, 2 Ô0Õ 0 when a j 0 and a convenient non necessary 0 constant otherwise).

Lemma 3.3 provides the log-degrees of the successive columns of an antiderivative of the matrix ξ λ k ¡1 ξ Jn k K ξ ¡Jn 1 when K is a generic constant matrix, 0 Re λ k 1 and λ k 0. One can check that the log-degrees are Loday-Richaud and Remy, Resurgence for level-one linear diff. systems 26 increased by 1 when λ k 0. They are given by ( 27)

NÖk× °² ± ÖÔn k ¡1Õ Ôn k ¡1Õ 1 ¤ ¤ ¤ Ôn k ¡1Õ Ôn 1 ¡1Õ× if λ k 0 Ö n k n k 1 ¤ ¤ ¤ n k Ôn 1 ¡1Õ × if λ k 0.
The behavior of ϕ m at a singular point ω È Ω depends on the sheet of the Riemann surface R Ω we are on, i.e., its depends on the path γ of analytic continuation followed from 0 (first sheet) towards ω. Following [START_REF] Sauzin | Resurgent functions and splitting problems[END_REF] we denote cont γ ϕ m the analytic continuation of ϕ m along the path γ.

Definition 3.4

• We say that ξ È CÞΩ is close to ω È Ω if there is a disc centered at ω which contains ξ and no other element of Ω than ω.

• We call path from 0 towards ω È Ω a path γ γ ξ contained in CÞΩ which goes from 0 to a point ξ close to ω. Of course, Õ ϕ j; m , k j; m;ÔωÕ and rem j; m depend on γ even though, for seek of simplicity, the notations do not show it up.

Note that, in the remainders, the initial factor ξ appears at powers like λ k and no more λ k ¡ 1 so that the power ¡1 never occurs. Note also that, whatever are the values of λ j and λ k , we have λ j ¡ 1 λ k and this is why the terms in the remainders will always appear as subdominant.

Proof. For all m 1, System (26) can be seen as an inhomogeneous linear system in the entries of ϕ m . For any j, the general solution of the homogeneous system reads Ôξ¡a j Õ λ j ¡1 Ôξ¡a j Õ Jn j k j; m;ÔωÕ Ôξ¡a j Õ ¡Jn 1 with k j; m;ÔωÕ an arbitrary constant n j ¢ n 1 matrix and we have to prove that there is a particular solution of the inhomogeneous system in the form of the remainder.

To this end, we integrate the system using the Lagrange method (variation of constants). System ( 26) is of the form Ôξ ¡ a j Õ dϕ j; m dξ linear terms Q, the type of Q depending upon m. Looking for a solution in the form ϕ Ôξ ¡ a j Õ λ j ¡1 Ôξ ¡ a j Õ Jn j K Ôξ ¡ a j Õ ¡Jn 1 we obtain to determine K up to a constant the condition dK dξ

Ôξ ¡ a j Õ ¡λ j Ôξ ¡ a j Õ ¡Jn j Q Ôξ ¡ a j Õ Jn 1 and we just have to find anti-derivatives for the various possible Q.

For m 1, the inhomogenuity Q d Ô B j; dξ is an entire function, hence holomorphic at ω. When a j ω, then ω is an ordinary point for the j th block of System ( 26) and the inhomogenuity is holomorphic. Hence, there is a holomorphic solution at ω and we can choose Õ ϕ j,

1 0. When a j ω, Lemma 3.3 provides K in the form K Ôξ ¡ a j Õ ¡λ j 1 Ôξ ¡ a j Õ ¡Jn j RÔξÕ Ôξ ¡ a j Õ Jn 1
with R holomorphic at ω and then, a particular solution ϕ j;

1 ÔξÕ RÔξÕ holomorphic at ω so that we can choose the remainder rem j 1 0. For m 2, using the superposition principle, we have to consider inho-

mogenuities Q of the form Q d Ô B j;k dξ ¦ϕ k;
1 for all k 1, . . . , J. When a k ω, the solution ϕ k;

1 and then also Q is holomorphic at ω and we can conclude like in the case when m 1. From now, we forget about holomorphic terms. When a k ω, then ϕ k;

1 differs from a holomorphic function by terms of the form Ôξ ¡ ωÕ λ k ¡1 Ôξ ¡ ωÕ Jn k k k; 1;ÔωÕ Ôξ ¡ ωÕ ¡Jn 1 . It results from Lemma 3.2 that, modulo a holomorphic function, Q takes the form Ôξ¡ωÕ λ k P lnÔξ ¡ωÕ ¨with P a n j ¢n 1 -matrix of polynomials with holomorphic coefficients the columns of which have log-degree NÖk×. In both cases, a j ω or a j ω, Lemma 3.3 provides a corresponding solution of the form Ôξ ¡ ωÕ λ k R lnÔξ ¡ ωÕ ¨where R is a polynomial matrix with holomorphic coefficients at ω and column-logdegrees NÖk×.

For m 3, the inhomogenuity contains terms of the form Q d Ô B j;k dξ ¦ ϕ k; m¡1 . The factor ϕ k; m¡1 splits into two parts: the first part coming from the general homogeneous solution is treated like in the case when m 2; the second part coming from the remainder is of a similar type but the fact that all powers λ ¡ 1 have been changed into λ. Consequently, there appears no factor Ôξ ¡ωÕ ¡1 and this insures the stability of the log-degree NÖk× since, from now, convolution generates no increase of the log-degree NÖk×. Ð

Singularities of Ô f

We are now ready to make explicit the form of the singularities of Ô f as a consequence of Theorem 2.7, Proposition 3.5 and an iterated application of the variation.

Lemma 3.6 below states, without proof, some useful elementary properties of the variation. We denote var p var ¥ var ¥ ¤ ¤ ¤ ¥ var

ÐÓÓÓÓÓÓÓÓÓÓÑÓÓÓÓÓÓÓÓÓÓÒ p times . Lemma 3.6 1. var ¡ ln ξ 2πi © 1.
2. For all p È N,

var ¡¡ ln ξ 2πi © p © p¡1 ô r 0 Ô¡1Õ p¡r¡1 C r p ¡ ln ξ 2πi © r p ¡ ln ξ 2πi © p¡1
lower log-degree terms.

Consequently, var p ¡¡ ln ξ 2πi

© p © p! and var p 1 ¡¡ ln ξ 2πi © p © 0.
3. For all λ È C, varÔξ λ Õ Ô1 ¡ e ¡2πiλ Õξ λ . Consequently, var p Ôξ λ Õ Ô1 ¡ e ¡2πiλ Õ p ξ λ for all p È N and varÔξ λ Õ 0 for all λ È Z. 4. varÔf gÕ varÔf Õ g f varÔgÕ ¡ varÔf Õ varÔgÕ.

In particular, varÔf gÕ f varÔgÕ when varÔf Õ 0. 5. For all λ È C and p È N,

var ¡ ξ λ ¡ ln ξ 2πi © p © Ô1 ¡ e ¡2πiλ Õξ λ ¡ ln ξ 2πi © p e ¡2πiλ ξ λ var ¡¡ ln ξ 2πi © p © Ô1 ¡ e ¡2πiλ Õξ λ ¡ ln ξ 2πi © p ξ λ ¢ lower log-degree terms.
Consequently,

var p ¡ ξ λ ¡ ln ξ 2πi © p © Ô1¡e ¡2πiλ Õ p ξ λ ¡ ln ξ 2πi © p
ξ λ ¢lower log-degree terms.
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Theorem 3.7 Singularity of Ô f at ξ ω Let ω È Ω.
For any path of analytic continuation γ from 0 towards ω, a major of the

singularity ∇γ f ω of cont γ Ô f at ω exists in the form Õ f j; Ôω ξÕ ξ λ j ¡1 ξ Jn j k j;
ÔωÕ ξ ¡Jn 1 Rem j;

ÔωÕ ÔξÕ for all j 1, . . . , J with a remainder Rem j;

ÔωÕ ÔξÕ

ô λ ℓ a ℓ ω ξ λ ℓ R j; λ ℓ ;ÔωÕ Ôln ξÕ where ¡ k j;
ÔωÕ denotes a constant n j ¢n 1 -matrix (recall that n k is the size of the k th Jordan block of the matrix L of the exponents of formal monodromy) and k j;

ÔωÕ 0 when a j ω, ¡ R j; λ ℓ ;ÔωÕ ÔXÕ denotes a polynomial matrix with summable-resurgent coef- ficients in Ý Res sum Ω¡ω , the columns of which are of log-degree NÖℓ× (cf. Section 3.2, Formula ( 27)).

Recall that the major Õ f j; , the constant matrix k j;

ÔωÕ and the coefficients of the remainder R j; λ ℓ ;ÔωÕ depend on γ even though, for seek of simplicity, we do not show it up in the notations. Note that, in practice, k j;

ÔωÕ can be determined as the coefficient of the monomial ξ λ j ¡1 .

It is worth to make explicit the following two particular cases.

• Case with diagonal formal monodromy: L n j 1 λ j In this case, Õ f j; reduces to just one entry which we denote Õ f j .

Õ

f j Ôω ξÕ k j ÔωÕ ξ h j ÔωÕ ÔξÕ ln ξ ô λ ℓ 0 a ℓ ω ξ λ ℓ ¡1 h j λ ℓ ;ÔωÕ ÔξÕ
where k j

ÔωÕ is a constant, h j ÔωÕ and all h j λ ℓ ;ÔωÕ are summable-resurgent functions of Ý Res sum Ω¡ω . Moreover, -k j ÔωÕ 0 when a j ω or λ j 0, -h j ÔωÕ 0 when there exists no ℓ such that a ℓ ω and λ ℓ 0.

• Case with trivial formal monodromy:

L O n Õ f j Ôω ξÕ k j ÔωÕ ξ h j ÔωÕ ÔξÕ ln ξ
where k j

ÔωÕ is a constant and h j ÔωÕ a summable-resurgent function of Ý Res sum Ω¡ω . Moreover,

-k j
ÔωÕ 0 when a j ω, -h j ÔωÕ 0 when there exists no ℓ such that a ℓ ω.

Thus, under the condition that there exists no λ ℓ 0 associated with a ℓ ω, the singularity ∇ f ω of Ô f at ω is simple in the restrictive sense (cf. Definition 3.1 and its footnote).

Proof. -Prove first the weaker result that asserts that the singularity of Ô f at ω has the given form with holomorphic coefficients at 0. Given 0 ν ν 1 and ε 0, we consider the domains

∆ ν Øν ξ ν 1 Ù in C and ∆ ½ ν Øν ξ ν 1 , θ ¡ ε ¡ 2πN ½ argÔξÕ θ ε 2πÙ
a lift of the ring ∆ ν to N ½ 1 consecutive sheets of the Riemann surface of the logarithm at 0. The number N ½ will be determined later; it has to be finite and large enough. The argument θ fixes the sheet on which Ô f is studied. We assume ν 1 so small that the disc ξ ν 1 lies at a distance at least ν from ÔΩ ¡ ωÕÞØ0Ù.

We fix j. From Proposition 3.5 we can write

cont γ ϕ j, m Ôω ξÕ ô λÊZ p λ ô p 0 h λ,p m ÔξÕ ξ λ ln p ξ 1 ξ p 0 ô p 0 h 0,p m ÔξÕ ln p ξ
where the pairs Ôλ, pÕ are supposed distinct modulo Z and finitely many.

Denote Λ the set of all exponents λ appearing in these summations. Elements in Λ are equal to either a λ ℓ or λ j ¡1 when λ j Ê Z and a j ω. When λ j 0 and a j ω, instead of introducing λ λ j ¡ 1 ¡1 we factor 1 ξ so that no polar part occurs in the coefficients h 0,p m ÔξÕ. We denote p λ the highest log-degree p associated with ξ λ . From Proposition 3.5 we know that all coefficients h λ,p m ÔξÕ are holomorphic at 0 and we have to prove that Ô f Ôω ξÕ has the same form as the ϕ m 's and holomorphic coefficients at 0. The proof mostly relies on the uniform convergence of the series m 1 ϕ m to Ô f ¡ δI n,n 1 on any compact set avoiding Ω (cf. Remark 2.10). For simplicity, we skip writing "cont γ " although we consider analytic continuations along γ.

Suppose, to begin, that all majors Õ ϕ j, m are equal to 0 which means that all ϕ j, m Ôω ξÕ are holomorphic functions h j, m ÔξÕ at 0 and then, all holomorphic on the same disc ξ ν 1 previously chosen. Since the series m 0 ϕ j, m Ôω ξÕ m 0 h j, m ÔξÕ converges uniformly to Ô f j, Ôω ξÕ on compact sets avoiding Ω ¡ ω (Theorem 2.7, Remark 2.10) the function Ô f j, Ôω ξÕ m 0 h j, m ÔξÕ is a holomorphic function on the punctured disc 0 ξ ν 1 . Its Laurent series is the sum of the Laurent series of the h j, m ÔξÕ's; hence, it displays no polar part and Ô f j, Ôω ξÕ can be continued into a holomorphic function h j, ÔξÕ on the disc ξ ν 1 . We can conclude, in this case, that a major of Ô f is also equal to zero: Õ f j, Ôω ξÕ 0. Given Ôλ, pÕ, to prove that the series m 0 h λ,p m ÔξÕ converges to a holomorphic function h λ,p ÔξÕ about ω we proceed as above after having reduced all ϕ j, m Ôω ξÕ to h λ,p m ÔξÕ by means of iterated variations as indicated below.

We can then conclude by the same arguments as above since the uniform convergence property keeps valid for the variations as well.

We base the reduction on the properties of the variation stated in Lemma 3.6: the variation of ln p ξ iterated p times produces a non-zero constant and it produces 0 in one more step; the iterated variation of ξ λ ln p ξ when λ Ê Z generates a dominant term of the same form times a non zero constant.

Fix λ È Λ.

It is sufficient to consider the case of the monomials h λ,p λ m ÔξÕ ξ λ ln p λ ξ of high- est log-degree. Indeed, we can then proceed iteratively on the descending log-degrees terms after cancellation of the highest log-degree terms.

Here is a possible way to reduce ϕ j, m Ôω ξÕ to h λ,p λ m ÔξÕ: For each λ ½ È Λ, λ ½ λ successively, multiply by ξ ¡λ ½ , take the variation p λ ½ 1 times and multiply by ξ λ ½ , thus canceling all terms factored by ξ λ ½ . We are left with only terms in ξ λ ln p ξ, for p 0, 1, . . . , p λ . Multiply by ξ ¡λ and take the variation p λ times. We get so h λ,p λ m ÔξÕ up to a non-zero constant.

We can now estimate a convenient value for N ½ : the process, to be valid, requires that N ½ be as large as the total number of variations used.

This ends the proof of the fact that the singularity of cont γ Ô f at ω has the given form with holomorphic coefficients at 0. In particular, the constant matrices k j;

ÔωÕ are given by k j; ÔωÕ m 1 k j; m:ÔωÕ .

-The proof of the fact that the coefficients h λ,p ÔωÕ ÔξÕ are actually summa- ble-resurgent functions in Ý Res sum Ω¡ω is straightforward from the fact that their germs at the origin are equal to iterated variations of functions themselves in Ý Res sum Ω¡ω .

Ð

Principal major and connection constants

Let θ È Rß2πZ be an anti-Stokes direction and ω È Ω θ a Stokes value in direction θ associated with Ö f ÔxÕ.

The constants k j;

ÔωÕ and the polynomials R j; λ ℓ ,ÔωÕ found in Theorem 3.7 depend, as already said, on the path of analytic continuation γ ξ and meanwhile, on the chosen determination of the argument around ω.

We consider a path γ from 0 towards ω defined as follows: We choose the principal determination of the variable ξ around ω 4 . Theorem 3.7 allows to set the following definition.

Definition 3.8 Principal major

We call principal major of Ô

f at ω È Ω θ the major Õ f Ôω ξÕ of cont γ Ô Ô f Õ
when the principal determination of the variable ξ is chosen. According to Theorem 3.7, for j 1, . . . , J and convenient constant matrices k j;

Ôω AE Õ it reads (28)

Õ f j; Ôω ξÕ ξ λ j ¡1 ξ Jn j k j; Ôω AE Õ ξ ¡Jn 1 ô λ ℓ a ℓ ω ξ λ ℓ R j;
λ ℓ ;Ôω AE Õ Ôln ξÕ Moreover, in case there exists ℓ such that λ ℓ 0 and a ℓ ω, we assume that R j; 0;Ôω AE Õ Ô0Õ 0 so that the principal major never contains a holomorphic term. 4 Any choice is convenient. However, to be compatible, on the Riemann sphere, with the usual choice 0 argÔζ 1ßξÕ 2π of the principal determination at infinity we suggest to choose ¡2π argÔξÕ 0 as principal determination about 0 as well as about any ω at finite distance.

With the requested conditions the principal major of Ô f at ω is uniquely determined. We denote k Ôω AE Õ with a dot to indicate the choice of the principal determination.

By means of elementary transformations (cf. Section 2.1) we can extend the previous results and definitions to any of the k th column-blocks of Ô F ÔξÕ changing the Stokes values a ℓ into a ℓ ¡ a k (actually, with respect to Ô f ÔξÕ, a ℓ stands for a ℓ ¡ a 1 with a 1 0) and the exponents of formal monodromy λ ℓ into λ ℓ ¡ λ k . We can then reformulate Theorem 3.7 as follows. Corollary 3.9 Let θ È Rß2πZ be an anti-Stokes direction and ω È Ω θ a

Stokes value in direction θ associated with System (1).

To the choice of the principal determination of the variable ξ there is a unique constant matrix K Ôω AE Õ such that the principal major Õ

F of Ô F at ω reads (29) Õ F Ôω ξÕ 1 ξ ξ L K Ôω AE Õ ξ ¡L Rem Ôln ξÕ The matrix K Ôω AE Õ is a constant n¢n-matrix satisfying K j;k
Ôω AE Õ 0 for all Ôj; kÕ such that a j ¡ a k ω. In particular, all diagonal blocks are equal to zero. The remainder Rem Ôln ξÕ is a linear combination of polynomials in ln ξ with summable-resurgent coefficients weighted by subdominant complex powers of ξ.

Definition 3.10 Matrix of the connection constants

The n ¢ n-matrix

(30) K θ AE ô ωÈΩ θ K Ôω AE Õ is called (principal) matrix of the connection constants of Ô F in direction θ. A n j ¢ n k -block K j;k θ AE of K θ AE is equal to 0 when a j ¡ a k does not belong to Ω θ .
The possibly non-zero entries of K θ AE are also called principal multipliers of connection in direction θ.

Note that we still need no other structure on Ý

Res Ω and C than the structure of O 1 ÔCÕ¦module and, in particular, there is no need yet to develop a structure of a convolution algebra.

Meromorphic invariants: Stokes cocycle or alien derivatives

The classifying set for the local meromorphic classification at 0 of connections endowed with an isomorphism of their formalized (i.e., formal gauge transformations Ô F ) in a given formal class was given by Y. Sibuya [START_REF] Sibuya | Stokes phenomena[END_REF][START_REF] Sibuya | Linear differential equations in the complex domain: problems of analytic continuation[END_REF] and B. Malgrange [START_REF] Malgrange | La classification des connexions irrégulières à une variable[END_REF] in terms of a non-Abelian 1-cohomology set. Actually, this classifying set can be given a structure of a unipotent Lie group and it is isomorphic to the direct product of the Stokes-Ramis groups in each anti-Stokes direction associated with the connection (cf. D.G. Babbitt and V.S. Varadarajan [START_REF] Babbitt | Local moduli for meromorphic differential equations[END_REF] for an abstract proof and M. Loday-Richaud [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and differential Galois groups[END_REF] for a constructive one). Indeed, in each 1-cohomology class there exists a unique special cocycle, called Stokes cocycle, whose components coincide with the Stokes-Ramis automorphisms independently defined as the defects of analyticity of Ô F in each anti-Stokes direction [START_REF] Ramis | Phénomène de Stokes et resommation[END_REF]; [13, Prop. III.2.1, Th. III.2.8]. To any formal class and associated anti-Stokes direction the Stokes-Ramis automorphisms form a free Lie group conjugate to a group of unipotent triangular matrices submitted to some vanishing conditions ([13] Def. I.4.12). Its Lie algebra is conjugate to an algebra of nilpotent matrices submitted to similar vanishing conditions and the exponential map sends it homeomorphically onto the Stokes-Ramis group. It is then equivalent to characterize a meromorphic class by giving its image in the Stokes-Ramis groups (i.e., its Stokes cocycle or its Stokes matrices after the choice of a C-basis of solutions) or its image in the Lie algebra, tangent space of the Stokes-Ramis groups at the identity (i.e., its alien derivatives).

Here below, we perform these descriptions in more details and we provide an explicit formula for the Stokes matrices in the Laplace plane in terms of the connection matrices in the Borel plane.

Note. From now, each time a determination of the argument is required, we choose the principal determination fixed similarly in the Laplace and in the Borel plane (cf. Footnote 4). Given an anti-Stokes direction θ È Rß2πZ we denote θ AE È R the chosen determination of θ and ω AE the Stokes value ω in direction θ with the same determination. We keep denoting the variables x, ξ, . . . while indicating argÔxÕ θ AE , argÔξÕ θ AE , . . . .

Stokes cocycle

Let us start with a description of the Stokes-Ramis automorphisms, components of the Stokes cocycle, from the viewpoint of summation.

Recall (cf. Section 2.2) that the anti-Stokes directions attached to the first n 1 columns Ö f of the gauge transformation Ö F are defined as the directions of the various non-zero Stokes values of System (1), i.e., the Stokes values belonging to Ω ¦ Øa 1 , . . . , a J ÙÞØ0Ù (see notations of Section 2.2). To the ℓ th column-block of Ö F the set Ω must be translated to Ω ¡ a ℓ . We keep denoting Ω Øa j ¡a ℓ 0Ù the set of all non-zero Stokes values attached to Ö F .

Given θ È Rß2πZ let d θ denote the half line issuing from 0 with argument θ and set Ω θ Ω ¦ d θ and Ω θ Ω ¦ d θ .

Stokes automorphisms as gauge transformations

When θ is not an anti-Stokes direction for Ö F the Borel-Laplace integral does not exist anymore in general. However, taking the limit as ε tends to 0 of the Borel-Laplace sums in directions θ ¡ ε and θ ε one defines, by analytic continuation, two analytic functions, 1-Gevrey asymptotic to Ö F on a germ of half-plane Σ θ,π bisected by θ.

F (i.e., Ω θ À) then Ö F can be applied a Borel-Laplace integral ÷ d θ Ô F ÔξÕe ¡ξßx dξ in direction θ (cf.

We call sum of Ö

F to the right of θ and we denote

s θ Ô Ö F Õ the analytic continuation to Σ θ,π of s θ¡ε Ô Ö F Õ
as ε tends to 0. We call sum of Ö F to the left of θ denoted s θ ¡Ô Ö F Õ the analytic continuation of s θ ε Ô Ö F Õ. The denominations to the right and to the left fit the natural orientation around 0 on the Riemann sphere. Our choice of the signs and ¡ in s θ and s θ ¡ may look inappropriate to such an orientation but our will is to fit the usual notations at infinity. Indeed, positioning the singularity at 0 or at infinity exchanges the orientation on the Riemann sphere. The Borel transform at 0 does not exchange the orientation while it does it at infinity. In both cases, we can refer to the fact that the sums s θ and s θ ¡ correspond to Laplace integrals in the Borel plane along a path following a line d θ and passing the Stokes values positively for s θ and negatively for s θ ¡ (cf. Loday-Richaud and Remy, Resurgence for level-one linear diff. systems 36

The Stokes phenomenon stems from the fact that the two lateral sums s θ Ô Ö F Õ and s θ ¡Ô Ö F Õ are not analytic continuations from each other in general.

The defect of analyticity is quantified by the Stokes automorphisms

(31) St θ; Ö F s θ ¡Ô Ö F Õ ¡1 ¥ s θ Ô Ö F Õ .
in each anti-Stokes direction θ. Thus defined, the Stokes automorphism of Ö F in direction θ is an automorphism of the normal form (4); precisely, a gauge transformation, 1-Gevrey flat on Σ θ,π , which leaves invariant System (4). The Stokes automorphism St θ; Ö F depends on Ö F and θ and it does not depend on the choice of a determination of the argument near θ È Rß2πZ.

Matrix representations

One can give the Stokes automorphism St θ; Ö F matrix representations in GLÔn, CÕ by associating with the (formal) normal solution Ö

Y 0 ÔxÕ x L e QÔ1ßxÕ
an actual one near θ by means of a choice of a determination of the argument in the Laplace plane:

We change the formal power x L into an actual function near θ by choosing the principal determination of the argument. We get thus an actual function, still denoted x L , defined and analytic for argÔxÕ close to θ AE (denote argÔxÕ θ AE ). In our case of a single level equal to one, the polynomi- als q j Ô1ßxÕ in QÔ1ßxÕ do not require any choice of a determination of the argument. However, a formal exponential determines an actual exponential only up to a multplicative constant 6 . We fix such a constant once for all, for instance, by choosing the function denoted e QÔ1ßxÕ in the usual analytic meaning. We denote Y 0,θ AEÔxÕ the fundamental solution such defined for argÔxÕ θ AE .

To the actual normal solution Y 0,θ AEÔxÕ, there correspond two analytic fundamental solutions s θ ¡Ô Ö F ÕY 0,θ AEÔxÕ and s θ Ô Ö F ÕY 0,θ AEÔxÕ of System (1). There exists then a unique constant invertible matrix (called Stokes-Ramis matrix or simply Stokes matrix 7 ), which we denote I n C θ AE, such that (32)

s θ Ô Ö F Õ Y 0,θ AEÔxÕ s θ ¡Ô Ö F Õ Y 0,θ AEÔxÕÔI n C θ AEÕ
and the Stokes automorphism St θ; Ö F is given a matrix representation by the formula (33)

St θ; Ö F s θ ¡Ô Ö F Õ ¡1 s θ Ô Ö F Õ x L e QÔ1ßxÕ ÔI n C θ AEÕe ¡QÔ1ßxÕ x ¡L
for argÔxÕ θ AE .

Thus, although the Stokes automorphisms, components of the Stokes cocycle, are intrinsically determined from Ö F , their matrix representations as constant invertible matrices are defined only up to the choice of an actual normal solution Y 0,θ AEÔxÕ in each anti-Stokes direction. As it is clear from Formula (33) this indetermination results in the conjugacy action of the formal monodromy (change of "formal determination" x xe 2πi in the normal solution) and of the exponential torus (see Section 4.4). Temporarily, we forget about the action of the exponential torus by systematically associating with a formal exponential e q the analytic function denoted the same way (choice of the arbitrary constant equal to 1) so that, a (formal) normal solution being given, our unique freedom lies in the choice of the determination of the argument of the variable x in a neighborhood of the direction θ, i.e., the choice of a determination θ AE of θ.

The Stokes automorphism St θ; Ö

F is unipotent (i.e., its matrix C θ AE is nilpotent whatever the choice of a determination of θ AE ) due to the fact that s θ ¡Ô Ö F Õ and s θ Ô Ö F Õ are both 1-Gevrey asymptotic to the same matrix Ö F . Indeed, a n j ¢ n ℓ block C j,ℓ θ AE is 0 as soon as a j ¡ a ℓ Ê Ω θ . In particular, the diagonal blocks are equal to 0 and one can put C θ AE in triangular form by conveniently reordering the Stokes values a j (cf. [13, Consequence I.4.8]).

Formula (33) has an "additive" form (34)

s θ Ô Ö F ÕÔxÕ ¡ s θ ¡Ô Ö F ÕÔxÕ s θ ¡Ô Ö F ÕÔxÕ x L e QÔ1ßxÕ C θ AE e ¡QÔ1ßxÕ x ¡L
for argÔxÕ θ AE which will be used later.

Stokes automorphims acting on formal solutions

The Stokes-Ramis matrix I n C θ AE was introduced in Formula (32) as the matrix of a linear map

s θ ¡Ô Ö F Õ Y 0,θ AEÔxÕ s θ Ô Ö F Õ Y 0,θ AEÔxÕ
associating sums to the right with sums to the left in direction θ AE . The map is defined and bijective in the space of actual solutions of System (1) over a germ of half plane Σ θ,π .

Coming back from the actual normal solution Y 0,θ AEÔxÕ to the formal one Ö Y 0 ÔxÕ x L e QÔxÕ the previous map can be read as a bijective linear map

(35) St θ AE : Ö F ÔxÕ x L e QÔ1ßxÕ Ö F ÔxÕ x L e QÔ1ßxÕ ÔI n C θ AEÕ
in the space of formal solutions of System [START_REF] Babbitt | Local moduli for meromorphic differential equations[END_REF]. Such a map depends on θ AE and no more only on θ.

One also calls the map St θ AE a Stokes automorphism in direction θ AE . The Stokes cocycle of System ( 1) is equivalent to the collection of the Stokes maps St θ AE for θ AE running over arguments of the anti-Stokes directions in a fundamental domain, say the principal one ¡2π arg 0.

Note that, to the first column-block Ö f made of formal power series (recall a 1 λ 1 0), there does not correspond a power series in general. In Section 4.4, in order to define alien derivations, we will extend such a map into an automorphism of a differential algebra containing the formal solutions of System (1).

Maps ∆ ω AE

Given ω È Ω ¦ recall that ω AE denotes its principal determination with argument θ AE . The Stokes automorphism St θ AE can be split into a sum of linear maps ∆ ω AE , each of them taking into account the contribution of a different Stokes value ω È Ω ¦ as follows: their matrices, also denoted ∆ ω AE , are obtained from C θ AE by keeping unchanged the blocks C j,ℓ θ AE such that a j ¡a ℓ ω and equating all other blocks to 0. Obviously, C θ AE ô ωÈΩ θ ∆ ω AE and Formula (34) reads, for argÔxÕ θ AE , (36)

s θ Ô Ö F ÕÔxÕ ¡ s θ ¡Ô Ö F ÕÔxÕ s θ ¡Ô Ö F ÕÔxÕ ô ωÈΩ θ e ¡ωßx x L ∆ ω AE x ¡L
In restriction to the first n 1 columns and denoting

δ ω AE the first n 1 columns
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s θ Ô Ö f ÕÔxÕ ¡ s θ ¡Ô Ö f ÕÔxÕ s θ ¡Ô Ö F ÕÔxÕ ô ωÈΩ θ e ¡ωßx x L δ ω AE x ¡J 1 .

Stokes-Ramis versus connection matrices

The left hand side of Formula (37) can be seen as the Laplace integral (38) By means of translations from ω to 0 and using the fact that holomorphic functions at ω contributes 0 to the integral around ω we can replace Ô f by its principal majors Õ f Ôω ξÕ at each ω obtaining so 8 Contrarily to Formula (37) which only requires the 1-summabilty of the series Ö f , the individual resurgence and 1-summability are not sufficient here. We do need summableresurgence.

s θ Ô Ö f ÕÔxÕ ¡ s θ ¡Ô Ö f ÕÔxÕ ÷ γ ½ θ Ô f ÔζÕe ¡ζßx dζ
(39) s θ Ô Ö f Õ ¡ s θ ¡Ô Ö f Õ ô ωÈΩ θ e ¡ωßx ÷ γ θ Õ f Ôω ξÕe ¡ξßx dξ
where, as shown on the figure, γ θ is a Hankel type path around 0 in direction θ.

We claim that we can identify this linear combination of exponentials e ¡ωßx to the linear combination in the right hand side of Formula (37).

Proposition 4.1 Given ω È Ω θ , the following identity holds for argÔxÕ θ AE :

(40) ÷ γ θ Õ f Ôω ξÕe ¡ξßx dξ s θ ¡Ô Ö F ÕÔxÕ x L δ ω AE x ¡J 1 .
Proof. The equality is obviously true when there is only one singular point ω on the half line d θ . Assume then that there are at least two singular points on

d θ . The Borel transform Ô f ÔξÕ of Ö f ÔxÕ belongs to Ý Res sum Ω
and has simple moderate singularities. From Theorem 3.7 we know that any major Õ f Ôω ξÕ at ω is a polynomial in ln ξ with summable-resurgent coefficients, possibly factored by complex powers ξ λ¡1 . The Laplace integral γ θ Õ f Ôω ξÕe ¡ξßx dξ in the left hand side is then a polynomial in ln x whose coefficients are 1-Gevrey asymptotic functions on a germ of half plane bisected by the direction θ. Deforming the path γ θ so as to move the asymptotic direction to a neighboring direction θ ε we get 1-Gevrey asymptotic coefficients on a sector of opening ×θ ¡ π 2 , θ π 2 εÖ, that is, 1-sums of 1-summable series in direction θ ε 2 (integer power series, possibly factored by non integer powers x λ ).

The same property holds for the right hand side and therefore, we can conclude by the variant of Watson Lemma below.

Ð Lemma 4.2 (A variant of Watson Lemma) Let θ È Rß2πZ.
Suppose that, to each ω È Ω θ , there is a linear combination P ω Ôln xÕ of polynomials in ln x with summable-resurgent coefficients in Res sum Ω¡ω possibly weighted by complex powers of x, the powers being distinct modulo Z.

Then, an identity ô ωÈΩ θ P ω Ôln xÕ e ¡ωßx 0 implies the nullity of each P ω , i.e., the nullity of each summable-resurgent coefficient in P ω .

Proof. By means of a rotation of the variable x we can assume that θ 0 so that all ω are positive numbers. We range them by increasing order:

ω 1 ω 2 ¤ ¤ ¤ ω r .
If we factor e ¡ω 1 ßx the identity becomes

P ω 1 Ôln xÕ r ô ℓ 2 P ω ℓ Ôln xÕe ¡Ôω ℓ ¡ω 1 Õßx 0.
Taking the asymptotic expansion at 0 on the positive real line of both sides of the identity proves that the asymptotic expansion of P ω 1 Ôln xÕ at 0 is 0.

The same property holds for the coefficients of each power of ln x. These coefficients are 1-summable powers series in which the sequence of exponents is a finite union of arithmetic sequences. 

c θ AE ÷ γ 0 1 ξ ξ L k θ AE ξ ¡J 1 e ¡ξ dξ
with the choice of the principal determination of argument along γ 0 . Equating the dominant terms in Identity (40) and using Theorem 3.7 we obtain the new identity

x L c θ AE x ¡J 1 ÷ γ θ u L k θ AE u ¡J 1 e ¡ußx du x L ÷ γ 0 ξ L k θ AE ξ ¡J 1 e ¡ξ dξ x ¡J 1 Ôsetting u xξÕ
where for arg x θ AE , the path of integration γ θ has become the classical Hankel path γ 0 around the non-negative real axis with argument from ¡2π to 0. Hence the result.

Ð

In restriction to the blocks attached to a given ω we obtain the following statement.

Corollary 4.4 For all ω È Ω ¦ , the data of ∆ ω AE and of K Ôω AE Õ are equivalent and the two matrices are related by

∆ ω AE ÷ γ 0 1 ξ ξ L K Ôω AE Õ ξ ¡L e ¡ξ dξ
where γ 0 stands for a Hankel type path around R run over by ξ after the choice of the principal determination of its argument.

It can be useful, especially for effective numerical calculations to expand each entry of the Connection-to-Stokes Formula. The following corollary provides such an expanded form.

Let M Ôj,ℓÕ;Ôk,rÕ denote the entry row ℓ of row-block j and column r in column- block k of a n ¢ n-matrix M split into blocks fitting the structure of L. 

Ô¡1Õ r¡1¡r ½ K Ôj,ℓ ℓ ½ Õ;Ôk,r ½ 1Õ θ Ôr ¡ 1 ¡ r ½ Õ! ℓ ½ ! ¤ 4.

Alien derivations

As already said in the introduction of Section 4, the classifying set of meromorphic classes of formal gauge transformations of a given normal system is naturally endowed with a structure of a Lie group. In this section, we explain how the dotted alien derivations can be defined as infinitesimal generators of this Lie group.

Alien derivations were first given a definition through the Borel plane by J. Écalle ( [START_REF] Écalle | Les algèbres de fonctions résurgentes[END_REF][START_REF] Écalle | Singularités non abordables par la géométrie[END_REF], cf. also [START_REF] Malgrange | Introduction aux travaux de J. Écalle[END_REF][START_REF] Sauzin | Resurgent functions and splitting problems[END_REF]). They have been defined as an average of analytic continuations in the Borel plane followed by a Laplace transform, the weights of the averaging being related to the Campbell-Hausdorf Formula. It is equivalent to see them as the homogeneous components of the logarithm of graded Stokes automorphisms (cf. [START_REF] Écalle | Les algèbres de fonctions résurgentes[END_REF], [START_REF] Malgrange | Introduction aux travaux de J. Écalle[END_REF]Th I.6.2], [START_REF] Sauzin | Resurgent functions and splitting problems[END_REF]). This is the viewpoint we adopt here, a viewpoint already used in [START_REF] Ramis | Confluence et résurgence[END_REF][START_REF] Ramis | Théorie de Galois différentielle et resommation[END_REF]. To perform it we need

• to define an algebra where the Stokes automorphisms make sense and where the alien derivatives will live (to give them a chance of being "derivatives" we cannot keep working in vector spaces),

• to define a graduation on the Stokes automorphisms.

Our aim being to define alien derivations of the solutions of System (1) we proceed as follows.

The algebra

Consider the finitely many Stokes values Ω Øa 1 , . . . , a J Ù associated with System (1) and the Z-module ZΩ they generate. The lattice ZΩ may be dense in C (cf. the example of the hypergeometric equation D 13,1 below) and it contains Ω Øa j ¡ a ℓ Ù. Simultaneously, consider the set Λ Øλ 1 , . . . , λ J Ù of exponents of formal monodromy of System (1) and the lattice ZΛ it generates.

We introduce the set Ö H ZΛ,ZΩ of all series solutions of linear differential equations with meromorphic coefficients, single level 0 or 1, exponents of formal monodromy in ZΛ and Stokes values in ZΩ. Note that all (convergent) meromorphic series at 0 belong to Ö H ZΛ,ZΩ .

Proposition 4.6 The set Ö H Ö H ZΛ,ZΩ is a differential sub-algebra of the algebra of all formal meromorphic series at x 0.

Consequently, its counter-part Ô

H in the Borel plane is a convolution algebra where multiplication by 1ßξ is the derivation; its elements have simplemoderate singularities at finitely many points of ZΩ.

Proof. The set Ö

H is stable with respect to sums and products. Indeed, given two series solutions of linear differential equations D 1 y 0 and D 2 y 0 respectively, their sum satisfies a linear equation Dy 0 where D is the left smaller common multiple of D 1 and D 2 , the exponents of formal monodromy and the Stokes values being the union of those of the initial equations. Their product satisfies a linear differential equation ∆y 0 where ∆ is the symmetric tensor product of D 1 and D 2 and where the exponents of formal monodromy and the Stokes values are the two by two sums of those of the initial equations. The set Ö H is stable under derivation with respect to x since the derivative of an element Ö f of Ö H satisfies an equation of the same type obtained by conveniently derivating a differential equation satisfied by Ö f .

Ð

To prove directly in the Borel plane that Ô H is a convolution algebra is not so easy. Given Ô f and Ô g in Ô H with finite singular supports ΩÔ Ô f Õ and ΩÔÔ gÕ respectively, the main point is to prove that the convolution Ô f ¦Ô g which is well defined near 0 can be continued to the whole Riemann surface R ΩÔ Ô f Õ ΩÔÔ gÕ .

To this end, one could generalize the technique of two intertwined combs to build R-symmetrically contractile paths (cf. [START_REF] Sauzin | Resurgent functions and splitting problems[END_REF]Lemma 3,Figures 5 and 10]): one should start here with a comb with upwards nails at ΩÔ Ô f Õ, a comb with downwards nails at ¡ΩÔÔ gÕ, symmetric of ΩÔÔ gÕ with respect to 0, and an elastic rope tied to the two nails 0 to materialize the convenient paths of analytic continuation when one moves the second comb. We won't formalize such a proof. Exponential growth at infinity and simple-moderate singularities are preserved by convolution.

In order to define alien derivatives of the entries of the gauge transformation Ö F ÔxÕ we limit ourselves to consider the differential sub-algebra Ö Y 0 has a unique expression of the form ô Ö g j x λ j ln p j x e ¡ω j ßx the sum running on finitely many distinct triples Ôλ j , p j , ω j Õ È ZΛ ¢ N ¢ ZΩ if we assume, in addition, that 0 ℜλ j 1 for all j (and Ö g j 0). It can be isomorphically sent to the actual resurgent symbol if one expands s θ ÔÖ g j ÕÔxÕ according to Formula (37) (Since Ö g j is 1-summable it has a well-defined Stokes phenomenon and the result does not depend on the way Ö g j is expanded in terms of the entries of Ö F ). Since summations s θ ¡ and s θ are automorphisms of differential algebras so is St θ AE. The reciprocal map St ¡1 θ AE is obtained by keeping the same space of actual resurgent symbols while exchanging the roles of s θ ¡ and s θ and then the Stokes matrix I n C θ AE by its inverse ÔI n C θ AEÕ ¡1 .

H Ö F of Ö H generated
The extended Stokes automorphism keeps being unipotent. Indeed, this results from the fact that it is already unipotent when acting in the space of formal solutions of System (1) (its matrix I n C θ AE is unipotent). This can also be seen as follows: if Ö F j,k is an entry of Ö 

F then St θ Ô Ö F j,k ÕÔxÕ Ö F j,k ÔxÕ g λ,
St θ AEÔ Ö F ÔxÕÕ Ö F ÔxÕ x L e QÔ1ßxÕ ÔI n C θ AEÕe ¡QÔ1ßxÕ x ¡L instead of St θ AEÔ Ö F ÔxÕ x L e QÔ1ßxÕ Õ Ö F ÔxÕ x L e QÔ1ßxÕ ÔI n C θ AEÕ only (cf. ( 35 
)).

Graduation on the Stokes automorphisms

The graduation is built so as to discriminate between the different submatrices ∆ ω AE of the Stokes matrix C θ AE (cf. Section 4.2). This is done using the exponential torus T of System (1).

Here is how to define T (cf. [START_REF] Ramis | Théorie de Galois différentielle et resommation[END_REF][START_REF] Martinet | Elementary acceleration and multisummability[END_REF]): Let b 1 , . . . , b ν be a basis of the lattice ZΩ. The polynomials p 1 Ô1ßxÕ ¡b 1 ßx, . . . , p ν Ô1ßxÕ ¡b ν ßx form a basis of the Z-module generated by the determining polynomials q 1 , q 2 , . . . , q n of the diagonal of QÔ1ßxÕ. The exponential torus takes into account the indetermination of a formal exponential e p by associating with e p its complex multiples λe p (see Footnote 6). To define the exponential torus T one introduces ν indeterminates λ Ôλ 1 , λ 2 , . . . , λ ν Õ and associates λ j e p j with each e p j . One can extend T to the algebra Ö H Ö F Ö Y 0 by letting it act trivially on power series, complex powers of x and logarithms. We obtain thus a family of automorphisms of Ö H Ö F Ö Y 0 with ν parameters.
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For j 1, 2, . . . , n, denote m j Ôm j,1 , m j,2 , . . . , m j,ν Õ the components of the q j 's with respect to the p r 's. With respect to the formal fundamental solution Ö F ÔxÕ x L e QÔ1ßxÕ the exponential torus has a matrix representation of the form (42)

T λ diagÔλ m 1 , λ m 2 , . . . , λ m n Õ
where the notation λ m stands for the product λ m 

T λ C θ AE T ¡1 λ ô ωÈΩ θ ∆ ω AE λ mÔωÕ . (43) 

Definition of the alien derivations

As a unipotent graded group the group G λ admits infinitesimal generators ∆ω AE in the sense that (44) (

I n T λ C θ AE T ¡1 λ exp ¡ ô ωÈΩ θ ∆ω AE λ mÔωÕ
) ln I n T λ C θ AE T ¡1 λ ¨ ô ωÈΩ θ ∆ω AE λ mÔωÕ 45 
The alien derivation ∆ ω AE is defined by ∆ ω AE e ωßx ∆ω AE.

When ω does not belong to Ω θ for any θ the alien derivations ∆ω AE and ∆ ω AE are equal to 0. Like St θ AE the dotted alien derivations act trivially on x L and e QÔ1ßxÕ so that

∆ω AE Ö F ÔxÕ ¨ Ö F ÔxÕ x L e ¡ωßx ∆ω AE x ¡L . and ∆ ω AE Ö F ÔxÕ ¨ Ö F ÔxÕ x L ∆ω AE x ¡L .
The alien derivations are derivations by construction and they commute with the usual derivation dßdx.

We end this section with a remark on the various choices made. We saw that the meromorphic classifying set is given by the Stokes automorphisms St θ, Ö F defined, for all anti-Stokes direction, as gauge transformations of the normal form. To look at the Stokes automorphisms St θ AE defined as linear maps on the space of formal solutions of System (1) and get their extended forms we needed to choose a determination of the argument and an actual form of the formal exponentials. With different choices the Stokes matrix is conjugate under the iterated action of the formal monodromy with matrix Ü M x 2πiL with respect to Ö Y 0

x L e QÔ1ßxÕ and under the action of the exponential torus T . The same conjugacy actions must be taken into account when performing the analytic classification with alien derivations.

Bridge equation

The "definition" formula above rewritten in the form

(46) ∆ ω AE Ö F ÔxÕx L ¨ Ö F ÔxÕ x L ∆ω AE
can be seen as Écalle's Bridge Equation. The name "bridge" comes from the fact that the equation links alien derivatives (left hand side of the bridge equation) to ordinary derivatives (right hand side of the bridge equation). Indeed, the right hand side can be seen as an ordinary derivative as follows.

We consider only the first n 1 columns, the calculation for the k th block of columns being the same after multiplication by e a k ßx . Introduce the general solution (also said formal integral) of System (1) which has the form

Ö f ÔxÕ x L 1 M 0 ô ωÈØa 2 ,...,a J Ù φ ω AEÔxÕ M ω AE e ¡ωßx
where the φ's are formal-log series and the M's are arbitrary constant matrices. The alien derivative of Ö f ÔxÕ x L 1 at ω is the derivative of this general solution with respect to e ¡ωßx considered as an independent variable 10 , with a convenient choice of the matrices M ( Écalle's analytic invariants ∆ω AE).

In Écalle's approach, alien derivatives are defined as an average of analytic continuations in the Borel plane followed by a Laplace transform. The Bridge Equation results from the fact that dotted alien derivatives commute with the derivation dßdx. In this approach, it is nothing more than the definition formula.

The example of the generalized hypergeometric equation D 13,1

We consider the generalized hypergeometric equation of order 13 (47)

D 13,1 ÔyÕ ¡ x dy dx ¡ µy © ¡ x 13 õ j 1 ¡ x d dx ¡ Ôν j ¡ 1Õ © y 0
where µ and the ν j 's are complex parameters 11 . Its Newton polygon at 0 has a slope 0 of length 1 and a slope 1/12 of length 12. Putting x t 12 the equation becomes (48)

D 13,1 ÔyÕ ¡ 1 12 t dy dt ¡ µy © ¡ t 12 13 õ j 1 ¡ 1 12 t d dt ¡ Ôν j ¡ 1Õ © y 0.
We keep using the equation itself taking benefit of having a quite simple equation but we could as well commute to the companion system. The hypergeometric equation ( 48) is of single level 1. Its determining polynomials q 1 , q 2 , . . . , q 13 are calculated in [START_REF] Duval | Matrices de Stokes et groupe de Galois des équations hypergéométriques confluentes généralisées[END_REF] and are q 1 0 q 2 ¡12ßt q 3 ¡12ζßt q 4 ¡12ζ 2 ßt q 5 ¡12ζ 3 ßt q 6 ¡12ζ 4 ßt q 7 ¡12ζ 5 ßt q 8 ¡12ζ 6 ßt q 9 ¡12ζ 7 ßt q 10 ¡12ζ 8 ßt q 11 ¡12ζ 9 ßt q 12 ¡12ζ 10 ßt q 13 ¡12ζ 11 ßt where ζ stands for the twelfth primitive root of unit ζ e 2πiß12 . A formal fundamental solution Ö F ÔtÕ t L e QÔ1ßtÕ reads (49) Ö F 1 ÔtÕ t 12µ e q 1 Ô1ßtÕ Ö F 2 ÔtÕ t ¡12λ e q 2 Ô1ßtÕ ¤ ¤ ¤ Ö F 13 ÔtÕ t ¡12λ e q 13 Ô1ßtÕ where λ 1 12 we deduce that a basis for the lattice built on the q j 's is given by p 1 q 2 ¡12ßt p 2 q 3 ¡12ζßt p 3 q 4 ¡12ζ 2 ßt p 4 q 5 ¡12ζ 3 ßt Note that the lattice built on the coefficients 12, 12ζ, 12ζ 2 , 12ζ 3 is dense in C. However, only finitely many values are Stokes values for D 13,1 . In the p-basis the determining polynomials read q 1 0 q 2 p 1 q 3 p 2 q 4 p 3 q 5 p 4 q 6 p 3 ¡ p 1 q 7 p 4 ¡ p 2 q 8 ¡p 1 q 9 ¡p 2 q 10 ¡p 3 q 11 ¡p 4 q 12 ¡p 3 p 1 q 13 ¡p 4 p 2 so that, denoting λ Ôλ 1 , λ 2 , λ 3 , λ 4 Õ, the matrix of the exponential torus is given by Let us consider the anti-Stokes direction θ 0 with principal determination θ AE 0 and denote C 0 the corresponding Stokes matrix.

T λ diag ¡ 1,
Let E j,ℓ denote the elementary 13 ¢ 13-matrix the entries of which are all 0 but the one at row j and column ℓ which is equal to 1.

The Stokes values ω supported by the half line d 0 , issued from 0 with argument 0 (i.e., ω È Ω 0 ), are ω 12 associated with q 1 ¡ q 8 q 2 ¡ q 1 q 4 ¡ q 6 q 12 ¡ q 10 p 1 ω 12 3 associated with q 3 ¡ q 7 q 13 ¡ q 9 3 p 1 ω 24 associated with q 2 ¡ q 8 2 p 1

Loday-Richaud and Remy, Resurgence for level-one linear diff. systems 51 and consequently, the Stokes matrix satisfies since one has also the relations q 3 ¡ q 7 q 13 ¡ q 9 2p 2 ¡ p 4 . In other words, we obtain: 

T λ C 0 T ¡1 λ ¡ c Ô1,
∆ 24 λ 2 1 © ¡ 1 2 ¡ ∆ 12 λ 1 ¤ ¤ ¤ © 2 ¤ ¤ ¤ ∆ 12 λ 1 ∆ 12 3 λ 2 2 λ 4 ¡ ∆ 24 ¡ 1 2 Ô ∆ 12 Õ 2 © λ 2 1 .
Hence, Remark 4.9 We end this example with a comment on, for instance, the last formula in (50) compared to those of [START_REF] Sauzin | Resurgent functions and splitting problems[END_REF]Lemma 5] deduced directly from the definition of alien derivations by analytic continuation in the Borel plane. If we consider that there is on d 0 R the three singularities ω 1 12, ω 2 12 3 and ω 3 24 then our formula does not fit the expression given in Lemma 5 of [START_REF] Sauzin | Resurgent functions and splitting problems[END_REF] for ∆ ω 3 . To fit it in, we should actually re-introduce the missing singular point ω 1 

∆ ω 4 ∆ ω 4 ¡ 1 2 Ô∆ ω 2 2 ∆ ω 1 ∆ ω 3 ∆ ω 3 ∆ ω 1 Õ 1 3 Ô∆ ω 1 2 ∆ ω 2 ∆ ω 1 ∆ ω 2 ∆ ω 1 ∆ ω 2 ∆ ω 1 2 Õ ¡ 1 4 ∆ ω 1 4
if one takes into account the fact that ∆ ω 1 0.

An example with resonance

We consider the system Y ÔxÕ Ö F ÔxÕ x L e QÔ1ßxÕ where • QÔ1ßxÕ diagÔ0, ¡1ßx, ¡1ßx, ¡1ßxÕ, (Hence, the system has the unique level 1 and the Stokes values ¨1),

• L 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 (L is not diagonal; hence the resonance),

• Ö

F ÔxÕ

1 0 0 0 Ö f 2 1 0 0 Ö f 3 0 1 0 Ö f 4 0 0 1
is a power series satisfying Ö F ÔxÕ I 4 OÔx 2 Õ.

The system admits the two anti-Stokes directions θ 0 and θ π. Obviously, the Stokes matrix in direction π is trivial:

I 4 C π I 4 .
We consider the anti-Stokes direction θ 0 supporting the unique Stokes value ω 1. Our aim is the calculation of the alien derivation ∆ 1 in terms of the Stokes multipliers in direction θ 0. Actually, although System ÔSÕ is quite a little bit involved since it exhibits resonance, it is simple enough to allow an exact calculation of the Stokes multipliers as below. We will then be able to give an exact calculation for ∆ 1 .

One can check that the series Ö f j 's are the unique solutions of the system (52)

°³ ³ ³ ³ ³ ³ ³ ² ³ ³ ³ ³ ³ ³ ³ ± x 2 d Ö f 2 dx ¡ Ö f 2 x 2 x Ö f 3 x 2 d Ö f 3 dx ¡ Ö f 3 x 2 x Ö f 4 x 2 d Ö f 4 dx ¡ Ö f 4 x 2
satisfying the condition Ö C Ô4,1Õ

0 ln 2 x ∆ 1 Ô Ö f 3 Õ C Ô3,1Õ 0 C Ô4,1Õ 0 ln x ∆ 1 Ô Ö f 4 Õ C Ô4,1Õ 0 
.

1 0

 1 ¤ ¤ ¤ ¤ ¤ ¤ 0 is an irreducible Jordan block of size n j ÔJ n j 0 if n j 1Õ,

Y 0

 0 ÔxÕ x L e QÔ1ßxÕ has analytic coefficients and is called a normal form of System (1). The fundamental solution Ö Y 0 ÔxÕ is called a normal solution. It provides all formal invariants of System (1), i.e., invariants under formal gauge transformations Y Ö ΦÔxÕY with Ö Φ È

  Øa j , j 1, . . . , JÙ denote the set of Stokes values associated with System (1). Theorem 2.7 below asserts, in particular, that all possible singularities of the Borel transform Ô f ÔξÕ of Ö f ÔxÕ belong to Ω. The directions determined by the elements of Ω ¦ ΩÞØ0Ù from 0 are called anti-Stokes directions associated with Ö f ÔxÕ. Given a direction θ È Rß2πZ let d θ denote the half line issuing from 0 with argument θ. We denote • Ω θ Ω ¦ d θ the set of non-zero Stokes values of System (1) with argument θ.

f

  the set of non-zero Stokes values of System (12) with argument θ. The adequate Riemann surface on which the Borel transform Ô f ÔξÕ of Ö ÔxÕ lives is the surface R Ω defined as below. Definition 2.1 Riemann surface R Ω .

  formal Borel transformation Ö B is an isomorphism from the differential algebra ¡ CÖÖx××, , , x 2 d dx © to the differential algebra ¡ δ CÖÖξ××, , AE, ξ © that changes ordinary product into convolution product and changes derivation x 2 d dx into multiplication by ξ. It also changes multiplication by 1 x into derivation d dξ allowing thus to extend the isomorphism from the meromorphic series CÖÖx××Ö1ßx× to CÖδ ÔkÕ , k È N× CÖÖξ××. Recall that the Borel transform of a monomial reads BÔx m Õ ξ m¡1

B

  Ôj,ℓÕ; Ô0Õ is also the coefficient of x in B Ôj,ℓÕ; ÔxÕ and is not supposed equal to zero). It can again be solved term after term starting with the first column k 1 and the last row ℓ n j . Recall that for b an entire function, the convolution b ¦ ξ m , m È N is well defined by the integral ξ 0 bÔξ ¡tÕt m dt as well as b ¦ Ô f by γ bÔξ ¡tÕ Ô f ÔtÕdt along any path γ avoiding the singularities of Ô f (here, the Borel transforms Ô B Ôj,kÕ; of B Ôj,kÕ; are entire functions since BÔxÕ is analytic at 0).

  (a) the Borel series Ô f ÔξÕ Ô f Ôξ, 1Õ is convergent and can be analytically continued to R Ω ; we keep denoting Ô f ÔξÕ the analytic continuation; (b) Ô

( 21 )

 21 admits an analytic solution gÔx, αÕ. By unicity, its Taylor expansion gÔx, αÕ g m ÔxÕα m coincides with Ö gÔx, αÕ Ö g m ÔxÕα m . In particular, for α 1, the formal solution Ö gÔxÕ Ö gÔx, 1Õ Ö g m ÔxÕ converges. Henceforth, its Borel transform Ô gÔξÕ φ m ÔξÕ is an entire function with exponential growth at infinity (φ m denotes the Borel transform of the series Ö g m ÔxÕ and is also an entire function with exponential growth at infinity).

m(¡ λ j ¡ 1 φÔB

 1 row ℓ of row-block j and column k) of ϕ m and φ Ôj,ℓÕ;ÔkÕ m of φ m satisfy respectively (24) Ôξ ¡ a j Õ d dξ ϕ Ôj,ℓÕ;ÔkÕ m ¡ Ôλ j ¡ 1Õϕ Ôj,ℓÕ;ÔkÕ m ω Ôj,ℓÕ;ÔkÕ m where ω Ôj,ℓÕ;ÔkÕ m ϕ Ôj,ℓ 1Õ;ÔkÕ m ¡ ϕ Ôj,ℓÕ;Ôk 1Õ m Ôj,ℓÕ;ÔkÕ m Ω Ôj,ℓÕ;ÔkÕ m if a j 0 C j φ Ôj,ℓÕ;ÔkÕ m Ω Ôj,ℓÕ;ÔkÕ m if a j 0 where Ω Ôj,ℓÕ;ÔkÕ m φ Ôj,ℓ 1Õ;ÔkÕ m φ Ôj,ℓÕ;Ôk¡1Õ m d dξ Ô B Ôj,ℓÕ; ¦ φ ;ÔkÕ m¡1 Ôj,ℓÕ; Ô0Õφ ;ÔkÕ m¡1 .

ϕs ξ 0 ΩÔξÕ c ξ Reλ j ¡1 ÷ s ξ 0 Ω

 00 Ôj,ℓÕ;ÔkÕ m ÔξÕ ξ Reλ j ¡1 e ¡ImÔλ j ¡1ÕargÔξÕ ÷ Ôj,ℓÕ;ÔkÕ m ÔsÕ ηÔsÕ ¡Reλ j e ImÔλ j ÕargÔηÔsÕÕ ds. Since points in ∆ ν have bounded arguments there exists a constant c 0 such that e ¡ImÔλ j ¡1ÕargÔξÕ ImÔλ j ÕargÔηÔsÕÕ c for all ξ and ηÔsÕ È ∆ ν . It results that ϕ Ôj,ℓÕ;ÔkÕ m Ôj,ℓÕ;ÔkÕ m ÔsÕ ηÔsÕ ¡Reλ j ds c ξ Reλ j ¡1 Ω Ôj,ℓÕ;ÔkÕ m 2.4, the fact that Reλ j 0 and that Ω m has non negative coefficientsÕ

  well defined on ∆ ν with exponential growth at infinity the same property holds for Ô f ÔξÕ which achieves the proof of Theorem 2.7. Ð Remark 2.10 It results from the above proof that the series ϕ m ÔξÕ converges uniformly to Ô f ÔξÕ on compact sets of R Ω .

  m¡1 and Ô B j; Ô0Õϕ 0 0. Let us first introduce some vocabulary used in resurgence theory. Working locally we place ourselves at the origin of C. As previously, we denote O CØxÙ the space of holomorphic germs at 0 in C and Ö O the space of holomorphic germs at 0 on the Riemann surface Ö C of the logarithm. Being mostly interested in integrating solutions in the Borel plane on both sides of the singularities, thus enclosing them in a loop, we can neglect holomorphic terms and it is natural to consider the quotient space C Ö OßO. The elements of C are called micro-functions by B. Malgrange [17] by analogy with hyper-and micro-functions defined by Sato, Kawai and Kashiwara in higher dimensions. They are called singularities by J. Ecalle and al. and usually denoted with a nabla, like ∇ ϕ, for a singularity of the function ϕ while the space C Ö OßO is denoted sing 0 (cf. [26]). A representative of ∇ ϕ in Ö O is often denoted Õ ϕ and is called a major of ϕ. It is worth to consider the two natural maps can : Ö O C Ö OßO the canonical quotient map and var : C Ö O the variation map, action of a positive turn around 0 defined by var ∇ ϕÔξÕ Õ ϕÔξÕ ¡ Õ ϕÔξe ¡2πi Õ where Õ ϕÔξe ¡2πi Õ is the analytic continuation of Õ ϕÔξÕ along a path turning once clockwise around 0 close enough to 0 for Õ ϕ to be defined all along (the result is independent of the choice of a major Õ ϕ). The germ Ô ϕ var ∇ ϕ is called the minor of ∇ ϕ.

Definition 3 . 1 1 Ô

 311 Simple-moderate singularities • A singularity or micro-function ∇ ϕ at 0 is said to be simple if it has a major of the form 3 h p ÔξÕ ln p ÔξÕ where N 0 È N, α p È C and Ô h p È O for all p.

Lemma 3 . 2

 32 Convolution with powers and logarithms Let ϕ be an entire function on C. Let p È N and λ È C satisfying 0 Re λ 1. Let ω È C ¦ , let ψ be a function satisfying ψÔωÕ 0 and holomorphic on a domain containing 0 and ω and let γ ξ be a path from 0 to ξ avoiding ω and contained in this domain. Then, the convolution product ϕ ¦ γ ξ ¡ Ôξ ¡ ωÕ λ¡1 ln p Ôξ ¡ ωÕψ © ÔξÕ exists and is, close to ω, of the form ϕ ¦ γ ξ ¡ Ôξ ¡ ωÕ λ¡1 ln p Ôξ ¡ ωÕψ © ÔξÕ Ôξ ¡ ωÕ λ P ÔlnÔξ ¡ ωÕ ¨ entÔξÕ where P ÔXÕ È CØξÙÖX× is a polynomial with holomorphic coefficients at ω and degree degÔP Õ p if λ 0 p 1 if λ 0 and where ent stands for an entire function. Note that the power of Ôξ ¡ ωÕ in the right-hand side has increased by 1 unit at least. Proof. The convolution product ϕ ¦ γ ξ ¡ Ôξ ¡ ωÕ λ¡1 ln p Ôξ ¡ ωÕψ © ÔξÕ is well- defined by the integral ÷ γ ξ ϕÔξ¡tÕÔt¡ωÕ λ¡1 ln p Ôt¡ωÕψÔtÕdt since both ϕÔξ¡tÕ

  Loday-Richaud and Remy, Resurgence for level-one linear diff. systems 24 in C after a convenient choice of the determinations of argument and logarithm. Expand ϕÔξ ¡tÕψÔtÕ as a Taylor series ô m 0 c m ÔξÕ Ôt¡ωÕ m in D ω . Since a γ ξ lies in D ω then, after commutation of sum and integral, g a ÔξÕ becomes g a ÔξÕ ô m 0 c m ÔξÕ ÷ ξ a Ôt ¡ ωÕ m λ¡1 ln p Ôt ¡ ωÕ dt.

Proposition 3 . 5

 35 Let ω È Ω.For any path of analytic continuation γ from 0 towards ω, a major of the singularity ∇γ ϕ m of cont γ ϕ m at ω exists in the form Õ ϕ j; m Ôω ξÕ ξ λ j ¡1 ξ Jn j k j; m;ÔωÕ ξ ¡Jn 1 rem j; m ÔξÕ for all j 1, . . . , J, with a remainder rem j; m ÔξÕ ôλ k a k ω ξ λ k R j;λ k ,m Ôln ξÕ where • k j; m;ÔωÕ denotes a constant n j ¢n 1 -matrix (recall that n k is the size of the k th Jordan block of the matrix L of the exponents of formal monodromy) and k j; m;ÔωÕ 0 when a j ω,• R j; λ k ,m ÔXÕ denotes a polynomial matrix with holomorphic coefficients at 0, the columns of which are of degree NÖk× (cf. notation just above).

  γ γ ξ goes along the straight line Ö0, ω× from 0 towards ω and bypasses all intermediate singular points ω ½ È Ω θ ×0, ω× to the right as shown on the figure.

  Theorem 

2. 7 ,

 7 for instance) and in neighboring, not anti-Stokes, directions giving thus rise to an analytic function s θ Ô Ö F Õ defined and 1-Gevrey asymptotic to Ö F on a sector Σ θ, π bisected by θ with opening larger than π. The function s θ Ô Ö F Õ is called 1-sum or Borel-Laplace sum of Ö F in direction θ. When θ is an anti-Stokes direction for Ö

5 5

 5 

  Fig. Section 4.3).

  The two branches of γ ½ θ along d θ are disjointly drawn to point out that they do not belong to the same sheet of the Riemann surface R Ω . where, as shown on the figure, γ ½ θ is a Hankel type path going along the straight line d θ from infinity to 0 and back to infinity passing positively all singularities ω È Ω θ on both ways. The exponential growth of Ô f in direction θ guaranties the convergence of the integral for x in a disc adherent to 0 with d θ as a diameter (a Borel disc) (cf. [21] for example). Without changing the value of the integral 8 the path γ ½ θ can be deformed into the union γ ½ θ ωÈΩ θ γ ½ θ ÔωÕ of Hankel type paths γ ½ θ ÔωÕ with asymptotic direction θ around each singular point ω È Ω θ .

Corollary 4 . 5 n j ¡ℓ r¡1 ô p 0 κpH

 450 The various entries of the Connection-to-Stokes Formula read C Ôj,ℓÕ;Ôk,rÕθ AE Ôλ j ¡ λ k Õ H Ôj,ℓÕ;Ôk,rÕp where κ p Ôλ j ¡ λ k Õ 2πi d p dt p Ôj,ℓÕ;Ôk,rÕ p ô ℓ ½ ¡r ½ p¡r 1

©.Definition 4 . 8 (F

 48 dotted and undotted alien derivations)The dotted alien derivations ∆ω AE are the transformations with matrix the coefficient of λ mÔωÕ in the expansion of the logarithm ln I n T λ C θ AE T ¡1 λ (matrix in the chosen basis of formal solutions Ö ÔxÕ x L e QÔ1ßxÕ ).

  that the minimal polynomial of ζ is the cyclotomic polynomial X 4 ¡X 2 1

∆ 12 c 3 c 24 c 12 ∆ 12 3 ∆ 12 3 ∆ 12 ∆ 12 ∆

 1232412331212 Ô1,8Õ E 1,8 c Ô2,1Õ E 2,1 c Ô4,6Õ E 4,6 c Ô12,10Õ E 12,10 , ∆ 12 Ô3,7Õ E 3,7 c Ô13,9Õ E 13,9 , ∆ Ô2,8Õ E 2,8 .Note thatT λ C 0 T ¡1 λ does not depend on the parameter λ 3 which, in turn, would appear in T λ C ¡π T ¡1 λ . The Stokes multipliers c Ôj,ℓÕ are made explicit in term of Barnes integrals in [9]. We know from the previous section that the alien derivations in the various Stokes values belonging to Ω 0 are given in terms of the Stokes multipliers above by taking the logarithm of I 13 T λ C 0 T ¡1 λ . From the relations Ô ∆ 12 Õ 2 c Ô2,1Õ c Ô1,8Õ E 2,8 and ∆ 24 ¤ ¤ ¤ Ô ∆ 24 Õ 2 0 we obtain ln I 13 T λ C 0 T ¡1 λ

24 ¡ 12 3 attached to the monomial λ 2 1 λ 4 λ 2 2 - 2 λ 4

 2224 although with a null coefficient ∆ ω 1 0-which combined with the monomial λ 2 attached to 12 3 gives the monomial λ 2 1 attached to 24. Set ω 2 12, ω 3 12 3, ω 4 24 and the calculation, in both cases, gives the same result

ÔSÕ x 2 dY dx 0 0 0 0 x 2 1 x 0 x 2 0 1 x x 2 0 0 1 Y

 1 Loday-Richaud and Remy, Resurgence for level-one linear diff. systems 53 and its formal fundamental solution Ö

f j ÔxÕ OÔx 2 Õ. 1 2 1 2 ln 2 ξ © 3 Ô f 3 Ô1 ξÕ 1 ξ¡ Ô2 πiÕ ln ξ © 2 Ô f 4 Ô1 ξÕ 1 ξ 1 Loday-.,κ 0 4 C Ô3,1Õ 0 κ 0 Ô0Õ k 3 κ 1 Ô0Õ k 4 C Ô4,1Õ 0 κ 0 Ô0Õ k 4 Recall that κ p ÔλÕ 2πi d p2π 2 ¡ 2πiγ κ 2 Ô0Õ ¡4π 2 γ ¡ 7π 3 i 3 2πγ 2 i0¡ 1 6 π 3 ¡ 4πγ πγ 2

 211331241040040423232 It results that their Borel transforms Ô Ô6 ¡ π 2 4πiÕ Ô2 πiÕ ln ξ Richaud and Remy, Resurgence for level-one linear diff. systems 54 and consequently, the connection matrix K Ô1Õ is given by From Corollary 4.5 we deduce that the Stokes multipliers C Ô2,1Õ0 Ô0Õ k 2 κ 1 Ô0Õ k 3 1 2 κ 2 Ô0Õ kwhere γ 0.5772 . . . is the Euler constant. We obtainC Ô2,1ÕÔ6π on the unique polynomial qÔ1ßxÕ ¡1ßx is generated by q itself and the matrix of the exponential torus is T λ diagÔ1, λ, λ, λÕ.The action of the exponential torus on I 4 C 0 results in T λ ÔI 4 C 0 ÕT ¡1 λ I 4 λ C 0 and lnÔI 4 T λ C 0 T ¡1 λ Õ λC 0 . Thus, ∆ 1 C 0 and the alien derivation∆1 C 0 . We can write ∆1 Ô Ö F Õ Ö F x L C 0 x ¡L e ¡1ßx or ∆ 1 Ô Ö F Õ Ö F x L C 0 x ¡L ,
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  Res Ω with a structure of a convolution algebra -usually a quite difficult task-in the linear case under consideration we are going to meet, at least in this section, only the convolution of elements of ÝRes Ω with entire functions over C growing at most exponentially at infinity. Let O 1 ÔCÕ denote the convolution algebra of entire functions on C with exponential growth at infinity. The set Ý Res

Ω,0 . If a series Ö f ÔxÕ belongs to Res Ω the Borel transform of Ö f ÔxÕe ¡ωßx belongs to Ý

Res Ω,ω .

While in non linear situations it is soon necessary to endow Ý Ω has a natural structure of a O 1 ÔCÕ¦module (the star refers to the fact that multiplication by a scalar is the convolution by an element of O 1 ÔCÕ). There corresponds, on Res Ω , a natural structure of O-module.

  I n j xÔλ j I n j J n j Õ OÔx 2 Õ if a j a k (and especially if j kÕ.

			are all satisfied.
		The normal form (4) of System (1) reads
	(9) a j while the matrix AÔxÕ of System (1) reads x 2 dY dx J A 0 ÔxÕY where A 0 ÔxÕ j 1
	(10)		AÔxÕ A 0 ÔxÕ BÔxÕ where BÔ0Õ 0
	More precisely, split the matrix BÔxÕ	B j;k ÔxÕ into blocks fitting to the
	Jordan structure of L. Then,
	(11)	B j;k ÔxÕ	OÔxÕ if a j a k

  n 1 and Ö f m ÔxÕ È xCÖÖx×× for all m 1. Since there is no possible ÔξÕ denotes the Borel transform of Ö f m ÔxÕ for all m 1. For fixed j È Ø1, . . . , JÙ and m 1 the system satisfied by the ϕ Ôj,ℓÕ;ÔkÕ

	ambiguity we keep denoting Ö f the perturbed solution. The proof proceeds by induction on m. For all j È Ø1, . . . , JÙ, System (16) reads, for ℓ 1, . . . , n j
	and k 1, . . . , n 1 ,			
	(17) x 2 d Ö f Ôj,ℓÕ;ÔkÕ m dx ¡Ôa j λ j xÕ Ö f Ôj,ℓÕ;ÔkÕ m	x Ö f Ôj,ℓ 1Õ;ÔkÕ m	¡x Ö f Ôj,ℓÕ;Ôk¡1Õ m	B Ôj,ℓÕ; Ö f ;ÔkÕ m¡1
	and can be solved term after term following the alphabetic order on Ôk, n j ¡ℓÕ
	(one begins with the first column k 1 and the last row ℓ n j in each block
	j).			
	It turns out actually that for all j and m 1,
	Ö f j; 2m¡1	OÔx m Õ and Ö f j; 2m	OÔx m Õ if a j 0 OÔx m 1 Õ if a j 0
	allowing thus to rewrite the series Ö f Ôx, αÕ	ô	Ö f m ÔxÕα m in α as a series in
				m 0
	x with coefficients that are polynomial in α. Consequently, the unperturbed solution Ö f ÔxÕ corresponds to Ö f Ôx, 1Õ (unicity of Ö f ÔxÕ and Ö f Ôx, 1Õ) and, for all α and in particular for α 1, the series Ö f Ôx, αÕ admits a formal Borel transform Ô f Ôξ, αÕ with respect to x of the form
	(18)	Ô f Ôξ, αÕ δI n,n 1	ô	ϕ m ÔξÕα m
			m 1	
	where ϕ m m	ÔξÕ's
	reads, for ℓ 1, . . . , n j and k 1, . . . , n 1 ,	
	(19)			

  n 1 and Ö g m ÔxÕ È xCÖÖx×× for all m 1. Like Loday-Richaud and Remy, Resurgence for level-one linear diff. systems 16 Ö f Ôx, αÕ, this series satisfies

	Ö g j; 2m¡1

  Watson Lemma applies to such a situation (cf.[START_REF] Malgrange | Sommation des séries divergentes[END_REF] Thm 2.4.1.4.ii]) implying the unicity of the 1-sum. Hence, P ω 1 0. The nullity of the other polynomials P ω follows by recursion. Rß2πZ an anti-Stokes direction, the data of the Stokes-Ramis matrix C θ AE and of the connection matrix K θ AE are equivalent and the two matrices are related by the relation L K θ AE ξ ¡L e ¡ξ dξ where γ 0 is a Hankel type path around R run over by ξ after the choice of the principal determination of its argument.Proof. Note that C θ AE and K θ AE have the same block-structure with the same blocks of zeros and same arbitrary non-zero blocks. The map K θ AE C θ AE is a linear map between two linear spaces of same dimension and to prove that it is bijective it is enough to prove that it is injective.Suppose C θ AE 0; then, the two lateral sums s θ Ô Ö F Õ and s θ ¡Ô Ö F Õ glue together and the Borel transform Ô F ÔξÕ of Ö F ÔxÕ has no singularity on the lined θ . Hence, K θ AE 0.To prove the relation linking C θ AE to K θ AE it is sufficient to compare the first column-blocks c θ AE and k θ AE (cf. Section 2.1) and to prove that

	C θ AE	÷ γ 0	1 ξ	ξ

Ð Theorem 4.3 Connection-to-Stokes Formula

Given θ È

  by the entries of Ö F ÔxÕ. Formula (35) as noticed at the end of Section 4.1.3 shows that the Stokes automorphism St θ does not act inside Ôx λ Õ λÈZΛ , ln x, Ôe ¡ωßx Õ ωÈZΩ . This is the differential algebra we are willing to work in. The coefficients are formal 1-summable series, x λ , ln x, e ¡ωßx are formal indeterminates satisfying the usual rules. The derivation is dßdx. Rß2πZ be an anti-Stokes direction associated with System (1) and θ AE È R its principal determination.In Section 4.1.3, we described the Stokes automorphism as a map acting on formal solutions by means of a choice of a determination of the argument θ AE . Such a definition can be extended into an automorphism of the differential The Stokes automorphism St θ AE can be extended into a differential unipotent automorphism, still denoted St θ AE, of the differential algebra Ö H Ö QÔ1ßxÕ ÔI n C θ AEÕ e ¡QÔ1ßxÕ x ¡L .

	Ö H Ö F into the polynomial algebra of "resurgent symbols" 9
	Ö H Ö F Ö Y 0	Ö H Ö
	4.4.2 Extended Stokes automorphisms
	Let θ È algebra Ö H Ö F Ö Y 0 as follows.	
	Proposition 4.7 (Extended Stokes automorphism)
		F Ö Y 0 by setting:
	-power factors x λ , logarithms and exponentials are kept fixed,
	-Ö F is changed into Ö F x L e Proof. Any resurgent symbol of Ö H Ö
	Ö H Ö F since the image of a formal series may involve complex powers of x, loga-
	rithms and exponentials. It is thus natural to extend the differential algebra

F F Ö

  ℓ,ω ÔxÕ x λ ln ℓ ÔxÕ e ¡ωßx where the sum runs on finitely many λ and ℓ and finitely many ω in Ω θ . The coefficients g λ.ℓ.ω are themselves elements of Ö H Ö

F Ö Y 0 . The Stokes values of g λ.ℓ.ω are among those of Ö F translated by ¡ω hence none is left on the half-line d θ after finitely many applications of St θ . Ð With this extended definition we can now write (41)

  1 1 λ m 2 2 . . . λ mν ν . Its action on the Stokes automorphism St θ AE generates a group G λ of unipotent matricesI n T λ C θ AE T ¡1λ with ν parameters. These matrices are polynomials in the parameters λ r and their inverses. Keep denoting Ω θ the set of non-zero Stokes values a j ¡ a k on the line d θ (cf. Section 2.2). To each Stokes value ω È Ω θ there is a unique collection mÔωÕ Ôm 1 ÔωÕ, . . . , m ν ÔωÕÕ of weights

	such that	ν ô r 1	m r ÔωÕ p r ÔxÕ ¡ ω x	. One can check that the matrix	∆

ω AE (cf. Section 4.2) is the coefficient of the monomial λ mÔωÕ in T λ C θ AE T ¡1 λ :

  λ 1 , λ 2 , λ 3 , λ 4 ,

	λ 3 λ 1	,	λ 4 λ 2	,	1 λ 1	,	1 λ 2	,	1 λ 3	,	1 λ 4	,	λ 1 λ 3	,	λ 2 λ 4

©

.

  8Õ E 1,8 c Ô2,1Õ E 2,1 c Ô4,6Õ E 4,6 c Ô12,10Õ E 12,10

			©
			λ 1
	¡ ¡	c Ô3,7Õ E 3,7 c Ô13,9Õ E 13,9 © c Ô2,8Õ E 2,8 λ 2 1	© λ 2 2 λ 4

  Ô1,8Õ E 1,8 c Ô2,1Õ E 2,1 c Ô4,6Õ E 4,6 c Ô12,10Õ E 12,10Loday-Richaud and Remy, Resurgence for level-one linear diff. systems 52 ∆12 t ¡L and so on. . . , i.e., all other alien derivatives on the real positive line being 0.Equations (51) can be seen as Écalle bridge equations.

	We can develop these formulae by writing or ∆ 12 Ô Ö F Õ Ö F t L	∆12 Ô Ö F Õ Ö F t L e ¡12ßt	∆12 t ¡L
	(51)	°³ ³ ³ ³ ³ ³ ³ ³ ² ³ ³ ³ ³ ³ ³ ³ ³ ±	∆ 12 Ô Ö F 1 Õ Ö F 2 t ¡12Ôλ µÕ c Ô2,1Õ ∆ 12 Ô Ö F 8 Õ Ö F 1 t 12Ôλ µÕ c Ô1,8Õ ∆ 12 3 Ô Ö F 7 Õ Ö F 3 c Ô3,7Õ ∆ 24 Ô Ö F 8 Õ Ö F 2 ¡ c Ô2,8Õ ¡ 1 2 c Ô2,1Õ c Ô1,8Õ	©	∆ 12 Ô Ö F 6 Õ Ö F 4 c Ô4,6Õ ∆ 12 Ô Ö F 10 Õ Ö F 12 c Ô12,10Õ ∆ 12 3 Ô Ö F 13 c Ô13,9Õ F 9 Õ Ö
		∆12	∆ 12		
		∆ 12 3	∆ 12 3	c Ô3,7Õ E 3,7 c Ô13,9Õ E 13,9
		∆24	∆ 24 ¡ 1 2 Ô ∆ 12 Õ 2 ¡	c Ô2,8Õ ¡ 1 2	c Ô2,1Õ c Ô1,8Õ	©	E 2,8

c

The rank is the order of the pole x 0 minus 1 in the system written in "solved form" dY dx

What is called formal exponential e p is "the" formal solution of the differential equation y ½ ¡ p ½ y 0, which is well defined only up to a multiplicative scalar.

[START_REF] Braaksma | The Stokes phenomenon in exact asymptotics[END_REF] In the literature, a Stokes matrix has often a more general meaning where one allows to compare any two asymptotic solutions whose domains of definition overlap. We exclude such a generality here.

For non-linear situations one has to consider resurgent symbols with infinitely many exponential terms.

In the case of scalar solutions of an equation instead of a system, J. Écalle takes derivatives with respect to the constants. Since, here, the constant coefficients of the various exponentials are matrices it is more convenient to derivate with respect to the exponentials themselves.