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Universal L s -rate-optimality of L r -optimal quantizers by dilatation and contraction

We investigate in this paper the properties of some dilatations or contractions of a sequence (α n ) n≥1 of L r -optimal quantizers of an R d -valued random vector X ∈ L r (P) defined in the probability space (Ω, A, P) with distribution P X = P . To be precise, we investigate the L squantization rate of sequences

) and X ∈ L s (P). We show that for a wide family of distributions, one may always find parameters (θ, µ) such that (α θ,µ n ) n≥1 is L s -rate-optimal. For the Gaussian and the exponential distributions we show the existence of a couple (θ , µ ) such that (α θ ,µ ) n≥1 also satisfies the so-called L s -empirical measure theorem. Our conjecture, confirmed by numerical experiments, is that such sequences are asymptotically L s -optimal. In both cases the sequence (α θ ,µ ) n≥1 is incredibly close to L s -optimality. However we show (see Remark 5.4 ) that this last sequence is not L s -optimal (e.g when s = 2, r = 1) for the exponential distribution.

Introduction

Let (Ω, A, P) be a probability space and let X : (Ω, A, P) -→ R d be a random variable with distribution P X = P . The L r (P )-optimal quantization problem of size n for P (or X) consists in the study of the best approximation of X by a σ(X)-measurable random vector taking at most n values. For X ∈ L r (P) this leads to the following optimization problem: e n,r (X) = inf { X -q(X) r , q : R d → α, α ⊂ R d , card(α) ≤ n}. The random variable X α taking values in the codebook α defined by

X α = a∈α a1 {X∈Ca(α)} .
is called a Voronoi quantization of X. In other words, it is the nearest neighbour projection of X onto the codebook (also called grid) α.

For any Borel function q : R d → α,

|X -q(X)| ≥ min a∈α d(X, a) = d(X, α) = |X -X α | P a.s so that e n,r (X) = inf { X -X α r , α ⊂ R d , card(α) ≤ n} = inf α⊂R d card(α)≤n R d d(x, α) r dP (x) 1/r . (1.1) 
For all n ≥ 1, the infimum in (1.1) is reached at one (at least) codebook α ; α is then called a L r -optimal n-quantizer. In addition, if card(supp(P )) ≥ n then card(α ) = n (see [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF] or [START_REF] Pagès | Space vector quantization method for numerical integration[END_REF]). Moreover the quantization error, e n,r (X), decreases to zero as n goes to infinity and the so-called Zador's Theorem gives its convergence rate under a slightly stringent moment assumption on X.

Zador Theorem (see [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF]) : Suppose E|X| r+η < +∞ for some η > 0 and let P = P a + P s be the Lebesgue decomposition of P with respect to the Lebesgue measure λ d , where P a denotes the absolutely continuous part and P s the singular part of P . Then where U ([0, 1] d ) denotes the uniform distribution on the set [0, 1] d and f = dPa dλ d . Furthermore, this theorem naturally suggests to set the following definitions.

A sequence of n-quantizers (α n ) n≥1 is -L r (P )-rate-optimal (or rate-optimal for X) if

lim sup n→+∞ n 1/d R d d(x, α n ) r dP (x) 1/r < +∞,
asymptotically L r (P )-optimal if

lim n→+∞ n r/d R d d(x, α n ) r dP (x) = Q r (P ),
-L r (P )-optimal if for all n ≥ 1, e r n,r (P ) =

R d d(x, α n ) r dP (x).
Optimal quantizers are used in many fields of application like Signal Processing (discretization of emitted signals) or more recently, Numerical Probability where they provide some simples quadrature formulae for the computation of expectations and conditional expectations. This approach has been extensively developed in Finance for the pricing of American options, swing options (commodities), portfolio management (stochastic control) or stochastic volatility estimation (non linear filtration); we refer for example to [START_REF] Pagès | An Optimal markovian quantization algorithm for multidimensional stochastic control problems[END_REF] for applications to stochastic control problems. The errors bounds in these quadrature formulae are always based on the mean quantization error X -X α s where α is an optimal L r -quantizer, usually with r ≤ s.

Motivated by this problem, the asymptotic behavior of the L s -mean quantization error of a sequence of L r -quantizers has been extensively investigated in [START_REF] Graf | Distorsion mismatch in the quantization of probability measures[END_REF]. A lower bound has been established which shows that if the distribution P is unbounded in the sense that the density function f = dP dλ d satisfies λ d (f > 0) = +∞ then for any sequence (α n ) n≥1 of asymptotically L r -optimal quantizers, lim inf n n 1 d X -X αn s = +∞, ∀s > r + d. On the other hand, under natural assumptions in the tail of the distribution P , it is shown in [START_REF] Graf | Distorsion mismatch in the quantization of probability measures[END_REF] that for any sequence of L r -optimal quantizers, ∀s ∈ (0, r + d), lim sup n n 1 d X -X αn s < +∞ i.e (α n ) n≥1 remains L s -rate-optimal as long as s < r + d.

The aim of this paper is to show that some simple transformation of the L r -optimal quantizers, namely some dilatation-translation, makes possible to overcome the critical exponent r + d: we will establish that for a wide family of distributions, one can always find θ ∈ R + and µ ∈ R (depending on r, s and d but not on n) such that (α θ,µ n ) n≥1 is L s -rate-optimal. From a general upper bounds that we establish for such transformed sequences of quantizers we derive an heuristic to specify some explicit optimal (in a sense which will be elucidated later) scaling parameters (θ, µ) for several families of distributions (Gaussian Vector, exponential and gamma distributions). Some numerical computations carried with the Gaussian and the exponential distributions show that the resulting sequence of quantizers is very close to L s -optimality.

So, one application could be to use these quantizers to initialize the procedures used for L s -optimal (and local optimal) quantizers search when s = 2. Indeed, in the quadratic case, s = 2, several stochastic procedures like the Competitive Learning Vector Quantization algorithm or the randomized Lloyd's I procedure have been designed. Both rely on the stationary property: X α = E(X| X α ), satisfied by optimal (and locally optimal) quadratic quantizers. In one dimension, Newton's method is used to compute the optimal quadratic quantizers. Thus a whole package of optimal n-quantizers of the N (0, I d ) distributions are available in the website www.quantize.maths-fi.com for d ∈ {1, • • • , 10} and n ∈ {1, • • • , 5000}. But, when s = 2, the natural extension of these procedures become more difficult to implement due to some loss of stability. When s > 2 the procedures tend to explode more and more often while when 1 ≤ s < 2 the convergence phase becomes chaotic. In particular, the sensibility of the procedure to its initialization increases as s moves away from 2. Thus, initializing theses procedures by the dilated-contracted L 2 -optimal (or locally optimal) quantizers would make them more stable and speed up the convergence. This is what we do to carry the L 4optimal quantizers of the one dimensional Gaussian distribution (used for numerical experiments in Section 5.1.2) by Newton's method. In fact, initializing this procedure to a n-tuple different from the dilated sequence usually makes the hessian matrix of the L 4 -quantization error singular (which makes the procedure very unstable), especially when the grid's size becomes large (typically when n ≥ 400).

The paper is organized as follows. In section 2 we establish a general lower bound for dilatedtranslated sequences of quantizers. General upper bounds are also established in section 3 for such sequences. In section 4 we provide a necessary and sufficient condition of L s -rate-optimality for the dilated-translated sequences. Section 5 deals with some examples of distributions for which we give the set of parameters (θ, µ) such that the dilated-translated sequence is L s -rate-optimal and try to find the couple (if any) which makes the resulted transformed sequence satisfy the L s -empirical measure theorem. The last section is devoted to some applications. NOTATIONS : • Let α n be a set of n points of R d . For every µ ∈ R d and every θ > 0 we denote

α θ,µ n = µ + θ(α n -µ) = {µ + θ(a -µ), a ∈ α n }. • Let f : R d -→ R d be a Borel function and let µ ∈ R d , θ > 0. One notes by f θ,µ (or f θ if µ = 0) the function defined by f θ,µ (x) = f (µ + θ(x -µ)), x ∈ R d .
• If X ∼ P , P θ,µ will stand for the probability measure of the random variable

X-µ θ + µ, θ > 0, µ ∈ R d . In other words, it is the distribution image of P by x -→ x-µ θ + µ. Note that if P = f • λ d then dP θ,µ dλ d = θ d f θ,µ . • If A is a matrix A stands for its transpose. • Set x = (x 1 , • • • , x d ); y = (y 1 , • • • , y d ) ∈ R d ; we denote [x, y] = [x 1 , y 1 ] × • • • × [x d , y d ].
• Let | • | be a norm on R d and let A be a subset of R d ; we denote by B(x, r) the closed ball, centered to x with radius r > 0 and by d(x, A) the distance between x and A; both with respect to the norm | • |.

Lower estimate

Let r, s > 0. Consider an asymptotically L r (P )-optimal sequence of quantizers (α n ) n≥1 . For every µ ∈ R d and any θ > 0, we construct the sequence (α θ,µ n ) n≥1 and try to lower bound asymptotically the L s -quantization error induced by this sequence. This estimation provides a necessary condition of rate-optimality for the sequence (α θ,µ n ) n≥1 . In the particular case where θ = 1 and µ = 0 we get the same result as in [START_REF] Graf | Distorsion mismatch in the quantization of probability measures[END_REF].

Theorem 2.1. Let r, s ∈ (0, +∞), and let X be a random variable taking values in R d with distribution P such that P a = f.λ d ≡ 0. Suppose that E|X| r+η < ∞ for some η > 0. Let (α n ) n≥1 be an asymptotically L r (P )-optimal sequence of quantizers. Then, for every θ > 0 and for every µ ∈ R d ,

lim inf n→+∞ n s/d X -X α θ,µ n s s ≥ Q Inf r,s (P, θ), (2.1) 
with

Q Inf r,s (P, θ) = θ s+d J s,d R d f d d+r dλ d s/d {f >0} f θ,µ f -s d+r dλ d .
Proof. Let m ≥ 1 and

f θ,µ m = m2 m -1 k,l=0 l 2 m 1 E m k ∩G m l ; with E m k = k 2 m ≤ f < k + 1 2 m ∩ B(0, m) and G m l = l 2 m ≤ f θ,µ < l + 1 2 m ∩ B(0, m).
The sequence (f θ,µ m ) m≥1 is non-decreasing and

lim m→+∞ f θ,µ m = f θ,µ λ d p.p. Let I m = {(k, l) ∈ {0, • • • , m2 m -1} 2 : λ d (E m k ) > 0; λ d (G m l ) > 0}.
For every (k, l) ∈ I m there exists compact sets K m k and L m l such that :

K m k ⊂ E m k , L m l ⊂ G m l , λ d (E m k \K m k ) ≤ 1 m 4 2 2m+1 and λ d (G m l \L m l ) ≤ 1 m 4 2 2m+1 .
Then

(E m k ∩ G m l )\(K m k ∩ L m l ) = E m k ∩ G m l ∩ ((K m k ) c ∪ (L m l ) c ) ⊂ (E m k \K m k ) ∪ (G m l \L m l ).
Consequently,

λ d (E m k ∩ G m l \K m k ∩ L m l ) ≤ λ d (E m k \K m k ) + λ d (G m l \L m l ) ≤ 1 m 4 2 2m+1 + 1 m 4 2 2m+1 = 1 m 4 2 2m .
For every m ≥ 1 and every (k, l) ∈ I m , set

A m k,l := K m k ∩ L m l , f θ,µ m := m2 m -1 k,l=0 l 2 m 1 A m k,l , and 
fm := m2 m -1 k,l=0 k 2 m 1 A m k,l . We get {f θ,µ m = f θ,µ m } ⊂ k,l∈{0,••• ,m2 m -1} (E m k ∩ G m l )\A m k,l .
Therefore, for every m ≥ 1,

λ d ({f θ,µ m = f θ,µ m }) ≤ m2 m -1 k,l=0 1 m 4 2 2m = 1 m 2 and finally m≥1 1 {f θ,µ m = f θ,µ m } < ∞ λ d p.p. As a consequently λ d (dx)-p.p, f θ,µ m (x) = f θ,µ m (x) for large enough m. Then f θ,µ m λ d p.p. -→ f θ,µ when m → +∞. Since in addition A m k,l ⊂ E m k ∩ G m l we obtain f θ,µ m ≤ f θ,µ m ≤ f θ,µ . (2.2) 
Moreover, for every n ≥ 1,

n s/d X -X α θ,µ n s s = n s/d R d d(z, µ + θ(α n -µ)) s f (z)λ d (dz) = n s/d R d min a∈αn |z -(µ + θ(a -µ))| s f (z)λ d (dz) = θ s n s/d R d min a∈αn |(z -µ)/θ + µ -a| s f (z)λ d (dz).
Making the change of variable x := (z -µ)/θ + µ yields:

n s/d X -X α θ,µ n s s = θ s+d n s/d R d d(x, α n ) s f θ,µ (x)λ d (dx) ≥ θ s+d n s/d R d d(x, α n ) s f θ,µ m λ d (dx) ( by (2.2) ) = θ s+d n s/d m2 m -1 k,l=0 l 2 m A m k,l d(x, α n ) s λ d (dx). (2.3) Let m ≥ 1 and (k, l) ∈ I m . Define the closed sets Ãm k,l by Ãm k,l = ∅ if λ d ( Ãm k,l ) = 0 and otherwise by Ãm k,l = {x ∈ R d : d(x, A m k,l ) ≤ ε m } where ε m ∈ (0, 1] is chosen so that Ãm k,l f d d+r dλ d ≤ 1 + 1/m A m k,l f d d+r dλ d .
Since Ãm k,l is compact Ãm k,l ⊂ B(0, m + 1) ∀(k, l) , and

A m k,l ⊂ ( Ãm k,l ) εm/2 := {x ∈ R d : d(x, A m k,l ) ≤ ε m /2} = {x ∈ R d : d(x, ( Ãm k,l ) c ) > ε m /2},
there is (ref. [START_REF] Delattre | Quantization of probability distributions under norm-based distribution measures[END_REF], Lemma 4.3) a finite " firewall" set

β m k,l such that ∀n ≥ 1, ∀x ∈ ( Ãm k,l ) εm/2 , d(x, α n ∪ β m k,l ) = d(x, (α n ∪ β m k,l ) ∩ Ãm k,l ).
This last equality holds in particular for every

x ∈ A m k,l since A m k,l ⊂ ( Ãm k,l ) εm/2 . Now set β m = k,l β m k,l and n m k,l = card((α n ∪ β m ) ∩ Ãm k,l ). The empirical measure theorem (see (5.3)) yields lim sup n card(α n ∩ Ãm k,l ) n = αn∩ Ãm k,l f d d+r dλ d f d d+r dλ d ≤ Ãm k,l f d d+r dλ d f d d+r dλ d . Moreover n m k,l n ∼ card(α n ∩ Ãm k,l ) n when n → +∞ then lim inf n→+∞ n n m k,l ≥ f d d+r dλ d Ãm k,l f d d+r dλ d ≥ m m + 1 f d d+r dλ d A m k,l f d d+r dλ d . (2.4)
On the other hand,

A m k,l d(x, α n ) s λ d (dx) ≥ A m k,l d(x, (α n ∪ β m k,l ) ∩ Ãm k,l ) s λ d (dx) = λ d (A m k,l ) d(x, (α n ∪ β m k,l ) ∩ Ãm k,l ) s 1 A m k,l (x) λ d (dx) λ d (A m k,l ) ≥ λ d (A m k,l )e s n m k,l ,s (U (A m k,l )),
where U (A) = 1 A /λ d (A) denotes the uniform distribution in the Borel set A when λ d (A) = 0. Then we can write for every (k, l) ∈ I m ,

lim inf n→+∞ n s/d A m k,l d(x, α n ) s λ d (dx) ≥ λ d (A m k,l ) lim inf n n n m k,l s/d lim inf n n s/d e s n,s (U (A m k,l )), since lim inf n n s/d e s n,s (U (A m k,l )) ≥ J s,d • λ d (A m k,l ) s/d .
Owing to Equation (2.4), one has

lim inf n→+∞ n s/d A m k,l d(x, α n ) s λ d (dx) ≥ λ d (A m k,l )    m m + 1 f d d+r dλ d A m k,l f d d+r dλ d    s/d J s,d • λ d (A m k,l ) s/d .
However, on the sets A m k,l , the statement

1 f ≥ k+1 2 m -1 holds since f < k+1 2 m on E m k . Hence lim inf n→+∞ n s/d A m k,l d(x, α n ) s λ d (dx) ≥ J s,d m + 1 m f d d+r λ d (dx) s/d k + 1 2 m -d d+r • s d λ d (A m k,l ).
It follows from Equation (2.3) and the super-additivity of the liminf that for every m ≥ 1,

lim inf n n s/d X -X α θ,µ n s s ≥ θ s+d J s,d m + 1 m f d d+r λ d (dx) s/d m2 m -1 k,l=0 l 2 m k + 1 2 m -s d+r λ d (A m k,l ) ≥ θ s+d J s,d m + 1 m f d d+r λ d (dx) s/d {f >0} f θ,µ m ( fm + 2 -m ) -s d+r dλ d .
Finally, applying Fatou's Lemma yields

lim inf n→+∞ n s/d X -X α θ,µ n s s ≥ θ s+d J s,d R d f d d+r dλ d s/d {f >0} f θ,µ f -s d+r dλ d .
3 Upper estimate Let r, s > 0. Let (α n ) n≥1 be an (asymptotically) L r (P ) -optimal sequence of quantizers. In this section we will provide some sufficient conditions of L s (P )-rate-optimality for the sequence (α θ,µ n ) n≥1 .

Definition 3.1. Let θ > 0, µ ∈ R d and let P be a probability distribution such that

P = f • λ d . The couple (θ, µ) is said P -admissible if {f > 0} ⊂ µ(1 -θ) + θ{f > 0} λ d -p.p. (3.1) 
One remarks that when supp(P ) = R d then every couple (θ, µ) is P -admissible. Indeed, every x ∈ R d can be written x = µ(1 -θ) + θz with z = x-µ(1-θ) θ and f (z) > 0.

Theorem 3.1. Let r, s ∈ (0, +∞), s < r and let X be a random variable taking values in R d with distribution P such that P = f • λ d . Suppose that (θ, µ) is P -admissible for some θ > 0; µ ∈ R, and E|X| r+η < ∞, for some η > 0. Let (α n ) n≥1 be an asymptotically L r -optimal sequence of n-quantizers.

If {f >0} f r r-s θ,µ f -s r-s dλ d < +∞ (3.2)
then, (α θ,µ n ) n≥1 is L s (P )-rate-optimal and

lim sup n→+∞ n s/d X -X α θ,µ n s s ≤ θ s+d (Q r (P )) s/r {f >0} f r r-s θ,µ f -s r-s dλ d 1-s r . (3.3) Remark 3.1. Note that if θ = 1 and µ = 0 then {f >0} f r r-s θ,µ f -s r-s dλ d = {f >0} f r r-s f -s r-s dλ d = {f >0} f dλ d = 1.
Which gives the expected result since X -X αn s ≤ X -X αn r .

Proof. Let P θ denote the distribution of the random variable θX. P θ is absolutely continuous with respect to λ d , with p.d.

f g θ (x) = θ -d f ( x θ ). For every n ≥ 1, n s/d X -X α θ,µ n s s = n s/d R d d(x, α θ,µ n ) s dP (x) = n s/d {f >0} min a∈αn |x -µ(1 -θ) -θa| s f (x)dλ d (x).

Making the change of variable

z := x -µ(1 -θ) gives n s/d X -X α θ,µ n s s = n s/d {f >0}-µ(1-θ) d(z, θα n ) s f (z + µ(1 -θ))dλ d (z) ≤ n s/d θ{f >0} d(z, θα n ) s f (z + µ(1 -θ))g -1 θ (z)dP θ (z) (3.4) ≤ n s/d R d d(z, θα n ) r dP θ (z) s/r θ{f >0} f (z + µ(1 -θ))g -1 θ (z) r r-s dP θ (z) r-s r ≤ n r/d θX -θX θαn r r s/r θ{f >0} f (z + µ(1 -θ)) r r-s g -s r-s θ (z)dλ d (z) r-s r
where we used the P -admissibility of (θ, µ) in the first inequality. The second inequality derives from Hölder inequality applied with p = r/s > 1 and q = 1 -s/r. Moreover θX -θX

θαn r r = E min a∈αn |θX -θa| r = θ r X -X αn r r . (3.5) 
Then

n s/d X-X α θ,µ n s s ≤ θ s n r/d X -X αn r r s/r θ{f >0} f (z + µ(1 -θ)) r r-s g -s r-s θ (z)dλ d (z) r-s r
.

Owing to the asymptotically L r (P )-optimality of (α n ) and making again the change of variable x := z/θ yields

lim sup n→+∞ n s/d X -X α θ,µ n s s ≤ θ s (Q r (P )) s/r θ ds r-s θ{f >0} f (z + µ(1 -θ))) r r-s f (z/θ) -s r-s dλ d (z) r-s r = θ s (Q r (P )) s/r θ rd r-s {f >0} f θ,µ (x) r r-s f (x) -s r-s dλ d (x) r-s r = θ s+d (Q r (P )) s/r {f >0} f θ,µ (x) r r-s f (x) -s r-s dλ d (x)
r-s r

.

The next theorem provides a less accurate asymptotic upper bound than the previous one since, beyond the restriction on the distribution of X, we need now the sequence (α n ) to be (exactly) L r (P )optimal. Before giving the theorem, recall first the following result established in [START_REF] Graf | Distorsion mismatch in the quantization of probability measures[END_REF] and related to the maximal function ψ b : R d -→ R + ∪ {+∞} defined by

ψ b (x) = sup n≥1 λ d (B(x, bd(x, α n ))) P (B(x, bd(x, α n ))) . (3.6) Proposition 3.1. Let b ∈ 0, 1/2 , X ∼ P, with P a = 0, such that E|X| r+η < ∞, for some η > 0 . Let (α n ) be an L r (P )-optimal sequence of quantizers. Then ∀x ∈ R d , ∀n ≥ 1, n 1/d d(x, α n ) ≤ C(b)ψ b (x) 1/(d+r) (3.7)
where C(b) denotes a real constant not depending on n.

Theorem 3.2. Let r, s ∈ (0, +∞) and let X be a random variable taking values in R d with distribution P such that P = f • λ d . Suppose that E|X| r+η < ∞ for some η > 0 and P θ,µ P i.e P θ,µ is absolutely continuous with respect to P for some θ > 0, µ ∈ R d . Let (α n ) n≥1 be an L r (P )optimal sequence of quantizers and suppose that the maximal function defined previously satisfies

ψ s/(d+r) b ∈ L 1 (P θ,µ ) for some b ∈ (0, 1/2). (3.8)
Then,

lim sup n n s/d X -X α θ,µ n s s ≤ C(b) θ s+d {f >0} f θ,µ f -s d+r dλ d < +∞ (3.9)
where C(b) is a positive real constant not depending on θ, µ and n.

Notice that this theorem does not require (θ, µ) to be P -admissible.

Proof. It follows from the definition of ψ b that (because f is a limit which is less than the sup)

f -s d+r ≤ ψ s d+r b P θ,µ -a.s.
Then, under Assumption (3.8),

f -s d+r dP θ,µ = {f >0} f θ,µ f -s d+r dλ d < +∞.
For all n ≥ 1,

n s/d X -X α θ,µ n s s = n s/d R d d(z, α θ,µ n ) s f (z)dλ d (z) = n s/d θ s R d min a∈αn |(z -µ)/θ + µ -a| s f (z)dλ d (z)
We make the change of variable x := (z -µ)/θ + µ. Then

n s/d X -X α θ,µ n s s = n s/d θ s+d R d d(x, α n ) s f (µ + θ(x -µ))dλ d (x) = n s/d θ s R d d(x, α n ) s dP θ,µ (x) 
.

Moreover, it is established in [6] that lim sup n n s/d d(•, α n ) s ≤ C(b)f -s d+r .
Hence, from Inequality (3.7) and under Assumption (3.8), we can apply the Lebesgue dominated convergence theorem to the above inequalities to get

lim sup n n s/d d(x, α n ) s dP θ,µ (x) ≤ lim sup n n s/d d(x, α n ) s dP θ,µ (x) ≤ C(b) f -s d+r dP θ,µ (x). = θ d C(b) {f >0} f θ,µ (x)f -s d+r (x)dλ d (x).
For a given distribution, Assumption (3.8) is not easy to verify. But when s = r + d, the lemma and criterions below provide a sufficient condition so that Assumption (3.8) is satisfied. In the rest of this section we extend some of the results obtained in [START_REF] Graf | Distorsion mismatch in the quantization of probability measures[END_REF].

Let P = f • λ d be an absolutely continuous distribution. Let r, s ∈ (0, +∞) and (θ, µ) be a P -admissible couple of parameters. We will need the following hypotheses: 

(H1) for all M > 0, sup z∈B(0,M ) f (µ + θ(z -µ)) f (z) 1 {f (z)>0} < +∞. (3.10) (H2) There exists b ∈ (0, 1/2), M ∈ (0, +∞) such that B(0,M ) c sup t≤2b|x| λ d (B(x, t)) P (B(x, t)) s/(d+r) dP θ,µ < +∞. ( 3 
f -p ∈ L 1 loc (P ) =⇒ ψ p b ∈ L 1 loc (P θ,µ ).
Proof. It follows from the P -admissibility of (θ, µ) that

P θ,µ (dz) = θ d f (µ + θ(z -µ))λ d (dz) = g θ (z)P (dz),
where

g θ (z) = θ d f (µ+θ(z-µ)) f (z) 1 {f (z)>0} . Then g θ is locally bounded by (H1). (a) If p ∈ (0, 1), it follows from Lemma 1 in [6] that ψ p b ∈ L 1 loc (P ). Hence ψ p b ∈ L 1 loc (P θ,µ ) since g θ is locally bounded. (b) If p ∈ (1, +∞) it follows from Lemma 2 in [6] that if f -p ∈ L 1 loc (P ) then ψ p b ∈ L 1 loc (P θ,µ
) since g θ is locally bounded. Corollary 3.1. (Distributions with unbounded support) Let r > 0, s ∈ (0, +∞), s = r + d and let X be a random variable with probability measure P = f • λ d such that E|X| r+η < +∞ for some η > 0. Let (θ, µ) be P -admissible and suppose that (H1), (H2) hold. Proof. Let x 0 ∈ supp(P ). We know from [START_REF] Delattre | Quantization of probability distributions under norm-based distribution measures[END_REF] that d(x 0 , α n ) → 0. Then following the lines of the proof of Corollary 2 in [START_REF] Graf | Distorsion mismatch in the quantization of probability measures[END_REF] 

one has for |x| > N = |x 0 | + sup n≥1 d(x 0 , α n ), d(x, α n ) ≤ 2|x| for every n ≥ 1. Thus for every b > 0, x ∈ B(0, N ) c , ψ b (x) ≤ sup t≤2b|x| λ d (B(x, t)) P (B(x, t))
.

Now, coming back to the core of our proof, it follows from (H2) that (for b coming from (H2)), We next give two useful criterions ensuring that Hypothesis (H2) holds. The first one is useful for distributions with radial tails and the second one for distributions which does not satisfy this last assumption.

B(0,M ∨N ) c ψ s/(d+r) b dP θ,µ < +∞.
Criterion 3.1. Let X ∼ P . Suppose that P = f • λ d and E|X| r+η < +∞ for some η > 0. (a) Let r, s > 0 and f = h(| • |) on B |•| (0, N ) c with h : (R, +∞) → R + , R ∈ R + , a decreasing function and | • | any norm on R d . Suppose that (θ, µ) is a couple of P -admissible parameters such that f (cx) -s d+r dP θ,µ (x) < +∞ (3.12)
for some c > 1. Then (H2) holds.

(b) Let r, s > 0. Suppose supp(P ) ⊂ [R 0 , +∞) for some R 0 ∈ R and f |(R 0 ,+∞) is decreasing for R 0 ≥ R 0 .
Assume furthermore that (θ, µ) is a couple of P -admissible parameters such that (3.12) is satisfied for some c > 1. Then Hypothesis (H2) holds.

Note that (b) follows from (a) for d = 1 and that (a) is simply deduced from the proof of Corollary 3 in [START_REF] Graf | Distorsion mismatch in the quantization of probability measures[END_REF] since it has been shown that for b ∈ (0, 1/2), M := N/(1 -2b) one has for every

x ∈ B(0, M ) c , sup t≤2b|x| λ d (B(x, t)) P (B(x, t)) ≤ 1 f (x(1 + 2b))
.

Criterion 3.2. Let r, s > 0, P = f • λ d and |x| r+η P (dx) < +∞ for some η > 0. Let (θ, µ) be a P -admissible couple such that

sup z =0 f (µ + θ(z -µ)) f (z) 1 {f (z)>0} < +∞. (3.13) Assume furthermore that inf x∈supp(P ),ρ>0 λ d (supp(P ) ∩ B(x, ρ)) λ d (B(x, ρ)) > 0
and that f satisfies the local growth control assumption : there exists real numbers

ε ≥ 0, η ∈ (0, 1/2), M, C > 0 such that ∀x, y ∈ supp(P ), |x| ≥ M, |y -x| ≤ 2η|x| =⇒ f (y) ≥ Cf (x) 1+ε . If f (x) -s(1+ε) d+r dP (x) < +∞, (3.14) 
then (H2) holds. If in particular f satisfies the local growth control assumption for ε = 0 or for every ε ∈ (0, ε], with ε > 0, and if

f (x) -s d+r dP (x) = {f >0} f (x) 1-s d+r dλ d (x) < +∞
then Hypothesis (H2) holds.

Notice that Hypothesis (3.13) can be relaxed if we suppose that f (x) -s(1+ε) d+r

∈ L 1 (P θ,µ ) instead of (3.14).
The criterion follows from Corollary 4 in [START_REF] Graf | Distorsion mismatch in the quantization of probability measures[END_REF].

4 Toward a necessary and sufficient condition for L s (P )-rate-optimality

Let X ∼ P . Let us make some comments about inequalities (2.1) and (3.9). Note first that the moment assumption E|X| r+η < +∞ for some η > 0, ensure that

R d f d d+r dλ d < +∞ (cf [5]). Consequently, if {f >0} f θ,µ f -s d+r dλ d = +∞ one derives from inequality (2.1) that lim n→+∞ n s/d X -X α θ,µ n s s = +∞.
Then the sequence (α α,µ n ) n≥1 is not L s -rate-optimal. On the other hand if {f >0} f θ,µ f -s d+r dλ d < +∞ one derives from Inequality (3.9) that (α θ,µ n ) n≥1 is L s -rate-optimal. This leads to a necessary and sufficient condition so that the sequence (α θ,µ n ) n≥1 (in particular the sequence (α n ) n≥1 by taking θ = 1 and µ = 0) is L s -rate-optimal. Remark 4.1. Let µ ∈ R d , θ, r > 0 and let P be a probability distribution such that P = f • λ d . Assume (θ, µ) is P -admissible. Let (α n ) n≥1 be an L r (P )-optimal sequence of n-quantizers and suppose that Assumption (3.8) of Theorem 3.2 holds true. Then for every s > 0,

(α θ,µ n ) n≥1 is L s -rate-optimal ⇐⇒ {f >0} f θ,µ f -s d+r dλ d < +∞. (4.1) 
Remark 4.2. If s < r and if (α n ) n≥1 is asymptotically L r -optimal, Inequality (3.3) provides a sufficient condition so that the sequence

(α θ,µ n ) n≥1 is L s -rate-optimal, which is : {f >0} f r r-s θ,µ f -s r-s dλ d < +∞ (always satisfied by (α n ) n≥1 itself).
However, it follows from Hölder inequality (applied to p = r r-s > 1 and q = r s ) that ∀s < r,

{f >0} f θ,µ f -s d+r dλ d = {f >0} f θ,µ f -s r f sd r(d+r) dλ d ≤ {f >0} f r r-s θ,µ f -s r-s dλ d 1-s r f d d+r dλ d s r
.

One deduces that

(θ, µ) s. t {f >0} f r r-s θ,µ f -s r-s dλ d < +∞ ⊂ (θ, µ) s. t {f >0} f θ,µ f -s d+r dλ d < +∞ . (4.2)
As a consequence, if (α n ) n≥1 is an L r (P )-optimal sequence of quantizers and if assumptions of Theorem 3.2 are fulfilled then for every s < r we will rather use Inequality (3.9) instead of (3.3) to find the couple of parameters (θ, µ) so that the sequence is L s (P )-rate-optimal. But If (α n ) n≥1 is simply asymptotically L r (P )-optimal, we only have at our disposal Inequality (3.3) to find this set of parameters. Now, for s = r, is it possible to find a θ = θ for which the sequence (α θ ,µ n ) n≥1 is asymptotically L s (P )-optimal? (when s < r this is the only question of interest since we know that (α n ) n≥1 is L s (P )-rate-optimal for every s < r).

Let (α n ) n≥1 be an (asymptotically) L r (P )-optimal sequence of quantizers. For a fixed r, b and µ, we can write from inequalities (3.3) and (3.9) :

lim sup n n s/d X -X α θ,µ n s s ≤ Q Sup r,s (P, θ) (4.3) 
with

Q Sup r,s (P, θ) =    θ s+d (Q r (P )) s/r {f >0} f r r-s θ,µ f -s r-s dλ d 1-s r if s < r θ s+d C(b) {f >0} f θ,µ f -s d+r dλ d if s > r.
One knows that for a given s > 0, we have for all n ≥ 1,

e s n,s (X) ≤ X -X α θ,µ n s s .
Then for every θ > 0, Q s (P ) ≤ Q Sup r,s (P, θ). Consequently for a fixed s > 0, in order to have the best estimation of Zador's constant in L s , we must minimize over θ, the quantity Q Sup r,s (P, θ). In that way, we may hope to reach the sharp rate of convergence in Zador Theorem and so construct an asymptotically L s -optimal sequence.

For µ well chosen, the examples below show that, for the Gaussian and the exponential distributions, the minimum θ exists and the sequence (α θ ,µ n ) n≥1 satisfies the empirical measure theorem and is suspected to be asymptotically L s -optimal.

Examples of distributions

Let (α n ) n≥1 be an (asymptotically) L r (P )-optimal sequence of quantizers for a given probability distribution P and consider the sequence (α θ,µ n ) n≥1 . For a fixed µ and s, we try to solve the following minimization problem

θ = arg min θ>0 Q Sup r,s (P, θ), (α θ,µ n ) n≥1 L s (P )-rate-optimal . (5.1)
In all examples, C will denote a generic real constant (not depending on θ) which may change from line to line. The choice of µ depends on the probability measure and it is not clear how to choose it. But Proposition 6.1 morally implies that µ must be chosen so that for every θ > 0, the probability distribution P θ,µ lies in the same family of distributions as P so that for the Gamma distribution we will set µ = 0. If for every θ > 0, µ ∈ R d , P θ,µ lies in the same family of distribution as P we will choose µ such that θ do not depend on µ; which means to put µ = E(X) if X is further a symmetric random variable. (a) If (α n ) n≥1 is an L r (P )-optimal sequence of quantizers then, for s = r + d, the sequence (α θ,m n ) n≥1 is L s (P )-rate-optimal iff θ ∈ s/(d + r), +∞ and

θ = (s + d)/(r + d) ∈ (1, +∞)
is the unique solution of (5.1) on the set s/(d + r), +∞ .

(b) If (α n ) n≥1 is an asymptotically L r (P )-optimal sequence of quantizers then, for s ∈ (0, r), the sequence (α θ,m n ) n≥1 is L s (P )-rate-optimal if θ ∈ s/r, +∞ and

θ = (s + d)/(r + d) ∈ (0, 1)
is the unique solution of (5.1) on the set s/r, +∞ .

Proof. Since the multivariate Gaussian distribution is symmetric and for every θ > 0, P θ,µ is also a Gaussian random vector, one sets µ = m. Keep in mind that the probability density function f of P is given for every x ∈ R d by

f (x) = (2π) d det Σ -1 2 e -1 2 (x-m) Σ -1 (x-m) .
Note first that Hypothesis (H1) is obviously satisfied from the continuity of f (m+θ(z-m))

f (z)
1 {f (z)>0} on every B(0, M ), M > 0.

(a) Let s < d + r. For every θ > 0, µ ∈ R d , the couple (θ, µ) is P -admissible and f is radial since f (x) = ϕ(|x -m| Σ ) with ϕ : (0, +∞) -→ R + defined by On the other hand

ϕ(ξ) = (2π) d detΣ -1/2 exp(- 1 2 |ξ| 2 ), with |x| Σ = |Σ -1 2 x|.
R d f θ,m (x)f (x) -s d+r dx = R d f (m + θ(x -m))f (x) -s d+r dx = C R d e -1 2 (θ 2 -s d+r )(x-m) Σ -1 (x-m) dx so that R d f θ,m (x)f (x) -s d+r < +∞ iff θ > s d + r .
Now we are in position to solve the problem (5.1). Let θ ∈ s/(d + r), +∞ ,

θ s+d R d f θ,m (x)f (x) -s d+r dx = (2π) d det Σ -1 2 (1-s d+r ) θ s+d R d e -1 2 (θ 2 -s d+r )(x-m) Σ -1 (x-m) dx = (2π) d det Σ -s d+r θ s+d θ 2 - s d + r -d 2 .
For θ ∈ s/(d + r), +∞ , we want to minimize the function h defined by

h(θ) = θ s+d θ 2 - s d + r -d 2 .
The function h is differentiable on s/(d + r), +∞ with derivative

h (θ) = sθ d+s-1 θ 2 - s d + r -1-d/2 θ 2 - s + d r + d .
One easily checks that h reaches its unique minimum on s/(d + r), +∞ at θ = (s + d)/(r + d). (b) Let s < r and consider the inequality (3.3). We get

f r r-s θ,m (x)f -s r-s (x)dx = C R d e -1 2 r r-s (θ 2 -s r )(x-m) Σ -1 (x-m) dx.
So if θ ∈ s/r, +∞ then f r r-s θ,m (x)f -s r-s (x)dx < +∞. This proves the first assertion. To prove the second assertion, let θ ∈ s/r, +∞ . Then

θ d+s f r r-s θ,m (x)f -s r-s (x)dx 1-s r = C θ s+d R d e -1 2 r r-s (θ 2 -s r )(x-m) Σ -1 (x-m) dx 1-s r = C θ s+d θ 2 - s r -d 2r (r-s)
.

We proceed as before by setting

h(θ) = θ α θ 2 - s r β , with α = d + s and β = - d 2r (r -s).
For all θ ∈ s/r, +∞ ,

h (θ) = θ α-1 θ 2 - s r β-1 (α + 2β)θ 2 - αs r .
The sign of h depends on the sign of (α + 2β)θ 2 -αs r . Moreover α + 2β = s r (d + r) > 0 then h vanishes at θ = (s + d)/(r + d), is negative on the set s/r, θ and positive on θ , +∞ . Therefore h reaches its minimum on s/r, +∞ at the unique point θ .

Definition 5.1. A sequence of quantizers (β n ) n≥1 is called a dilatation of the sequence (α n ) n≥1 with scaling number θ and translating number µ if, for every n ≥ 1, β n = α θ,µ n , with θ > 1. If θ < 1, one defines likewise the contraction of the sequence (α n ) n≥1 with scaling number θ and translating number µ.

From this definition follows the following remark.

Remark 5.1. Let X ∼ N (m; Σ). If s < r then θ < 1. Hence (α θ ,m n ) n≥1 is a contraction of (α n ) n≥1 with scaling number θ and translating number m. On the other hand, if s > r, then θ > 1. In this case the sequence (α θ ,m n ) n≥1 is a dilatation of (α n ) n≥1 with scaling number θ and translating number m. Also note that θ does not depend on the covariance matrix Σ.

What we do expect from the resulting sequence (α θ ,m n ) n≥1 ? Before giving any answer to this question let us recall first the empirical measure theorem (see [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF]) which gives the asymptotic distribution of the empirical measure induced by an asymptotically L r -optimal sequence of quantizers.

Theorem 5.1. (Empirical measure theorem) Let X ∼ P , with P a = 0, and let (α n ) n≥1 be an asymptotically L r (P )-optimal sequence of quantizers. Then

1 n a∈αn δ a w -→ P r (5.3) 
where w -→ denotes the weak convergence and for every Borel set A of R d , P r is defined by

P r (A) = 1 C f,r A f (x) d d+r dλ d (x), with C f,r = R d f (x) d d+r dλ d (x).
(5.4)

A sequence of quantizers (α n ) n≥1 will be said to satisfy the L r -empirical measure theorem if (5.3) holds. The next proposition shows that the sequence (α θ ,m n ) n≥1 satisfies the L s -empirical measure theorem. Proposition 5.2. Let r, s > 0 and let P = N (m; Σ). Assume (α n ) n≥1 is asymptotically L r (P )optimal. Then the sequence (α θ ,m n ) n≥1 (as defined before with θ = (s + d)/(r + d)) satisfies the L s -empirical measure theorem.

In other words, for every a, b ∈ R d ,

1 n card({x ∈ α θ ,m n ∩ [a, b]}) -→ 1 C f,s [a,b] f (x) d d+s dx.
Proof. For all n ≥ 1,

{x ∈ α θ ,m n ∩ [a, b]} = {x ∈ α n ∩ [(a -m)/θ + m, (b -m)/θ ] + m}.
Since (α n ) n≥1 is asymptotically L r -optimal, applying the empirical measure theorem to the sequence (α n ) n≥1 yields

1 n card({x ∈ α n ∩[(a-m)/θ +m, (b-m)/θ +m]}) -→ 1 C f,r [(a-m)/θ +m,(b-m)/θ +m] f (x) d d+r dx.
It remains to verify that

1 C f,r [(a-m)/θ +m,(b-m)/θ +m] f (x) d d+r dx = 1 C f,s [a,b] f (x) d d+s dx. One knows that f (x) = (2π) d det Σ -1 2 e -1 2 (x-m) Σ -1 (x-m)
and see (5.4)

C f,r = R d f (x) d d+r dx
so that for all r > 0,

C f,r = (2π) d det Σ r 2(r+d) d + r d d 2
.

By making the change of variable x = m + θ (z -m), one gets :

1 C f,r [(a-m)/θ +m,(b-m)/θ +m] f (z) d d+r dz = 1 C f,r (θ ) -d [a,b] f ((x -m)/θ + m) d d+r dx.
It is easy to check that

f ((x -m)/θ + m d d+r = f (x) d d+s (2π) d det Σ -1 2 ( d d+r -d d+s )
and that

1 C f,r (θ ) -d (2π) d detΣ -1 2 ( d d+r -d d+s ) = (2π) d det Σ -s 2(s+d) d + s d -d 2 .
The last term is simply equal to 1 C f,s . We then deduce that

1 C f,r [(a-m)/θ +m,(b-m)/θ +m] f (x) d d+r dx = 1 C f,s [a,b] f (x) d d+s dx.
We have just built a sequence (α θ ,m n ) n≥1 satisfying the empirical measure theorem. The question of interest is now to know whether or not this sequence is asymptotically L s -optimal. The following proposition shows that the lower bound in 

Q Inf r,s (P, θ ) = Q s (P ).
(5.5)

Proof. Keep in mind that if P ∼ N (m; Σ) then for all r > 0,

Q r (P ) 1/r = J r,d 1/r √ 2π d + r d d+r 2r det Σ 1 2d
.

We have on one hand

R d f d d+r (x)d(x) s/d = (2π) d det Σ -1 2 d d+r R d e -1 2 d d+r (x-m) Σ -1 (x-m) dx s/d = (2π) d det Σ 1 2 r d+r d + r d d 2 s/d
and on the other hand

R d f θ ,µ (x)f -s d+r (x)d(x) = (2π) d det Σ -1 2 -s d+r R d e -1 2 d d+r (x-m) Σ -1 (x-m) dx = (2π) d det Σ -s d+r d + r d d 2 .
Combining these two results yields

Q Inf r,s (P, θ ) = (θ ) s+d J s,d R d f d d+r dλ d s/d R d f θ ,µ f -s d+r dλ d = J s,d s + d r + d d+s 2 (2π) d det Σ s 2d r + d d d+s 2 = J s,d s + d d d+s 2 (2π) d det Σ s 2d = Q s (P ).
After some elementary calculations, it follows from the proposition above and inequalities (2.1),(4.3), the corollary below : Corollary 5.1. Let X ∼ N (m; Σ) and θ = (s + d)/(r + d). Then,

Q s (P ) 1/s ≤ lim inf n→∞ n 1/d X -X α θ ,m n s ≤ lim sup n→∞ n 1/d X -X α θ ,m n s ≤ Q Sup r,s (P, θ ) 1/s (5.6) with Q Sup r,s (P, θ ) 1/s =    s+d d s+d 2s J 1 r r,d (2π) d det Σ 1 2d if s < r s+d d d 2 s+d r+d C(b) (2π) d det Σ 1 2(d+r) if s > r.
Remark 5.2. (a) If s > r, we cannot prove the asymptotically L s (P )-optimality of (α θ ,m n ) n≥1 using (3.9) since the constant C(b) is not explicit.

(b) When s < r, the corollary above shows that the upper bound in (3.3) does not reach the Zador constant. Then our upper estimate does not allow us to show that the sequence (α θ ,m n ) n≥1 is asymptotically L s (P )-optimal.

Moreover, using H ölder inequality (with p = r/(r -s) and q = r/s), we have for every θ > 0,

R d f θ,µ (x)f -s d+r (x)dλ d (x) = R d f θ,µ (x)f -s/r (x)f sd r(d+r) (x)dλ d (x) ≤ R d f r r-s θ,µ (x)f -s r-s (x)dλ d (x) r-s r R d f d d+r (x)dλ d s r
. and (for θ = θ )

R d f θ ,µ (x)f -s d+r (x)dλ d (x) = R d f r r-s θ ,µ (x)f -s r-s (x)dλ d (x) r-s r R d f d d+r (x)dλ d s r
.

(5.7) Hence, according to (5.5), one gets for every s < r,

(θ ) s+d J s,d R d f r r-s θ ,µ (x)f -s r-s (x)dλ d (x) r-s r f s/r d d+r = Q s (P ).
(5.8)

Thus, to reach the Zador constant in (3.3) we must rather have J s,d instead of J r,d (which will be coherent since for all s < r, J

1/s s,d ≤ J 1/r r,d ), that is, lim sup n→∞ n 1/d X -X α θ,µ n s ≤ θ s+d J s,d R d f r r-s θ,µ (x)f -s r-s (x)dλ d (x) r-s r f s/r d d+r .

Numerical experiments

For numerical example, supppose that d = 1 and r ∈ {1, 2, 4}. Let X ∼ N (0, 1) and, for a fixed n, let α

(r) n = {α (r) n1 , • • • , α (r)
nn } be the L r -optimal grid of size n (obtained by a Newton-Raphson zero search). For every n ∈ {20, 50, • • • , 900} and for (s, r) = (1, 2) and (4, 2), we make a linear regression of α (r)

n onto α (s) n : α (s) ni âsr α (r) ni + bsr , i = 1, • • • , n.
Table 1 provides the regression coefficients we obtain for different values of n. We note that when n increases, the coefficients âsr tend to the value (s + 1)/(r + 1) = θ whereas the coefficients bsr almost vanish. For example, for n = 900 and for (r, s) = (2, 1) (resp. (2, 4)) we get âsr = 0.8170251 (resp. 1.2900417). The expected values are 2/3 = 0.8164966 (resp. 5/3 = 1.2909944). The absolute errors are then 5.285 × 10 -4 resp. 9.527 × 10 -4 . We remark that the error mainly stems from the tail of the distribution. The previous numerical results, in addition to Equation (5.5), strongly suggest that the sequence (α θ ,m n ) n≥1 is in fact asymptotically L s (P )-optimal. This leads to the following conjecture.
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Conjecture 1. Let P ∼ N (m; Σ) and let (α n ) n≥1 be an L r (P )-optimal sequence of quantizers. Then, for every s > 0, the sequence (α θ ,m n ) n≥1 (with θ = (s + d)/(r + d)) is asymptotically L s (P )-optimal.

Exponential distribution

Optimal dilatation and contraction

Proposition 5.4. Let r, s > 0 and X be an exponentially distributed random variable with rate parameter λ > 0. Set µ = 0.

(a) If (α n ) n≥1 is an L r (P )-optimal sequence of quantizers then, for s = r + 1, the sequence (α θ,0 n ) n≥1 is L s -rate-optimal iff θ ∈ s/(r + 1), +∞ and

θ = (s + 1)/(r + 1)
is the unique solution of (5.1) on the set s/(r + 1), +∞ .

(b) If (α n ) n≥1 is an asymptotically L r (P )-optimal sequence of quantizers then, for s ∈ (0, r), the sequence (α θ,0 n ) n≥1 is L s -rate-optimal for all θ ∈ s/r, +∞ and

θ = (s + 1)/(r + 1)
is the unique solution of (5.1) on s/r, +∞ .

Proof. (a) Let s < r + 1. For all θ > 0, µ ∈ R d , the couple (θ, µ) is P -admissible and the function f is decreasing on (0, +∞). For θ > s/(r + 1), Assumption e -λ(θ-s/(r+1))x dx < +∞ ⇐⇒ θ > s/(r + 1).

Now, let us solve the problem (5.1). For all θ > s/(r + 1),

h(θ) := θ s+1 R f (θx)f (x) -s r+1 dx = C θ s+1 +∞ 0 e -λ(θ-s r+1 )x dx = C θ s+1 θ - s r + 1 -1 . Consequently h (θ) = Cs θ s θ - s r + 1 -2 θ - s + 1 r + 1 .
Hence, h reaches its unique minimum on s/(r + 1), +∞) at θ = (s + 1)/(r + 1).

(b) Let s < r. We have

R f r r-s (θx)f -s r-s (x)dx = C R + e -x λ r-s (rθ-s) dx.
Then, for all θ > s/r, R f r r-s (θx)f -s r-s (x)dx < +∞. Which gives the first assertion.

For every θ > s/r,

θ s+1 R f r r-s θ,µ (x)f -s r-s (x)dx 1-s r = C θ s+1 R + e -x λ r-s (rθ-s) dx r-s r = C θ s+1 (rθ -s) s-r r .
We easily check that the function h(θ) = θ s+1 (rθ -s)

s-r r reaches its minimum on s/r, +∞) at the unique point θ = (s + 1)/(r + 1).

Remark 5.3. Let X ∼ E(λ). If s < r, then θ = (s + 1)/(r + 1) < 1. As a consequence, the sequence (α θ ,0 n ) n≥1 is a contraction of (α n ) n≥1 with scaling number θ . On the other hand, if s > r, then θ > 1 and then (α θ ,0 n ) n≥1 is a dilatation of (α n ) n≥1 with scaling number θ . Note that θ does not depend on the rate parameter λ of the exponential distribution.

One shows below that the sequence (α θ ,0 n ) n≥1 , with θ = (1 + s)/(1 + r), satisfies the L sempirical measure theorem. Proposition 5.5. Let r, s > 0 and let X be an exponentially distributed random variable with rate parameter λ > 0. Assume (α n ) n≥1 is an asymptotically L r -optimal sequence of quantizers for X and let (α θ ,0 n ) n≥1 be defined as before, with θ = (s + 1)/(r + 1). Then, the sequence (α θ ,0 n ) satisfies the L s -empirical measure theorem.

Proof. Since (α θ ,0 n ) n≥1 = (θ α n ) n≥1 it amounts to show that for every a, b ∈ R + card(α n ∩ [a/θ , b/θ ]) n -→ 1 C f,s b a f (x) 1 1+s dx i.e that for all a, b ∈ R + , 1 C f,r 1 θ b a f (x/θ ) 1 1+r dx = 1 C f,s b a f (x) 1 1+s dx.
Elementary computations show that ∀ r > 0,

C f,r = λ -r 1+r (1 + r).
so that

1 C f,r 1 θ b a f (x/θ ) 1 1+r dx = 1 C f,r 1 + r 1 + s b a λe -xλ 1+r 1+s 1 1+r dx = 1 C f,r 1 + r 1 + s λ 1 1+r -1 1+s b a λe -λx 1 1+s dx = 1 C f,s b a f (x) 1 1+s dx.
Once again, the question of interest is to know if the sequence (α θ ,0 n ) n≥1 is asymptotically L soptimal. The remark 5.2 is also valid for the exponential distribution. Our upper bounds in (3.3) and (3.9) do not allow us to show that (θ α n ) is asymptotically L s -optimal because of the corollary below. But the numerical results strongly suggest that it is. Corollary 5.2. Let X ∼ E (λ) and θ = (s + 1)/(r + 1). Then,

Q s (P ) 1/s ≤ lim inf n→∞ n 1/d X -X α θ ,0 n s ≤ lim sup n→∞ n 1/d X -X α θ ,0 n s ≤ Q Sup r,s (P, θ ) 1/s (5.9) with Q Sup r,s (P, θ ) 1/s = 1 2λ (s + 1) 1+1/s (r + 1) -1/r if s < r (s + 1) 1+1/s (r + 1)λ 1 1+r -1 C(b) 1/s if s > r.
Proof. We easily prove, like in proposition 5.2, that Q Inf r,s (P, θ ) = Q s (P ). The corollary follows then from (2.1) and (4.3) Note that for every r > 0, J r,1 = 1 (r+1)2 r .

Numerical experiments

We relate first a proposition established in [START_REF] Fort | Asymptotics of optimal quantizers for some scalar distributions[END_REF] and used in our context to compute the L r -optimal quantizers for the exponential distribution. Proposition 5.6. Let r > 0 and let X be an exponentially distributed random variable with scale parameter λ > 0. Then for every n ≥ 1, the L r -optimal quantizer α (r)

n = (α (r) n1 , • • • , α (r)
nn ) is unique and given by

α (r) nk = a (r) n 2 + n-1 i=n+1-k a (r) i , 1 ≤ k ≤ n, (5.10) where (a (r) 
k ) k≥1 is a R + -valued sequence defined by the following implicit recursive equation:

a (r) 0 := +∞, φ r -a (r) k+1 := φ r a (r) 
k , k ≥ 0 with φ r (x) :=

x/2 0 |u| r-1 sign(u)e -u du (convention : 0 0 = 1).

Furthermore, the sequence (a

k ) k≥1 decreases to zero and for every k ≥ 1, a

k = r + 1 k 1 + c r k + O( 1 k 2 ) (r) 
for some real constant c r .

For numerical examples, Table 2 gives the regression coefficients we obtain by regressing the L 2 grids onto the grids we get with the L 1 and L 4 norms, for different values of n. The notations are the same as in the previous example. We note that for large enough n, the coefficients âsr tend to (s + 1)/(r + 1) = θ . For example, if n = 900, we get â12 = 0.6676880; â42 = 1.6640023 whereas the expected values are respectively 2/3 = 0.66666667 and 5/3 = 1.6666667. The absolute errors are in the order of 10 -3 . Like the Gaussian case, we remark that the error of the estimation results mainly from the tail of the exponential distribution. Conjecture 2. Let X be an exponentially distributed random variable with rate parameter λ and let (α n ) n≥1 be an L r -optimal sequence of quantizers for X. Then for s > 0 and θ = (s + 1)/(r + 1) the sequence (α θ ,0 n ) n≥1 is asymptotically L s -optimal.

Remark 5.4. As a matter of fact, the sequence (α θ ,0 n ) n≥1 is not (exactly) L s -optimal for every s = r. Otherwise, if α

(s) nk = s+1 r+1 α (r)
nk for every k ≥ 1 then if follows by backward induction that

∀k ≥ 1, a (s) k 
= s + 1 r + 1 a (r) k .
However straightforward calculations show e.g that a

1 = 2 and a Moreover, these examples could suggest that a contraction (or a dilatation) parameter θ , solution of the minimization problem (5.1), always leads to a sequence of quantizers satisfying the L s -empirical measure theorem. The following example shows that this can fail.

Gamma distribution

Optimal dilatation and contraction

Proposition 5.7. Let r, s > 0 and let P be a Gamma distribution with parameters a and λ : P = Γ(a, λ), a > 0, λ > 0.

(a) If (α n ) n≥1 is an L r (P )-optimal sequence of quantizers then, for s < r + 1, the sequence (α θ,0 n ) n≥1 is L s -rate-optimal iff θ ∈ s/(r + 1), +∞ and for all a > 0,

θ = (s + a)/(r + a)
is the unique solution of (5.1) on the set s/(r + 1), +∞ .

(b) Let (α n ) n≥1 be an L r (P )-optimal sequence of quantizers then, if s > r + 1 and if a ∈ 0, s+r+1 s , the sequence (α θ,0 n ) n≥1 is L s -rate-optimal for every θ ∈ s/(r + 1), +∞ and

θ = (s + a)/(r + a)
is the unique solution of (5.1) on the set s/(r + 1), +∞ (Note that the assumptions imply a ∈ (0, 2)).

(c) Let (α n ) n≥1 be an asymptotically L r (P )-optimal sequence of quantizers then, if s < r, the sequence (α θ,0 n ) n≥1 is L s -rate-optimal for every θ ∈ s/r, +∞ and for all a > 0,

θ = (s + 1)/(r + 1)
is the unique solution of (5.1) on the set s/r, +∞ .

Proof. We set µ = 0. The density function reads

f (x) = λ a Γ(a)
x a-1 e -λx 1 {x>0} , with Γ(a) = +∞ 0

x a-1 e -x dx.

(a) and (b). Let s ∈ (0, r + 1) and set R 0 = max(0, (a -1)/λ). The function f is decreasing on (R 0 , +∞) and for every θ > 0, µ ∈ R, the couple (θ, µ) is P -admissible. For θ > s/(r + 1), Assumption (3.12) holds true for every c ∈ 1, θ(1+r)/s . Moreover, Hypothesis (H1) clearly holds. Consequently, it follows from Corollary 3.1, (a) that Assumption (3.8) of Theorem 3.2 holds true.

When s > r + 1, the additional hypothesis f -s r+1 ∈ L 1 loc (P ) holds for a < r+1 s + 1. Furthermore, it follows from (5.2) that (H3) holds. In this case Assumption (3.8) of Theorem 3.2 holds true.

For all θ > 0,

R f (θx)f (x) -s 1+r dx = λ a Γ(a) 1-s/(r+1) +∞ 0 x (a-1)(1-s r+1 ) e -(θ-s r+1 )λx dx,
it follows that R f (θx)f (x) -s r+1 dx < +∞ iff θ > s/(r + 1) and a(r + 1 -s) + s > 0.

For every θ > s/(r + 1), we have

h(θ) := θ s+1 R f (θx)f (x) -s 1+r dx = λ a Γ(a) 1-s/(r+1) θ s+1 θ a-1 +∞ 0 x (a-1)(1-s 1+r ) e -(θ-s 1+r )λx dx = C θ γ θ - s 1 + r -β with γ = s + a and β = (a -1)(1 -s/(r + 1)) + 1.
The function h is differentiable for all θ > s/(1 + r) and

h (θ) = Cθ γ-1 θ - s 1 + r -β-1 (γ -β)θ - sγ 1 + r .
The minimum of h is then unique on s/(r + 1), +∞ and is reached at θ . Notice that the condition required for f -s r+1 to be in L 1 loc (P ) is a < r+1 s + 1 and for every s > r + 1 one has 1 + r+1 s < x a-1 e -λx r-s (rθ-s) dx.

Therefore R f r r-s (θx)f -s r-s (x)dx < +∞ iff θ > s/r. On the other hand, for every θ > s/r,

θ 1+s R f r r-s θ,µ (x)f -s r-s (x)dx 1-s r = C θ s+a +∞ 0 x a-1 e -λx r-s (rθ-s) dx r-s r = C θ s+a rθ -s a s-r r .
Considering the function h defined by h(θ) = θ s+a (rθ -s) a s-r r we show that h reaches its minimum on s/r, +∞ at the unique point θ = (s + a)/(r + a). Remark 5.5. Let X ∼ Γ(a, λ). If s < r, then θ = (s + a)/(r + a) < 1. Then the sequence (α θ ,0 n ) n≥1 is a contraction of (α n ) n≥1 with scaling number θ . On the other hand, if s > r, then θ > 1 and the sequence (α θ ,0 n ) n≥1 is a dilatation of (α n ) n≥1 with scaling number θ . Moreover there is no constraint on the parameter a as long as s < r. In this case when we set a = 1 (exponential distribution with parameter λ) we retrieve the result related to the exponential distribution. We notice that θ does not depend on the parameter λ. That is expected since Γ(1, λ) = E (λ) and, in the exponential case we know that the scaling number does not depend on λ.

Let θ = (s + a)/(r + a) and consider now the sequence (α θ ,0 n ) n≥1 defined as previously. Does this sequence verify the L s -empirical measure theorem? If a = 1 we boil down to the exponential distribution. On the other hand, when a = 1, one shows below that there exists a > 1, s > 0 and r > 0 such that the sequence (α θ ,0 n ) n≥1 does not verify the L s -empirical measure theorem. Suppose that (α θ ,0 n ) n≥1 satisfies the L s -empirical measure theorem. Then we must have, for all

u ∈ R + , 1 C f,r 1 θ u 0 f (x/θ ) 1 1+r dx = 1 C f,s u 0 f (x) 1 1+s dx. (5.11) with f (x) = λ a Γ(a) x a-1 e -λx 1 {x>0} and C f,r = f (x) 1 
1+r dx for all r > 0. However, we have for any r > 0, x n e -αx dx = -

C f,r = λ a 1+r Γ(a) -1 1+r +∞ 0 x (a-1)/(r+1) e -λ 1+r x dx = λ a 1+r Γ(a) -1 1+r +∞ 0 x (r+a)/(r+1)-1 e -λ 1+r x dx = λ a 1+r Γ(a) -1 1+r Γ r + a r + 1 λ -r+a r+1 r + 1 r+a r+1 = Γ r + a r + 1 Γ(a) -1 1+r λ -r r+1 r + 1
1 α u n + n α 2 u n-1 + n(n -1) α 3 u n-2 + • • • + n! α n u + n! α n+1 e -αu + n! α n+1 .
Let us consider a > 1 such that a-1 r+1 and a-1 s+1 are integers and set n = a-1 r+1 , m = a-1 s+1 , α = λ(r+a) (r+1)(s+a) and β = λ s+1 . Equation (5.11) finally reads

C(r) r + a s + a r+a r+1 1 α u n + n α 2 u n-1 + n(n -1) α 3 u n-2 + • • • + n! α n u + n! α n+1 e -αu - n! α n+1 =C(s) 1 β u m + m β 2 u m-1 + m(m -1) β 3 u m-2 + • • • + m! β m u + m! β m+1 e -βu - m! β m+1 .
Set a = 7, s = 1, r = 2, λ = 1 and u = 1. Then n = 2, m = 3, α = 3/8, β = 1/2 and we show after some computations that the sequence (α θ ,0 n ) n≥1 does not satisfy the L s -empirical measure theorem since 185 128 e -3/8 -79 48 e -1/2 = -511 512 (one side is rational, the other is not). Hence, we have constructed an L s (P )-rate-optimal sequence which does not satisfy the L s -empirical measure theorem.

Applications

Application to Lloyd's I algorithm

One of the important issues from a computational point of view is the search of the L r -optimal quantizers. The quadratic case (r = 2) is the commonly implemented for applications and various algorithms like the Competitive Learning Vector Quantization (CLVQ) algorithm (see e.g [START_REF] Pagès | Optimal quantization methods and applications to numerical problems in finance[END_REF]) and "randomized versions" of the Lloyd's algorithms (I and II) (see e.g. [START_REF] Gersho | Vector Quantization and Signal Compression[END_REF]) are used. In practice, Lloyd's I algorithm is widely used to compute stationary (or optimal) quantizers because it can be easily implemented. We will use the natural extension of Lloyd's I algorithm to compute the L r -stationary (optimal) quantizers. In a general framework, L r -stationary quantizers (α n ) (with α n = (α n1 , • • • , α nn )) are computed using the L r -stationary equation ∇e n,r (X) = 0. This equation reads for every r ≥ 1 (see [START_REF] Pagès | Optimal quantization methods and applications to numerical problems in finance[END_REF])

α ni = E 1 X∈C i (αn) |X -α ni | r-2 X E 1 X∈C i (αn) |X -α ni | r-2 , i = 1, • • • , n. (6.1) 
The Lloyd's I procedure is the fixed point procedure derived from (6.1). Starting with an initial quantizer α

n of size n, one defines recursively a sequence (α

(l) n ) l=1,••• ,L of L r -
stationary quantizers (where L corresponds to the number of Lloyd's iterations) by setting for every l

= 1, • • • , L, α (l) ni = E 1 X∈C i (αn) |X -α (l-1) ni | r-2 X E 1 X∈C i (αn) |X -α (l-1) ni | r-2 , i = 1, • • • , n. (6.2) 
By "randomized version" of the Lloyd's I procedure we mean that both expectations in (6.2) are computed using a Monte Carlo simulation of size M . However in higher dimensions there are several L r -stationary quantizers and the Lloyd's I procedure is somehow a method to compute the "nearest" one (namely the one in the attracting basin of which the procedure has been initialized). This is why the initialization of the procedure at already good grid is a crucial issue to obtain good L r -quantizers. This leads us to consider the optimally L r -dilated quadratic quantizers as natural good candidates to initialize the L r -Lloyd's I procedure. We compare it to a random initialization, which consists on generating a vector of size n distributed as X and multiply it by the same scaled number (θ ).

We carried out a numerical test in dimension d = 2, 3 with r = 4 for the N (0; I d ) distribution. The Monte Carlo size M is equal to 10 6 and our grid size n moves 10 by 10 from 10 to 100. Numerical results depicted in figure 2 (for d = 2) show that the dilated L 2 -stationary (optimal) grids are already almost L 4 -stationary (and likely almost optimal if we suppose that the L 2 -stationary quantizers are) since the initial scaled L 2 -stationary grids do not move during the successive Lloyd's iterations. This is also confirmed by Figure 1 (when d = 2) and Figure 3 (when d = 3) where the logarithm of the L 4 quantization error of the dilated grids remains the same during the successive Lloyd's procedures. The dilated L 2 -stationary quantizers initialization seems to be the best choice one can do. The Lloyd's procedure initialization with random grids never leads to lower quantization errors. Moreover it needs several iterations of the procedure, depending to the grid size. 

f (X) -f ( X αn ) 1 ≤C E(|X -X αn |(1 + |X| β-1 + | X αn | β-1 ))
≤C X -X αn r (1 + X β-1 (β-1)r + X αn β-1 (β-1)r ) (6.3) by Hölder's inequality with r = r/(r -1). Suppose now that X ∈ L β+ε (P), ∀ε > ε 0 . To give a sense to the above inequality as a error bound, we must choose r such that (β -1)r ≤ β + ε 0 ; which in return impose that r > β+ε 0 1+ε 0 . Now |x| β > 0 there is no alternative to these constraints. In this situation it is impossible to use quadrature formulae for numerical integration based on quadratic quantizers. However we can use some dilated L 2 -optimal (at least stationary) quantizers α θ ,µ n , for large enough n. Then

E f ( X α θ ,µ n ) = n i=1 f (α θ ,µ ni )P(X ∈ C i (α θ ,µ n ))
and |Ef (X) -Ef X α θ ,µ n | ≤ Ef (X) -Ef X α θ ,µ n 1 so that the error bound (6.3) holds true profided f is lipschitz. Such an approach requires to compute the weights P(X ∈ C i (α θ ,µ n )) associated to the Voronoi cells of α θ ,µ n . The following easy proposition says how to compute these weights. When a closed formula (like for the exponential distribution) is not available for the weights of the dilated cells, these weights can be estimated by the Monte Carlo method using the Nearest-Neighbour algorithm. Fast implementations of this algorithm can be find e.g. in [START_REF] Friedman | An Algorithm for Finding Best Matches in Logarithmic Expected Time[END_REF][START_REF] Mcnames | A Fast Nearest-Neighbor algorithm based on a principal axis search tree[END_REF]. 

  Let α ⊂ R d be a subset (a codebook) of size n. A Borel partition C a (α) a∈α of R d satisfying C a (α) ⊂ {x ∈ R d : |x -a| = minb∈αn |x -b|}, where | • | denotes a norm on R d is called a Voronoi partition of R d (with respect to α and | • |).

=

  lim n→+∞ n r/d (e n,r (P )) r = Q r (P ). with Q r (P ) = J r,d J r,d f d d+r ∈ [0, +∞), J r,d = inf n≥1 n r/d e r n,r (U ([0, 1] d )) ∈ (0, +∞),

. 11 )Lemma 3 . 1 .

 1131 (H3) λ d (• ∩ supp(P ))P and supp(P ) is a finite union of closed convex sets. Let P = f • λ d and r > 0 such that |x| r P (dx) < +∞. Assume (α n ) n≥1 is a sequence of quantizers such that d(x, α n ) r dP → 0. Let (θ, µ) be a P -admissible couple of parameters for which (H1) holds. (a) If p ∈ (0, 1) then for every b > 0, ψ p b ∈ L 1 loc (P θ,µ ). (b) If p ∈ (1, +∞] and if furthermore (H3) holds then for every b > 0,

  (a) If s ∈ (0, r + d) then Assumption (3.8) of Theorem 3.2 holds true. (b) If s ∈ (r + d, +∞), and if furthermore, (H3) holds and f -s r+d ∈ L 1 loc (P ) then Assumption (3.8) of Theorem 3.2 holds true.

  Since ψ s/(d+r) b dP θ,µ = B(0,M ∨N ) ψ s/(d+r) b dP θ,µ + B(0,M ∨N ) c ψ s/(d+r) b dP θ,µ , it remains to show that the first term in the right hand side of this last equality is finite. (a) If s ∈ (0, r + d) it follows from Lemma 3.1, (a) that the first term in the right hand side of the above equality is finite. As a consequence, ψ s r+d ∈ L 1 (P θ,µ ). (b) If s > r + d, the first term in the right hand side of the above equality still finite owing to Lemma 3.1, (b). Consequently, Assumption (3.8) of Theorem 3.2 holds true provided (H3) holds and f -s r+d ∈ L 1 loc (P ).

5. 1

 1 The multivariate Gaussian distribution 5.1.1 Optimal dilatation and contraction Proposition 5.1. Let r, s > 0 and let P = N (m; Σ), m ∈ R d , Σ ∈ S + (d, R).

  Let θ > s/(r + d). Then Assumption (3.12) holds for every c ∈ (1, θ r+d s ). Consequently, it follows from Corollary 3.1, (a) that Assumption (3.8) of Theorem 3.2 holds. If s > d + r, the required additional hypotheses (H3) and f -s r+d ∈ L 1 loc (P ) are clearly satisfied since if P = f • λ d then λ d (supp(P ) ∩ {f = 0}) = 0 =⇒ λ d (• ∩ supp(P )) P (5.2) and f -s r+d is continuous on every B(0, M ), M > 0. Then it follows from Corollary 3.1, (b) that Assumption (3.8) of Theorem 3.2 holds.

( 2 . 1 )Proposition 5 . 3 .

 2153 is in fact reached by considering the sequence (α θ ,m n ) n≥1 . Let s > 0 and let θ = θ = (s + d)/(r + d). Then, the constant in the asymptotic lower bound for the L s -error induced by the sequence (α θ ,m n ) n≥1 (see (2.1)) satisfies :

( 3 . 12 )

 312 holds true for every c ∈ 1, θ(1 + r)/s . Moreover, Hypothesis (H1) is clearly satisfied. Consequently, it follows from Corollary 3.1, (a) that Assumption (3.8) holds true. If s > r + 1, Assumption (3.8) still holds since the additional assumptions (H3) and f -s r+1 ∈ L 1 loc (P ) required to apply the corollary 3.1, (b) are satisfied. On the other hand, one has R f (θx)f (x) -s/(r+1) dx = C +∞ 0

  s s-(r+1) . Combined to the condition a(r + 1 -s) > 0 yields the given constrain on a in (b). (c) Now let s < r and consider Inequality (3.3). One has R f r r-s (θx)f -s r-s (x)dx = λ a Γ(a) +∞ 0

Equation ( 5 . 11 )

 511 is written down for all u ∈ R + , ) (r+1)(s+a) x dx = C(s) Let m ∈ N and α > 0. We show by induction that, for u > 0, u 0

6. 2

 2 Application of L r -quantizers to numerical integrationLet β ≥ 1 and let X ∈ L β+ε 0 (P), ε 0 > 0. Let f ∈ Lip β (R d ) := {g : R d → R, |g(x) -g(y)| ≤ C|x -y|(1 + |x| β-1 + |y| β-1 )}.For any sequence of quantizers (α n ) n≥1 and any r ∈ [1, +∞] we have

β+ε 0 1+ε 0 > 2

 2 as soon as β > 2 + ε 0 . Furthermore if lim inf |x|→+∞ |f (x)|

Proposition 6 . 1 .

 61 Let X ∼ P and P = f • λ d . Then, for every n ≥ 1, we have∀i ∈ {1, • • • , n}, P (C i (α θ,µ n )) = P θ,µ (C i (α n )). (6.4) Proof. Let n ≥ 1 and α n = (α n1 , • • • , α nn ). One has P (C i (α θ,µ n )) = P(X ∈ C i (α θ,µ n )) = {|x-(µ+θ(α ni -µ))|=min j =i |x-(µ+θ(α nj -µ))|} f (x)dλ d (x).Making the change of variable z = x-µ θ + µ yieldsP (C i (α θ,µ n )) = θ d {z∈C i (αn)}f θ,µ (z)dλ d (z) = P θ,µ (C i (α n )).

Figure 1 :Figure 2 :

 12 Figure 1: Comparison of the log of the L 4 -error (power 4) as function of the log of the grid size after 1 (on the left) and 10 (on the right) Lloyd's iterations.

Figure 3 :

 3 Figure 3: Comparison of the log of the L 4 -error (power 4) as function of the log of the grid size after 1 (on the left) and 10 (on the right) Lloyd's iterations.

Table 1 :

 1 Regression coefficients for the Gaussian.

	0.8250096 1.826E-14 0.0003025	1.2761027 -3.650E-12 0.0008607
	50 0.8211387 -1.021E-13 0.0006870	1.2828110 3.733E-10 0.0020110
	100 0.8193424 8.693E-14 0.0009909	1.2859567 4.059E-09 0.0029445
	300 0.8177506 -1.045E-11 0.0013601	1.2887640 0.0000004 0.0041021
	700 0.8171428 -7.219E-11 0.0015111	1.2898393 -0.0000089 0.0048006
	800 0.8170775 -6.725E-11 0.0015247	1.2900041 0.0000216 0.0040577
	900 0.8170251 4.564E-11 0.0015346	1.2900417 -0.0000141 0.0048182

Table 2 :

 2 Regression coefficients for exponential distribution.

	n	â12	b12	â42	b42
	20 0.6765013 -0.0104881 0.0019489	1.6396807 0.0288348 3.081E-33
	50 0.6726145 -0.0082123 0.0045310	1.6502245 0.0225246 1.149E-28
	100 0.6706176 -0.0062439 0.0070734	1.6556979 0.0172020 1.573E-27
	300 0.6686428 -0.0036234 0.0114628	1.6611520 0.0100523 1.508E-27
	700 0.6677864 -0.0022222 0.0146186	1.6635261 0.0061356 1.222E-25
	800 0.6676880 -0.0020482 0.0150735	1.6638043 0.0057199 2.020E-26
	900 0.6676079 -0.0019043 0.0154634	1.6640023 0.0053173 9.683E-25
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