A comparison of three learning methods to predict N2O fluxes and N leaching - Archive ouverte HAL
Communication Dans Un Congrès Année : 2010

A comparison of three learning methods to predict N2O fluxes and N leaching

Marco Follador
  • Fonction : Auteur
  • PersonId : 872016
Adrian Leip
  • Fonction : Auteur
  • PersonId : 851166

Résumé

The environmental costs of intensive farming activities are often under-estimated or not included into rural development plans, even though they play an important role in addressing future society's needs. This paper focuses on the use of statistical learning methods to predict N2O emissions and N leaching under several conservative scenarios, in order to provide an alternative approach to deterministic models on a macro-scale. To that aim, three learning methods, namely neural networks (multilayer perceptrons), SVM and random forests, are compared and provide accurate solutions.
Fichier principal
Vignette du fichier
villavialaneix_etal_MASHS2010.pdf (200.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00491583 , version 1 (13-06-2010)

Identifiants

  • HAL Id : hal-00491583 , version 1

Citer

Nathalie Villa-Vialaneix, Marco Follador, Adrian Leip. A comparison of three learning methods to predict N2O fluxes and N leaching. Modèles et Apprentissage en Sciences Humaines et Sociales, Jun 2010, Lille, France. pp.57-66. ⟨hal-00491583⟩
183 Consultations
150 Téléchargements

Partager

More