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Abstract

We provide some general physical insights intoetimergence of rogue wave events from optical
turbulence by analyzing the long term evolutiontloé field. Depending on the amount of
incoherence in the system (i.e., Hamiltonian), denitify three turbulent regimes that lead to the
emergence of specific rogue wave events: (i) persisand coherent rogue quasi-solitons, (ii)
intermittent-like rogue quasi-solitons that appead disappear erratically, and (iii) sporadic

rogue waves events that emerge from turbulentdatsins as bursts of light or intense flashes.
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1. Introduction

The first observation of statistical characters@malogous to the hydrodynamic rogue waves in
nonlinear optical fiber-based systems has beenrtexpaecently by Solli et al. in 2007 [1].
However, many aspects of these noise-induced #ticios in supercontinuum generation
experiments and subsequent dynamics leading to dngtlitude “optical rogue waves” can be
retrieved in the pioneer work of Islam et al. in889%nd in more recent works [2-6]. In this
context, there has been a tremendous activity dewviot the identification and the understanding
of the mechanisms underlying the intricate procdésyptical rogue wave generation. By analogy
with hydrodynamic systems [7], the recent studiesgtics have confirmed the major role of the
interplay between linear and nonlinear effectshia formation of L-shaped distributions of the
optical intensities, such as, e.g., the convect¥ect due to third order dispersion, the
modulation instability, or the collision of soliteror breathers structures [1,8-19]. These previous
works have been focused on the study of two webkkm classes of solutions of the NonLinear
Schrodinger Equation (NLSE), namely soliton or égisaditon solutions and, on the other hand,
Akhmediev Breathers (AB) solutions, which are etiaéiy relevant to the integrable limit of the
NLSE. In this way, the transition from the dynama¢sAB to ‘rogue solitons’ has been assumed
by introducing specific perturbations to the NLSIB,RO]. It turns out that, as a rather general
rule, the collision of (quasi-)solitons or the collisioh AB, have been recognized as the essential
mechanisms responsible for the generation of opteue wave$1,8-9,11-19].

In this Letter we propose a novel approach foruhderstanding of the generation of
optical rogue waves. Our approach is based on tilndy sof the impact of the amount of
incoherence in the nonlinear system. More spetiyicave identify three turbulent regimes that

lead to the emergence of specific extreme waveackhernistics. The first regime (i) has been



studied in various circumstances and refers toaggsolitonic turbulence’ [21,22]. Its long term
dynamics is characterized by a robust and persisteherent rogue (quasi-)soliton that
propagates in the midst of small-scale fluctuatioftse second regime (ii) is characterized by
intermittent-likerogue (quasi-)soliton structures, which appear disdppear erratically from
turbulent fluctuations. The third regime (iii) has relation with (quasi-)solitons and refers to
sporadicrogue wave eventbat emerge from a fully turbulent state: they ifemt themselves by
means obursts of lighor intense ‘flashesduring the propagation.

We consider the one-dimensional NLSE in the presewoic Third-Order Dispersion

(TOD), which has been shown to lead to the ger@ratf optical rogue events [18,19]:

ia_u:—1@+ia'@—|u|2u (1)
0z 2o0t? ot

For convenience, we normalized the problem witlpeesto the nonlinear lengthy E 1P and
time 1o = (2 Lo)l’z, wherey is the nonlinear coefficient, P tla@eragepower of the field an@,
the second-order dispersion coefficient. In thesgsuthe normalized TOD coefficient reads

o =B,/(6LYB3%), B3 being the TOD coefficient. The NLSE conserves ahienportant

quantities, the normalized power NJ3u(t)dt, the momentum M #  |u(w)f’ dw and the
‘energy’ (Hamiltonian) H = IH + Hy., which has a linear (dispersive) kinetic contribat H_ =

[ k(w) |u(w)[? dw and a nonlinear contributionyd= - 1/2 | [u(t)|* dt, where k() = w2 -0 &’ is

the linear dispersion relation. The system is $aitbe ‘highly nonlinear’ (‘weakly nonlinear’)
whene = |Hy|/ [H| » 1 € « 1) [21]. The TOD term in Eqg.(1)a(# 0) is known to break the
integrability of the scalar NLSE. However, Eq.(Dndts quasi-soliton solutions: as a result of
the TOD term, the standard soliton solution slolelses its power through a process analogous

to Cherenkov radiation [21,23].



In the context of ‘(quasi-)soliton turbulence’ [22], a nonintegrable Hamiltonian wave
system exhibits a thermalization process charaet@rby an irreversible evolution of the wave
towards a specific equilibrium state, in which adsj-)soliton structure remains immersed in a
sea of small scale fluctuations. This process neainterpreted as a consequence of the fact that
soliton collisions in non-integrable systems arelastic: the big soliton becomes bigger while
the weaker one loses its power. The resulting Qigagi-)soliton may thus be regarded as a
‘statistical attractor’ for the system, while thenall-scale fluctuations contain, in principle, all
information necessary for a reversible evolutiontbé system [21,22,24]. Note that this
phenomenon of ‘energy localization’ has been alsersively studied in discrete nonlinear
systems [25-29], in particular in relation with thermi-Pasta-Ulam problem [30].

However, we underline that, in general, the fororaf a large scale coherent structure
is only possiblef the amount of incoherence in the systemot too largg31-32], a feature that
was also observed in the highly incoherent regifnsupercontinuum generation [33-35]. This
aspect has been the subject of a detailed stutheinontext of wave condensation, where it was
shown that the emergence of a large-scale cohsterdture (a plane wave) only occurs below
some critical ‘energy’ [36-38]. The ‘energy’ refensre to the Hamiltonian, which is known to
provide a measure of the amount of incoherenckarsystem [39]. Inspired from these previous
works on wave condensation, we study here theitram$rom the coherent quasi-soliton regime
to the fully turbulent regime by increasing the rgyeH of the system. To our knowledge, it is
the first time that a condensation-like procestuslied with quasi-soliton coherent structures.

We performed intensive numerical simulations of.(Eg with periodic boundary
conditions. Contrary to previous studies [1,8-1®F are interested here in the long term

evolution of the system (typically z2000 Ly), in which the transient processes associated to



(multiple) quasi-soliton collisions have died odD]. Note that light propagation over several
thousands of nonlinear lengthsg, is experimentally accessible by using highly noedr fibers.
Figure la reports the average of the maximum intensity peak detected in the temporal window
in the last stage of propagation (i.e., over 500 L) as a function of the energy density H =H /T
(see the caption of Fig. 1). We first remark that, in analogy with wave condensation, there exists

a threshold value for the energy, H. ~ 15, above which quasi-soliton structures are no longer

generated. In a loose sense, this means that the system is too incoherent (‘too hot’) to generate

a coherent structure when H > H .. We remark that this condensation curve has been obtained
by varying the energy H, keeping constant the power N. Note however that a condensation
curve may also be retrieved by varying the power N, keeping constant the energy H. In this

case, condensation does not take place for a small power N, i.e., there exists a threshold value

for the power, N., above which condensation arises. This is in complete analogy with the
genuine quantum condensation that occurs in Bose gases.

More precisely, we identified in Fig. 1a three diint regimes: FoH < 5, we recover
the quasi-soliton turbulent regime (i): a large &tage quasi-soliton immersed in a sea of small-
scale fluctuations eventually emerges from multipldastic collisions. Figure 2a represents the
space-time intensity pattern over the last 10 meali lengths. The corresponding Probability
Distribution Functions (PDF) of the intensity okthield, and of the maxima of the intensity, are
reported in Fig. 2b. They have been detected dwelast stage of propagation, i.e., over 590 L
We point out that, because of the large localizatid the power in the quasi-soliton, the field
statistics deviates substantially from the Gausséatistics, i.e. fl) = exp(-l) with our
normalized units. This observation is corrobordigdhe high value of (~ 3) and by the PDF of
the intensity maxima, which is centered at a higlue (~ 30) and exhibits rmarrow width and

symmetric shapehus confirming the persistence of the high posuesi-soliton structure.



In the example of Fig. 2 we started the numericadukation from the fundamental
soliton solution ¢ = 0) that has been perturbed by a small noise.edew we underline that the
initial condition is not essential: The same regifecould be reached starting the simulation
from a continuous wave (with the corresponding Hammian H = -1/2), or from a broad initial
pulse. These quasi-continuous waves are moduldlffansstable and thus rapidly evolve toward
a periodic train of quasi-solitons, whose subsegumelastic collisions eventually bring the
system into the persistent and coherent quaspsalégime described above through Fig. 2.

In spite of its robustness, the large amplitudesgsaliton experiences a weak interaction
with the small-scale fluctuations in which it prga#es, as shown by two successive temporal
intensity profiles in Fig. 2(c-d). This interactidt@@comes stronger as the ‘level’ of the turbulent
fluctuations increases, i.e. as the amount of gnergn the system increases. Typically, fok5
H < 15, the system enters into the second regimeitiiyhich the quasi-soliton structures
exhibit a kind ofintermittent dynamics. This is illustrated in Figs. 3c-d, whiodport two
successive temporal profiles of the field intensifye quasi-soliton appears and disappears
erratically during the propagation. It is interagtito note that, despite such intermittent-like
behavior, the trajectory of the quasi-soliton méil be identified in the space-time intensity
pattern (see Fig. 3a). As a result of its inteactvith the turbulent fluctuations, the ‘lifetimef
the quasi-soliton thus seems to fluctuate signitiga We note that, as for the regime (i), the
field does not exhibit a Gaussian statistics (3ge3b). However, the PDF of the maxima of the
intensity getgelatively broader and asymmetngith respect to that discussed in regime (i) (see
the inset of Fig. 3b). This is due to the interemtt(non-persistent) character of the quasi-soliton
structure, whose significant fluctuations tend &wdr the high intensity tail of the PDF. The
resulting asymmetry in the PDF bears a strong rbaroe with the typical L-shaped probability

distributions that characterize freak-wave extravents.



Finally, for H > 15 the system enters into the fully incoherent amdkly nonlinear
regime of propagation (iii). In this regime the iopt field is expected to exhibit a thermalization
process toward the equilibrium state [22,41,42feature that has been analyzed in various
circumstances with optical waves [43-48]. HoweVer &nalysis of this regime from the point of
view of extreme statistics in the spatio-temporaidin has not been the subject of a detailed
investigation. The corresponding spatiotemporatnsity pattern reveals that very short-lived
rogue wave events may still emerge from the turiiufeeld, although these extreme events
become rare (see Fig. 4a). The phenomenology eétbeents may resemble the extreme waves
reported in Ref.[49] in optical cavities, althoutite two systems are of a fundamental different
nature since we deal here with a Hamiltonian systdmreas optical cavities are inherently
dissipative systems. The generation of the sporldists of light in regime (iii) is no longer
related to coherent and deterministic quasi-solighructures. This is corroborated by the
statistics of the field, which approaches a Gauwsstatistics, as expected foffudly incoherent
system of weakly nonlinear waves [22,41-48]. Notavéver that a slight deviation from
Gaussian statistics can be identified in the fdarefathe PDF (Fig. 4(a2)), a feature that may be
precisely ascribed to the existence of extreme tev&his aspect is also confirmed by the PDF
of the intensity maxima (inset of Fig. 4(a2)), wlhhasymmetric shape has an origin analogous to
that discussed in regime (ii)We remark that some extreme events in the famfaihe PDFs
(insets of Fig. 3b and 4(a2)) verify the usual foghlymamic criterion [7], which defines a rogue
wave as one exhibiting a maximal intensity highemt twice the average intensity among one
third of the highest waves in the PDF of intensitgxima. Finally, for higher values of HH( ~
30), the system becomes essentially 'linear'|Hig.| « |H|. We have verified that in this regime
the PDF of the intensity maxima still exhibits aymmetric shape (see Fig. 4b), which is almost

indistinguishable from that obtained in the pulélgar regime, i.e. without Kerr effect € 0).



We underline that the three regimes discussedfbere= 0.02 have been also identified
for different values of the TOD coefficient, i.e.= 0.03 andc = 0.06 (see Fig. 1b). The
corresponding ‘condensation curves’ exhibit prapersimilar to that o6 = 0.02. As expected,
the average amplitude of the quasi-soliton in tbbecent regime (i) decreases as the TOD
coefficiento increases. Conversely, let us remark that thestiold value for the energy ,
does not depend significantly en

In conclusion, we provided some general physicaigints into the spontaneous
emergence of extreme events from turbulent fluetnat The new optical rogue waves reported
in the regime (ii) and, more importantly in regirfi€, seem to exhibit properties analogous to
genuine hydrodynamic rogue wave events, a feahateneeds to be analyzed in more detail so

as to draw a substantiated analogy between them.
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Figure caption:

Fig. 1: Average of the maximum intensity peak detectecheatemporal window during the last
stage of propagation (50@)Las a function of the Hamiltonian dendity= H/T, (a) foro = 0.02,

(b) for 0 =0.03 (blue squares) and = 0.06 (gray diamonds). The green dots (or diamonds) in
(a) are analyzed separately through Figs. 2-4n@herical simulations have been realized with
the same power N (in normalized units N/T = 1, whEr= 20 is the size of the temporal window
used in the simulations. A grid of 2048 points basn used).

Fig. 2. Regime (i): (a) Space-time intensity pattern shgnarcoherent quasi-soliton propagating
in the midst of small-scale fluctuations fer = -10.3 € = 2.85). (b) PDF of the intensity of the
field and of the maxima of the intensity (insetheTgray dashed line stands for Gaussian
statistics of the field amplitude. (c,d) Temponalensity profiles corresponding to the dashed
lines in (a).

Fig. 3: Regime (ii): (a) Space-time intensity pattern shayvian intermittent quasi-soliton
propagating in the midst of turbulent fluctuatidies H = 13.3 € = 0.075). (b) PDF of the
intensity of the field and of the maxima of theeimsity (inset). The gray dashed line stands for
Gaussian statistics of the field amplitude. (c,d)riporal intensity profiles corresponding to the
dashed lines in (a).

Fig. 4: Regime (iii): (al,b1) Space-time intensity patteiorsH = 19.5 € = 0.05) andH = 35.5

(e = 0.027). (a2,b2) Corresponding PDF of the fial@mnsity and of the maxima of the intensity
(insets). The gray dashed line stands for Gausstaftistics of the field amplitude. (a3,a4)

Temporal intensity profiles corresponding to theas in (al).

12



<max(|ul?)>

i. 0 fa@i @) a)| [  b) ¢0=002
S :

i ; .
s ! ! 1 F . KXy

%° .E E E o o
’ ¢ .dl E ] I nu ¢ . ‘w
e H o .
°% o H | | A
i i o
[N H o .
o0 I <,
° %¢0 o™ .
e I ¢ .
o

N - o : .
E WEQ . o’oo@. ° o. - °°°8%’;03d.">”.°-m.’.. .:o-

20 0 _20 40 20 0 _20 40
H

Ll

FIGURE 1

13



10 T 40 0 : —
;" : a) _1 0 b) §.1o
5 I ; 30~ i ol ]
/ ' @ 201\ "ol '
i 3 10 20 30 40 50
0 A , 20 oy -30F ¢ max(luf?) ]
' ) & a0l
f i -401 .
-3|; i ' 10
} | =50 -
'10 '. i ' .'. _°‘ 60 L 1 L 1
1991 1995 1999 0 10 20 320 40 50
z [L] |L||
40 40
c) d)
30 30
o
20 3 20
10 10
0 0
-10 -5 0 5 10 -10 -5 0 5 10
t[v] t [t,]
FIGURE 2

14



0

A0

PDF (dB)

20F

30

0 10 20 30

max(|u?)

! 18
A a0l P)
5[ s —_
¥ | o -20}
— 7 : 12 E
L) P =30,
- i F (=)
i 6 0O -40-
-5 i
i s -50|-
)| E— ! i -60
1991 1995 1999 0
z [L,]
20 20
c
16 ) 6] 9
12 12
= =
8 8
4
Lo Al
40 -5 0 10 10 -5
t[t]
FIGURE 3

15




30

20

10

max(|uf?)

) (<2}
— 'l o
— 1 &
a -
v I [t o 2 by i S,
Oy ¥ r—
g 7. T e e (w_T
! ;, %[
Iy ~ N
" W |
h >
y g (=2}
. -
o [Te] o n o
- ' A
0
113

a3)

t[r]

30

20

10

max(Jul?)

['2]3

-10

30

10 20
|uf®

1995 1999
z[L,]

1991

FIGURE 4

16



