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Abstract 

We provide some general physical insights into the emergence of rogue wave events from optical 

turbulence by analyzing the long term evolution of the field. Depending on the amount of 

incoherence in the system (i.e., Hamiltonian), we identify three turbulent regimes that lead to the 

emergence of specific rogue wave events: (i) persistent and coherent rogue quasi-solitons, (ii) 

intermittent-like rogue quasi-solitons that appear and disappear erratically, and (iii) sporadic 

rogue waves events that emerge from turbulent fluctuations as bursts of light or intense flashes. 
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1. Introduction 

The first observation of statistical characteristics analogous to the hydrodynamic rogue waves in 

nonlinear optical fiber-based systems has been reported recently by Solli et al. in 2007 [1]. 

However, many aspects of these noise-induced fluctuations in supercontinuum generation 

experiments and subsequent dynamics leading to high amplitude “optical rogue waves” can be 

retrieved in the pioneer work of Islam et al. in 1989 and in more recent works [2-6]. In this 

context, there has been a tremendous activity devoted to the identification and the understanding 

of the mechanisms underlying the intricate process of optical rogue wave generation. By analogy 

with hydrodynamic systems [7], the recent studies in optics have confirmed the major role of the 

interplay between linear and nonlinear effects in the formation of L-shaped distributions of the 

optical intensities, such as, e.g., the convective effect due to third order dispersion, the 

modulation instability, or the collision of solitons or breathers structures [1,8-19]. These previous 

works have been focused on the study of two well-known classes of solutions of the NonLinear 

Schrödinger Equation (NLSE), namely soliton or quasi-soliton solutions and, on the other hand, 

Akhmediev Breathers (AB) solutions, which are essentially relevant to the integrable limit of the 

NLSE. In this way, the transition from the dynamics of AB to ‘rogue solitons’ has been assumed 

by introducing specific perturbations to the NLSE [18,20]. It turns out that, as a rather general 

rule, the collision of (quasi-)solitons or the collision of AB, have been recognized as the essential 

mechanisms responsible for the generation of optical rogue waves [1,8-9,11-19]. 

In this Letter we propose a novel approach for the understanding of the generation of 

optical rogue waves. Our approach is based on the study of the impact of the amount of 

incoherence in the nonlinear system. More specifically, we identify three turbulent regimes that 

lead to the emergence of specific extreme wave characteristics. The first regime (i) has been 



 3 

studied in various circumstances and refers to ‘(quasi-)solitonic turbulence’ [21,22]. Its long term 

dynamics is characterized by a robust and persistent coherent rogue (quasi-)soliton that 

propagates in the midst of small-scale fluctuations. The second regime (ii) is characterized by 

intermittent-like rogue (quasi-)soliton structures, which appear and disappear erratically from 

turbulent fluctuations. The third regime (iii) has no relation with (quasi-)solitons and refers to 

sporadic rogue wave events that emerge from a fully turbulent state: they manifest themselves by 

means of bursts of light or intense ‘flashes’ during the propagation.  

We consider the one-dimensional NLSE in the presence of Third-Order Dispersion 

(TOD), which has been shown to lead to the generation of optical rogue events [18,19]: 
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For convenience, we normalized the problem with respect to the nonlinear length L0 = 1/�P and 

time τ0 = (�2 L0)
1/2, where � is the nonlinear coefficient, P the average power of the field and �2 

the second-order dispersion coefficient. In these units, the normalized TOD coefficient reads 
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3 being the TOD coefficient. The NLSE conserves three important 

quantities, the normalized power N = � |u(t)|2 dt, the momentum M = � ω |u(ω)|2 dω and the 

‘energy’ (Hamiltonian) H = HL + HNL, which has a linear (dispersive) kinetic contribution  HL =  � k(ω) |u(ω)|2 dω and a nonlinear contribution HNL = − 1/2 � |u(t)|4 dt, where k(ω) = ω2/2 − � ω3 is 

the linear dispersion relation. The system is said to be ‘highly nonlinear’ (‘weakly nonlinear’) 

when ε = |HNL| / |HL| » 1 (ε « 1) [21]. The TOD term in Eq.(1) ( 0≠σ ) is known to break the 

integrability of the scalar NLSE. However, Eq.(1) admits quasi-soliton solutions: as a result of 

the TOD term, the standard soliton solution slowly loses its power through a process analogous 

to Cherenkov radiation [21,23]. 
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In the context of ‘(quasi-)soliton turbulence’ [21,22], a nonintegrable Hamiltonian wave 

system exhibits a thermalization process characterized by an irreversible evolution of the wave 

towards a specific equilibrium state, in which a (quasi-)soliton structure remains immersed in a 

sea of small scale fluctuations. This process may be interpreted as a consequence of the fact that 

soliton collisions in non-integrable systems are inelastic: the big soliton becomes bigger while 

the weaker one loses its power. The resulting big (quasi-)soliton may thus be regarded as a 

‘statistical attractor’ for the system, while the small-scale fluctuations contain, in principle, all 

information necessary for a reversible evolution of the system [21,22,24]. Note that this 

phenomenon of ‘energy localization’ has been also extensively studied in discrete nonlinear 

systems [25-29], in particular in relation with the Fermi-Pasta-Ulam problem [30].  

However, we underline that, in general, the formation of a large scale coherent structure 

is only possible if the amount of incoherence in the system is not too large [31-32], a feature that 

was also observed in the highly incoherent regime of supercontinuum generation [33-35]. This 

aspect has been the subject of a detailed study in the context of wave condensation, where it was 

shown that the emergence of a large-scale coherent structure (a plane wave) only occurs below 

some critical ‘energy’ [36-38]. The ‘energy’ refers here to the Hamiltonian, which is known to 

provide a measure of the amount of incoherence in the system [39]. Inspired from these previous 

works on wave condensation, we study here the transition from the coherent quasi-soliton regime 

to the fully turbulent regime by increasing the energy H of the system. To our knowledge, it is 

the first time that a condensation-like process is studied with quasi-soliton coherent structures. 

 We performed intensive numerical simulations of Eq.(1) with periodic boundary 

conditions. Contrary to previous studies [1,8-19], we are interested here in the long term 

evolution of the system (typically z ~ 2000 L0), in which the transient processes associated to 
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(multiple) quasi-soliton collisions have died out [40]. Note that light propagation over several 

thousands of nonlinear lengths L0, is experimentally accessible by using highly nonlinear fibers.  

Figure 1a reports the average of the maximum intensity peak detected in the temporal window 

in the last stage of propagation (i.e., over 500 L0) as a function of the energy density H  = H / T 

(see the caption of Fig. 1). We first remark that, in analogy with wave condensation, there exists 

a threshold value for the energy, H c ~ 15, above which quasi-soliton structures are no longer 

generated. In a loose sense, this means that the system is too incoherent (‘too hot’) to generate 

a coherent structure when H  > H c. We remark that this condensation curve has been obtained 

by varying the energy H, keeping constant the power N. Note however that a condensation 

curve may also be retrieved by varying the power N, keeping constant the energy H. In this 

case, condensation does not take place for a small power N, i.e., there exists a threshold value 

for the power, N c, above which condensation arises. This is in complete analogy with the 

genuine quantum condensation that occurs in Bose gases. 

More precisely, we identified in Fig. 1a three different regimes: For H  � 5, we recover 

the quasi-soliton turbulent regime (i): a large amplitude quasi-soliton immersed in a sea of small-

scale fluctuations eventually emerges from multiple inelastic collisions. Figure 2a represents the 

space-time intensity pattern over the last 10 nonlinear lengths. The corresponding Probability 

Distribution Functions (PDF) of the intensity of the field, and of the maxima of the intensity, are 

reported in Fig. 2b. They have been detected over the last stage of propagation, i.e., over 500 L0. 

We point out that, because of the large localization of the power in the quasi-soliton, the field 

statistics deviates substantially from the Gaussian statistics, i.e. fI(I) = exp(-I) with our 

normalized units. This observation is corroborated by the high value of ε (~ 3) and by the PDF of 

the intensity maxima, which is centered at a high value (~ 30) and exhibits a narrow width and 

symmetric shape, thus confirming the persistence of the high power quasi-soliton structure.  
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In the example of Fig. 2 we started the numerical simulation from the fundamental 

soliton solution (� = 0) that has been perturbed by a small noise. However, we underline that the 

initial condition is not essential: The same regime (i) could be reached starting the simulation 

from a continuous wave (with the corresponding Hamiltonian H  = -1/2), or from a broad initial 

pulse. These quasi-continuous waves are modulationally unstable and thus rapidly evolve toward 

a periodic train of quasi-solitons, whose subsequent inelastic collisions eventually bring the 

system into the persistent and coherent quasi-soliton regime described above through Fig. 2.  

In spite of its robustness, the large amplitude quasi-soliton experiences a weak interaction 

with the small-scale fluctuations in which it propagates, as shown by two successive temporal 

intensity profiles in Fig. 2(c-d). This interaction becomes stronger as the ‘level’ of the turbulent 

fluctuations increases, i.e. as the amount of energy H in the system increases. Typically, for 5 � 

H  � 15, the system enters into the second regime (ii), in which the quasi-soliton structures 

exhibit a kind of intermittent dynamics. This is illustrated in Figs. 3c-d, which report two 

successive temporal profiles of the field intensity: the quasi-soliton appears and disappears 

erratically during the propagation. It is interesting to note that, despite such intermittent-like 

behavior, the trajectory of the quasi-soliton may still be identified in the space-time intensity 

pattern (see Fig. 3a). As a result of its interaction with the turbulent fluctuations, the ‘lifetime’ of 

the quasi-soliton thus seems to fluctuate significantly. We note that, as for the regime (i), the 

field does not exhibit a Gaussian statistics (see Fig. 3b). However, the PDF of the maxima of the 

intensity gets relatively broader and asymmetric with respect to that discussed in regime (i) (see 

the inset of Fig. 3b). This is due to the intermittent (non-persistent) character of the quasi-soliton 

structure, whose significant fluctuations tend to favor the high intensity tail of the PDF. The 

resulting asymmetry in the PDF bears a strong resemblance with the typical L-shaped probability 

distributions that characterize freak-wave extreme events.  
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Finally, for H  � 15 the system enters into the fully incoherent and weakly nonlinear 

regime of propagation (iii). In this regime the optical field is expected to exhibit a thermalization 

process toward the equilibrium state [22,41,42], a feature that has been analyzed in various 

circumstances with optical waves [43-48]. However the analysis of this regime from the point of 

view of extreme statistics in the spatio-temporal domain has not been the subject of a detailed 

investigation. The corresponding spatiotemporal intensity pattern reveals that very short-lived 

rogue wave events may still emerge from the turbulent field, although these extreme events 

become rare (see Fig. 4a). The phenomenology of these events may resemble the extreme waves 

reported in Ref.[49] in optical cavities, although the two systems are of a fundamental different 

nature since we deal here with a Hamiltonian system whereas optical cavities are inherently 

dissipative systems. The generation of the sporadic bursts of light in regime (iii) is no longer 

related to coherent and deterministic quasi-soliton structures. This is corroborated by the 

statistics of the field, which approaches a Gaussian statistics, as expected for a fully incoherent 

system of weakly nonlinear waves [22,41-48]. Note however that a slight deviation from 

Gaussian statistics can be identified in the far-tail of the PDF (Fig. 4(a2)), a feature that may be 

precisely ascribed to the existence of extreme events. This aspect is also confirmed by the PDF 

of the intensity maxima (inset of Fig. 4(a2)), whose asymmetric shape has an origin analogous to 

that discussed in regime (ii). We remark that some extreme events in the far-tail of the PDFs 

(insets of Fig. 3b and 4(a2)) verify the usual hydrodynamic criterion [7], which defines a rogue 

wave as one exhibiting a maximal intensity higher than twice the average intensity among one 

third of the highest waves in the PDF of intensity maxima. Finally, for higher values of H (H  ~ 

30), the system becomes essentially 'linear', i.e. |HNL| « |HL|. We have verified that in this regime 

the PDF of the intensity maxima still exhibits an asymmetric shape (see Fig. 4b), which is almost 

indistinguishable from that obtained in the purely linear regime, i.e. without Kerr effect (� = 0). 
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We underline that the three regimes discussed here for � = 0.02 have been also identified 

for different values of the TOD coefficient, i.e. � = 0.03 and � = 0.06 (see Fig. 1b). The 

corresponding ‘condensation curves’ exhibit properties similar to that of � = 0.02. As expected, 

the average amplitude of the quasi-soliton in the coherent regime (i) decreases as the TOD 

coefficient � increases. Conversely, let us remark that the threshold value for the energy, H c, 

does not depend significantly on �. 

In conclusion, we provided some general physical insights into the spontaneous 

emergence of extreme events from turbulent fluctuations. The new optical rogue waves reported 

in the regime (ii) and, more importantly in regime (iii), seem to exhibit properties analogous to 

genuine hydrodynamic rogue wave events, a feature that needs to be analyzed in more detail so 

as to draw a substantiated analogy between them. 
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Figure caption: 

Fig. 1: Average of the maximum intensity peak detected in the temporal window during the last 

stage of propagation (500 L0) as a function of the Hamiltonian density H/TH = , (a) for σ = 0.02, 

(b) for σ = 0.03 (blue squares) and σ = 0.06 (gray diamonds). The green dots (or diamonds) in 

(a) are analyzed separately through Figs. 2-4. All numerical simulations have been realized with 

the same power N (in normalized units N/T = 1, where T = 20 is the size of the temporal window 

used in the simulations. A grid of 2048 points has been used). 

Fig. 2: Regime (i): (a) Space-time intensity pattern showing a coherent quasi-soliton propagating 

in the midst of small-scale fluctuations for H  = -10.3 (ε = 2.85). (b) PDF of the intensity of the 

field and of the maxima of the intensity (inset). The gray dashed line stands for Gaussian 

statistics of the field amplitude. (c,d) Temporal intensity profiles corresponding to the dashed 

lines in (a). 

Fig. 3: Regime (ii): (a) Space-time intensity pattern showing an intermittent quasi-soliton 

propagating in the midst of turbulent fluctuations for H  = 13.3 (ε = 0.075). (b) PDF of the 

intensity of the field and of the maxima of the intensity (inset). The gray dashed line stands for 

Gaussian statistics of the field amplitude. (c,d) Temporal intensity profiles corresponding to the 

dashed lines in (a). 

Fig. 4: Regime (iii): (a1,b1) Space-time intensity patterns for H  = 19.5 (ε = 0.05) and H  = 35.5 

(ε = 0.027). (a2,b2) Corresponding PDF of the field intensity and of the maxima of the intensity 

(insets). The gray dashed line stands for Gaussian statistics of the field amplitude. (a3,a4) 

Temporal intensity profiles corresponding to the arrows in (a1).  
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 

 


