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Abstract

We investigate in this paper the properties of some dilatations or contractions of a sequence
(αn)n≥1 of Lr-optimal quantizers of an Rd-valued random vector X ∈ Lr(P) defined in the
probability space (Ω,A,P) with distribution PX = P . To be precise, we investigate the Ls-
quantization rate of sequences αθ,µ

n = µ + θ(αn − µ) = {µ + θ(a − µ), a ∈ αn} when
θ ∈ R?

+, µ ∈ R, s ∈ (0, r) or s ∈ (r,+∞) and X ∈ Ls(P). We show that for a wide family
of distributions, one may always find parameters (θ, µ) such that (αθ,µ

n )n≥1 is Ls-rate-optimal.
For the Gaussian and the exponential distributions we show the existence of a couple (θ?, µ?)
such that (αθ?,µ?

)n≥1 also satisfies the so-called Ls-empirical measure theorem. Our conjecture,
confirmed by numerical experiments, is that such sequences are asymptotically Ls-optimal. In
both cases the sequence (αθ?,µ?

)n≥1 is incredibly close to Ls-optimality. However we show (see
Remark 5.4 ) that this last sequence is not Ls-optimal (e.g when s = 2, r = 1) for the exponential
distribution.

1 Introduction

Let (Ω,A,P) be a probability space and let X : (Ω,A,P) −→ Rd be a random variable with distribu-
tion PX = P . The Lr(P )-optimal quantization problem of size n for P (or X) consists in the study
of the best approximation of X by a σ(X)-measurable random vector taking at most n values. For
X ∈ Lr(P) this leads to the following optimization problem:

en,r(X) = inf {‖X − q(X)‖r, q : Rd → α, α ⊂ Rd, card(α) ≤ n}.

Let α ⊂ Rd be a subset (a codebook) of size n. A Borel partition Ca(α)a∈α of Rd satisfying

Ca(α) ⊂ {x ∈ Rd : |x− a| = min
b∈αn

|x− b|},

where | · | denotes a norm on Rd is called a Voronoi partition of Rd (with respect to α and | · |).
The random variable X̂α taking values in the codebook α defined by

X̂α =
∑
a∈α

a1{X∈Ca(α)}.
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is called a Voronoi quantization of X . In other words, it is the nearest neighbour projection of X onto
the codebook (also called grid) α.

For any Borel function q : Rd → α,

|X − q(X)| ≥ min
a∈α

d(X, a) = d(X,α) = |X − X̂α| P a.s

so that

en,r(X) = inf {‖X − X̂α‖r, α ⊂ Rd, card(α) ≤ n}

= inf
α⊂Rd

card(α)≤n

(∫
Rd

d(x, α)rdP (x)
)1/r

. (1.1)

For all n ≥ 1, the infimum in (1.1) is reached at one (at least) codebook α?; α? is then called
a Lr-optimal n-quantizer. In addition, if card(supp(P )) ≥ n then card(α?) = n (see [5] or [9]).
Moreover the quantization error, en,r(X), decreases to zero as n goes to infinity and the so-called
Zador’s Theorem gives its convergence rate under a slightly stringent moment assumption on X .

Zador Theorem (see [5]) : Suppose E|X|r+η < +∞ for some η > 0 and let P = Pa + Ps be
the Lebesgue decomposition of P with respect to the Lebesgue measure λd, where Pa denotes the
absolutely continuous part and Ps the singular part of P . Then

lim
n→+∞

nr/d(en,r(P ))r = Qr(P ).

with

Qr(P ) = Jr,d

(∫
Rd

f
d

d+r dλd

) d+r
d

= Jr,d ‖f‖ d
d+r

∈ [0,+∞),

Jr,d = inf
n≥1

nr/dern,r(U([0, 1]d)) ∈ (0,+∞),

where U([0, 1]d) denotes the uniform distribution on the set [0, 1]d and f = dPa
dλd

. Furthermore, this
theorem naturally suggests to set the following definitions.

A sequence of n-quantizers (αn)n≥1 is

- Lr(P )-rate-optimal (or rate-optimal for X) if

lim sup
n→+∞

n1/d

(∫
Rd

d(x, αn)rdP (x)
)1/r

< +∞,

- asymptotically Lr(P )-optimal if

lim
n→+∞

nr/d

∫
Rd

d(x, αn)rdP (x) = Qr(P ),

- Lr(P )-optimal if for all n ≥ 1,

ern,r(P ) =
∫

Rd

d(x, αn)rdP (x).
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Optimal quantizers are used in many fields of application like Signal Processing (discretization of
emitted signals) or more recently, Numerical Probability where they provide some simples quadrature
formulae for the computation of expectations and conditional expectations. This approach has been
extensively developed in Finance for the pricing of American options, swing options (commodities),
portfolio management (stochastic control) or stochastic volatility estimation (non linear filtration); we
refer for example to [10] for applications to stochastic control problems. The errors bounds in these
quadrature formulae are always based on the mean quantization error ‖X − X̂α‖s where α is an
optimal Lr-quantizer, usually with r ≤ s.

Motivated by this problem, the asymptotic behavior of the Ls-mean quantization error of a se-
quence of Lr-quantizers has been extensively investigated in [6]. A lower bound has been established
which shows that if the distribution P is unbounded in the sense that the density function f = dP

dλd

satisfies λd(f > 0) = +∞ then for any sequence (αn)n≥1 of asymptotically Lr-optimal quantizers,
lim inf

n
n

1
d ‖X − X̂αn‖s = +∞, ∀s > r + d.

On the other hand, under natural assumptions in the tail of the distribution P , it is shown in [6]
that for any sequence of Lr-optimal quantizers, ∀s ∈ (0, r+ d), lim sup

n
n

1
d ‖X − X̂αn‖s < +∞ i.e

(αn)n≥1 remains Ls-rate-optimal as long as s < r + d.
The aim of this paper is to show that some simple transformation of the Lr-optimal quantizers,

namely some dilatation-translation, makes possible to overcome the critical exponent r + d: we will
establish that for a wide family of distributions, one can always find θ ∈ R?

+ and µ ∈ R (depending
on r, s and d but not on n) such that (αθ,µ

n )n≥1 is Ls-rate-optimal. From a general upper bounds that
we establish for such transformed sequences of quantizers we derive an heuristic to specify some ex-
plicit optimal (in a sense which will be elucidated later) scaling parameters (θ, µ) for several families
of distributions (Gaussian Vector, exponential and gamma distributions). Some numerical computa-
tions carried with the Gaussian and the exponential distributions show that the resulting sequence of
quantizers is very close to Ls-optimality.

So, one application could be to use these quantizers to initialize the procedures used forLs-optimal
(and local optimal) quantizers search when s 6= 2. Indeed, in the quadratic case, s = 2, several
stochastic procedures like the Competitive Learning Vector Quantization algorithm or the randomized
Lloyd’s I procedure have been designed. Both rely on the stationary property: X̂α = E(X|X̂α),
satisfied by optimal (and locally optimal) quadratic quantizers. In one dimension, Newton’s method
is used to compute the optimal quadratic quantizers. Thus a whole package of optimal n-quantizers
of the N (0, Id) distributions are available in the website www.quantize.maths-fi.com for
d ∈ {1, · · · , 10} and n ∈ {1, · · · , 5000}. But, when s 6= 2, the natural extension of these procedures
become more difficult to implement due to some loss of stability. When s > 2 the procedures tend
to explode more and more often while when 1 ≤ s < 2 the convergence phase becomes chaotic. In
particular, the sensibility of the procedure to its initialization increases as smoves away from 2. Thus,
initializing theses procedures by the dilated-contracted L2-optimal (or locally optimal) quantizers
would make them more stable and speed up the convergence. This is what we do to carry the L4-
optimal quantizers of the one dimensional Gaussian distribution (used for numerical experiments in
Section 5.1.2) by Newton’s method. In fact, initializing this procedure to a n-tuple different from the
dilated sequence usually makes the hessian matrix of the L4-quantization error singular (which makes
the procedure very unstable), especially when the grid’s size becomes large (typically when n ≥ 400).

The paper is organized as follows. In section 2 we establish a general lower bound for dilated-
translated sequences of quantizers. General upper bounds are also established in section 3 for such
sequences. In section 4 we provide a necessary and sufficient condition of Ls-rate-optimality for the
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dilated-translated sequences. Section 5 deals with some examples of distributions for which we give
the set of parameters (θ, µ) such that the dilated-translated sequence is Ls-rate-optimal and try to find
the couple (if any) which makes the resulted transformed sequence satisfy the Ls-empirical measure
theorem. The last section is devoted to some applications.

NOTATIONS : • Let αn be a set of n points of Rd . For every µ ∈ Rd and every θ > 0 we denote
αθ,µ

n = µ+ θ(αn − µ) = {µ+ θ(a− µ), a ∈ αn}.
• Let f : Rd −→ Rd be a Borel function and let µ ∈ Rd, θ > 0. One notes by fθ,µ (or fθ if µ = 0)

the function defined by fθ,µ(x) = f(µ+ θ(x− µ)), x ∈ Rd.

• If X ∼ P , Pθ,µ will stand for the probability measure of the random variable X−µ
θ + µ, θ >

0, µ ∈ Rd. In other words, it is the distribution image of P by x 7−→ x−µ
θ +µ. Note that if P = f ·λd

then dPθ,µ

dλd
= θdfθ,µ.

• If A is a matrix A′ stands for its transpose.
• Set x = (x1, · · · , xd); y = (y1, · · · , yd) ∈ Rd; we denote [x, y] = [x1, y1]× · · · × [xd, yd].
• Let | · | be a norm on Rd and let A be a subset of Rd; we denote by B(x, r) the closed ball,

centered to x with radius r > 0 and by d(x,A) the distance between x and A; both with respect to the
norm | · |.

2 Lower estimate

Let r, s > 0. Consider an asymptotically Lr(P )-optimal sequence of quantizers (αn)n≥1 . For every
µ ∈ Rd and any θ > 0, we construct the sequence (αθ,µ

n )n≥1 and try to lower bound asymptotically
the Ls-quantization error induced by this sequence. This estimation provides a necessary condition of
rate-optimality for the sequence (αθ,µ

n )n≥1. In the particular case where θ = 1 and µ = 0 we get the
same result as in [6].

Theorem 2.1. Let r, s ∈ (0,+∞), and let X be a random variable taking values in Rd with distribu-
tion P such that Pa = f.λd 6≡ 0. Suppose that E|X|r+η < ∞ for some η > 0. Let (αn)n≥1 be an
asymptotically Lr(P )-optimal sequence of quantizers. Then, for every θ > 0 and for every µ ∈ Rd,

lim inf
n→+∞

ns/d ‖X − X̂αθ,µ
n ‖s

s ≥ QInf
r,s(P, θ), (2.1)

with

QInf
r,s(P, θ) = θs+dJs,d

(∫
Rd

f
d

d+r dλd

)s/d ∫
{f>0}

fθ,µf
− s

d+r dλd.

Proof. Let m ≥ 1 and

fθ,µ
m =

m2m−1∑
k,l=0

l

2m
1Em

k ∩Gm
l

;

with

Em
k =

{
k

2m
≤ f <

k + 1
2m

}
∩B(0,m) and Gm

l =
{

l

2m
≤ fθ,µ <

l + 1
2m

}
∩B(0,m).

The sequence (fθ,µ
m )m≥1 is non-decreasing and

lim
m→+∞

fθ,µ
m = fθ,µ λd p.p.
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Let
Im = {(k, l) ∈ {0, · · · ,m2m − 1}2 : λd(Em

k ) > 0;λd(Gm
l ) > 0}.

For every (k, l) ∈ Im there exists compact sets Km
k and Lm

l such that :

Km
k ⊂ Em

k , Lm
l ⊂ Gm

l , λd(Em
k \Km

k ) ≤ 1
m422m+1

and λd(Gm
l \Lm

l ) ≤ 1
m422m+1

.

Then

(Em
k ∩Gm

l )\(Km
k ∩ Lm

l ) = Em
k ∩Gm

l ∩ ((Km
k )c ∪ (Lm

l )c)
⊂ (Em

k \Km
k ) ∪ (Gm

l \Lm
l ).

Consequently,

λd(Em
k ∩Gm

l \Km
k ∩ Lm

l ) ≤ λd(Em
k \Km

k ) + λd(Gm
l \Lm

l )

≤ 1
m422m+1

+
1

m422m+1

=
1

m422m
.

For every m ≥ 1 and every (k, l) ∈ Im, set

Am
k,l := Km

k ∩ Lm
l ,

f̃θ,µ
m :=

m2m−1∑
k,l=0

l

2m
1Am

k,l
,

and

f̃m :=
m2m−1∑
k,l=0

k

2m
1Am

k,l
.

We get
{fθ,µ

m 6= f̃θ,µ
m } ⊂

⋃
k,l∈{0,··· ,m2m−1}

(
(Em

k ∩Gm
l )\Am

k,l

)
.

Therefore, for every m ≥ 1,

λd({fθ,µ
m 6= f̃θ,µ

m }) ≤
m2m−1∑
k,l=0

1
m422m

=
1
m2

and finally ∑
m≥1

1{fθ,µ
m 6=f̃θ,µ

m } <∞ λd p.p.

As a consequently λd(dx)-p.p, fθ,µ
m (x) = f̃θ,µ

m (x) for large enough m. Then f̃θ,µ
m

λd p.p.−→ fθ,µ when
m→ +∞. Since in addition Am

k,l ⊂ Em
k ∩Gm

l we obtain

f̃θ,µ
m ≤ fθ,µ

m ≤ fθ,µ. (2.2)
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Moreover, for every n ≥ 1,

ns/d ‖X − X̂αθ,µ
n ‖s

s = ns/d

∫
Rd

d(z, µ+ θ(αn − µ))sf(z)λd(dz)

= ns/d

∫
Rd

min
a∈αn

|z − (µ+ θ(a− µ))|sf(z)λd(dz)

= θsns/d

∫
Rd

min
a∈αn

|(z − µ)/θ + µ− a|sf(z)λd(dz).

Making the change of variable x := (z − µ)/θ + µ yields:

ns/d ‖X − X̂αθ,µ
n ‖s

s = θs+dns/d

∫
Rd

d(x, αn)sfθ,µ(x)λd(dx)

≥ θs+dns/d

∫
Rd

d(x, αn)sf̃θ,µ
m λd(dx) ( by (2.2) )

= θs+dns/d
m2m−1∑
k,l=0

l

2m

∫
Am

k,l

d(x, αn)sλd(dx). (2.3)

Let m ≥ 1 and (k, l) ∈ Im. Define the closed sets Ãm
k,l by Ãm

k,l = ∅ if λd(Ãm
k,l) = 0 and otherwise by

Ãm
k,l = {x ∈ Rd : d(x,Am

k,l) ≤ εm}

where εm ∈ (0, 1] is chosen so that∫
Ãm

k,l

f
d

d+r dλd ≤
(
1 + 1/m

) ∫
Am

k,l

f
d

d+r dλd.

Since Ãm
k,l is compact

(
Ãm

k,l ⊂ B(0,m+ 1) ∀(k, l)
)
, and

Am
k,l ⊂ (Ãm

k,l)εm/2 := {x ∈ Rd : d(x,Am
k,l) ≤ εm/2} = {x ∈ Rd : d(x, (Ãm

k,l)
c) > εm/2},

there is (ref. [1], Lemma 4.3) a finite " firewall" set βm
k,l such that ∀n ≥ 1, ∀x ∈ (Ãm

k,l)εm/2,

d(x, αn ∪ βm
k,l) = d(x, (αn ∪ βm

k,l) ∩ Ãm
k,l).

This last equality holds in particular for every x ∈ Am
k,l since Am

k,l ⊂ (Ãm
k,l)εm/2.

Now set βm =
⋃

k,l β
m
k,l and nm

k,l = card((αn ∪ βm) ∩ Ãm
k,l). The empirical measure theorem

(see (5.3)) yields

lim sup
n

card(αn ∩ Ãm
k,l)

n
=

∫
αn∩Ãm

k,l
f

d
d+r dλd∫

f
d

d+r dλd

≤

∫
Ãm

k,l
f

d
d+r dλd∫

f
d

d+r dλd

.

Moreover
nm

k,l

n
∼

card(αn ∩ Ãm
k,l)

n
when n→ +∞

then

lim inf
n→+∞

n

nm
k,l

≥
∫
f

d
d+r dλd∫

Ãm
k,l
f

d
d+r dλd

≥ m

m+ 1

∫
f

d
d+r dλd∫

Am
k,l
f

d
d+r dλd

. (2.4)
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On the other hand,∫
Am

k,l

d(x, αn)sλd(dx) ≥
∫

Am
k,l

d(x, (αn ∪ βm
k,l) ∩ Ãm

k,l)
sλd(dx)

= λd(Am
k,l)
∫
d(x, (αn ∪ βm

k,l) ∩ Ãm
k,l)

s1Am
k,l

(x)
λd(dx)
λd(Am

k,l)

≥ λd(Am
k,l)e

s
nm

k,l,s
(U(Am

k,l)),

where U(A) = 1A/λd(A) denotes the uniform distribution in the Borel set A when λd(A) 6= 0. Then
we can write for every (k, l) ∈ Im,

lim inf
n→+∞

ns/d

∫
Am

k,l

d(x, αn)sλd(dx) ≥ λd(Am
k,l) lim inf

n

(
n

nm
k,l

)s/d

lim inf
n

ns/desn,s(U(Am
k,l)),

since
lim inf

n
ns/desn,s(U(Am

k,l)) ≥ Js,d · λd(Am
k,l)

s/d.

Owing to Equation (2.4), one has

lim inf
n→+∞

ns/d

∫
Am

k,l

d(x, αn)sλd(dx) ≥ λd(Am
k,l)

 m

m+ 1

∫
f

d
d+r dλd∫

Am
k,l
f

d
d+r dλd


s/d

Js,d · λd(Am
k,l)

s/d.

However, on the sets Am
k,l, the statement 1

f ≥
(

k+1
2m

)−1
holds since f < k+1

2m on Em
k . Hence

lim inf
n→+∞

ns/d

∫
Am

k,l

d(x, αn)sλd(dx) ≥ Js,d

(
m+ 1
m

∫
f

d
d+rλd(dx)

)s/d(k + 1
2m

)− d
d+r

· s
d

λd(Am
k,l).

It follows from Equation (2.3) and the super-additivity of the liminf that for every m ≥ 1,

lim inf
n

ns/d ‖X − X̂αθ,µ
n ‖s

s ≥ θs+dJs,d

(
m+ 1
m

∫
f

d
d+rλd(dx)

)s/d m2m−1∑
k,l=0

l

2m

(
k + 1
2m

)− s
d+r

λd(Am
k,l)

≥ θs+dJs,d

(
m+ 1
m

∫
f

d
d+rλd(dx)

)s/d ∫
{f>0}

f̃θ,µ
m (f̃m + 2−m)−

s
d+r dλd.

Finally, applying Fatou’s Lemma yields

lim inf
n→+∞

ns/d ‖X − X̂αθ,µ
n ‖s

s ≥ θs+dJs,d

(∫
Rd

f
d

d+r dλd

)s/d ∫
{f>0}

fθ,µf
− s

d+r dλd.

3 Upper estimate

Let r, s > 0. Let (αn)n≥1 be an (asymptotically) Lr(P ) - optimal sequence of quantizers. In this sec-
tion we will provide some sufficient conditions of Ls(P )-rate-optimality for the sequence (αθ,µ

n )n≥1.
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Definition 3.1. Let θ > 0, µ ∈ Rd and let P be a probability distribution such that P = f · λd. The
couple (θ, µ) is said P -admissible if

{f > 0} ⊂ µ(1− θ) + θ{f > 0} λd-p.p. (3.1)

One remarks that when supp(P ) = Rd then every couple (θ, µ) is P -admissible. Indeed, every
x ∈ Rd can be written x = µ(1− θ) + θz with z = x−µ(1−θ)

θ and f(z) > 0.

Theorem 3.1. Let r, s ∈ (0,+∞), s < r and let X be a random variable taking values in Rd with
distribution P such that P = f · λd. Suppose that (θ, µ) is P -admissible for some θ > 0;µ ∈ R,
and E|X|r+η < ∞, for some η > 0. Let (αn)n≥1 be an asymptotically Lr-optimal sequence of
n-quantizers. If ∫

{f>0}
f

r
r−s

θ,µ f−
s

r−sdλd < +∞ (3.2)

then, (αθ,µ
n )n≥1 is Ls(P )-rate-optimal and

lim sup
n→+∞

ns/d ‖X − X̂αθ,µ
n ‖s

s ≤ θs+d (Qr(P ))s/r

(∫
{f>0}

f
r

r−s

θ,µ f−
s

r−sdλd

)1− s
r

. (3.3)

Remark 3.1. Note that if θ = 1 and µ = 0 then∫
{f>0}

f
r

r−s

θ,µ f−
s

r−sdλd =
∫
{f>0}

f
r

r−s f−
s

r−sdλd =
∫
{f>0}

fdλd = 1.

Which gives the expected result since ‖X − X̂αn‖s ≤ ‖X − X̂αn‖r.

Proof. Let P θ denote the distribution of the random variable θX . P θ is absolutely continuous with
respect to λd, with p.d.f gθ(x) = θ−df(x

θ ).
For every n ≥ 1,

ns/d ‖X − X̂αθ,µ
n ‖s

s = ns/d

∫
Rd

d(x, αθ,µ
n )sdP (x)

= ns/d

∫
{f>0}

min
a∈αn

|x− µ(1− θ)− θa|sf(x)dλd(x).

Making the change of variable z := x− µ(1− θ) gives

ns/d ‖X − X̂αθ,µ
n ‖s

s = ns/d

∫
{f>0}−µ(1−θ)

d(z, θαn)sf(z + µ(1− θ))dλd(z)

≤ ns/d

∫
θ{f>0}

d(z, θαn)sf(z + µ(1− θ))g−1
θ (z)dP θ(z) (3.4)

≤ ns/d

(∫
Rd

d(z, θαn)rdP θ(z)
)s/r

(∫
θ{f>0}

(
f(z + µ(1− θ))g−1

θ (z)
) r

r−sdP θ(z)

) r−s
r

≤
(
nr/d‖θX − θ̂X

θαn‖r
r

)s/r
(∫

θ{f>0}
f(z + µ(1− θ))

r
r−s g

− s
r−s

θ (z)dλd(z)

) r−s
r

8



where we used the P -admissibility of (θ, µ) in the first inequality. The second inequality derives from
Hölder inequality applied with p = r/s > 1 and q = 1− s/r.

Moreover
‖θX − θ̂X

θαn‖r
r = E

(
min
a∈αn

|θX − θa|r
)

= θr‖X − X̂αn‖r
r. (3.5)

Then

ns/d ‖X−X̂αθ,µ
n ‖s

s ≤ θs
(
nr/d‖X − X̂αn‖r

r

)s/r
(∫

θ{f>0}
f(z + µ(1− θ))

r
r−s g

− s
r−s

θ (z)dλd(z)

) r−s
r

.

Owing to the asymptotically Lr(P )-optimality of (αn) and making again the change of variable x :=
z/θ yields

lim sup
n→+∞

ns/d ‖X − X̂αθ,µ
n ‖s

s≤ θs (Qr(P ))s/r

(
θ

ds
r−s

∫
θ{f>0}

f(z + µ(1− θ)))
r

r−s f(z/θ)−
s

r−sdλd(z)

) r−s
r

= θs (Qr(P ))s/r

(
θ

rd
r−s

∫
{f>0}

fθ,µ(x)
r

r−s f(x)−
s

r−sdλd(x)

) r−s
r

= θs+d (Qr(P ))s/r

(∫
{f>0}

fθ,µ(x)
r

r−s f(x)−
s

r−sdλd(x)

) r−s
r

.

The next theorem provides a less accurate asymptotic upper bound than the previous one since,
beyond the restriction on the distribution ofX , we need now the sequence (αn) to be (exactly) Lr(P )-
optimal. Before giving the theorem, recall first the following result established in [6] and related to
the maximal function ψb : Rd −→ R+ ∪ {+∞} defined by

ψb(x) = sup
n≥1

λd(B(x, bd(x, αn)))
P (B(x, bd(x, αn)))

. (3.6)

Proposition 3.1. Let b ∈
(
0, 1/2

)
, X ∼ P, with Pa 6= 0, such that E|X|r+η <∞, for some η > 0 .

Let (αn) be an Lr(P )-optimal sequence of quantizers. Then ∀x ∈ Rd,∀n ≥ 1,

n1/dd(x, αn) ≤ C(b)ψb(x)1/(d+r) (3.7)

where C(b) denotes a real constant not depending on n.

Theorem 3.2. Let r, s ∈ (0,+∞) and let X be a random variable taking values in Rd with distribu-
tion P such that P = f · λd. Suppose that E|X|r+η <∞ for some η > 0 and Pθ,µ � P

(
i.e Pθ,µ is

absolutely continuous with respect to P
)

for some θ > 0, µ ∈ Rd. Let (αn)n≥1 be an Lr(P )- optimal
sequence of quantizers and suppose that the maximal function defined previously satisfies

ψ
s/(d+r)
b ∈ L1(Pθ,µ) for some b ∈ (0, 1/2). (3.8)

Then,

lim sup
n

ns/d ‖X − X̂αθ,µ
n ‖s

s ≤ C(b) θs+d

∫
{f>0}

fθ,µf
− s

d+r dλd < +∞ (3.9)

where C(b) is a positive real constant not depending on θ, µ and n.
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Notice that this theorem does not require (θ, µ) to be P -admissible.

Proof. It follows from the definition of ψb that (because f is a limit which is less than the sup)

f−
s

d+r ≤ ψ
s

d+r

b Pθ,µ-a.s.

Then, under Assumption (3.8),∫
f−

s
d+r dPθ,µ =

∫
{f>0}

fθ,µf
− s

d+r dλd < +∞.

For all n ≥ 1,

ns/d ‖X − X̂αθ,µ
n ‖s

s = ns/d

∫
Rd

d(z, αθ,µ
n )sf(z)dλd(z)

= ns/dθs

∫
Rd

min
a∈αn

|(z − µ)/θ + µ− a|sf(z)dλd(z)

We make the change of variable x := (z − µ)/θ + µ. Then

ns/d ‖X − X̂αθ,µ
n ‖s

s = ns/dθs+d

∫
Rd

d(x, αn)sf(µ+ θ(x− µ))dλd(x)

= ns/dθs

∫
Rd

d(x, αn)sdPθ,µ(x).

Moreover, it is established in [6] that

lim sup
n

ns/dd(·, αn)s ≤ C(b)f−
s

d+r .

Hence, from Inequality (3.7) and under Assumption (3.8), we can apply the Lebesgue dominated
convergence theorem to the above inequalities to get

lim sup
n

ns/d

∫
d(x, αn)sdPθ,µ(x) ≤

∫
lim sup

n
ns/dd(x, αn)sdPθ,µ(x)

≤ C(b)
∫
f−

s
d+r dPθ,µ(x).

= θdC(b)
∫
{f>0}

fθ,µ(x)f−
s

d+r (x)dλd(x).

For a given distribution, Assumption (3.8) is not easy to verify. But when s 6= r + d, the lemma
and criterions below provide a sufficient condition so that Assumption (3.8) is satisfied. In the rest of
this section we extend some of the results obtained in [6].

Let P = f · λd be an absolutely continuous distribution. Let r, s ∈ (0,+∞) and (θ, µ) be a
P -admissible couple of parameters. We will need the following hypotheses:

(H1) for all M > 0,

sup
z∈B(0,M)

f(µ+ θ(z − µ))
f(z)

1{f(z)>0} < +∞. (3.10)
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(H2) There exists b ∈ (0, 1/2), M ∈ (0,+∞) such that∫
B(0,M)c

(
sup

t≤2b|x|

λd(B(x, t))
P (B(x, t))

)s/(d+r)

dPθ,µ < +∞. (3.11)

(H3) λd(· ∩ supp(P )) � P and supp(P ) is a finite union of closed convex sets.

Lemma 3.1. Let P = f ·λd and r > 0 such that
∫
|x|rP (dx) < +∞. Assume (αn)n≥1 is a sequence

of quantizers such that
∫
d(x, αn)rdP → 0. Let (θ, µ) be a P -admissible couple of parameters for

which (H1) holds.

(a) If p ∈ (0, 1) then for every b > 0, ψp
b ∈ L

1
loc(Pθ,µ).

(b) If p ∈ (1,+∞] and if furthermore (H3) holds then for every b > 0,

f−p ∈ L1
loc(P ) =⇒ ψp

b ∈ L
1
loc(Pθ,µ).

Proof. It follows from the P -admissibility of (θ, µ) that

Pθ,µ(dz) = θdf(µ+ θ(z − µ))λd(dz) = gθ(z)P (dz),

where gθ(z) = θd f(µ+θ(z−µ))
f(z) 1{f(z)>0}. Then gθ is locally bounded by (H1).

(a) If p ∈ (0, 1), it follows from Lemma 1 in [6] that ψp
b ∈ L

1
loc(P ). Hence ψp

b ∈ L
1
loc(Pθ,µ) since

gθ is locally bounded.
(b) If p ∈ (1,+∞) it follows from Lemma 2 in [6] that if f−p ∈ L1

loc(P ) then ψp
b ∈ L1

loc(Pθ,µ)
since gθ is locally bounded.

Corollary 3.1. (Distributions with unbounded support) Let r > 0, s ∈ (0,+∞), s 6= r + d and let
X be a random variable with probability measure P = f · λd such that E|X|r+η < +∞ for some
η > 0. Let (θ, µ) be P -admissible and suppose that (H1), (H2) hold.

(a) If s ∈ (0, r + d) then Assumption (3.8) of Theorem 3.2 holds true.

(b) If s ∈ (r + d,+∞), and if furthermore, (H3) holds and f−
s

r+d ∈ L1
loc(P ) then Assumption

(3.8) of Theorem 3.2 holds true.

Proof. Let x0 ∈ supp(P ). We know from [1] that d(x0, αn) → 0. Then following the lines of the
proof of Corollary 2 in [6] one has for |x| > N = |x0|+supn≥1 d(x0, αn), d(x, αn) ≤ 2|x| for every
n ≥ 1. Thus for every b > 0, x ∈ B(0, N)c,

ψb(x) ≤ sup
t≤2b|x|

λd(B(x, t))
P (B(x, t))

.

Now, coming back to the core of our proof, it follows from (H2) that (for b coming from (H2)),∫
B(0,M∨N)c

ψ
s/(d+r)
b dPθ,µ < +∞.

Since ∫
ψ

s/(d+r)
b dPθ,µ =

∫
B(0,M∨N)

ψ
s/(d+r)
b dPθ,µ +

∫
B(0,M∨N)c

ψ
s/(d+r)
b dPθ,µ,
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it remains to show that the first term in the right hand side of this last equality is finite.
(a) If s ∈ (0, r + d) it follows from Lemma 3.1, (a) that the first term in the right hand side of

the above equality is finite. As a consequence, ψ
s

r+d ∈ L1(Pθ,µ).
(b) If s > r + d, the first term in the right hand side of the above equality still finite owing to

Lemma 3.1, (b). Consequently, Assumption (3.8) of Theorem 3.2 holds true provided (H3) holds
and f−

s
r+d ∈ L1

loc(P ).

We next give two useful criterions ensuring that Hypothesis (H2) holds. The first one is useful
for distributions with radial tails and the second one for distributions which does not satisfy this last
assumption.

Criterion 3.1. Let X ∼ P . Suppose that P = f · λd and E|X|r+η < +∞ for some η > 0.
(a) Let r, s > 0 and f = h(| · |) on B|·|(0, N)c with h : (R,+∞) → R+, R ∈ R+, a decreasing
function and | · | any norm on Rd. Suppose that (θ, µ) is a couple of P -admissible parameters such
that ∫

f(cx)−
s

d+r dPθ,µ(x) < +∞ (3.12)

for some c > 1. Then (H2) holds.
(b) Let r, s > 0. Suppose supp(P ) ⊂ [R0,+∞) for some R0 ∈ R and f|(R′

0,+∞)
is decreasing for

R
′
0 ≥ R0. Assume furthermore that (θ, µ) is a couple of P -admissible parameters such that (3.12) is

satisfied for some c > 1. Then Hypothesis (H2) holds.

Note that (b) follows from (a) for d = 1 and that (a) is simply deduced from the proof of
Corollary 3 in [6] since it has been shown that for b ∈ (0, 1/2), M := N/(1− 2b) one has for every
x ∈ B(0,M)c,

sup
t≤2b|x|

λd(B(x, t))
P (B(x, t))

≤ 1
f(x(1 + 2b))

.

Criterion 3.2. Let r, s > 0, P = f · λd and
∫
|x|r+ηP (dx) < +∞ for some η > 0. Let (θ, µ) be a

P -admissible couple such that

sup
z 6=0

f(µ+ θ(z − µ))
f(z)

1{f(z)>0} < +∞. (3.13)

Assume furthermore that

inf
x∈supp(P ),ρ>0

λd(supp(P ) ∩B(x, ρ))
λd(B(x, ρ))

> 0

and that f satisfies the local growth control assumption : there exists real numbers ε ≥ 0, η ∈
(0, 1/2), M,C > 0 such that

∀x, y ∈ supp(P ), |x| ≥M, |y − x| ≤ 2η|x| =⇒ f(y) ≥ Cf(x)1+ε.

If ∫
f(x)−

s(1+ε)
d+r dP (x) < +∞, (3.14)
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then (H2) holds. If in particular f satisfies the local growth control assumption for ε = 0 or for every
ε ∈ (0, ε], with ε > 0, and if∫

f(x)−
s

d+r dP (x) =
∫
{f>0}

f(x)1−
s

d+r dλd(x) < +∞

then Hypothesis (H2) holds.

Notice that Hypothesis (3.13) can be relaxed if we suppose that f(x)−
s(1+ε)

d+r ∈ L1(Pθ,µ) instead
of (3.14).

The criterion follows from Corollary 4 in [6].

4 Toward a necessary and sufficient condition for Ls(P )-rate-optimality

Let X ∼ P . Let us make some comments about inequalities (2.1) and (3.9). Note first that the
moment assumption E|X|r+η < +∞ for some η > 0, ensure that

∫
Rd f

d
d+r dλd < +∞ (cf [5]).

Consequently, if
∫
{f>0} fθ,µf

− s
d+r dλd = +∞ one derives from inequality (2.1) that

lim
n→+∞

ns/d ‖X − X̂αθ,µ
n ‖s

s = +∞.

Then the sequence (αα,µ
n )n≥1 is not Ls-rate-optimal.

On the other hand if
∫
{f>0} fθ,µf

− s
d+r dλd < +∞ one derives from Inequality (3.9) that (αθ,µ

n )n≥1

is Ls-rate-optimal. This leads to a necessary and sufficient condition so that the sequence (αθ,µ
n )n≥1

(in particular the sequence (αn)n≥1 by taking θ = 1 and µ = 0) is Ls-rate-optimal.

Remark 4.1. Let µ ∈ Rd, θ, r > 0 and let P be a probability distribution such that P = f · λd.
Assume (θ, µ) is P -admissible. Let (αn)n≥1 be an Lr(P )-optimal sequence of n-quantizers and
suppose that Assumption (3.8) of Theorem 3.2 holds true. Then for every s > 0,

(αθ,µ
n )n≥1 is Ls-rate-optimal ⇐⇒

∫
{f>0}

fθ,µf
− s

d+r dλd < +∞. (4.1)

Remark 4.2. If s < r and if (αn)n≥1 is asymptotically Lr-optimal, Inequality (3.3) provides a suffi-

cient condition so that the sequence (αθ,µ
n )n≥1 isLs-rate-optimal, which is :

∫
{f>0} f

r
r−s

θ,µ f−
s

r−sdλd <

+∞ (always satisfied by (αn)n≥1 itself).

However, it follows from Hölder inequality (applied to p = r
r−s > 1 and q = r

s ) that ∀s < r,∫
{f>0}

fθ,µf
− s

d+r dλd =
∫
{f>0}

fθ,µf
− s

r f
sd

r(d+r)dλd

≤

(∫
{f>0}

f
r

r−s

θ,µ f−
s

r−sdλd

)1− s
r (∫

f
d

d+r dλd

) s
r

.

One deduces that{
(θ, µ) s. t

∫
{f>0}

f
r

r−s

θ,µ f−
s

r−sdλd < +∞
}
⊂
{
(θ, µ) s. t

∫
{f>0}

fθ,µf
− s

d+r dλd < +∞
}
. (4.2)
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As a consequence, if (αn)n≥1 is an Lr(P )-optimal sequence of quantizers and if assumptions of
Theorem 3.2 are fulfilled then for every s < r we will rather use Inequality (3.9) instead of (3.3)
to find the couple of parameters (θ, µ) so that the sequence is Ls(P )-rate-optimal. But If (αn)n≥1 is
simply asymptotically Lr(P )-optimal, we only have at our disposal Inequality (3.3) to find this set of
parameters.

Now, for s 6= r, is it possible to find a θ = θ? for which the sequence (αθ?,µ
n )n≥1 is asymptoti-

cally Ls(P )-optimal? (when s < r this is the only question of interest since we know that (αn)n≥1 is
Ls(P )-rate-optimal for every s < r).

Let (αn)n≥1 be an (asymptotically) Lr(P )-optimal sequence of quantizers. For a fixed r, b and µ,
we can write from inequalities (3.3) and (3.9) :

lim sup
n

ns/d ‖X − X̂αθ,µ
n ‖s

s ≤ QSup
r,s (P, θ) (4.3)

with

QSup
r,s (P, θ) =

 θs+d (Qr(P ))s/r
(∫

{f>0} f
r

r−s

θ,µ f−
s

r−sdλd

)1− s
r

if s < r

θs+dC(b)
∫
{f>0} fθ,µf

− s
d+r dλd if s > r.

One knows that for a given s > 0, we have for all n ≥ 1,

esn,s(X) ≤ ‖X − X̂αθ,µ
n ‖s

s.

Then for every θ > 0,
Qs(P ) ≤ QSup

r,s (P, θ).

Consequently for a fixed s > 0, in order to have the best estimation of Zador’s constant in Ls, we
must minimize over θ, the quantity QSup

r,s (P, θ). In that way, we may hope to reach the sharp rate of
convergence in Zador Theorem and so construct an asymptotically Ls-optimal sequence.

For µ well chosen, the examples below show that, for the Gaussian and the exponential distribu-
tions, the minimum θ? exists and the sequence (αθ?,µ

n )n≥1 satisfies the empirical measure theorem
and is suspected to be asymptotically Ls-optimal.

5 Examples of distributions

Let (αn)n≥1 be an (asymptotically) Lr(P )-optimal sequence of quantizers for a given probability
distribution P and consider the sequence (αθ,µ

n )n≥1. For a fixed µ and s, we try to solve the following
minimization problem

θ? = arg min
θ>0

{
QSup

r,s (P, θ), (αθ,µ
n )n≥1 L

s(P )-rate-optimal
}
. (5.1)

In all examples, C will denote a generic real constant (not depending on θ) which may change
from line to line. The choice of µ depends on the probability measure and it is not clear how to choose
it. But Proposition 6.1 morally implies that µ must be chosen so that for every θ > 0, the probability
distribution Pθ,µ lies in the same family of distributions as P so that for the Gamma distribution we
will set µ = 0. If for every θ > 0, µ ∈ Rd, Pθ,µ lies in the same family of distribution as P we will
choose µ such that θ? do not depend on µ; which means to put µ = E(X) if X is further a symmetric
random variable.
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5.1 The multivariate Gaussian distribution

5.1.1 Optimal dilatation and contraction

Proposition 5.1. Let r, s > 0 and let P = N (m; Σ), m ∈ Rd,Σ ∈ S+(d,R).

(a) If (αn)n≥1 is an Lr(P )-optimal sequence of quantizers then, for s 6= r + d, the sequence
(αθ,m

n )n≥1 is Ls(P )-rate-optimal iff θ ∈
(√

s/(d+ r),+∞
)

and

θ? =
√

(s+ d)/(r + d) ∈ (1,+∞)

is the unique solution of (5.1) on the set
(√

s/(d+ r),+∞
)
.

(b) If (αn)n≥1 is an asymptotically Lr(P )-optimal sequence of quantizers then, for s ∈ (0, r), the
sequence (αθ,m

n )n≥1 is Ls(P )-rate-optimal if θ ∈
(√

s/r,+∞
)

and

θ? =
√

(s+ d)/(r + d) ∈ (0, 1)

is the unique solution of (5.1) on the set
(√

s/r,+∞
)
.

Proof. Since the multivariate Gaussian distribution is symmetric and for every θ > 0, Pθ,µ is also a
Gaussian random vector, one sets µ = m. Keep in mind that the probability density function f of P
is given for every x ∈ Rd by

f(x) =
(
(2π)ddet Σ

)− 1
2 e−

1
2
(x−m)′Σ−1(x−m).

Note first that Hypothesis (H1) is obviously satisfied from the continuity of f(m+θ(z−m))
f(z) 1{f(z)>0} on

every B̄(0,M), M > 0.
(a) Let s < d + r. For every θ > 0, µ ∈ Rd, the couple (θ, µ) is P -admissible and f is radial

since f(x) = ϕ(|x−m|Σ) with ϕ : (0,+∞) 7−→ R+ defined by

ϕ(ξ) =
(
(2π)ddetΣ

)−1/2 exp(−1
2
|ξ|2), with |x|Σ = |Σ− 1

2x|.

Let θ >
√
s/(r + d). Then Assumption (3.12) holds for every c ∈ (1, θ

√
r+d

s ). Consequently, it
follows from Corollary 3.1, (a) that Assumption (3.8) of Theorem 3.2 holds.

If s > d + r, the required additional hypotheses (H3) and f−
s

r+d ∈ L1
loc(P ) are clearly satisfied

since if P = f · λd then

λd(supp(P ) ∩ {f = 0}) = 0 =⇒ λd(· ∩ supp(P )) � P (5.2)

and f−
s

r+d is continuous on every B̄(0,M), M > 0. Then it follows from Corollary 3.1, (b) that
Assumption (3.8) of Theorem 3.2 holds.

On the other hand∫
Rd

fθ,m(x)f(x)−
s

d+r dx =
∫

Rd

f(m+ θ(x−m))f(x)−
s

d+r dx

= C

∫
Rd

e−
1
2
(θ2− s

d+r
)(x−m)′Σ−1(x−m)dx
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so that ∫
Rd

fθ,m(x)f(x)−
s

d+r < +∞ iff θ >

√
s

d+ r
.

Now we are in position to solve the problem (5.1). Let θ ∈
(√

s/(d+ r),+∞
)
,

θs+d

∫
Rd

fθ,m(x)f(x)−
s

d+r dx =
(
(2π)ddet Σ

)− 1
2
(1− s

d+r
)
θs+d

∫
Rd

e−
1
2
(θ2− s

d+r
)(x−m)′Σ−1(x−m)dx

=
(
(2π)ddet Σ

)− s
d+r θs+d

(
θ2 − s

d+ r

)− d
2

.

For θ ∈
(√

s/(d+ r),+∞
)
, we want to minimize the function h defined by

h(θ) = θs+d

(
θ2 − s

d+ r

)− d
2

.

The function h is differentiable on
(√

s/(d+ r),+∞
)

with derivative

h′(θ) = sθd+s−1

(
θ2 − s

d+ r

)−1−d/2(
θ2 − s+ d

r + d

)
.

One easily checks that h reaches its unique minimum on
(√

s/(d+ r),+∞
)

at θ? =
√

(s+ d)/(r + d).
(b) Let s < r and consider the inequality (3.3). We get∫

f
r

r−s

θ,m (x)f−
s

r−s (x)dx = C

∫
Rd

e−
1
2

r
r−s

(θ2− s
r
)(x−m)′Σ−1(x−m)dx.

So if θ ∈
(√

s/r,+∞
)

then
∫
f

r
r−s

θ,m (x)f−
s

r−s (x)dx < +∞. This proves the first assertion.
To prove the second assertion, let θ ∈

(√
s/r,+∞

)
. Then

θd+s

(∫
f

r
r−s

θ,m (x)f−
s

r−s (x)dx
)1− s

r

= C θs+d

(∫
Rd

e−
1
2

r
r−s

(θ2− s
r
)(x−m)′Σ−1(x−m)dx

)1− s
r

= C θs+d
(
θ2 − s

r

)− d
2r

(r−s)
.

We proceed as before by setting

h(θ) = θα
(
θ2 − s

r

)β
, with α = d+ s and β = − d

2r
(r − s).

For all θ ∈
(√

s/r,+∞
)
,

h′(θ) = θα−1
(
θ2 − s

r

)β−1 (
(α+ 2β)θ2 − αs

r

)
.

The sign of h′ depends on the sign of
(
(α+ 2β)θ2 − αs

r

)
. Moreover α + 2β = s

r (d + r) > 0 then
h′ vanishes at θ? =

√
(s+ d)/(r + d), is negative on the set

(√
s/r, θ?

)
and positive on

(
θ?,+∞

)
.

Therefore h reaches its minimum on
(√

s/r,+∞
)

at the unique point θ?.
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Definition 5.1. A sequence of quantizers (βn)n≥1 is called a dilatation of the sequence (αn)n≥1 with
scaling number θ and translating number µ if, for every n ≥ 1, βn = αθ,µ

n , with θ > 1. If θ < 1,
one defines likewise the contraction of the sequence (αn)n≥1 with scaling number θ and translating
number µ.

From this definition follows the following remark.

Remark 5.1. Let X ∼ N (m; Σ).
If s < r then θ? < 1. Hence (αθ?,m

n )n≥1 is a contraction of (αn)n≥1 with scaling number θ?

and translating number m. On the other hand, if s > r, then θ? > 1. In this case the sequence
(αθ?,m

n )n≥1 is a dilatation of (αn)n≥1 with scaling number θ? and translating number m. Also note
that θ? does not depend on the covariance matrix Σ.

What we do expect from the resulting sequence (αθ?,m
n )n≥1 ? Before giving any answer to this

question let us recall first the empirical measure theorem (see [5]) which gives the asymptotic distri-
bution of the empirical measure induced by an asymptotically Lr-optimal sequence of quantizers.

Theorem 5.1. (Empirical measure theorem) Let X ∼ P , with Pa 6= 0, and let (αn)n≥1 be an
asymptotically Lr(P )-optimal sequence of quantizers. Then

1
n

∑
a∈αn

δa
w−→ Pr (5.3)

where w−→ denotes the weak convergence and for every Borel set A of Rd, Pr is defined by

Pr(A) =
1
Cf,r

∫
A
f(x)

d
d+r dλd(x), with Cf,r =

∫
Rd

f(x)
d

d+r dλd(x). (5.4)

A sequence of quantizers (αn)n≥1 will be said to satisfy the Lr-empirical measure theorem
if (5.3) holds. The next proposition shows that the sequence (αθ?,m

n )n≥1 satisfies the Ls-empirical
measure theorem.

Proposition 5.2. Let r, s > 0 and let P = N (m; Σ). Assume (αn)n≥1 is asymptotically Lr(P )-
optimal. Then the sequence (αθ?,m

n )n≥1 (as defined before with θ? =
√

(s+ d)/(r + d)) satisfies the
Ls-empirical measure theorem.

In other words, for every a, b ∈ Rd,

1
n

card({x ∈ αθ?,m

n ∩ [a, b]}) −→ 1
Cf,s

∫
[a,b]

f(x)
d

d+sdx.

Proof. For all n ≥ 1,

{x ∈ αθ?,m

n ∩ [a, b]} = {x ∈ αn ∩ [(a−m)/θ? +m, (b−m)/θ?] +m}.

Since (αn)n≥1 is asymptotically Lr-optimal, applying the empirical measure theorem to the sequence
(αn)n≥1 yields

1
n

card({x ∈ αn∩[(a−m)/θ?+m, (b−m)/θ?+m]}) −→ 1
Cf,r

∫
[(a−m)/θ?+m,(b−m)/θ?+m]

f(x)
d

d+r dx.

17



It remains to verify that

1
Cf,r

∫
[(a−m)/θ?+m,(b−m)/θ?+m]

f(x)
d

d+r dx =
1
Cf,s

∫
[a,b]

f(x)
d

d+sdx.

One knows that
f(x) =

(
(2π)ddet Σ

)− 1
2 e−

1
2
(x−m)′Σ−1(x−m)

and
(
see (5.4)

)
Cf,r =

∫
Rd

f(x)
d

d+r dx

so that for all r > 0,

Cf,r =
(
(2π)ddet Σ

) r
2(r+d)

(
d+ r

d

) d
2

.

By making the change of variable x = m+ θ?(z −m), one gets :

1
Cf,r

∫
[(a−m)/θ?+m,(b−m)/θ?+m]

f(z)
d

d+r dz =
1
Cf,r

(θ?)−d

∫
[a,b]

f((x−m)/θ? +m)
d

d+r dx.

It is easy to check that(
f((x−m)/θ? +m

) d
d+r =

(
f(x)

) d
d+s
(
(2π)ddet Σ

)− 1
2
( d

d+r
− d

d+s
)

and that

1
Cf,r

(θ?)−d
(
(2π)ddetΣ

)− 1
2
( d

d+r
− d

d+s
) =

(
(2π)ddet Σ

)− s
2(s+d)

(
d+ s

d

)− d
2

.

The last term is simply equal to 1
Cf,s

. We then deduce that

1
Cf,r

∫
[(a−m)/θ?+m,(b−m)/θ?+m]

f(x)
d

d+r dx =
1
Cf,s

∫
[a,b]

f(x)
d

d+sdx.

We have just built a sequence (αθ?,m
n )n≥1 satisfying the empirical measure theorem. The question

of interest is now to know whether or not this sequence is asymptotically Ls-optimal. The follow-
ing proposition shows that the lower bound in (2.1) is in fact reached by considering the sequence
(αθ?,m

n )n≥1.

Proposition 5.3. Let s > 0 and let θ = θ? =
√

(s+ d)/(r + d). Then, the constant in the asymptotic
lower bound for the Ls-error induced by the sequence (αθ?,m

n )n≥1 (see (2.1)) satisfies :

QInf
r,s (P, θ?) = Qs(P ). (5.5)

Proof. Keep in mind that if P ∼ N (m; Σ) then for all r > 0,

(
Qr(P )

)1/r =
(
Jr,d

)1/r√2π
(
d+ r

d

) d+r
2r (

det Σ
) 1

2d .
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We have on one hand(∫
Rd

f
d

d+r (x)d(x)
)s/d

=
((

(2π)ddet Σ
)− 1

2
d

d+r

∫
Rd

e−
1
2

d
d+r

(x−m)′Σ−1(x−m)dx

)s/d

=
((

(2π)ddet Σ
) 1

2
r

d+r
(d+ r

d

) d
2

)s/d

and on the other hand∫
Rd

fθ?,µ(x)f−
s

d+r (x)d(x) =
(
(2π)ddet Σ

)− 1
2
− s

d+r

∫
Rd

e−
1
2

d
d+r

(x−m)′Σ−1(x−m)dx

=
(
(2π)ddet Σ

)− s
d+r
(d+ r

d

) d
2 .

Combining these two results yields

QInf
r,s(P, θ

?) = (θ?)s+dJs,d

(∫
Rd

f
d

d+r dλd

)s/d ∫
Rd

fθ?,µf
− s

d+r dλd

= Js,d

(
s+ d

r + d

) d+s
2 (

(2π)ddet Σ
) s

2d

(
r + d

d

) d+s
2

= Js,d

(
s+ d

d

) d+s
2 (

(2π)ddet Σ
) s

2d

= Qs(P ).

After some elementary calculations, it follows from the proposition above and inequalities (2.1),(4.3),
the corollary below :

Corollary 5.1. Let X ∼ N (m; Σ) and θ? =
√

(s+ d)/(r + d). Then,

Qs(P )1/s ≤ lim inf
n→∞

n1/d ‖X − X̂αθ?,m
n ‖s ≤ lim sup

n→∞
n1/d ‖X − X̂αθ?,m

n ‖s ≤ QSup
r,s (P, θ?)1/s (5.6)

with

QSup
r,s (P, θ?)1/s =


(

s+d
d

) s+d
2s J

1
r
r,d

(
(2π)ddet Σ

) 1
2d if s < r(

s+d
d

) d
2

√
s+d
r+d C(b)

(
(2π)ddet Σ

) 1
2(d+r) if s > r.

Remark 5.2. (a) If s > r, we cannot prove the asymptotically Ls(P )-optimality of (αθ?,m
n )n≥1 using

(3.9) since the constant C(b) is not explicit.
(b) When s < r, the corollary above shows that the upper bound in (3.3) does not reach the

Zador constant. Then our upper estimate does not allow us to show that the sequence (αθ?,m
n )n≥1 is

asymptotically Ls(P )-optimal.

Moreover, using Hölder inequality (with p = r/(r − s) and q = r/s), we have for every θ > 0,∫
Rd

fθ,µ(x)f−
s

d+r (x)dλd(x) =
∫

Rd

fθ,µ(x)f−s/r(x)f
sd

r(d+r) (x)dλd(x)

≤
(∫

Rd

f
r

r−s

θ,µ (x)f−
s

r−s (x)dλd(x)
) r−s

r
(∫

Rd

f
d

d+r (x)dλd

) s
r

.
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and (for θ = θ?)∫
Rd

fθ?,µ(x)f−
s

d+r (x)dλd(x) =
(∫

Rd

f
r

r−s

θ?,µ(x)f−
s

r−s (x)dλd(x)
) r−s

r
(∫

Rd

f
d

d+r (x)dλd

) s
r

.

(5.7)
Hence, according to (5.5), one gets for every s < r,

(θ?)s+dJs,d

(∫
Rd

f
r

r−s

θ?,µ(x)f−
s

r−s (x)dλd(x)
) r−s

r

‖f‖s/r
d

d+r

= Qs(P ). (5.8)

Thus, to reach the Zador constant in (3.3) we must rather have Js,d instead of Jr,d (which will be
coherent since for all s < r, J

1/s
s,d ≤ J

1/r
r,d ), that is,

lim sup
n→∞

n1/d ‖X − X̂αθ,µ
n ‖s ≤ θs+dJs,d

(∫
Rd

f
r

r−s

θ,µ (x)f−
s

r−s (x)dλd(x)
) r−s

r

‖f‖s/r
d

d+r

.

5.1.2 Numerical experiments

For numerical example, supppose that d = 1 and r ∈ {1, 2, 4}. Let X ∼ N (0, 1) and, for a fixed
n, let α(r)

n = {α(r)
n1 , · · · , α

(r)
nn} be the Lr-optimal grid of size n (obtained by a Newton-Raphson

zero search). For every n ∈ {20, 50, · · · , 900} and for (s, r) = (1, 2) and (4, 2), we make a linear
regression of α(r)

n onto α(s)
n :

α
(s)
ni ' âsrα

(r)
ni + b̂sr, i = 1, · · · , n.

Table 1 provides the regression coefficients we obtain for different values of n. We note that when n
increases, the coefficients âsr tend to the value

√
(s+ 1)/(r + 1) = θ? whereas the coefficients b̂sr

almost vanish. For example, for n = 900 and for (r, s) = (2, 1) (resp. (2, 4)) we get âsr = 0.8170251
(resp. 1.2900417). The expected values are

√
2/3 = 0.8164966 (resp.

√
5/3 = 1.2909944). The

absolute errors are then 5.285 × 10−4
(
resp. 9.527 × 10−4

)
. We remark that the error mainly stems

from the tail of the distribution.

n â12 b̂12 ε â42 b̂42 ε

20 0.8250096 1.826E-14 0.0003025 1.2761027 - 3.650E-12 0.0008607
50 0.8211387 - 1.021E-13 0.0006870 1.2828110 3.733E-10 0.0020110
100 0.8193424 8.693E-14 0.0009909 1.2859567 4.059E-09 0.0029445
300 0.8177506 - 1.045E-11 0.0013601 1.2887640 0.0000004 0.0041021
700 0.8171428 - 7.219E-11 0.0015111 1.2898393 - 0.0000089 0.0048006
800 0.8170775 - 6.725E-11 0.0015247 1.2900041 0.0000216 0.0040577
900 0.8170251 4.564E-11 0.0015346 1.2900417 - 0.0000141 0.0048182

Table 1: Regression coefficients for the Gaussian.

The previous numerical results, in addition to Equation (5.5), strongly suggest that the sequence
(αθ?,m

n )n≥1 is in fact asymptotically Ls(P )-optimal. This leads to the following conjecture.

Conjecture 1. Let P ∼ N (m; Σ) and let (αn)n≥1 be an Lr(P )-optimal sequence of quantizers.
Then, for every s > 0, the sequence (αθ?,m

n )n≥1 (with θ? =
√

(s+ d)/(r + d)) is asymptotically
Ls(P )-optimal.
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5.2 Exponential distribution

5.2.1 Optimal dilatation and contraction

Proposition 5.4. Let r, s > 0 and X be an exponentially distributed random variable with rate
parameter λ > 0. Set µ = 0.

(a) If (αn)n≥1 is an Lr(P )-optimal sequence of quantizers then, for s 6= r + 1, the sequence
(αθ,0

n )n≥1 is Ls-rate-optimal iff θ ∈
(
s/(r + 1),+∞

)
and

θ? = (s+ 1)/(r + 1)

is the unique solution of (5.1) on the set
(
s/(r + 1),+∞

)
.

(b) If (αn)n≥1 is an asymptotically Lr(P )-optimal sequence of quantizers then, for s ∈ (0, r), the
sequence (αθ,0

n )n≥1 is Ls-rate-optimal for all θ ∈
(
s/r,+∞

)
and

θ? = (s+ 1)/(r + 1)

is the unique solution of (5.1) on
(
s/r,+∞

)
.

Proof. (a) Let s < r + 1. For all θ > 0, µ ∈ Rd, the couple (θ, µ) is P -admissible and the
function f is decreasing on (0,+∞). For θ > s/(r + 1), Assumption (3.12) holds true for every
c ∈

(
1, θ(1 + r)/s

)
. Moreover, Hypothesis (H1) is clearly satisfied. Consequently, it follows from

Corollary 3.1, (a) that Assumption (3.8) holds true.
If s > r + 1, Assumption (3.8) still holds since the additional assumptions (H3) and f−

s
r+1 ∈

L1
loc(P ) required to apply the corollary 3.1, (b) are satisfied.

On the other hand, one has∫
R
f(θx)f(x)−s/(r+1)dx = C

∫ +∞

0
e−λ(θ−s/(r+1))xdx < +∞⇐⇒ θ > s/(r + 1).

Now, let us solve the problem (5.1). For all θ > s/(r + 1),

h(θ) := θs+1

∫
R
f(θx)f(x)−

s
r+1dx = C θs+1

∫ +∞

0
e−λ(θ− s

r+1
)xdx

= C θs+1

(
θ − s

r + 1

)−1

.

Consequently

h′(θ) = Cs θs

(
θ − s

r + 1

)−2(
θ − s+ 1

r + 1

)
.

Hence, h reaches its unique minimum on
(
s/(r + 1),+∞) at θ? = (s+ 1)/(r + 1).

(b) Let s < r. We have ∫
R
f

r
r−s (θx)f−

s
r−s (x)dx = C

∫
R+

e−x λ
r−s

(rθ−s)dx.

Then, for all θ > s/r,
∫

R f
r

r−s (θx)f−
s

r−s (x)dx < +∞. Which gives the first assertion.
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For every θ > s/r,

θs+1

(∫
R
f

r
r−s

θ,µ (x)f−
s

r−s (x)dx
)1− s

r

= C θs+1

(∫
R+

e−x λ
r−s

(rθ−s)dx

) r−s
r

= C θs+1 (rθ − s)
s−r

r .

We easily check that the function h(θ) = θs+1 (rθ − s)
s−r

r reaches its minimum on
(
s/r,+∞) at the

unique point θ? = (s+ 1)/(r + 1).

Remark 5.3. Let X ∼ E(λ). If s < r, then θ? = (s + 1)/(r + 1) < 1. As a consequence, the
sequence (αθ?,0

n )n≥1 is a contraction of (αn)n≥1 with scaling number θ?. On the other hand, if
s > r, then θ? > 1 and then (αθ?,0

n )n≥1 is a dilatation of (αn)n≥1 with scaling number θ?. Note
that θ? does not depend on the rate parameter λ of the exponential distribution.

One shows below that the sequence (αθ?,0
n )n≥1, with θ? = (1 + s)/(1 + r), satisfies the Ls-

empirical measure theorem.

Proposition 5.5. Let r, s > 0 and let X be an exponentially distributed random variable with rate
parameter λ > 0. Assume (αn)n≥1 is an asymptotically Lr-optimal sequence of quantizers forX and
let (αθ?,0

n )n≥1 be defined as before, with θ? = (s + 1)/(r + 1). Then, the sequence (αθ?,0
n ) satisfies

the Ls-empirical measure theorem.

Proof. Since (αθ?,0
n )n≥1 = (θ?αn)n≥1 it amounts to show that for every a, b ∈ R+

card(αn ∩ [a/θ?, b/θ?])
n

−→ 1
Cf,s

∫ b

a
f(x)

1
1+sdx

i.e that for all a, b ∈ R+,

1
Cf,r

1
θ?

∫ b

a
f(x/θ?)

1
1+r dx =

1
Cf,s

∫ b

a
f(x)

1
1+sdx.

Elementary computations show that ∀ r > 0,

Cf,r = λ−
r

1+r (1 + r).

so that

1
Cf,r

1
θ?

∫ b

a
f(x/θ?)

1
1+r dx =

1
Cf,r

1 + r

1 + s

∫ b

a

(
λe−xλ 1+r

1+s

) 1
1+r

dx

=
1
Cf,r

1 + r

1 + s
λ

1
1+r

− 1
1+s

∫ b

a

(
λe−λx

) 1
1+s

dx

=
1
Cf,s

∫ b

a
f(x)

1
1+sdx.

22



Once again, the question of interest is to know if the sequence (αθ?,0
n )n≥1 is asymptotically Ls-

optimal. The remark 5.2 is also valid for the exponential distribution. Our upper bounds in (3.3)
and (3.9) do not allow us to show that (θ?αn) is asymptotically Ls-optimal because of the corollary
below. But the numerical results strongly suggest that it is.

Corollary 5.2. Let X ∼ E (λ) and θ? = (s+ 1)/(r + 1). Then,

Qs(P )1/s ≤ lim inf
n→∞

n1/d‖X − X̂αθ?,0
n ‖s ≤ lim sup

n→∞
n1/d ‖X − X̂αθ?,0

n ‖s ≤ QSup
r,s (P, θ?)1/s (5.9)

with

QSup
r,s (P, θ?)1/s =

{
1
2λ(s+ 1)1+1/s(r + 1)−1/r if s < r

(s+ 1)1+1/s
(
(r + 1)λ

1
1+r
)−1

C(b)1/s if s > r.

Proof. We easily prove, like in proposition 5.2, that QInf
r,s(P, θ

?) = Qs(P ). The corollary follows
then from (2.1) and (4.3)

(
Note that for every r > 0, Jr,1 = 1

(r+1)2r

)
.

5.2.2 Numerical experiments

We relate first a proposition established in [2] and used in our context to compute the Lr-optimal
quantizers for the exponential distribution.

Proposition 5.6. Let r > 0 and let X be an exponentially distributed random variable with scale
parameter λ > 0. Then for every n ≥ 1, the Lr-optimal quantizer α(r)

n = (α(r)
n1 , · · · , α

(r)
nn) is unique

and given by

α
(r)
nk =

a
(r)
n

2
+

n−1∑
i=n+1−k

a
(r)
i , 1 ≤ k ≤ n, (5.10)

where (a(r)
k )k≥1 is a R+-valued sequence defined by the following implicit recursive equation:

a
(r)
0 := +∞, φr

(
− a

(r)
k+1

)
:= φr

(
a

(r)
k

)
, k ≥ 0

with φr(x) :=
∫ x/2
0 |u|r−1sign(u)e−udu (convention : 00 = 1).

Furthermore, the sequence (a(r)
k )k≥1 decreases to zero and for every k ≥ 1,

a
(r)
k =

r + 1
k

(
1 +

cr
k

+ O(
1
k2

)
)

for some real constant cr.

For numerical examples, Table 2 gives the regression coefficients we obtain by regressing the L2

grids onto the grids we get with the L1 and L4 norms, for different values of n. The notations are
the same as in the previous example. We note that for large enough n, the coefficients âsr tend to
(s+ 1)/(r+ 1) = θ?. For example, if n = 900, we get â12 = 0.6676880; â42 = 1.6640023 whereas
the expected values are respectively 2/3 = 0.66666667 and 5/3 = 1.6666667. The absolute errors
are in the order of 10−3. Like the Gaussian case, we remark that the error of the estimation results
mainly from the tail of the exponential distribution.
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n â12 b̂12 ε â42 b̂42 ε

20 0.6765013 - 0.0104881 0.0019489 1.6396807 0.0288348 3.081E-33
50 0.6726145 - 0.0082123 0.0045310 1.6502245 0.0225246 1.149E-28
100 0.6706176 - 0.0062439 0.0070734 1.6556979 0.0172020 1.573E-27
300 0.6686428 - 0.0036234 0.0114628 1.6611520 0.0100523 1.508E-27
700 0.6677864 - 0.0022222 0.0146186 1.6635261 0.0061356 1.222E-25
800 0.6676880 - 0.0020482 0.0150735 1.6638043 0.0057199 2.020E-26
900 0.6676079 - 0.0019043 0.0154634 1.6640023 0.0053173 9.683E-25

Table 2: Regression coefficients for exponential distribution.

Conjecture 2. Let X be an exponentially distributed random variable with rate parameter λ and let
(αn)n≥1 be an Lr-optimal sequence of quantizers for X . Then for s > 0 and θ? = (s+ 1)/(r + 1)
the sequence (αθ?,0

n )n≥1 is asymptotically Ls-optimal.

Remark 5.4. As a matter of fact, the sequence (αθ?,0
n )n≥1 is not (exactly) Ls-optimal for every s 6= r.

Otherwise, if α(s)
nk = s+1

r+1α
(r)
nk for every k ≥ 1 then if follows by backward induction that

∀k ≥ 1, a
(s)
k =

s+ 1
r + 1

a
(r)
k .

However straightforward calculations show e.g that a(2)
1 = 2 and a(1)

1 = 2 log(2) so that

a
(2)
1 6= 3

2
a

(1)
1 .

Moreover, these examples could suggest that a contraction (or a dilatation) parameter θ?, so-
lution of the minimization problem (5.1), always leads to a sequence of quantizers satisfying the
Ls-empirical measure theorem. The following example shows that this can fail.

5.3 Gamma distribution

5.3.1 Optimal dilatation and contraction

Proposition 5.7. Let r, s > 0 and let P be a Gamma distribution with parameters a and λ : P =
Γ(a, λ), a > 0, λ > 0.

(a) If (αn)n≥1 is an Lr(P )-optimal sequence of quantizers then, for s < r + 1, the sequence
(αθ,0

n )n≥1 is Ls-rate-optimal iff θ ∈
(
s/(r + 1),+∞

)
and for all a > 0,

θ? = (s+ a)/(r + a)

is the unique solution of (5.1) on the set
(
s/(r + 1),+∞

)
.

(b) Let (αn)n≥1 be an Lr(P )-optimal sequence of quantizers then, if s > r + 1 and if a ∈(
0, s+r+1

s

)
, the sequence (αθ,0

n )n≥1 is Ls-rate-optimal for every θ ∈
(
s/(r + 1),+∞

)
and

θ? = (s+ a)/(r + a)

is the unique solution of (5.1) on the set
(
s/(r + 1),+∞

)
(Note that the assumptions imply

a ∈ (0, 2)).
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(c) Let (αn)n≥1 be an asymptotically Lr(P )-optimal sequence of quantizers then, if s < r, the
sequence (αθ,0

n )n≥1 is Ls-rate-optimal for every θ ∈
(
s/r,+∞

)
and for all a > 0,

θ? = (s+ 1)/(r + 1)

is the unique solution of (5.1) on the set
(
s/r,+∞

)
.

Proof. We set µ = 0. The density function reads

f(x) =
λa

Γ(a)
xa−1e−λx1{x>0}, with Γ(a) =

∫ +∞

0
xa−1e−xdx.

(a) and (b). Let s ∈ (0, r + 1) and set R0 = max(0, (a − 1)/λ). The function f is decreasing
on (R0,+∞) and for every θ > 0, µ ∈ R, the couple (θ, µ) is P -admissible. For θ > s/(r + 1),
Assumption (3.12) holds true for every c ∈

(
1, θ(1+r)/s

)
. Moreover, Hypothesis (H1) clearly holds.

Consequently, it follows from Corollary 3.1, (a) that Assumption (3.8) of Theorem 3.2 holds true.
When s > r+1, the additional hypothesis f−

s
r+1 ∈ L1

loc(P ) holds for a < r+1
s +1. Furthermore,

it follows from (5.2) that (H3) holds. In this case Assumption (3.8) of Theorem 3.2 holds true.
For all θ > 0,∫

R
f(θx)f(x)−

s
1+r dx =

(
λa

Γ(a)

)1−s/(r+1) ∫ +∞

0
x(a−1)(1− s

r+1
)e−(θ− s

r+1
)λxdx,

it follows that∫
R
f(θx)f(x)−

s
r+1dx < +∞ iff θ > s/(r + 1) and a(r + 1− s) + s > 0.

For every θ > s/(r + 1), we have

h(θ) := θs+1

∫
R
f(θx)f(x)−

s
1+r dx

=
(
λa

Γ(a)

)1−s/(r+1)

θs+1θa−1

∫ +∞

0
x(a−1)(1− s

1+r
)e−(θ− s

1+r
)λxdx

= C θγ

(
θ − s

1 + r

)−β

with
γ = s+ a and β = (a− 1)(1− s/(r + 1)) + 1.

The function h is differentiable for all θ > s/(1 + r) and

h′(θ) = Cθγ−1

(
θ − s

1 + r

)−β−1(
(γ − β)θ − sγ

1 + r

)
.

The minimum of h is then unique on
(
s/(r + 1),+∞

)
and is reached at θ?.

Notice that the condition required for f−
s

r+1 to be in L1
loc(P ) is a < r+1

s + 1 and for every
s > r + 1 one has 1 + r+1

s < s
s−(r+1) . Combined to the condition a(r + 1− s) > 0 yields the given
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constrain on a in (b).
(c) Now let s < r and consider Inequality (3.3). One has∫

R
f

r
r−s (θx)f−

s
r−s (x)dx =

λa

Γ(a)

∫ +∞

0
xa−1e−

λx
r−s

(rθ−s)dx.

Therefore
∫

R f
r

r−s (θx)f−
s

r−s (x)dx < +∞ iff θ > s/r.
On the other hand, for every θ > s/r,

θ1+s

(∫
R
f

r
r−s

θ,µ (x)f−
s

r−s (x)dx
)1− s

r

= C θs+a

(∫ +∞

0
xa−1e−

λx
r−s

(rθ−s)dx

) r−s
r

= C θs+a
(
rθ − s

)a s−r
r .

Considering the function h defined by h(θ) = θs+a (rθ − s)a s−r
r we show that h reaches its minimum

on
(
s/r,+∞

)
at the unique point θ? = (s+ a)/(r + a).

Remark 5.5. Let X ∼ Γ(a, λ). If s < r, then θ? = (s + a)/(r + a) < 1. Then the se-
quence (αθ?,0

n )n≥1 is a contraction of (αn)n≥1 with scaling number θ?. On the other hand, if
s > r, then θ? > 1 and the sequence (αθ?,0

n )n≥1 is a dilatation of (αn)n≥1 with scaling num-
ber θ?. Moreover there is no constraint on the parameter a as long as s < r. In this case when
we set a = 1 (exponential distribution with parameter λ) we retrieve the result related to the expo-
nential distribution. We notice that θ? does not depend on the parameter λ. That is expected since
Γ(1, λ) = E (λ) and, in the exponential case we know that the scaling number does not depend on λ.

Let θ? = (s+ a)/(r + a) and consider now the sequence (αθ?,0
n )n≥1 defined as previously. Does

this sequence verify the Ls-empirical measure theorem? If a = 1 we boil down to the exponential
distribution. On the other hand, when a 6= 1, one shows below that there exists a > 1, s > 0 and
r > 0 such that the sequence (αθ?,0

n )n≥1 does not verify the Ls-empirical measure theorem.
Suppose that (αθ?,0

n )n≥1 satisfies the Ls-empirical measure theorem. Then we must have, for all
u ∈ R+,

1
Cf,r

1
θ?

∫ u

0
f(x/θ?)

1
1+r dx =

1
Cf,s

∫ u

0
f(x)

1
1+sdx. (5.11)

with f(x) = λa

Γ(a)x
a−1e−λx1{x>0} and Cf,r =

∫
f(x)

1
1+r dx for all r > 0.

However, we have for any r > 0,

Cf,r = λ
a

1+r Γ(a)−
1

1+r

∫ +∞

0
x(a−1)/(r+1)e−

λ
1+r

xdx

= λ
a

1+r Γ(a)−
1

1+r

∫ +∞

0
x(r+a)/(r+1)−1e−

λ
1+r

xdx

= λ
a

1+r Γ(a)−
1

1+r Γ
(
r + a

r + 1

)
λ−

r+a
r+1
(
r + 1

) r+a
r+1

= Γ
(
r + a

r + 1

)
Γ(a)−

1
1+rλ−

r
r+1
(
r + 1

) r+a
r+1 .

Equation (5.11) is written down for all u ∈ R+,

C(r)
(
r + a

s+ a

) r+a
r+1
∫ u

0
x

a−1
r+1 e

− λ(r+a)
(r+1)(s+a)

x
dx = C(s)

∫ u

0
x

a−1
s+1 e−

λ
s+1

xdx
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with C(r) = Γ
(

r+a
r+1

)−1
λ

r+a
r+1
(
r + 1

)− r+a
r+1 , ∀ r > 0.

Let m ∈ N and α > 0. We show by induction that, for u > 0,∫ u

0
xne−αxdx = −

(
1
α
un +

n

α2
un−1 +

n(n− 1)
α3

un−2 + · · ·+ n!
αn
u+

n!
αn+1

)
e−αu +

n!
αn+1

.

Let us consider a > 1 such that a−1
r+1 and a−1

s+1 are integers and set n = a−1
r+1 , m = a−1

s+1 , α =
λ(r+a)

(r+1)(s+a) and β = λ
s+1 . Equation (5.11) finally reads

C(r)
(
r + a

s+ a

) r+a
r+1
[(

1
α
un +

n

α2
un−1 +

n(n− 1)
α3

un−2 + · · ·+ n!
αn
u+

n!
αn+1

)
e−αu − n!

αn+1

]
=C(s)

[(
1
β
um +

m

β2
um−1 +

m(m− 1)
β3

um−2 + · · ·+ m!
βm

u+
m!
βm+1

)
e−βu − m!

βm+1

]
.

Set a = 7, s = 1, r = 2, λ = 1 and u = 1. Then n = 2,m = 3, α = 3/8, β = 1/2 and
we show after some computations that the sequence (αθ?,0

n )n≥1 does not satisfy the Ls-empirical
measure theorem since

185
128

e−3/8 − 79
48
e−1/2 6= −511

512
(one side is rational, the other is not). Hence, we have constructed an Ls(P )-rate-optimal sequence
which does not satisfy the Ls-empirical measure theorem.

6 Applications

6.1 Application to Lloyd’s I algorithm

One of the important issues from a computational point of view is the search of theLr-optimal quantiz-
ers. The quadratic case (r = 2) is the commonly implemented for applications and various algorithms
like the Competitive Learning Vector Quantization (CLVQ) algorithm (see e.g [11]) and "randomized
versions" of the Lloyd’s algorithms (I and II) (see e.g. [4]) are used. In practice, Lloyd’s I algorithm is
widely used to compute stationary (or optimal) quantizers because it can be easily implemented. We
will use the natural extension of Lloyd’s I algorithm to compute the Lr-stationary (optimal) quantiz-
ers. In a general framework, Lr-stationary quantizers (αn) (with αn = (αn1, · · · , αnn)) are computed
using the Lr-stationary equation ∇en,r(X) = 0. This equation reads for every r ≥ 1 (see [11])

αni =
E
(
1X∈Ci(αn)|X − αni|r−2X

)
E
(
1X∈Ci(αn)|X − αni|r−2

) , i = 1, · · · , n. (6.1)

The Lloyd’s I procedure is the fixed point procedure derived from (6.1). Starting with an initial
quantizer α(0)

n of size n, one defines recursively a sequence (α(l)
n )l=1,··· ,L of Lr-stationary quantizers

(where L corresponds to the number of Lloyd’s iterations) by setting for every l = 1, · · · , L,

α
(l)
ni =

E
(

1X∈Ci(αn)|X − α
(l−1)
ni |r−2X

)
E
(

1X∈Ci(αn)|X − α
(l−1)
ni |r−2

) , i = 1, · · · , n. (6.2)

By "randomized version" of the Lloyd’s I procedure we mean that both expectations in (6.2) are
computed using a Monte Carlo simulation of size M . However in higher dimensions there are several
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Lr-stationary quantizers and the Lloyd’s I procedure is somehow a method to compute the "nearest"
one (namely the one in the attracting basin of which the procedure has been initialized). This is why
the initialization of the procedure at already good grid is a crucial issue to obtain good Lr-quantizers.
This leads us to consider the optimally Lr-dilated quadratic quantizers as natural good candidates to
initialize the Lr-Lloyd’s I procedure. We compare it to a random initialization, which consists on
generating a vector of size n distributed as X and multiply it by the same scaled number (θ?).

We carried out a numerical test in dimension d = 2, 3 with r = 4 for the N (0; Id) distribution.
The Monte Carlo sizeM is equal to 106 and our grid size nmoves 10 by 10 from 10 to 100. Numerical
results depicted in figure 2 (for d = 2) show that the dilated L2-stationary (optimal) grids are already
almost L4-stationary (and likely almost optimal if we suppose that the L2-stationary quantizers are)
since the initial scaled L2-stationary grids do not move during the successive Lloyd’s iterations. This
is also confirmed by Figure 1 (when d = 2) and Figure 3 (when d = 3) where the logarithm of the
L4 quantization error of the dilated grids remains the same during the successive Lloyd’s procedures.
The dilated L2-stationary quantizers initialization seems to be the best choice one can do. The Lloyd’s
procedure initialization with random grids never leads to lower quantization errors. Moreover it needs
several iterations of the procedure, depending to the grid size.

6.2 Application of Lr-quantizers to numerical integration

Let β ≥ 1 and let X ∈ Lβ+ε0(P), ε0 > 0. Let f ∈ Lipβ(Rd) := {g : Rd → R, |g(x) − g(y)| ≤
C|x − y|(1 + |x|β−1 + |y|β−1)}. For any sequence of quantizers (αn)n≥1 and any r ∈ [1,+∞] we
have

‖f(X)− f(X̂αn)‖1≤C E(|X − X̂αn |(1 + |X|β−1 + |X̂αn |β−1))

≤C ‖X − X̂αn‖r(1 + ‖X‖β−1
(β−1)r′ + ‖X̂αn‖β−1

(β−1)r′) (6.3)

by Hölder’s inequality with r′ = r/(r − 1).
Suppose now that X 6∈ Lβ+ε(P), ∀ε > ε0. To give a sense to the above inequality as a error

bound, we must choose r′ such that (β − 1)r′ ≤ β + ε0; which in return impose that r > β+ε0

1+ε0
. Now

β+ε0

1+ε0
> 2 as soon as β > 2 + ε0. Furthermore if lim inf

|x|→+∞
|f(x)|
|x|β > 0 there is no alternative to these

constraints. In this situation it is impossible to use quadrature formulae for numerical integration
based on quadratic quantizers. However we can use some dilated L2-optimal (at least stationary)
quantizers αθ?,µ

n , for large enough n. Then

E
(
f(X̂αθ?,µ

n )
)

=
n∑

i=1

f(αθ?,µ
ni )P(X ∈ Ci(αθ?,µ

n ))

and
|Ef(X)− Ef

(
X̂αθ?,µ

n
)
| ≤ ‖Ef(X)− Ef

(
X̂αθ?,µ

n
)
‖1

so that the error bound (6.3) holds true profided f is lipschitz. Such an approach requires to com-
pute the weights P(X ∈ Ci(α

θ?,µ
n )) associated to the Voronoi cells of αθ?,µ

n . The following easy
proposition says how to compute these weights.

Proposition 6.1. Let X ∼ P and P = f · λd. Then, for every n ≥ 1, we have

∀i ∈ {1, · · · , n}, P (Ci(αθ,µ
n )) = Pθ,µ(Ci(αn)). (6.4)
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Proof. Let n ≥ 1 and αn = (αn1, · · · , αnn). One has

P (Ci(αθ,µ
n )) = P(X ∈ Ci(αθ,µ

n )) =
∫
{|x−(µ+θ(αni−µ))|=minj 6=i |x−(µ+θ(αnj−µ))|}

f(x)dλd(x).

Making the change of variable z = x−µ
θ + µ yields

P (Ci(αθ,µ
n )) = θd

∫
{z∈Ci(αn)}

fθ,µ(z)dλd(z) = Pθ,µ(Ci(αn)).

When a closed formula (like for the exponential distribution) is not available for the weights of the
dilated cells, these weights can be estimated by the Monte Carlo method using the Nearest-Neighbour
algorithm. Fast implementations of this algorithm can be find e.g. in [3, 8].
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Figure 1: Comparison of the log of the L4-error (power 4) as function of the log of the grid size after 1 (on the
left) and 10 (on the right) Lloyd’s iterations.
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Figure 2: The L2-dilated grid before and after 1 and 10 Lloyd’s iterations; the grid size equals 80.
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Figure 3: Comparison of the log of the L4-error (power 4) as function of the log of the grid size after 1 (on the
left) and 10 (on the right) Lloyd’s iterations.
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