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Exact and high order discretization schemes for Wishart processes

and their affine extensions
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Abstract

This work deals with the simulation of Wishart processes and affine diffusions on positive semidefinite
matrices. To do so, we focus on the splitting of the infinitesimal generator, in order to use composition
techniques as Ninomiya and Victoir [20] or Alfonsi [1]. Doing so, we have found a remarkable splitting
for Wishart processes that enables us to sample exactly Wishart distributions, without any restriction
on the parameters. It is related but extends existing exact simulation methods based on Bartlett’s
decomposition. Moreover, we can construct high-order discretization schemes for Wishart processes and
second-order schemes for general affine diffusions. These schemes are in practice faster than the exact
simulation to sample entire paths. Numerical results on their convergence are given.
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Introduction and first definitions

This paper focuses on simulation methods for Wishart processes and more generally for affine diffusions
on positive semidefinite matrices. Before explaining our motivations and our main results, we start with a
short introduction to these processes. Even though we use rather standard notations for matrices, they are
recalled in Appendix A, and we invite the reader to give first a quick look at it. Wishart processes have
been initially introduced by Bru [3, 4]. They are also named because their marginal laws follow Wishart
distributions. Very recently, Cuchiero et al. [6] have introduced a general framework for affine processes on
positive semidefinite matrices S+

d (R) that embeds Wishart processes and includes possible jumps. In this
paper, we only consider continuous processes of this kind. Such processes solve the following SDE:

Xx
t = x+

∫ t

0

(α+B(Xx
s )) ds+

∫ t

0

(√

Xx
s dWsa+ aTdWT

s

√

Xx
s

)

. (1)

Here, and throughout the paper, (Wt, t ≥ 0) denotes a d-by-d square matrix made of independent standard
Brownian motions,

x, ᾱ ∈ S+
d (R), a ∈ Md(R) and B ∈ L(Sd(R)) (2)

is a linear mapping on Sd(R). Wishart processes correspond to the case where

∃α ≥ 0, ᾱ = αaT a and ∃b ∈ Md(R), ∀x ∈ Sd(R), B(x) = bx+ xbT . (3)
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When d = 1, (1) is simply the SDE of the Cox-Ingersoll-Ross process that has been broadly studied, and we
will implicitly assume that d ≥ 2 throughout the paper. Weak and strong uniqueness of SDE (1) has been
studied by Bru [4], Cuchiero et al. [6] and Mayerhofer et al. [19]. We sum up here their results.

Theorem 1 — If x ∈ S+
d (R), ᾱ− (d− 1)aTa ∈ S+

d (R) and B satisfies the following condition

∀x1, x2 ∈ S+
d (R), Tr(x1x2) = 0 =⇒ Tr(B(x1)x2) ≥ 0, (4)

there is a unique weak solution to the SDE (1). We denote by AFFd(x, α,B, a) the law of (Xx
t )t≥0 and

AFFd(x, α,B, a; t) the marginal law of Xx
t . If we assume moreover that ᾱ − (d + 1)aTa ∈ S+

d (R) and

x ∈ S+,∗
d (R), there is a unique strong solution to the SDE (1).

Under the parametrization of Wishart processes (3), condition (4) is satisfied and weak uniqueness holds
as soon as α ≥ d − 1. In that case, we denote by WISd(x, α, b, a) the law of the Wishart process (Xx

t )t≥0

and WISd(x, α, b, a; t) the law of Xx
t .

Throughout the paper, when we use the notationAFFd(x, α,B, a) orAFFd(x, α,B, a; t) (resp. WISd(x, α, b, a)
orWISd(x, α, b, a; t)), we implicitly assume that ᾱ−(d−1)aTa ∈ S+

d (R) (resp. α ≥ d−1) and B satisfies (4)
so that weak uniqueness holds.

In her Ph.D. thesis [3], Bru has introduced Wishart processes and used them in biology to study perturbed
experimental data. Recently, a great attention has been paid to Wishart processes for applications in finance.
Namely, Gourieroux and Sufana [13] and Da Fonseca et al. [7] have suggested to use these processes to model
the instantaneous covariance matrix of d assets. It naturally extends stochastic volatility models for only one
asset like the Heston model [15]. Obviously, processes on positive semidefinite matrices are really interesting
to model the evolution of a dependence structure because they can describe a covariance matrix. However,
when dealing with applications, it is in general crucial to be able to sample paths of such processes and make
Monte-Carlo algorithms.

To the best of our knowledge, there is few literature on simulation methods for Wishart and general
affine processes (1). Wishart distributions have been intensively studied in statistics when α ∈ N. In this
case, exact simulation methods have proposed by Odell and Feiveson [21], Smith and Hocking [22] and
Gleser [11] to mention a few. Concerning discretization schemes, the usual Euler-Maruyama scheme is not
well-defined because of the square-root. This is what already happens for the Cox-Ingersoll-Ross process
which corresponds to the case d = 1. One has then to find specific schemes. Recently, Benabid et al. [2]
and Gauthier and Possamäı [9] have proposed numerical approximations for Wishart processes that are
well defined under some restrictions on the parameters. However, there is no result on the accuracy of
their methods. Currently, Teichmann [25] is working on dedicated schemes for general affine processes by
approximating their characteristic functions. Our study here is only dedicated to the diffusion (1).

Initially, our goal was to find high order discretization schemes for Wishart processes by splitting operators
and using scheme compositions. Indeed, this approach has already proved to be very efficient for other affine
diffusions, see [1]. Doing so, we incidentally have found a remarkable splitting for some canonical Wishart
processes which enables us to sample exactly Wishart processes. In particular, our result extends the
Bartlett’s decomposition that is commonly used to sample central Wishart distributions when α ∈ N. This
splitting also enables us to get high order discretization schemes for Wishart processes. Then, by using
scheme composition, we also get a second order scheme for any affine diffusion (1). Contrary to the exact
scheme, one has then to study the discretization error, and we provide a rigorous analysis of the weak error.

This paper is structured as follows. First, we present some general results on affine diffusions. We
calculate their infinitesimal generator and obtain interesting identities in law that are intensively used next
for the different simulation methods. Section 2 is devoted to the exact simulation of Wishart processes. It
exhibits a remarkable splitting of the infinitesimal generator and shows how it can be used to sample exactly
any Wishart distribution. Section 3 deals with high order schemes for affine diffusions. Thanks to the
remarkable splitting, we are able to construct a third order scheme for Wishart processes and second order
schemes for affine diffusions. Last, we give numerical illustrations of our convergence results in Section 4.
We compare the time required by each method and also give a possible application of our results in finance.
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1 General properties of affine processes on positive semidefinite

matrices

1.1 The infinitesimal generator on Md(R) and Sd(R)
We start this subsection with a simple Lemma, which is useful to calculate the infinitesimal generator of

affine processes. Its proof is basic and is left in Appendix B.1.

Lemma 2 — Let (Ft)t≥0 denote the filtration generated by (Wt, t ≥ 0). We consider a process (Yt)t≥0 valued
in ∈ Sd(R), and we assume that there exist continuous (Ft)-adapted processes (At)t≥0, (Bt)t≥0 and (Ct)t≥0

that are respectively valued in Md(R), Md(R) and Sd(R) so that Yt admits the following semimartingale
decomposition:

dYt = Ctdt+BtdWtAt +AT
t dW

T
t B

T
t (5)

Then, for i, j,m, n ∈ {1, . . . , d}, the quadratic covariation of (Yt)i,j and (Yt)m,n is given by:

d〈(Yt)i,j , (Yt)m,n〉 = (BtB
T
t )i,m(AT

t At)j,n+(BtB
T
t )i,n(A

T
t At)j,m+(BtB

T
t )j,m(AT

t At)i,n+(BtB
T
t )j,n(A

T
t At)i,m.

(6)

It is worth to notice that the quadratic covariation given by (5) depends on At and Bt only through the
matrices AT

t At and BtB
T
t . Lemma 2 enables us to calculate easily the infinitesimal generator for the affine

process (1) which is defined by:

x ∈ S+
d (R), LMf(x) = lim

t→0+

E[f(Xx
t )]− f(x)

t
for f ∈ C2(Md(R),R) with bounded derivatives.

Proposition 3 — Infinitesimal Generator on Md(R). Let (Xx
t )t≥0 ∼ AFFd(x, α,B, a) be an affine

process. Its infinitesimal generator on Md(R) is given by:

LM = Tr([α+B(x)]DM) +
1

2
{2Tr(xDMaTaDM) + Tr(x(DM)T aTaDM) + Tr(xDMaTa(DM)T )}, (7)

where DM = (∂i,j)1≤i,j≤d.

Proof : On the one hand, the drift part of the operator is given by
∑d

k,l=1 ᾱk,l∂k,l+
∑d

k,l=1(B(x))k,l∂k,l =

Tr((ᾱ+B(x))DM). On the other hand, we get from (6) that the diffusion part of the operator is:

1
2

∑d
n,m,i,j=1[xi,m(aT a)j,n + xi,n(a

Ta)j,m + xj,m(aT a)i,n + xj,n(a
T a)i,m]∂i,j∂m,n

= 1
2

∑d
n,m,i,j=1 xi,m(aT a)j,n∂i,j∂m,n + 1

2

∑d
n,m,i,j xi,n(a

T a)j,m∂i,j∂m,n

+ 1
2

∑d
n,m,i,j=1 xj,m(aT a)i,n∂i,j∂m,n + 1

2

∑d
n,m,i,j xj,n(a

T a)i,m∂i,j∂m,n

= 1
2 [Tr(xD

MaTa(DM)T ) + Tr(x(DM)T aTa(DM)T ) + Tr(xDMaTaDM) + Tr(x(DM)TaT aDM)]
= 1

2 [Tr(x(D
M)T aTa(DM)T ) + 2Tr(xDMaTaDM) + Tr(x(DM)TaT aDM)].

2

Here, we have given the infinitesimal generator on Md(R), while we know that the affine process (Xx
t )t≥0

takes values in S+
d (R) ⊂ Sd(R). Thus, we can also look at the infinitesimal generator of this diffusion on

Sd(R), which is defined by:

x ∈ S+
d (R), LSf(x) = lim

t→0+

E[f(Xx
t )]− f(x)

t
for f ∈ C2(Sd(R),R) with bounded derivatives.
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For x ∈ Sd(R), we denote by x{i,j} = xi,j = xj,i the value of the coordinates (i, j) and (j, i), so that

x =
∑

1≤i≤j≤d x{i,j}(e
i,j
d + 1i6=je

j,i
d ) (see notations in Appendix A). For f ∈ C2(Sd(R),R), we then denote by

∂{i,j}f its derivative with respect to the coordinates x{i,j}. We introduce

π : Md(R) → Sd(R)
x 7→ (x + xT )/2,

that is such that π(x) = x for x ∈ Sd(R). Obviously, f ◦ π ∈ C2(Md(R),R) and we have

LSf(x) = LMf ◦ π(x).

By the chain rule, we have for x ∈ Sd(R), ∂i,jf ◦π(x) = (1i=j +
1
21i6=j)∂{i,j}f(x) and get the following result.

Corollary 4 — Infinitesimal Generator on Sd(R). The infinitesimal generator on Sd(R) associated to
AFFd(x, α,B, a) is given by:

LS = Tr([α +B(x)]DS) + 2Tr(xDSaTaDS), (8)

where DS is defined by DS
i,j = (1i=j +

1
21i6=j)∂{i,j}, for 1 ≤ i, j ≤ d.

Of course, the generators LM and LS are equivalent: one can be deduced from the other. However, LS

already embeds the fact that the process lies in Sd(R), which reduces the dimension from d2 to d(d + 1)/2
and gives in practice shorter formulas. This is why we will mostly work in the sequel with infinitesimal
generators on Sd(R). Unless it is necessary to make the distinction with LM, we will simply denote L = LS .

1.2 The characteristic function of Wishart processes

As for other affine processes, the characteristic function of affine processes on positive semidefinite matri-
ces can be obtained by solving two ODEs. In the case of Wishart processes, it is possible to solve explicitly
these ODEs by solving a matrix Riccati equation (see Levin [18]). Here, we give the closed formula for the
Laplace transform and a precise description of its set of convergence.

Proposition 5 — Let Xx
t ∼ WISd(x, α, b, a; t), qt =

∫ t

0 exp(sb)aTa exp(sbT )ds and mt = exp(tb). We
introduce the set of convergence of the Laplace transform of Xx

t , Db,a;t = {v ∈ Sd(R),E[exp(Tr(vXx
t ))] <∞}.

This is a convex open set that is given explicitly by

Db,a;t = {v ∈ Sd(R), ∀s ∈ [0, t], Id − 2qsv ∈ Gd(R)}. (9)

Besides, the Laplace transform of Xx
t is well-defined for v = vR + ivI with vR ∈ Db,a;t, vI ∈ Sd(R) and is

given by: E[exp(Tr(vXx
t ))] =

exp(Tr[v(Id − 2qtv)
−1mtxm

T
t ])

det(Id − 2qtv)
α
2

. (10)

The characteristic function corresponds to the case vR = 0 that clearly belongs to Db,a;t. The proof of this

result is given in Appendix B.2. Let us remark here that for X̃x
t ∼ WISd(x, α, 0, I

n
d ; t), the formula above

becomes even simpler and we have for v = vR + ivI such that vR ∈ Db,a;t, vI ∈ Sd(R):E[exp(Tr(vX̃x
t ))] =

exp(Tr[v(Id − 2tInd v)
−1x])

det(Id − 2tInd v)
α
2

. (11)
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1.3 Some identities in law for affine processes

This section presents simple but interesting identities in law for affine processes. We first state a prelim-
inary lemma.

Lemma 6 — Let B ∈ L(Sd(R)) and q ∈ Gd(R). We define Bq ∈ L(Sd(R)) by Bq(x) = (qT )−1B(qTxq)q−1.
Then,

B satisfies (4) ⇐⇒ Bq satisfies (4).

Proof : It is sufficient to prove the direct implication since B(x) = qTBq((q
T )−1xq−1)q. Let x, v ∈ S+

d (R)
such that Tr(xv) = 0. We have

Tr(Bq(x)v) = Tr[B(qTxq)q−1v(qT )−1] ≥ 0,

since B satisfies (4) and Tr[(qT )−1xq−1qvqT ] = Tr(xv) = 0. 2

Proposition 7 — The following identities holds:

• AFFd(x, ᾱ, B, a) =
Law

AFFd(x, ᾱ, B,
√
aTa).

• (linear transformation) Let q ∈ Gd(R), we have

qTAFFd(x, ᾱ, B, a)q =
Law

AFFd(q
Txq, qT ᾱq, Bq−1 , aq),

where Bq−1 is defined by ∀y ∈ Sd(R), Bq−1(y) = qTB((qT )−1yq−1)q.

Proof : From Proposition 3 or Corollary 4, we know that (Xx
t )t≥0 ∼ AFFd(x, ᾱ, B, a) and (X̃x

t )t≥0 ∼
AFFd(x, ᾱ, B,

√
aT a) have the same infinitesimal generator. Therefore, they solve the same martingale

problem. Thanks to the affine structure, one can show that this martingale problem has a unique solution
by looking at the characteristic function. This is made in a much general case in Cuchiero et al. [6]. Similarly,
we can check easily that qTAFFd(y, ᾱ, B, a)q and AFFd(q

T yq, qT ᾱq, Bq−1 , aq) lead to the same martingale
problem. Here, we remark that Bq−1 satisfies (4) thanks to Lemma 6. 2

An interesting consequence of this linear transformation is given in the following corollary. It states that
any affine process can be obtained as a linear transformation of an affine process for which we have a = Ind ,
where Ind = (1i=j≤n)1≤i,j≤d (see notations in Appendix A). Since our main goal here is to sample paths of
such processes, this says us that it is sufficient to focus on this special case.

Corollary 8 — Let (Xx
t )t≥0 ∼ AFFd(x, ᾱ, B, a) and n = Rk(a) be the rank of aTa. Then, there exist a

diagonal matrix δ̄, and a non singular matrix u ∈ Gd(R) such that ᾱ = uT δ̄u, and aTa = uT Ind u, and we
have:

(Xx
t )t≥0 =

Law
uTAFFd

(
(u−1)Txu−1, δ̄, Bu, I

n
d

)
u,

where ∀y ∈ Sd(R), Bu(y) = (u−1)TB(uT yu)u−1.
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Proof : Once u is given, the identity in law comes directly from Proposition 7. We give now a constructive
proof of the existence of u, which takes back the arguments given by Golub and Van Loan ([12], Theorem
8.7.1). Nonetheless, we explain it entirely since it gives a practical way to get u.

Let us consider ᾱ+ aTa ∈ S+
d (R). From the extended Cholesky decomposition given in Lemma 33 there

is a matrix v ∈ Gd(R) such that vT ᾱv + vT aTav = Ird , where r = Rk(ᾱ + aT a). Since vT ᾱv ∈ S+
d (R),

vT aTav ∈ S+
d (R) and zT Irdz = 0 for z ∈ Rd such that z1 = · · · = zr = 0, there are s1, s2 ∈ S+

n (R) such that:

vT ᾱv =

(
s1 0
0 0

)

and vTaTav =

(
s2 0
0 0

)

.

Let o2 be an orthogonal matrix such that oT2 s2o2 is a diagonal matrix. We assume without loss of generality
that only the first n elements of this diagonal are positive: oT2 s2o2 = diag(η1, . . . , ηn, 0, . . . , 0). We set

o =

(
o2 0
0 Id−r

)

and get Ird = oT vT ᾱvo + oT vT aTavo, which gives that oT vT ᾱvo is a diagonal matrix.

Thus, we get the desired result by taking u = diag(
√
η1, . . . ,

√
ηn, 1, . . . , 1)o

−1v−1. 2

Let us make few comments on the practical implementation to compute u. For Wishart processes,
ᾱ = αaT a, and u can directly be obtained by using a single extended Cholesky decomposition (Lemma 33).
In the general case, the computation of u mainly requires an extended Cholesky decomposition and the
diagonalization of s2.

Up to now, we have stated identities for the law of affine processes. Thanks to the explicit characteristic
function of Wishart processes, we are also able to get another interesting identity on the marginal laws.

Proposition 9 — Let t > 0, a, b ∈ Md(R) and α ≥ d−1. Let mt = exp(tb), qt =
∫ t

0 exp(sb)a
Ta exp(sbT )ds

and n = Rk(qt). Then, there is θt ∈ Gd(R) such that qt = tθtI
n
d θ

T
t , and we have:

WISd(x, α, b, a; t) =
Law

θtWISd(θ
−1
t mtxm

T
t (θ

−1
t )T , α, 0, Ind ; t)θ

T
t (12)

This proposition plays a crucial role for the exact simulation of Wishart processes. Thanks to (12), we can
sample any Wishart distribution if we are able to simulate exactly the distribution WISd(x, α, 0, I

n
d ; t) for

any x ∈ S+
d (R). In Section 2, we focus on this and give a way to sample exactly WISd(x, α, 0, I

n
d ; t). Let us

stress here that we can compute the matrix θt by using the extended Cholesky decomposition of qt/t, as it
is explained in the proof below.

Proof : We apply Lemma 33 to qt/t ∈ S+
d (R) and consider (p, cn, kn) an extended Cholesky decomposi-

tion of qt/t. We set θt = p−1

(
cn 0
kn Id−n

)

. Then, θt is invertible and it is easy to check that qt = tθtI
n
d θ

T
t .

Now, let us observe that for v ∈ Sd(R),
det(Id − 2iqtv) = det(θt(θ

−1
t − 2itInd θ

T
t v)) = det(Id − 2itInd θ

T
t vθt),

Tr[iv(Id − 2iqtv)
−1mtxm

T
t ] = Tr[i(θ−1

t )T θTt v(θtθ
−1
t − 2itθtI

n
d θ

T
t vθtθ

−1
t )−1mtxm

T
t ]

= Tr[iθTt vθt(Id − 2itInd θ
T
t vθt)

−1θ−1
t mtxm

T
t (θ

−1
t )T ].

Let Xx
t ∼WISd(x, α, b, a; t) and X̃

x
t ∼WISd(x, α, 0, I

n
d ; t). Then, from (10) and (11), we get thatE[exp(iTr(vXx

t ))] = E[exp(iTr(θTt vθtX̃θ−1
t mtxm

T
t (θ−1

t )T

t ))] = E[exp(iTr(vθtX̃θ−1
t mtxm

T
t (θ−1

t )T

t θTt ))],

which gives the result. 2
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Last, we have to mention that the identity (12) extends an usual identity between CIR and Bessel squared
distribution. It gives when d = 1:

WIS1(x, α, b, a; t) =
Law

a2
e2bt − 1

2bt
WIS1(

2btx

a2(1 − e−2bt)
, α, 0, 1; t).

In that case, this identity can also be obtained directly from the SDE. Let (Xx
t )t≥0 ∼WIS1(x, α, b, a). We

have dXx
t = (αa2+2bXt)dt+2a

√
Xx

t dWt. Then, Yt = e−2btXx
t /a

2 is a time-changed Bessel squared process

since dYt = α(e−2btdt)+2
√
Yt(e

−btdWt). We obtainWIS1(x, α, b, a; t) =
Law

a2e2btWIS1(x/a
2, α, 0, 1; 1−e−2bt

2b ).

On the other and, a linear time-change gives thatWIS1(x, α, 0, 1;λt) =
Law

λWIS1(x/λ, α, 0, 1; t), which leads

to the same identity as (12) by taking λ = (1− e−2bt)/(2bt).

2 Exact simulation of Wishart processes

In this section, we present a new method to simulate exactly a Wishart process. It works without any
restriction on the parameters. Wishart distributions have been thoroughly studied in statistics when α ∈ N
(which is then called the number of degrees of freedom). Exact simulation methods have already been
proposed in that case. For instance, Odell and Feiveson [21] have given an exact simulation algorithm for
central Wishart distributions based on the Bartlett’s decomposition, and Gleser [11] extends it to any (non-
central) Wishart distribution. Bru [4] explains also when α ∈ N how Wishart processes can be obtained as
a square of Ornstein-Uhlenbeck processes on matrices.

Here, our method relies on the identity in law (12) that enables us to focus on the case b = 0, a = Ind .
Then, we show a remarkable splitting of the infinitesimal generator as the sum of commuting operators.
These operators are associated to SDE that can be solved explicitly on S+

d (R), which enables us to sample
any Wishart distribution.

2.1 A remarkable splitting for WISd(x, α, 0, I
n

d
)

The following theorem explains how to split the infinitesimal generator of a WISd(x, α, 0, I
n
d ) as the sum

of commutative infinitesimal generators. It will play a crucial role in the sequel for the exact simulation and
to get discretization schemes.

Theorem 10 — Let L be the generator associated to the Wishart process WISd(x, α, 0, I
n
d ) and Li be the

generator associated to WISd(x, α, 0, e
i
d) for i ∈ {1, . . . , d}. Then, we have

L =

n∑

i=1

Li and ∀i, j ∈ {1, . . . , d}, LiLj = LjLi. (13)

Proof : From (8), we easily get that L =
∑n

i=1 Li since I
n
d =

∑n
i=1 e

i
d. The commutativity property comes

from a simple but tedious calculation which is left in Appendix C.1. 2

Beyond the commutativity, two other features of (13) are important to notice.

• The operators Li and Lj are the same up to the exchange of coordinates i and j.

• The processes WISd(x, α, 0, e
i
d) and WISd(x, α, 0, I

n
d ) are well defined on S+

d (R) under the same hy-
pothesis, namely α ≥ d− 1 and x ∈ S+

d (R).
7



This second property enables us the composition that we explain now. Let us consider t > 0 and x ∈ S+
d (R).

We define iteratively:

X1,x
t ∼ WISd(x, α, 0, e

1
d; t),

X
2,X1,x

t
t ∼ WISd(X

1,x
t , α, 0, e2d; t),

. . .

Xn,...X
1,x
t

t ∼ WISd(X
n−1,...X

1,x
t

t , α, 0, end ; t).

Thus, X i,...X
1,x
t

t is sampled according to the distribution at time t of a Wishart process starting from

X i−1,...X
1,x
t

t and with parameters (α, 0, eid). We have the following result.

Proposition 11 — Let Xn,...X
1,x
t

t be defined as above. Then

Xn,...X
1,x
t

t ∼ WISd(x, α, 0, I
n
d ; t).

Thanks to this proposition, we can generate a sample according to WISd(x, α, 0, I
n
d ; t) as soon as we can

simulate the laws WISd(x, α, 0, e
i
d). These laws are the same as WISd(x, α, 0, I

1
d ; t), up to the permutation

of the first and ith coordinates. In the next subsection, it is explained how to draw such random variables.
It is really easy to give a formal proof of Proposition 11. Let f be a smooth function on S+

d (R) and
Xx

t ∼WISd(x, α, 0, I
n
d ; t). By iterating Itô’s formula, we have that E[f(Xx

t )] =
∑∞

k=0 t
kLkf(x)/k!. Similarly,

we also get by using the tower property of the conditional expectation that:E [f(Xn,...X
1,x
t

t )

]

= E [E [f(Xn,...X
1,x
t

t )|Xn−1,...X
1,x
t

t

]]

=

+∞∑

kn=0

tkn

kn!
E [Lkn

n f(Xn−1,...X
1,x
t

t )

]

. (14)

Simply by repeating this argument, we get thatE [f(Xn,...X
1,x
t

t )

]

=

+∞∑

k1,...,kn=0

t
∑n

i=1 ki

k1! . . . kn!
Lk1
1 . . . Lkn

n f(x) =

∞∑

k=0

tk

k!
(L1 + · · ·+ Ln)

kf(x) = E[f(Xx
t )]. (15)

To get the second equality, we identify a Cauchy product and use that the operators L1, . . . , Ln commute.
To make this formal proof correct, one has to check that the series are well defined and can be switched with
the expectation. This check is made in the Appendix C.2 for our framework and remains valid as soon as
the operator Li and L are of affine type.

2.2 Exact simulation for WISd(x, α, 0, I
1
d
; t)

In this subsection, we focus on the simulation ofWISd(x, α, 0, I
1
d ) with α ≥ d−1 and x ∈ S+

d (R). Thanks
to Proposition 11, this enable us then to simulate samples ofWISd(x, α, 0, I

n
d ). For the sake of the clearness,

we start with the case of d = 2 that avoids complexities due to the matrix decompositions. We deal with
the general case just after.

2.2.1 The case d = 2

We start by writing explicitly the infinitesimal generator L1 of WIS2(x, α, 0, I
1
2 ). From (8), we get:

x ∈ S+
2 (R), L1f(x) = α∂{1,1}f(x) + 2x{1,1}∂

2
{1,1}f(x) + 2x{1,2}∂{1,1}∂{1,2}f(x) +

x{2,2}
2

∂2{1,2}f(x). (16)

8



We show now that this operator is in fact associated to an SDE that can be explicitly solved. We will denote
by (Z1

t , t ≥ 0) and (Z2
t , t ≥ 0) two independent standard Brownian motions.

When x{2,2} = 0, we also have x{1,2} = 0 since x is nonnegative. In that case,

Xx
0 = x, d(Xx

t ){1,1} = αdt+ 2
√

(Xx
t ){1,1}dZ

1
t , d(X

x
t ){1,2} = 0, d(Xx

t ){2,2} = 0 (17)

has the infinitesimal generator (16), which is the one of a Cox-Ingersoll-Ross SDE (or of a squared Bessel
process of dimension α to be more precise). By using an algorithm that samples exactly a non central
chi-square distribution (see for instance Glasserman [10]), we can then sample WIS2(x, α, 0, I

1
2 ; t) when

x{2,2} = 0.
When x{2,2} > 0, it easy to check that the SDE

d(Xx
t ){1,1} = αdt+ 2

√

(Xx
t ){1,1} −

((Xx
t ){1,2})

2

(Xx
t ){2,2}

dZ1
t + 2

(Xx
t ){1,2}√

(Xx
t ){2,2}

dZ2
t

d(Xx
t ){1,2} =

√
(Xx

t ){2,2}dZ
2
t

d(Xx
t ){2,2} = 0

(18)

starting from Xx
0 = x has an infinitesimal generator equal to L1. To solve (18), we set:

(Uu
t ){1,1} = (Xx

t ){1,1} −
((Xx

t ){1,2})
2

(Xx
t ){2,2}

, (Uu
t ){1,2} =

(Xx
t ){1,2}√
x{2,2}

, (Uu
t ){2,2} = x{2,2}. (19)

Here, u stands for the initial condition, i.e. u = Uu
0 . We get by using Itô calculus that

d(Uu
t ){1,1} = (α− 1)dt+ 2

√

(Uu
t ){1,1}dZ

1
t , d(U

u
t ){1,2} = dZ2

t and d(Uu
t ){2,2} = 0. (20)

Therefore, (Uu
t ){1,2} and (Uu

t ){1,1} can be respectively be sampled by independent Gaussian and non-central
chi-square variables. Then, we can get back Xx

t by inverting (19):

(Xx
t ){1,1} = (Uu

t ){1,1} + (Uu
t )

2
{1,2}, (X

x
t ){1,2} = (Uu

t ){1,2}

√

(Uu
t ){2,2}, (X

x
t ){2,2} = (Uu

t ){2,2}. (21)

The following proposition sums up and makes more precise the above result. Its proof is postponed to
the general case (Theorem 13).

Proposition 12 — Let x ∈ S+
2 (R). Then, the process (Xx

t )t≥0 defined by either (17) when x{2,2} = 0
or (18) when x{2,2} > 0 has its infinitesimal generator equal to L1. Moreover, the SDE (18) has a unique
strong solution which is given by (21), where (Uu

t , t ≥ 0) is the solution of the SDE (20) starting from

u{1,1} = x{1,1} −
x2
{1,2}

x{2,2}
≥ 0, u{1,2} =

x{1,2}√
x{2,2}

, u{2,2} = x{2,2}.

This result gives an interesting way to figure out the dynamic associated to the operator L1, by using
a change of variable. It is interesting to notice that the CIR process (Uu

t ){1,1} is well defined as soon
as its degree α − 1 is nonnegative, which coincides with the condition under which the Wishart process
WIS2(x, α, 0, I

1
2 ) is well-defined. Last, we notice that the solution of the operator L1 involves a CIR process

in the diagonal term and a Brownian motion in the non diagonal one. We will get a similar structure in the
general d case.

9



2.2.2 The general case when d ≥ 2

We present now a general way to sample exactly WISd(x, α, 0, I
1
d ; t). We first write explicitly from (8)

the infinitesimal generator of WISd(x, α, 0, I
1
d ) for x ∈ S+

d (R):
L1f(x) = α∂{1,1}f(x)+2x{1,1}∂

2
{1,1}f(x)+2

∑

1≤m≤d
m 6=1

x{1,m}∂{1,m}∂{1,1}f(x)+
1

2

∑

1≤m,l≤d
m 6=1,l 6=1

x{m,l}∂{1,m}∂{1,l}f(x).

(22)
As for d = 2 we will construct an SDE that has the same infinitesimal generator L1 and that can be solved
explicitly. To do so, we need however to use further matrix decomposition results. In the case d = 2, we
have already noticed that we choose different SDEs whether x2,2 = 0 or not. Here, the SDE will depend on
the rank of the submatrix (xi,j)2≤i,j≤d, and we set:

r = Rk((xi,j)2≤i,j≤d) ∈ {0, . . . , d− 1}.

First, we consider the case where

∃cr ∈ Gr lower triangular, kr ∈ Md−1−r×r(R), (x)2≤i,j≤d =

(
cr 0
kr 0

)(
cTr kTr
0 0

)

=: ccT . (23)

With a slight abuse of notation, we consider that this decomposition also holds when r = 0 with c = 0.
When r = d − 1, c = cr is simply the usual Cholesky decomposition of (xi,j)2≤i,j≤d. As it is explained in
Corollary 15, we can still get such a decomposition up to a permutation of the coordinates {2, . . . , d}.

Theorem 13 — Let us consider x ∈ S+
d (R) such that (23) holds. Let (Z l

t)1≤l≤r+1 be a vector of independent
standard Brownian motions. Then, the following SDE (convention

∑r
k=1(. . . ) = 0 when r = 0)

d(Xx
t ){1,1} = αdt+ 2

√

(Xx
t ){1,1} −

∑r
k=1

(∑r
l=1(c

−1
r )k,l(Xx

t ){1,l+1}
)2
dZ1

t

+2
∑r

k=1

∑r
l=1(c

−1
r )k,l(X

x
t ){1,l+1}dZ

k+1
t

d(Xx
t ){1,i} =

∑r
k=1 ci−1,kdZ

k+1
t , i = 2, . . . , d

d((Xx
t ){l,k})2≤k,l≤d = 0

(24)

has a unique strong solution (Xx
t )t≥0 starting from x. It takes values in S+

d (R) and has the infinitesimal
generator L1. Moreover, this solution is given explicitly by:
Xx

t =





1 0 0
0 cr 0
0 kr Id−r−1











(Uu
t ){1,1} +

r∑

k=1

((Uu
t ){1,k+1})

2 ((Uu
t ){1,l+1})

T
1≤l≤r 0

((Uu
t ){1,l+1})1≤l≤r Ir 0

0 0 0











1 0 0
0 cTr kTr
0 0 Id−r−1



 ,

(25)
where

d(Uu
t ){1,1} = (α− r)dt + 2

√
(Uu

t ){1,1}dZ
1
t , u{1,1} = x{1,1} −

∑r
k=1(u{1,k+1})

2 ≥ 0,

d((Uu
t ){1,l+1})1≤l≤r = (dZ l+1

t )1≤l≤r , (u{1,l+1})1≤l≤r = c−1
r (x{1,l+1})1≤l≤r.

(26)

Once again, we have made a slight abuse of notation when r = 0, and (25) should be simply read as

Xx
t =





(Uu
t ){1,1} 0 0
0 0 0
0 0 0



 in that case. In the statement above, it may seem weird that we use for u and

Uu
t the same indexation as the one for symmetric matrices while we only use its first row (or column). The

reason is that we can in fact see Xx
t as a function of Uu

t by setting:

(Uu
t ){i,j} = u{i,j} = x{i,j} for i, j ≥ 2 and (Uu

t ){1,i} = u{1,i} = 0 for r + 1 ≤ i ≤ d. (27)
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Thus, (cr, kr, Id−1) is an extended Cholesky decomposition of ((Uu
t )i,j)2≤i,j≤d and can be seen as a function

of Uu
t . We get from (25) that

Xx
t = h(Uu

t ), with h(u) =

d−1∑

r=0

1r=Rk[(ui,j)2≤i,j≤d]hr(u) and (28)

hr(u) =





1 0 0
0 cr(u) 0
0 kr(u) Id−r−1











u{1,1} +
r∑

k=1

(u{1,k+1})
2 (u{1,l+1})

T
1≤l≤r 0

(u{1,l+1})1≤l≤r Ir 0
0 0 0











1 0 0
0 cr(u)

T kr(u)
T

0 0 Id−r−1



,

where (cr(u), kr(u), Id−1) is the extended Cholesky decomposition of (ui,j)2≤i,j≤d given by some algorithm
(e.g. Golub and Van Loan [12], Algorithm 4.2.4). Equation (28) will play later an important role to analyse
discretization schemes.

The proof of Theorem 13 is given in Appendix C.3. It enables us to simulate exactly the distribution
WISd(x, α, 0, I

1
d ; t) simply by sampling one non-central chi-square distribution for (Uu

t ){1,1} (see Glasser-
man [10]) and r other independent Gaussian random variables. Like in the d = 2 case, we notice that
the condition which ensures that the Cox-Ingersoll-Ross process ((Uu

t ){1,1}, t ≥ 0) is well defined for any
r ∈ {0, . . . , d−1}, namely α−(d−1) ≥ 0, is the same as the one required for the definition ofWISd(x, α, 0, I

1
d ).

Remark 14 — From (25), we get easily by a calculation made in (47) that Rk(Xx
t ) = Rk((xi,j)2≤i,j≤d) +1(Uu

t ){1,1} 6=0, and therefore,
Rk(Xx

t ) = Rk((xi,j)2≤i,j≤d) + 1, a.s.

Theorem 13 assumes that the initial value x ∈ S+
d (R) satisfies (23). Now, we explain why it is still

possible up to a permutation of the coordinates to be in such a case. This relies on the extended Cholesky
decomposition which is stated in Lemma 33.

Corollary 15 — Let (Xx
t )t≥0 ∼WISd(x, α, 0, I

1
d) and (cr, kr, p) be an extended Cholesky decomposition of

(xi,j)2≤i,j≤d (Lemma 33). Then, π =

(
1 0
0 p

)

is a permutation matrix, and

(Xx
t )t≥0 =

law
πTWISd(πxπ

T , α, 0, I1d)π and ((πxπT )i,j)2≤i,j≤d =

(
cr 0
kr 0

)(
cTr kTr
0 0

)

satisfies (23).

Proof : The result is a direct implication from Proposition 7, since πT = π−1 and πI1dπ
T = I1d . 2

Therefore, by a combination of Corollary 15 and Theorem 13, we get a simple way to construct explicitly
a process that has the infinitesimal generator L1 for any initial condition x ∈ S+

d (R). In particular, this
enables us to sample exactly the Wishart distribution WISd(x, α, 0, I

1
d ; t). The algorithm below sums up
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the whole procedure.

Algorithm 1: Exact simulation for the operator L1

Input: x ∈ S+
d (R), d, α ≥ d− 1 and t > 0.

Output: X , sampled according to WISd(x, α, 0, I
1
d ; t)

Compute the extended Cholesky decomposition (p, kr, cr) of (xi,j)2≤i,j≤d given by Lemma 33,
r ∈ {0, . . . , d− 1} (see Golub and Van Loan [12] for an algorithm);

Set π =

(
1 0
0 p

)

, x̃ = πxπT , (u{1,l+1})1≤l≤r = (cr)
−1(x̃{1,l+1})1≤l≤r and

u{1,1} = x̃{1,1} −
∑r

k=1(u{1,k+1})
2 ≥ 0 ;

Sample independently r normal variables G2, . . . , Gr+1 ∼ N (0, 1) and (Uu
t ){1,1} as a CIR process at

time t starting from u{1,1} solving d(Uu
t ){1,1} = (α− r)dt + 2

√
(Uu

t ){1,1}dZ
1
t (See Glasserman [10]).

Set (Uu
t ){1,l+1} = u{1,l+1} +

√
tGl+1 ;

return X =

πT





1 0 0
0 cr 0
0 kr Id−r−1













(Uu
t ){1,1} +

r
∑

k=1

((Uu
t ){1,k+1})

2 ((Uu
t ){1,l+1})

T
1≤l≤r 0

((Uu
t ){1,l+1})1≤l≤r Ir 0

0 0 0













1 0 0
0 cTr kT

r

0 0 Id−r−1



π.

Let us discuss now the complexity of this algorithm. The number of operations required by the extended
Cholesky decomposition is of order O(d3). From a computational point of view, the permutation is handled
directly and does not require any matrix multiplication so that we can consider w.l.o.g. that π = Id. Since
cr is lower triangular, the calculation of u{1,i}, i = 1, . . . , r + 1 only requires O(d2) operations. Also, we
do not perform in practice the matrix product (25), but only compute the values of X{1,i} for i = 1, . . . , d,
which requires also O(d2) operations. Last, d samples are at most required. To sum up, it comes out that
the complexity of the whole algorithm is of order O(d3).

2.3 Exact simulation for Wishart processes

We have now shown all the mathematical results that enable us to give an exact simulation method
for general Wishart processes. This is made in two steps. First, by using the remarkable splitting (Propo-
sition 11) and the exact scheme for WISd(x, α, 0, I

1
d ; t) (Theorem 13 and Corollary 15), we get an exact

simulation scheme for WISd(x, α, 0, I
n
d ; t). As we will see, it is related but extends the Bartlett’s decompo-

sition of central Wishart distribution that dates back to 1933. Then, by using the identity in law (12), we
are able to sample any Wishart distribution WISd(x, α, b, a; t).

2.3.1 Exact simulation for WISd(x, α, 0, I
n
d ; t)

By gathering the results obtained in the subsections 2.1 and 2.2, we get a way to sample exactly the
distribution WISd(x, α, 0, I

n
d ; t). Indeed, thanks to Theorem 13 and Corollary 15 we know how to sample

exactly WISd(x, α, 0, I
1
d ; t). By a simple permutation of the first and kth coordinates, we are then also able

to sample according to WISd(x, α, 0, e
k
d; t) for k ∈ {1, . . . , d}. Thus, we get by Proposition 11 an exact

12



simulation method to sample WISd(x, α, 0, I
n
d ; t). It is given explicitly in the algorithm below.

Algorithm 2: Exact simulation for WISd(x, α, 0, I
n
d ; t)

Input: x ∈ S+
d (R), n ≤ d, α ≥ d− 1 and t > 0.

Output: X , sampled according to WISd(x, α, 0, I
n
d ; t)

y = x
for k = 1 to n do

Set pk,1 = p1,k = pi,i = 1 for i 6∈ {1, k}, and pi,j = 0 otherwise (permutation of the first and kth

coordinates).
y = pY p where Y is sampled according to WISd(pyp, α, 0, I

1
d ; t) by using Algorithm 1.

end

return X = y.

Since this algorithm basically runs n times Algorithm 1, it requires a complexity of order O(nd3) and
therefore at most of order O(d4). As we have seen, the “bottleneck” of Algorithm 1 is the extended Cholesky
decomposition which is in O(d3). All the other steps in Algorithm 1 require at most O(d2) operations. A
natural question for Algorithm 2 is to wonder if we can reuse the Cholesky decomposition between the for
loops instead of calculating it from scratch. For example, if it were possible to get the Cholesky decomposition
of loop k + 1 from the one of loop k at a cost O(d2), the complexity of Algorithm 2 would then drop to
O(d3). Despite our investigations, we have not been able to do so up to now.

Remark 16 — When α ≥ 2d− 1, it is possible to sample WISd(x, α, 0, I
n
d ; t) in O(d

3) by another mean. If
X1

t ∼WISd(x, d, 0, I
n
d ; t) and X

2
t ∼WISd(0, α− d, 0, Ind ; t) are independent, we can check that X1

t +X2
t ∼

WISd(x, α, 0, I
n
d ; t). Then, X1

t can be sampled by using Proposition 30 and X2
t by using Corollary 18 since

X2
t =

Law
tWISd(0, α− d, 0, Ind ; 1) from (11).

Remark 17 — Let x ∈ S+,∗
d (R). From Remark 14, we get that for each k ∈ {1, . . . , n}, Xk,...X

1,x
t

t ∈
S+,∗
d (R), a.s.. In that case, the extended Cholesky decomposition that has to be computed at each step is an

usual Cholesky decomposition.

2.3.2 The Bartlett’s decomposition revisited

Now, we would like to illustrate our exact simulation method on the particular case WISd(0, α, 0, I
n
d ; 1),

which is known in the literature as the central Wishart distribution. In that case, we can perform explicitly
the composition given by Proposition 11. We will show by an induction on n that:

Xn,...X
1,0
1

1 =

(
(Li,j)1≤i,j≤n 0

0 0

)(
(LT

i,j)1≤i,j≤n 0
0 0

)

,

where (Li,j)1≤j<i≤d and Li,i are independent random variables such that Li,j ∼ N (0, 1) and (Li,i)
2 ∼

χ2(α− i+ 1), and Li,j = 0 for i < j.

For n = 1, we know from Theorem 13 that (X1,0
1 )1,1 ∼ χ2(α) since d(X1,0

t )1,1 = αdt + 2
√

(X1,0
t )1,1dZ

1
t

with (X1,0
0 )1,1 = 0, and all the other elements are equal to 0. Let us assume now that the induction hypothesis

is satisfied for n − 1. Then, we can apply once again Theorem 13 (up to the permutation of the first and

nth coordinates). We have Rk(Xn−1,...X
1,0
1

1 ) = n− 1, a.s., and the Cholesky decomposition is directly given
by (Li,j)1≤i,j≤n−1. Then, we get from (25) that there are independent variables L2

n,n ∼ χ2(α − n+ 1) and
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Ln,i ∼ N (0, 1) for i ∈ {1, . . . , n− 1} such that Xn,...X
1,0
1

1 =





(Li,j)1≤i,j≤n−1 0 0
0 1 0
0 0 Id−n









In−1 (Ln,i)1≤i≤n−1 0
(Ln,i)

T
1≤i≤n−1

∑n
i=1 L

2
n,i 0

0 0 0









(Li,j)
T
1≤i,j≤n−1 0 0

0 1 0
0 0 Id−n



 ,

Since





In−1 (Ln,i)1≤i≤n−1 0
(Ln,i)

T
1≤i≤n−1

∑n
i=1 L

2
n,i 0

0 0 0



 =





In−1 0 0
(Ln,i)

T
1≤i≤n−1 Ln,n 0

0 0 0









In−1 (Ln,i)1≤i≤n−1 0
0 Ln,n 0
0 0 0



,

we conclude by induction and get the following result which is known as the Bartlett’s decomposition (see
Kshirsagar [17] or Kabe [16]).

Corollary 18 — Bartlett’s Decomposition of central Wishart distributions. With the notations
above,

(
(Li,j)1≤i,j≤n 0

0 0

)(
(LT

i,j)1≤i,j≤n 0
0 0

)

∼WISd(0, α, 0, I
n
d ; 1).

Therefore, the identity given by Proposition 11 that we have obtained by a remarkable splitting of
the infinitesimal generator extends in a natural way the Bartlett’s decomposition to non-central Wishart
distributions.

2.3.3 Exact simulation for WISd(x, α, b, a; t)

Now, thanks to the identity in law (12), we get an exact simulation scheme for WISd(x, α, b, a; t). The
associated algorithm is given below. To the best of our knowledge, this is the first exact simulation method
for non-central Wishart distributions that works for any α ≥ d − 1. The existing methods in the literature
mainly focus on the case α ∈ N that arises naturally in statistics. Namely, Odell and Feiveson [21] and
Smith and Hocking [22] have proposed an exact simulation method for central Wishart distributions based
on the Bartlett’s decomposition. Gleser [11] has given an exact simulation method for non-central Wishart
distributions, also when the degree α is an integer.

Algorithm 3: Exact simulation for WISd(x, α, b, a; t)

Input: x ∈ S+
d (R), α ≥ d− 1, a, b ∈ Md(R) and t > 0.

Output: X , sampled according to WISd(x, α, b, a; t).

Calculate qt =
∫ t

0
exp(sb)aTa exp(sbT )ds and (p, cn, kn) an extended Cholesky decomposition of qt/t.

Set θt = p−1

(
cn 0
kn Id−n

)

and mt = exp(tb).

return X = θtY θ
T
t , where Y ∼WISd(θ

−1
t mtxm

T
t (θ

−1
t )T , α, 0, Ind ; t) is sampled by Algorithm 2.

3 High order discretization schemes for Wishart and semi definite

positive affine processes

Up to know we have given an exact simulation method for Wishart processes. It relies on a remarkable
splitting of the infinitesimal generator given in Theorem 10. When dealing with discretization schemes,
splitting operators is a powerful technique to construct schemes for SDEs from other schemes obtained
on simpler SDEs. This idea of splitting originates from the seminal work of Strang [23] in the field of
ODEs. As pointed by Ninomiya and Victoir [20] or Alfonsi [1], it rather easy to analyse the weak error
of schemes obtained by splitting, simply by using the same arguments as Talay and Tubaro [24] for the
Euler-Maruyama scheme. Thus, we will only focus on the analysis of the weak error, i.e. the error made on
marginal distributions.
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Up to our knowledge, there are very few papers in the literature that deal with discretization schemes
for Wishart processes. Recently, Benabid et al. [2] have proposed a Monte-Carlo method to calculate expec-
tations on Wishart processes which is based on a Girsanov change of probability. Gauthier and Possamäı [9]
introduce a moment-matching scheme for Wishart processes. Both methods are well defined under some re-
strictions on the parameters, and there is no theoretical result on their accuracy. Currently, Teichmann [25]
is working on dedicated schemes for general affine processes by approximating their characteristic functions.

This section is structured as follows. First, we recall basic results on the splitting technique to get
discretization schemes for SDEs. We will take the same framework as Alfonsi [1] since it is somehow designed
for affine processes. Then, we will explain how to get high order schemes for WISd(x, α, 0, I

n
d ) from the

remarkable splitting (13). From this result, we will be able to get a second order scheme for any semi
definite positive affine processes and a third order scheme for Wishart processes.

3.1 General results on discretization schemes for SDEs

In this paragraph, we try to present the minimal knowledge that we will use later to get schemes for
affine processes. We take back the framework developed in Alfonsi ([1], Section 1) and refer to this paper
for further details and proofs.

Let us start with some notations. We consider a domain D ⊂ Rζ , ζ ∈ N∗. For a multi-index γ =
(γ1, . . . , γζ) ∈ Nζ , we define ∂γ = ∂γ1

1 , . . . , ∂
γζ

ζ and |γ| =∑ζ
i=1 γi and set:

C∞
pol(D) = {f ∈ C∞(D,R), ∀γ ∈ Nζ , ∃Cγ > 0, eγ ∈ N∗, ∀x ∈ D, |∂γf(x)| ≤ Cγ(1 + ‖x‖eγ )},

where ‖.‖ is a norm on Rζ . We will say that (Cγ , eγ)γ∈Nζ is a good sequence for f ∈ C∞
pol(D) if one has

|∂γf(x)| ≤ Cγ(1 + ‖x‖eγ ). Mainly (but not only), we will consider in this paper D = S+
d (R) as a subspace

of Sd(R) ≃ Rd(d+1)/2. In that case, it is natural to keep the same indexation as for matrices, and we rather
use the notation ∂γ =

∏

1≤i≤j≤d ∂
γ{i,j}

{i,j} for γ = (γ{i,j})1≤i≤j≤d ∈ Nd(d+1)/2.

Definition 19 — Let b : D→ Rζ , σ : D→ Mζ(R). The operator L defined for f ∈ C2(D,R) by:
Lf(x) =

ζ
∑

i=1

bi(x)∂if(x) +
1

2

ζ
∑

i,j=1

(σσT )i,j(x)∂i∂jf(x) (29)

is said to satisfy the required assumptions on D if the following conditions hold:

• ∀i, j ∈ {1, . . . , ζ}, bi(x), (σσT )i,j(x) ∈ C∞
pol(D),

• for any x ∈ D, the SDE Xx
t = x +

∫ t

0 b(X
x
s )ds +

∫ t

0 σ(X
x
s )dWs has a unique weak solution defined for

t ≥ 0, and thus P(∀t ≥ 0, Xx
t ∈ D) = 1.

In the case of affine diffusions, bi(x) and (σσT )i,j(x) are affine functions of x and the operator satisfies the
required assumption on the appropriated domain. Let us stress that if L satisfies the required assumption
on D and f ∈ C∞

pol(D), all the iterated functions Lkf(x) are well defined on D and belong to C∞
pol(D) for any

k ∈ N.
Let us turn now to discretization schemes. We will consider in this paper a final time horizon T > 0 and

the regular time grid defined by tNi = iT/N , i = 0, . . . , N . When discretizing a Markovian process, a scheme
is usually described as a way to sample the process at the next time step from its current position. Thus, we
will say that (p̂x(t)(dz), t > 0, x ∈ D) is a family of transition probabilities on D if p̂x(t) is a probability law
on D for any time-step t > 0 and any position x ∈ D. Then, a discretization scheme on the regular time grid
associated to this family starting from x0 ∈ D is simply a sequence (X̂N

tNi
, 0 ≤ i ≤ N) of D-valued random

variables such that:

• X̂N
tN0

= x0,
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• the law of X̂N
tNi+1

is sampled according to p̂X̂N

tN
i

(T/N)(dz) independently from the previous samples, i.e.E[f(X̂N
tNi+1

)|(X̂N
tNj
, 0 ≤ j ≤ i)] =

∫D f(z)p̂X̂N

tN
i

(T/N)(dz) for any bounded measurable function f : D→ R.
Up to the initial condition, the discretization scheme (X̂N

tNi
, 0 ≤ i ≤ N) is entirely characterized by (p̂x(t)(dz), t >

0, x ∈ D). With a slight abuse of language, we will then say that (p̂x(t)(dz), t > 0, x ∈ D) is a scheme on D.
We will denote by X̂x

t a random variable on D which is sampled according to p̂x(t).

Definition 20 — Let L be an operator that satisfies the required assumption on D. A scheme (p̂x(t)(dz), t >
0, x ∈ D) is a potential weak νth-order scheme for the operator L if for any function f ∈ C∞

pol(D) with a good
sequence (Cγ , eγ)γ∈Nζ , there exist positive constants C, E, and η depending only on (Cγ , eγ)γ∈Nζ such that

∀t ∈ (0, η),

∣
∣
∣
∣
∣
E[f(X̂x

t )]−
[

f(x) +

ν∑

k=1

1

k!
tkLkf(x)

]∣
∣
∣
∣
∣
≤ Ctν+1(1 + ‖x‖E). (30)

When the coefficients of the SDE have a sublinear growth, we can check that the exact scheme (i.e. X̂x
t = Xx

t ,
where (Xx

t , t ≥ 0) solves the SDE associated to L) is a potential νth-order scheme for any order ν ∈ N ([1],
Proposition 1.12). In that case, (30) is then clearly equivalent to:

∃C,E, η > 0, ∀t ∈ (0, η),
∣
∣
∣E[f(X̂x

t )]− E[f(Xx
t )]
∣
∣
∣ ≤ Ctν+1(1 + ‖x‖E).

In practice, having a potential weak νth-order scheme for the operator L is the main requirement to get
a weak error of order ν. This is precised by the following theorem that relies on the idea developed by Talay
and Tubaro [24].

Theorem 21 — Let us consider an operator L that satisfies the required assumptions on D and a discretiza-
tion scheme (X̂N

tNi
, 0 ≤ i ≤ N) with transition probabilities p̂x(t)(dz) on D that starts from X̂N

tN0
= x0 ∈ D.

We assume that

1. p̂x(t)(dz) is a potential weak νth-order scheme for the operator L,

2. the scheme has bounded moments, i.e.:

∀q ∈ N∗, ∃N(q) ∈ N, sup
N≥N(q),0≤i≤N

E[‖X̂N
tNi
‖q] <∞, (31)

3. f : D → R is a function such that u(t, x) = E[f(Xx
T−t)] is defined on [0, T ] × D, C∞, solves ∀t ∈

[0, T ], ∀x ∈ D, ∂tu(t, x) = −Lu(t, x), and satisfies:

∀l ∈ N, γ ∈ Nζ , ∃Cl,γ , el,γ > 0, ∀x ∈ D, t ∈ [0, T ], |∂lt∂γu(t, x)| ≤ Cl,γ(1 + ‖x‖el,γ ). (32)

Then, there is K > 0, N0 ∈ N, such that |E[f(X̂N
tNN
)]− E[f(Xx0

T )]| ≤ K/Nν for N ≥ N0.

Let us mention that condition (31) is slightly weakened with respect to Theorem 1.9 in [1]. However, we can
check that (31) is in fact sufficient to make work the proof of this theorem given in [1].

Let us comment briefly the hypothesis of this theorem. The boundedness of the moments (31) holds as
soon as the coefficients of the SDE have a sublinear growth (see Lemma 36 in Appendix D). It is instead
much more technical to get the bounds (32) on the derivatives of u. In their original paper, Talay and
Tubaro have considered stronger assumptions on b and σ (namely, C∞ with bounded derivatives) to get such
bounds. In the case of Wishart processes, we are able to get (32) when f ∈ C∞

pol(Sd(R)) by using the explicit
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formula of the characteristic function (10). This is stated in Proposition 43. We however deem that this
result still holds for the general affine case.

Now, we present results that explain how the property of being a potential weak νth-order scheme can
be preserved when we use the splitting technique. To do so, we need to introduce first the composition of
schemes. Let us consider two transition probabilities p̂1x(t)(dz) and p̂

2
x(t)(dz) on D. Then, we define:

p̂2(t2) ◦ p̂1x(t1)(dz) :=
∫D p̂1y(t2)(dz)p̂1x(t1)(dy),

which is the law obtained when one uses first use scheme 1 with a time step t1 and then scheme 2 with a time
step t2 with independent samples. More generally, if one has m transition probabilities p̂1x, . . . , p̂

m
x on D, we

define
p̂m(tm) ◦ · · · ◦ p̂1x(t1)(dz) := p̂m(tm) ◦ (p̂m−1(tm−1) ◦ · · · ◦ p̂1x(t1)(dz)).

Proposition 22 — Let L1, L2 be two operators satisfying the required assumption on D. Let p̂1x and p̂2x be
respectively two potential weak νth-order schemes on D for L1 and L2.

• If L1L2 = L2L1, p̂
2(t) ◦ p̂1x(t)(dz) is a potential weak νth-order discretization scheme for L1 + L2.

• If ν ≥ 2, p̂2(t/2) ◦ p̂1(t) ◦ p̂2x(t/2) and 1
2

(
p̂2(t) ◦ p̂1x(t) + p̂1(t) ◦ p̂2x(t)

)
are potential weak second order

schemes for L1 + L2.

3.2 High order schemes for Wishart processes

In this paragraph, we will give a way to get weak νth-order schemes for any Wishart processes. The
construction of these schemes is the same as the one used for the exact scheme. First we obtain a νth-order
scheme for WISd(x, α, 0, I

1
d ). Then, we get a νth-order scheme forWISd(x, α, 0, I

n
d ) by scheme composition.

Last, we use the identity in law (12) to get a weak νth-order scheme scheme for any Wishart processes.

3.2.1 A potential weak νth-order scheme associated to L1

In this paragraph, we present a potential weak νth-order scheme for the generator of WISd(x, α, 0, I
1
d ).

Roughly speaking, we obtain this scheme from the exact scheme given by Theorem 13 and Corollary 15 by
replacing the Gaussian random variables with moment matching variables and the exact CIR distribution
with a sample according to a potential weak ν-th order scheme for the CIR.

Theorem 23 — Let x ∈ S+
d (R) and (cr, kr, p) be an extended Cholesky decomposition of (xi,j)2≤i,j≤d. We

set π =

(
1 0
0 p

)

and x̃ = πxπT , so that x̃ =

(
cr 0
kr 0

)(
cTr kTr
0 0

)

. Like in Theorem 13, we have

u{1,1} = x̃{1,1} −
r∑

k=1

(u{1,k+1})
2 ≥ 0, where (u{1,l+1})1≤l≤r = c−1

r (x̃{1,l+1})1≤l≤r,

and we set u{1,i} = 0 if r + 2 ≤ i ≤ d and u{i,j} = x̃{i,j} if i, j ≥ 2. Let (Ĝi)1≤i≤r be a sequence of
independent real variables with finite moments of any order such that:

∀i ∈ {1, . . . , r}, ∀k ≤ 2ν + 1, E[(Ĝi)k] = E[Gk], where G ∼ N (0, 1).

Let (Ûu
t ){1,1} be sampled independently according to a potential weak νth-order scheme for the CIR process

d(Uu
t ){1,1} = (α − r)dt + 2

√
(Uu

t ){1,1}dZ
1
t starting from u{1,1} and that satisfies the immersion property

(Definition 37). We set:

(Ûu
t ){1,i} = u{1,i} +

√
tĜi, 2 ≤ i ≤ r + 1, (Ûu

t ){1,i} = 0, r + 2 ≤ i ≤ d, (Ûu
t ){i,j} = u{i,j} if i, j ≥ 2.
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Then, the scheme defined by X̂x
t = πThr(Û

u
t )π is a potential νth-order scheme for L1, where the function

hr is defined by (28).

The proof of this result is technical and requires further definitions. It is left in Appendix 23. Second and
third order schemes for the CIR process that satisfy the immersion property can be found in Alfonsi [1] (see
Corollary 40). We can therefore get second (resp. third) order schemes for L1 by taking any variables that
matches the five (resp. the seven) first moments of N (0, 1). This can be obtained by takingP(Ĝi =

√
3) = P(Ĝi = −

√
3) =

1

6
and P(Ĝi = 0) =

2

3
(33)

(resp. P(Ĝi = ε

√

3 +
√
6

)

=

√
6− 2

4
√
6
, P(Ĝi = ε

√

3−
√
6

)

=
1

2
−

√
6− 2

4
√
6
, ε ∈ {−1, 1}). (34)

3.2.2 A potential weak νth-order scheme associated to WISd(x, α, 0, I
n
d )

From Theorem 10, we know that the infinitesimal generator ofWISd(x, α, 0, I
n
d ) is given by L =

∑n
i=1 Li,

where the operators Li are the same as L1 up to the permutation of the first and ith coordinate. Moreover,
these operators are commuting. Thus, if π1↔i denotes the associated permutation matrix and X̂x

t is the
potential νth-order scheme defined by Theorem 23,

π1↔iX̂π1↔ixπ1↔i

t π1↔i is a potential νth-order scheme for Li.

We then get a potential νth-order scheme for L thanks to Proposition 22.

Corollary 24 — Let p̂ix, i ∈ {1, . . . , d} be potential weak νth-order scheme for Li. Then for any n ≤ d,

p̂n(t) ◦ · · · ◦ p̂1x(t)(dz)

defines a potential weak νth-order scheme for WISd(x, α, 0, I
n
d ).

Remark 25 — Let ε > 0 and X̂x
t be a potential weak νth-order scheme for WISd(x, α, 0, I

n
d ). Since

x+εtν+1Id is a potential weak νth-order scheme for the operator L = 0, we easily get by scheme composition

(Proposition 22) that X̂x+εtν+1Id
t is also a potential weak νth-order scheme for WISd(x, α, 0, I

n
d ). This

scheme starts from an invertible initial condition, and by Remark 14, we only make in that case usual
Cholesky decompositions on invertible matrices.

3.2.3 A weak νth-order scheme for Wishart processes WISd(x, α, b, a)

Now that we have a potential νth-order scheme for WISd(x, α, 0, I
n
d ), we are in position to construct

a scheme for any Wishart process WISd(x, α, b, a) thanks to the identity (12). Unfortunately, we need to
make some technical restrictions on a and b (namely, a ∈ Gd(R) or baTa = aTab) to show that we get like
this a potential νth-order scheme. We however believe that this is rather due to our analysis of the error
and that the scheme converges as well without this restriction. We mention in addition that we give in the
next section a second order scheme based on Corollary 8 for which we can make our error analysis for any
parameters.

Proposition 26 — Let t > 0, a, b ∈ Md(R) and α ≥ d−1. Letmt = exp(tb), qt =
∫ t

0 exp(sb)a
Ta exp(sbT )ds

and n = Rk(aTa). We assume that either a ∈ Gd(R) or b and aTa commute. We define

• if n = d, θt as the (usual) Cholesky decomposition of qt/t,
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• if n < d, θt =
√

1
t

∫ t

0
exp(sb) exp(sbT )dsp−1

(
cn 0
kn Id−n

)

where (cn, kn, p) is the extended Cholesky

decomposition of aTa otherwise.

In both cases, θt ∈ Gd(R). Let Ŷ y
t denote a potential weak νth-order scheme for WISd(y, α, 0, I

n
d ). Then,

the scheme defined by

X̂x
t = θtŶ

θ−1
t mtxm

T
t (θ−1

t )T

t θTt , (35)

is a potential weak νth-order scheme for WISd(x, α, b, a).

Proof : First, let us check that θt ∈ Gd(R) is well defined, such that qt/t = θtI
n
d θ

T
t and satisfies:

∃K, η > 0, ∀t ∈ (0, η),max(‖θt‖, ‖θt‖−1) ≤ K. (36)

When n = d, qt/t is definite positive as a convex combination of definite positive matrices and the usual
Cholesky decomposition is well defined. Moreover, (36) holds since qt/t goes to aTa which is invertible
when t → 0+. When n < d, we have assumed in addition that b and aT a commute. Therefore, qt =
aTa(

∫ t

0
exp(sb) exp(sbT )ds/t). Since aTa and (

∫ t

0
exp(sb) exp(sbT )ds/t) are positive semidefinite matrices

that commute, we have

qt =

√

1

t

∫ t

0

exp(sb) exp(sbT )dsaTa

√

1

t

∫ t

0

exp(sb) exp(sbT )ds.

Once again, 1
t

∫ t

0 exp(sb) exp(sbT )ds is definite positive as a convex combination of definite positive matri-

ces and we get that θt =
√

1
t

∫ t

0
exp(sb) exp(sbT )dsp−1

(
cn 0
kn Id−n

)

∈ Gd(R) satisfies qt/t = θtI
n
d θ

T
t by

Lemma 33. Similarly, (36) holds since p−1

(
cn 0
kn Id−n

)

does not depend on t and
√

1
t

∫ t

0 exp(sb) exp(sb
T )ds

goes to Id when t→ 0+.
Let f ∈ C∞

pol(S+
d (R)). Let Xx

t ∼ WISd(x, α, b, a; t). Since the exact scheme is a potential νth-order
scheme, there are constants C,E, η > 0 depending only on a good sequence of f such that

∀t ∈ (0, η), |E[f(Xx
t )]−

ν∑

k=0

tk

k!
Lkf(x)| ≤ Ctν+1(1 + ‖x‖E). (37)

On the other hand we have from Proposition 9,E[f(X̂x
t )]− E[f(Xx

t )] = E[f(θtŶ θ−1
t mtxm

T
t (θ−1

t )T

t θTt )]− E[f(θtY θ−1
t mtxm

T
t (θ−1

t )T

t θTt )]. (38)

Let us introduce fθt(y) := f(θtyθ
T
t ) ∈ C∞

pol(S+
d (R)). By the chain rule, we have ∂{i,j}fθt(y) = Tr[θt(e

i,j
d +1i6=je

j,i
d )θTt ∂f(θtyθ

T
t )], where (∂f(x))k,l = (1k=l +

1
21k 6=l)∂{k,l}f(x) and e

i,j
d = (1k=i,l=j)1≤k,l≤d. From (36),

we see that there is a good sequence (Cγ , eγ)γ∈Nd(d+1)/2 that can be obtained from a good sequence of f such
that:

∀t ∈ (0, η), ∀y ∈ S+
d (R), |∂γfθt(y)| ≤ Cγ(1 + ‖y‖eγ ).

Therefore, we get that there are constants still denoted by C,E, η > 0 such that

∀t ∈ (0, η),
∣
∣
∣E[f(θtŶ θ−1

t mtxm
T
t (θ−1

t )T

t θTt )]− E[f(θtY θ−1
t mtxm

T
t (θ−1

t )T

t θTt )]
∣
∣
∣ ≤ Ctν+1(1 + ‖θ−1

t mtxm
T
t (θ

−1
t )T ‖E).

(39)
From (36), we get that there is a constant K ′ > 0 such that ‖θ−1

t mtxm
T
t (θ

−1
t )T ‖E ≤ K ′‖x‖E for t ∈ (0, η).

Thus, we get the result by gathering (37), (38) and (39). 2
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Now, we want to show thanks to Theorem 21 that the scheme given by Proposition 26 gives indeed a
weak error of order ν. However, if we exclude the exact simulation of the CIR, we only have at our disposal
(up to our knowledge) at most a third order scheme for the CIR (see [1]). It seems thus fair to state the
result on the weak error in that case.

Theorem 27 — Let (Xx
t )t≥0 ∼ WISd(x, α, b, a) such that either a ∈ Gd(R) or aTab = baTa, and f ∈

C∞
pol(Sd(R)). Let (X̂N

tNi
, 0 ≤ i ≤ N) be sampled with the scheme defined by Proposition 26 with the third order

scheme for the CIR given in [1] and starting from x ∈ S+
d (R). Then,

∃C,N0 > 0, ∀N ≥ N0, |E[f(X̂N
tNN
)]− E[f(Xx

t )]| ≤ C/N3.

Proof : The conditions of Theorem 21 are satisfied thanks to Propositions 26, 43 and Lemma 36. 2

3.3 Second order schemes for affine diffusions on S+
d
(R)

In this part, we present two different potential second order schemes for general affine processes. The
first one is well-defined without any restriction on the parameters. The second one is faster but requires to
assume in addition that ᾱ− daTa ∈ S+

d (R).
Let (Xx

t )t≥0 ∼ AFFd(x, α,B, a). Thanks to Corollary 8, there is u ∈ Gd(R) and a diagonal matrix δ such
that α = uT δu, aTa = uT Ind u and we have:

(Xx
t )t≥0 =

law
(uTY

(u−1)T xu−1

t u)t≥0, where Y
y
t ∼ AFFd(y, δ, Bu, I

n
d ).

Lemma 28 — If Ŷ y
t is a potential νth-order scheme for AFFd(y, δ, Bu, I

n
d ), then uT Ŷ

(u−1)T xu−1

t u is a
potential νth-order scheme for AFFd(x, α,B, a).

Proof : Let f ∈ C∞
pol(S+

d (R)). We then have x 7→ f(uTxu) ∈ C∞
pol(S+

d (R)). Since u is fixed, there are

constants C, η,E depending only on a good sequence of f such that for t ∈ (0, η), |E[f(uT Ŷ (u−1)Txu−1

t u)]−E[f(Xx
t )]| = |E[f(uT Ŷ (u−1)Txu−1

t u)] − E[f(uTY (u−1)T xu−1

t u)]| ≤ Ctν+1(1 + ‖(u−1)Txu−1‖E) ≤ C′tν+1(1 +
‖x‖E), for some constant C′ > C. 2

We now focus on finding a scheme for AFFd(y, α,Bu, I
n
d ). Since δ is a diagonal matrix such that

δ − (d− 1)Ind ∈ S+
d (R), we have

δmin := min
1≤i≤n

δi,i ≥ d− 1.

From Corollary 4, we can write the infinitesimal generator of Y y
t

L = Tr([δ +B(x)]DS) + 2Tr(xDSIndD
S) = Tr([δ − δminI

n
d +Bu(x)]D

S)
︸ ︷︷ ︸

LODE

+ δminTr(D
S) + 2Tr(xDSIndD

S)
︸ ︷︷ ︸

LWISd(x,δmin,0,In
d

)

(40)
as the sum of the infinitesimal generator of WISd(x, δmin, 0, I

n
d ) and of the generator of the affine ODE

x′(t) = δ − δminI
n
d + Bu(x(t)). Of course, this ODE can be solved explicitly. Moreover, we know by

Lemma 45 that if x(0) = x ∈ S+
d (R), the solution of this ODE remains in S+

d (R) since Assumption (4) holds
for Bu and δ − δminI

n
d ∈ S+

d (R). We denote by pODE
x (t) the Dirac mass at x(t): this is an exact scheme for

LODE . Thanks to Proposition 22, we get the following result.
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Proposition 29 — Let p̂Wx (t) denote a potential second order scheme for WISd(x, δmin, 0, I
n
d ). With the

notations above, the following schemes

1

2
pODE(t) ◦ p̂Wx (t) +

1

2
p̂W (t) ◦ pODE

x (t) and pODE(t/2) ◦ p̂W (t) ◦ pODE
x (t/2)

are potential second order scheme for the affine process AFFd(x, δ, Bu, I
n
d ).

By combining Lemma 28 and Proposition 29, we get a potential second order scheme for any affine process.
In the numerical experiments in Section 4, we have used the composition pODE(t/2) ◦ p̂W (t) ◦ pODE

x (t/2)
even though the other one would have work as well.

Let us stress now that different splitting from (40) are possible. For example, we could have chosen instead
L = Tr([δ−βInd +Bu(x)]D

S)+βTr(DS)+2Tr(xDSIndD
S) for any β ∈ [d−1, δmin]. When α−daTa ∈ S+

d (R)
(or equivalently when δ − dInd ∈ S+

d (R)), the following splitting

L = Tr([δ − dInd +Bu(x)]D
S)

︸ ︷︷ ︸

L̃ODE

+ dTr(DS) + 2Tr(xDSIndD
S)

︸ ︷︷ ︸

LWISd(x,d,0,In
d

)

(41)

is really interesting. Indeed it is known from Bru [4] that Wishart processes can be seen as the square of an
Ornstein-Uhlenbeck process on matrices and can be simulated very efficiently. More precisely, we will use
the following result.

Proposition 30 — Let x ∈ S+
d (R) and c ∈ Md(R) be such that cT c = x. Then, the process Xx

t =
(c+WtI

n
d )

T (c+WtI
n
d ) satisfies

(Xx
t )t≥0 =

law
WISd(x, d, 0, I

n
d ).

If Ĝ denote a d-by-d matrix with independent elements sampled according to (33), X̂x
t = (c+

√
tĜInd )

T (c+√
tĜInd ) is a potential second order scheme for WISd(x, d, 0, I

n
d ).

Proof : We have by using Itô calculus dXx
t = (c + WtI

n
d )

T dWtI
n
d + Ind dW

T
t (c + WtI

n
d ) + dInd dt. By

using Lemma 2, The quadratic covariation of (Xx
t )i,j and (Xx

t )m,n is given by d〈(Xx
t )i,j , (X

x
t )m,n〉 =

(Xx
t )i,m(Ind )j,n + (Xx

t )i,n(I
n
d )j,m + (Xx

t )j,m(Ind )i,n + (Xx
t )j,n(I

n
d )i,m. Therefore, (Xx

t )t≥0 solves the same
martingale problem as WISd(x, d, 0, I

n
d ), which is known to have a unique solution from Cuchiero et al. [6].

Let us show now that X̂x
t is a potential second order scheme. We can see c+

√
tĜInd as the Ninomiya-

Victoir scheme with moment-matching variables (see Theorem 1.18 in [1]) associated to 1
2

∑d
i=1

∑n
j=1 ∂

2
i,j

on Md(R). Let f ∈ C∞
pol(S+

d (R)). Then, x ∈ Md(R) 7→ f(xTx) ∈ C∞
pol(Md(R)) and there are constants

C,E, η > 0 depending only on a good sequence of f such that:

∀t ∈ (0, η), |E[f((c+√
tĜInd )

T (c+
√
tĜInd ))]− E[f((c+WtI

n
d )

T (c+WtI
n
d ))]| ≤ Ctν+1(1 + ‖c‖E).

Let us observe now that the Frobenius norm of c is
√

Tr(cT c) =
√

Tr(x) ≤
√

d+Tr(x2) ≤
√
d+

√

Tr(x2).
Therefore, for any norm, there is a constant K > 0 such that ‖c‖ ≤ K(1 + ‖x‖), which gives the result. 2

Corollary 31 — We assume that δ̄ − dInd ∈ S+
d (R). Let p̂Wbis(t)x denote the second order scheme of

Proposition 30, and pODE
x (t) be the exact scheme for the ODE associated to Tr([δ−dInd +Bu(x)]D

S). Then,
1
2p

ODE(t) ◦ p̂Wbis
x (t) + 1

2 p̂
Wbis(t) ◦ pODE

x (t) and pODE(t/2) ◦ p̂Wbis(t) ◦ pODE
x (t/2) are potential second-order

scheme for AFFd(x, δ, Bu, I
n
d ).
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The scheme given by Lemma 28 and Corollary 31 is not well-defined when ᾱ−daTa 6∈ S+
d (R). When it is

defined, it is however more efficient than the scheme given by Proposition 29 and Lemma 28. We have already
mentioned in subsection 2.3.1 that the exact scheme has a cost of O(d4). Similarly, the schemes given by
Propostions 26 and 29 have a cost of O(d4) operations. On the contrary, the scheme given by Proposition 30
only requires one Cholesky decomposition. Thus, the scheme given by Lemma 28 and Corollary 31 has a
complexity in O(d3). We will illustrate this in the next section.

We conclude this section by mentioning that in the case of Wishart processes, we can show that the weak
error is indeed of order 2 thanks to Theorem 21, Lemma 36 and Proposition 43.

Theorem 32 — Let (Xx
t )t≥0 ∼WISd(x, α, b, a). Let (X̂N

tNi
, 0 ≤ i ≤ N) be the scheme starting from x which

is sampled either by the scheme defined by Lemma 28 and Proposition 29 (with the second order scheme for
the CIR given in [1]) or, if we have in addition α ≥ d, by the scheme given by Lemma 28 and Corollary 31.
Then,

∃C,N0 > 0, ∀N ≥ N0, |E[f(X̂N
tNN
)]− E[f(Xx

t )]| ≤ C/N2.

4 Numerical results on the simulation methods

The scope of this section is to compare the different simulation methods given in this paper. We still
consider a time horizon T and the regular time-grid tNi = iT/N , for i = 0, . . . , N . In addition, we want
to compare our schemes to a standard one, and we will consider the following corrected Euler-Maruyama
scheme for AFFd(x, α,B, a):

X̂N
tN0

= x, X̂N
tNi+1

= X̂N
tNi
+(α+B(X̂N

tNi
))
T

N
+
√

(X̂N
tNi
)+(WtNi+1

−WtNi
)a+aT (WtNi+1

−WtNi
)T
√

(X̂N
tNi
)+, 0 ≤ i ≤ N−1.

(42)
Here, x+ denotes the matrix that has the same eigenvectors as x with the same eigenvalue if it is positive
and a zero eigenvalue otherwise. Namely, we set x+ = odiag(λ+1 , . . . , λ

+
d )o

T for x = odiag(λ1, . . . , λd)o
T .

Thus, x+ is by construction a positive semidefinite matrix and its square root is well defined. Without this
positive part, the scheme above is not well defined for any realization of W .

First, we compare the time required by the different schemes and the exact simulation. Then, we present
numerical results on the convergence of the different schemes. Last, we give an application of our scheme to
the Gourieroux-Sufana model in finance.

4.1 Time comparison between the different algorithms

In this paragraph, we compare the time required by the different schemes given in this paper. As it has
already been mentioned, the complexity of the exact scheme as well as the one of the second order scheme
(given by Lemma 28 and Proposition 29) and the third order scheme (given by Proposition 26) is in O(d4)
for one time-step. To be more precise, they require O(d4) operations that mainly corresponds to d Cholesky
decompositions, O(d2) generations of Gaussian (or moment-matching) variables and O(d) generations of
noncentral chi-square distributions (or second or third order schemes for the CIR). The time saved by the
second and third order schemes with respect to the exact scheme only comes from the generation of random
variables. For example, the generation of the moment-matching variables (33) and (34) is 2.5 faster than
the generation of N (0, 1) on our computer. The gain between the second or third order schemes for the
CIR given in Alfonsi [1] and the exact sampling of the CIR given by Glasserman [10] is much greater, but it
depends on the parameters of the CIR. When the dimension d gets larger, the absolute gain in time between
the discretization schemes and the exact scheme is of course increased. However, the relative gain instead
decreases to 1, because more and more time is devoted to matrix operations and Cholesky decompositions
that are the same in both cases. Let us now quickly analyse the complexity of the other schemes. The
second order scheme given by Lemma 28 and Corollary 31 (called “second order bis” later) has a complexity
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N = 10 N = 30
Schemes R. value Im. value Time R. value Im. value Time
Exact (1 step) −0.526852 −0.227962 12
2nd order bis −0.526229 −0.228663 41 −0.526486 −0.229078 125
2nd order −0.526577 −0.228923 76 −0.526574 −0.228133 229
3rd order −0.527021 −0.227286 82 −0.527613 −0.228376 244
Exact (N steps) −0.526963 −0.228303 123 −0.526891 −0.227729 369
Corrected Euler −0.525627∗ −0.233863∗ 225 −0.525638∗ −0.231449∗ 687

α = 3.5, d = 3,∆R = 10−3,∆Im = 10−3, exact value R. = −0.527090 and Im.= −0.228251
Exact (1 step) −0.591579 −0.037651 12
2nd order −0.590444 −0.037024 77 −0.590808 −0.036487 229
3rd order −0.591234 −0.034847 82 −0.590818 −0.036210 246
Exact (N steps) −0.591169 −0.036618 174 −0.592145 −0.037411 920
Corrected Euler −0.589735∗ −0.042002∗ 223 −0.590079∗ −0.039937∗ 680
α =2.2, d = 3,∆R = 0.9× 10−3,∆Im = 1.3× 10−3, exact value R. = −0.591411 and Im.= −0.036346
Exact (1 step) 0.062712 −0.063757 181
2nd order bis 0.064237 −0.063825 921 0.064573 −0.062747 2762
2nd order 0.064922 −0.064103 1431 0.063534 −0.063280 4283
3rd order 0.064620 −0.064543 1446 0.064120 −0.063122 4343
Exact (N steps) 0.063418 −0.064636 1806 0.063469 −0.064380 5408
Corrected Euler 0.068298∗ −0.058491∗ 2312 0.061732∗ −0.056882∗ 7113
α = 10.5, d = 10,∆R = 1.4× 10−3,∆Im = 1.3× 10−3, exact value R. = 0.063960 and Im.= −0.063544
Exact (1 step) −0.036869 −0.094156 177
2nd order −0.036246 −0.094196 1430 −0.035944 −0.092770 4285
3rd order −0.035408 −0.093479 1441 −0.036277 −0.093178 4327
Exact (N steps) −0.036478 −0.092860 1866 −0.036145 −0.093003 6385
Corrected Euler −0.028685∗ −0.094281∗ 2321 −0.030118∗ −0.088988∗ 7144
α = 9.2, d = 10,∆R = 1.4× 10−3,∆Im = 1.4× 10−3, exact value R. = −0.036064 and Im.= −0.093275

Table 1: E[exp(−Tr(ivX̂N

tN
N
))] calculated by a Monte-Carlo with 106 samples for a Wishart process with a = Id,

b = 0, x = 10Id, v = 0.09Id and T = 1. The starred numbers are those for which the exact value is outside the 95%

confidence interval, and ∆R (resp. ∆I) gives the two standard deviations value on the real (resp. imaginary) part.

in O(d3) operations for one Cholesky decomposition and matrix multiplications, with O(d2) generations of
Gaussian variables. The complexity of the corrected Euler scheme is of the same kind. At each time-step,
O(d3) operations are needed for matrix multiplications and for diagonalizing the matrix in order to compute
the square-root of its positive part. However, diagonalizing a symmetric matrix is in practice much longer
than computing a Cholesky decomposition even though both algorithms are in O(d3). Also, one has to
sample O(d2) Gaussian variables for the Brownian increments.

In Table 4.1, we have calculated by a Monte-Carlo method one value of the characteristic function of a
Wishart process. It is also known analytically thanks to (10), and we have indicated in each case the exact
value. We have considered dimensions d = 3 and d = 10. We have given in each case an example where
α ≥ d and another one where d− 1 ≤ α < d. We have used the different algorithms presented in this paper:
“2nd order bis” stands for the scheme given by Lemma 28 and Corollary 31 (with the moment-matching
variables (33)), “2nd order” stands for the scheme given by Lemma 28 and Proposition 29 (with (33) and the
second order scheme for the CIR given by [1]), “3rd order” stands for the scheme given by Proposition 26
(with (34) and the third order scheme for the CIR given by [1]), and “Corrected Euler” stands for the
corrected Euler-Maruyama scheme presented in the beginning of this section. For the exact scheme, we have
both considered the cases with one time-step T and N time-steps T/N . Of course, the first case is sufficient
to calculate an expectation that only depends on XT , but the second case allows to compute also pathwise
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expectations. For each method, we have given the value obtained and the time needed on our computer
(3000 MHz CPU).

First, let us mention that the exact value is in each case in the confidence interval except for the corrected
Euler scheme. As one can expect, the exact method with one time-step is by far the quickest method to
compute an expectation that only depends on the final value. We put aside this case and focus now on the
generation of the whole path. We see from Table 4.1 that the second and the third order schemes require
roughly the same computation time. As expected, the second order scheme bis is much faster when it is
defined (i.e. when α ≥ d). On the contrary, the Euler scheme is much slower than the second and third order
scheme, even though it should be faster for large d. This is due to the cost of the matrix diagonalization.
Let us mention that the time required by the discretization schemes is proportional to N and do not depend
on the parameters when the dimension is given. On the contrary, the time needed by the exact scheme
may change according to α and can increase considerably when α is close to d− 1. To be more precise, the
exact simulation method for the CIR given by Glasserman [10] uses a rejection sampling when the degree
of freedom is lower than 1, which corresponds to the case d − 1 ≤ α < d. The rejection rate can in fact be
rather high, notably when the time-step gets smaller. For N = 30, d = 3 and α = 2.2, the exact scheme is
four times slower than the second order scheme and 2.5 slower than the exact scheme with α = 3.5.

Let us draw a conclusion from this time comparison between the different schemes. Obviously, we
recommend to use the exact scheme when calculating expectations that depend on one or few dates. Instead,
when calculating pathwise expectations of affine processes by Monte-Carlo, we would recommend to use in
general the second order bis scheme when α ≥ d and the second order (or third order for Wishart processes)
when d− 1 ≤ α < d.

4.2 Numerical results on the convergence

Now, we want to illustrate the theoretical results of convergence obtained in this paper for the different
schemes. To do so, we have plotted for each scheme E[exp(−Tr(ivX̂N

tNN
))] in function of the time step T/N .

This expectation is calculated by a Monte-Carlo method. As for the time comparison, we illustrate the
convergence for d = 3 in Figure 1 and d = 10 in Figure 2. Each time, we consider a case where α ≥ d and a
case where d− 1 ≤ α < d, which is in general tougher. In these figures,

• scheme 1 denotes the value obtained by the exact scheme with one time-step,

• scheme 2 stands for the second order scheme given by Lemma 28 and Proposition 29,

• scheme 3 denotes the third order scheme given by Theorem 27,

• scheme 4 is the corrected Euler scheme (42).

Here, we have not plotted the convergence of the second order (bis) scheme given by Lemma 28 and Corol-
lary 31 because it would have given almost the same convergence as the other second order scheme.

N 2 4 8 10 16 30
Figure 1, right -0.000698 0.000394 0.033193 0.111991 0.185128 0.210201
Figure 2, right 0.494752 -0.464121 0.657041 0.643042 0.637585 0.619553

Table 2: Values obtained by the Euler scheme in the numerical experiments of Figures 1 and 2.

As expected, we observe in both Figures 1 and 2 convergences that fit our theoretical results. Namely,
Scheme 2 converges in O(1/N2) and Scheme 3 converges faster in O(1/N3). In some cases such as Figure 2,
Scheme 3 already matches the exact value from N = 2. Even though it seems to converge at a O(1/N)
speed, the corrected Euler scheme is clearly not competitive with respect to the other schemes. In the tough
case d− 1 ≤ α ≤ d, the values obtained by the Euler scheme are in fact outside the figures, and we have put
the corresponding values in Table 2.
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Figure 1: d = 3, 107 Monte-Carlo samples, T = 10. The real value of E[exp(−Tr(ivX̂N

tN
N
))] in function of the time-step

T/N . Left: v = 0.05Id and Wishart parameters x = 0.4Id, α = 4.5, a = Id and b = 0. Exact value: 0.054277. Right:

v = 0.2Id +0.04q and Wishart parameters x = 0.4Id +0.2q, α = 2.22, a = Id and b = −0.5Id. Exact value: 0.239836.

Here, q is the matrix defined by: qi,j = 1i6=j. The width of each point represents the 95% confidence interval.

We want to conclude this section by testing numerically the convergence of our schemes when we cal-
culate pathwise expectations. Of course, our theoretical results only bring on the weak error, but we
may hope that our schemes converge also quickly when considering more intricate expectations. In Fig-
ure 4.2, we approximate E[max0≤t≤T Tr(Xx

t )] with the different schemes by computing the maximum on

the time-grid. The convergence seems to be roughly in O(1/
√
N) for all the schemes (see Figure 4.2,

left), including the exact scheme. However, the main error seems to come from the approximation of
max0≤t≤T Tr(Xx

t ) by max0≤k≤N Tr(Xx
tNk
). In fact, we have plotted in Figure 4.2 (right) the difference be-

tween E[max0≤k≤N Tr(X̂N
tNk
)] and E[max0≤k≤N Tr(Xx

tNk
)]. Then, we find convergences that are very similar

to those obtained for the weak error: schemes 2 and 3 converge at a speed which is respectively compatible
with O(1/N2) and O(1/N3). Scheme 4 seems also to give a O(1/N) convergence. It would be hasty to
draw a global conclusion from this simple example. Nonetheless, the convergence of schemes 2 and 3 is
really encouraging on pathwise expectations, if we put aside the problem of approximating a function of
(Xx

t , 0 ≤ t ≤ T ) by a function of (Xx
tNk
, 0 ≤ k ≤ N).

4.3 An application in finance to the Gourieroux and Sufana model

In this paragraph, we want to give a possible application of our schemes in finance. More precisely,
we will consider the model introduced by Gourieroux and Sufana [13]. This is a model for d risky assets
S1
t , . . . , S

d
t . Let (Bt, t ≥ 0) denote a standard Brownian motion on Rd that is independent from (Wt, t ≥ 0).

Then, we consider the following dynamics for the assets:

t ≥ 0, 1 ≤ l ≤ d, Sl
t = Sl

0 + r

∫ t

0

Sl
udu+

∫ t

0

Sl
u(
√

XudBu)l, (43)

where Xt = X0+
∫ t

0

(
αaT a+ bXu +Xub

T
)
du+

∫ t

0

(√
Xx

udWua+ aTdWT
u

√
Xx

u

)
is a Wishart process. Here,

(
√
XudBu)l is simply the lth coordinates of the vector

√
XudBu. We can easily check that the instantaneous
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Figure 2: d = 10, 107 Monte-Carlo samples, T = 10. Left: imaginary value of E[exp(−Tr(ivX̂N

tN
N
))] with v = 0.009Id

in function of the time-step T/N . Wishart parameters: x = 0.4Id, α = 12.5, b = 0 and a = Id. Exact value:

−0.361586. Right: real value of E[exp(−Tr(ivX̂N

tNN
))] with v = 0.009Id in function of T/N . Wishart parameters:

x = 0.4Id, α = 9.2, b = −0.5Id and a = Id. Exact value 0.572241. The width of each point represents the 95%

confidence interval.

quadratic covariation matrix between the log-prices of the assets is Xt. Last, r denotes the instantaneous
interest rate.

To simulate both assets and the Wishart matrix, we proceed as follows. We observe that the generator
of (St, Xt) can be written as

L = LS + LX , where LS =

d∑

i=1

rsi∂si +
1

2

d∑

i,j=1

sisjxi,j∂si∂sj ,

and LX is the generator of the Wishart process WISd(x, α, b, a). The operator LS is associated to the SDE
dSl

t = rSl
t + Sl

t(
√
xdBt)l that can be solved explicitly. We have indeed Sl

t = Sl
0 exp[(r − xl,l/2)t+ (

√
xBt)l].

Let us also remark that
√
xBt =

Law
cBt if we have ccT = x: both are centred Gaussian vectors with the

same covariance matrix. In practice, it is more efficient to use Sl
t = Sl

0 exp[(r − xl,l/2)t + (cBt)l] where
c is computed with an extended Cholesky decomposition of x rather than calculating

√
x, which requires

a diagonalization. Let us then denote by pS(s,x)(t) the exact scheme for LS (x is unchanged) and p̂X(s,x)(t)

a second order scheme for the Wishart process WISd(x, α, b, a) (s is unchanged). Then, we consider the
following scheme

1

2
(p̂X(t) ◦ p̂S(s,x)(t) + p̂S(t) ◦ p̂X(s,x)(t)),

i.e. we draw a Bernoulli variable of parameter 1/2 to decide whether we use first p̂X(s,x)(t) or p̂
S
(s,x)(t). Under

some conditions that we do not check here, this construction is known from Proposition 22 to preserve the
second-order convergence. To be consistent with Subsection 4.2, this scheme is denoted by scheme 2 later
in this paragraph. To compare this scheme with a more basic one, we consider the Euler-Maruyama scheme
defined by (42) and

Ŝl,N

tN0
= Sl

0, Ŝ
l,N

tNi+1

= Ŝl,N

tNi

(

1 + rT/N + (
√

X̂N
tNi
(BtNi+1

−BtNi
))l

)

, 0 ≤ i ≤ N − 1.
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Figure 3: d = 3, 107 Monte-Carlo samples, T = 1. Wishart parameters x = 0.4Id + 0.2q with qi,j = 1i6=j, α = 2.2,

b = 0 and a = Id. Left, E[max0≤k≤N Tr(X̂N

tN
k
)], right: E[max0≤k≤N Tr(X̂N

tN
k
)]− E[max0≤k≤N Tr(Xx

tN
k
)] in function of

T/N . The width of each point gives the precision up to two standard deviations.

It is denoted by scheme 4 like in Subsection 4.2.
We have plotted in Figure 4.3 the price of a put option on the maximum of two risky assets (d = 2). The

Gourieroux and Sufana model is an affine model, and the characteristic function of St is explicitly known
(see [13]). Thus, it is possible to adapt the method proposed by Carr and Madan [5] and to calculate by
numerical integration (which is possible for small dimensions) the value of this put option. We have given
in Figure 4.3 the exact value obtained by this method. As one might have guessed, we observe a quadratic
convergence for scheme 2 and a linear convergence for scheme 4. The benefit of using scheme 2 is clear since
it already fits with the exact value from N = 5 in both cases: its convergence is really satisfactory.

5 Conclusion and prospects

Let us draw a brief summary of this paper. Thanks to a remarkable splitting of the infinitesimal generator
of Wishart processes, we have been able to sample exactly any Wishart distribution. We have also proposed
a third order scheme for Wishart processes and a second order scheme for general affine diffusions. We have
confirmed these rates of convergence with numerical tests and analysed the time complexity of each method.
It comes out that we recommend to use the exact scheme to compute expectations that depend on one
(or few) times. To calculate pathwise expectations, we instead recommend generally to use discretization
schemes. More precisely, the second order scheme given by Lemma 28 and Corollary 31 has to be preferred
when α ≥ d. Otherwise, we recommend to use the third order scheme given by Theorem 27 for Wishart
processes or the second order scheme given by Lemma 28 and Proposition 29 for general affine diffusions.

Let us give now some prospects of this work. As a possible continuation of this paper, it is natural to
wonder if it is possible to extend our schemes to affine diffusions on positive semidefinite matrices that include
jumps (see Cuchiero et al.[6]). From a modelling point of view, we believe that Wishart processes could be
used in a wide range of applications. In fact, they can be used as soon as one has to model dependence
dynamics. Thus, we hope that the possibility of sampling such processes will stimulate different kinds of
dependence models.
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Figure 4: E[e−rT(K−max (Ŝ1,N

tN
N

, Ŝ2,N

tN
N

))+] in function of T/N . d = 2, T = 1, K = 120, S1
0 = S2

0 = 100, and r = 0.02.

Wishart parameters: x = 0.04Id + 0.02q with qi,j = 1i6=j, a = 0.2Id, b = 0.5Id and α = 4.5 (left), α = 1.05 (right).

The width of each point gives the precision up to two standard deviations (106 Monte-Carlo samples).
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Nord, 1987.

[4] M.F. Bru. Wishart processes. J. Theoret. Probab., 4(4):725–751, 1991.

[5] P. Carr and A. Madan. Option pricing and the fast fourier transform. Journal of Computational
Finance, 2(4):61–73, 1999.

[6] C. Cuchiero, D. Filipovic, E. Mayerhofer, and J. Teichmann. Affine processes on positive semidefinite
matrices. Preprint to appear in the Annals of Applied Probability, 2009.

[7] J. Da Fonseca, M. Grasselli, and C. Tebaldi. Option pricing when correlations are stochastic: an
analytical framework. Review of Derivatives Research, 10:151–180, 2008.
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A Notations and some results on matrices

Notations for real matrices :

• For d, d′ ∈ N∗, Md(R) denotes the real d square matrices and Md×d′(R) the real matrices with d rows
and d′ columns.

• Sd(R), S+
d (R),S+,∗

d (R), and Gd(R) denote respectively the set of symmetric, symmetric positive semidef-
inite, symmetric positive definite and non singular matrices.

• For x ∈ Md(R), xT , adj(x), det(x), Tr(x) and Rk(x) are respectively the transpose, the adjugate, the
determinant, the trace and the rank of x.

• For x ∈ S+
d (R), √x denotes the unique symmetric positive semidefinite matrix such that (

√
x)2 = x

• The identity matrix is denoted by Id and we set for n ≤ d, Ind = (1i=j≤n)1≤i,j≤d and e
n
d = (1i=j=n)1≤i,j≤d,

so that Ind =
∑n

i=1 e
i
d. We also set for 1 ≤ i, j ≤ d, ei,jd = (1k=i,l=j)1≤k,l≤d.

• For x ∈ Sd(R), we denote by x{i,j} the value of xi,j , so that x =
∑

1≤i≤j≤d x{i,j}(e
i,j
d +1i6=je

j,i
d ). We use

both notations in the paper: notation (xi,j)1≤i,j≤d is of course more convenient for matrix calculations
while (x{i,j})1≤i≤j≤d is preferred to emphasize that we work on symmetric matrices and that we have
xi,j = xj,i.

• For λ1, . . . , λd ∈ R, diag(λ1, . . . , λd) denotes the diagonal matrix such that diag(λ1, . . . , λd)i,i = λi.

Now, we present different results that are used in the paper. We first recall the extended Cholesky
decomposition of positive semidefinite matrices which is used intensively and then give two other technical
results.

Lemma 33 — Let q ∈ S+
d (R) be a matrix with rank r. Then there is a permutation matrix p, an invertible

lower triangular matrix cr ∈ Gr(R) and kr ∈ Md−r×r(R) such that:

pqpT = ccT , c =

(
cr 0
kr 0

)

.

The triplet (cr, kr, p) is called an extended Cholesky decomposition of q. Besides, c̃ =

(
cr 0
kr Id−r

)

∈ Gd(R),
and we have:

q = (c̃T p)T Ird c̃
T p.

The proof of this result and a numerical procedure to get such a decomposition can be found in Golub
and Van Loan ([12], Algorithm 4.2.4). When r = d, we can take p = Id, and cr is the usual Cholesky
decomposition.

Lemma 34 — Let b, c ∈ Sd(R). If either b ∈ S+
d (R) or c ∈ S+

d (R), then Id + ibc is invertible. In particular,

if b ∈ S+,∗
d (R), b+ ic is invertible.

Proof : We start with the first assertion. Since (Id + ibc)T = Id + icb, it is sufficient to check the case
where c ∈ S+

d (R). By a way of contradiction, let us assume that there is x ∈ Cd \ {0} such that x+ ibcx = 0.
We respectively denote by xR ∈ Rd and xI ∈ Rd the real and imaginary part of x. One gets easily that
xR = bcxI and xI = −bcxR. Since x 6= 0, we have necessarily xR 6= 0, cxR 6= 0, bcxR 6= 0 and cbcxR 6= 0.
Since c is nonnegative, we get by decomposing on an orthonormal basis that cxR.xR > 0 and cbcxR.bcxR > 0.
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However, we also have cxR.xR = −cxR.bcbcxR, which leads to a contradiction. The second assertion is now
obvious since b+ ic = b(Id + ib−1c). 2

B Proofs of Section 1

B.1 Proof of Lemma 2

Proof : From the SDE (5), we have

(dYt)i,j = (Ct)i,jdt+ (BtdWtAt +AT
t dW

T
t B

T
t )i,j

= (Ct)i,jdt+
∑d

k,l=1((Bt)i,k(At)l,j + (Bt)j,k(At)l,i)(dWt)k,l

Then we get the following formula for the quadratic covariation

d〈(Yt)i,j , (Yt)m,n〉 =
∑d

k,l((Bt)i,k(At)l,j + (Bt)j,k(At)l,i)((Bt)m,k(At)l,n + (Bt)n,k(At)l,m)dt

=
∑d

l,k(Bt)i,k(Bt)m,k(At)l,n(At)l,j +
∑d

l,k(Bt)i,k(Bt)n,k(At)l,m(At)l,j

+
∑d

l,k(Bt)j,k(Bt)m,k(At)l,n(At)l,i +
∑d

l,k(Bt)j,k(Bt)n,k(At)l,m(At)l,i
= (BtB

T
t )i,m(AT

t At)n,j + (BtB
T
t )i,n(A

T
t At)m,j

+(BtB
T
t )j,m(AT

t At)n,i + (BtB
T
t )j,n(A

T
t At)m,i.

(44)

2

B.2 Proof of Proposition 5

Proof : Let v ∈ Sd(R) such that ∀s ∈ [0, t], Id − 2qsv ∈ Gd(R). As it is usual for affine diffusions, the
Laplace transform can be formulated with ODE solutions. Namely, we will show that E[exp(Tr(vXx

t ))] =
exp[φ(t, v) + Tr(ψ(t, v)x)], where ψ and φ solve following ODEs (see for example Cuchiero et al. [6]):

∂tψ(t, v) = ψ(t, v)b+ bTψ(t, v) + 2ψ(t, v)aTaψ(t, v) ; ψ(0, v) = v
∂tφ(t, v) = αTr(ψ(t, v)) ; φ(0, v) = 0.

The function ψ solves an usual matrix Riccati ODE. As shown by Levin [18], ψ can be obtained explicitly
by the mean of the following exponential matrix :

(
A1,1(t) A1,2(t)
A2,1(t) A2,2(t)

)

:= exp

(

t

(
b −2aTa
0 −bT

))

=

(

exp(tb) −2 exp(tb)
∫ t

0
exp(−sb)aTa exp(−sbT )ds)

0 exp(−tbT )

)

.

From [18],we obtain that

ψ(t, v) = (ψ(0, v)A1,2(t) +A2,2(t))
−1(ψ(0, v)A1,1(t) +A2,1(t))

=
(

−2v exp(tb)
∫ t

0 exp(−sb)aTa exp(−sbT )ds+ exp(−tbT )
)−1

v exp(tb)

=
(

−2v
∫ t

0 exp(sb)aT a exp(sbT )ds exp(−tbT ) + exp(−tbT )
)−1

v exp(tb)

= exp(tbT )(Id − 2vqt)
−1v exp(tb),

provided that Id−2qsv is invertible for s ∈ [0, t], which holds by assumption. Therefore we get for x ∈ Sd(R),
Tr(ψ(t, v)x) = Tr

(
exp(tbT )(Id − 2vqt)

−1v exp(tb)x
)

= Tr
(
(Id − 2vqt)

−1v exp(tb)x exp(tbT )
)

= Tr
(
v(Id − 2qtv)

−1 exp(tb)x exp(tbT )
)
,
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since v(Id − 2qtv)
−1 = (Id − 2vqt)

−1v. As explained by Grasselli and Tebaldi ([14], section 4.2), φ can also
be calculated explicitly by the mean of the exponential matrix above, and we get:

φ(t, v) = −α
2
Tr
(
log[(Id − 2vqt) exp(tb

T )]− tTr(b)
)
.

By using that exp(Tr(log(A))) = det(A) for A ∈ Gd(R), we deduce then that

exp(φ(t, v)) = exp(α2 tTr(b))
(
exp(Tr(log{(Id − 2vqt) exp(tb

T )}))
)−α

2

= exp(α2 tTr(b))
(
det{(Id − 2vqt)}det{exp(tbT )}

)−α
2

= exp
(
α
2 tTr(b)− α

2 tTr(b)
)
(det{(Id − 2vqt)})

−α
2

= 1

det(Id−2qtv)
α
2
.

For the last equality, we have used that det(Id − 2vqt) = det((Id − 2vqt)
T ) = det(Id − 2qtv).

Now, it remains to show that (10) indeed holds. By Itô calculus, we get that for s ∈ (0, t):

d exp[φ(t−s, v)+Tr(ψ(t−s, v)Xx
s )] = exp[φ(t−s, v)+Tr(ψ(t−s, v)Xx

s )]Tr[ψ(t−s, v)(
√

Xx
s dWsa+a

TdWT
s

√

Xx
s )].

(45)
Thus, exp[φ(t − s, v) + Tr(ψ(t − s, v)Xx

s )] is a positive local martingale and therefore a supermartingale,
which gives that E[exp(Tr(vXx

t ))] ≤ exp[φ(t, v) + Tr(ψ(t, v)x)] <∞, i.e. Db,a;t ⊂ D̃x,α,b,a;t, where

Db,a;t := {v ∈ Sd(R), ∀s ∈ [0, t], Id − 2qsv ∈ Gd(R)} and D̃x,α,b,a;t := {v ∈ Sd(R),E[exp(Tr(vXx
t ))] <∞}.

On the other hand, when −v ∈ S+,∗
d (R), we can check that exp[φ(t − s, v) + Tr(ψ(t − s, v)Xx

s )] ≤ 1 by
observing that det(Id − 2qtv) = det(Id + 2

√−vqt
√−v) ≥ 1 and Tr

(
v(Id − 2qtv)

−1 exp(tb)x exp(tbT )
)
=

−Tr
(√−v(Id + 2

√−vqt
√−v)−1

√−v exp(tb)x exp(tbT )
)
≤ 0. In that case, exp[φ(t−s, v)+Tr(ψ(t−s, v)Xx

s )]
is a martingale from (45), and (10) holds.

Let us observe now that Db,a;t is convex. In fact, we have det(Id − 2qsv) = det(Id − 2
√
qsv

√
qs), and

therefore Db,a;t = {v ∈ Sd(R), ∀s ∈ [0, t], Id − 2
√
qsv

√
qs ∈ S+,∗

d (R)} which is obviously convex. The Laplace
transform v 7→ E[exp(Tr(vXx

t ))] is an analytic function on Db,a;t (see for example Lemma 10.8 in [8]).
The RHS of (10) is also analytic on Db,a;t and coincides with the Laplace transform when −v ∈ S+,∗

d (R).
Therefore, (10) holds for v ∈ Db,a;t since Db,a;t is convex. Now, we can extend to complex values of v. Indeed,
the RHS of (10) is well defined for v = vR + ivI with vR ∈ Db,a;t, thanks to Lemma 34. Since both hand
sides are analytic functions of v, (10) holds for v = vR + ivI .

Last, we want to show that Db,a;t = D̃x,α,b,a;t. We first consider the case b = 0 and assume by a way of

contradiction that there is v ∈ D̃x,α,0,a;t \D0,a;t for some x, α, a and t > 0. Let t̃ = min{s ∈ [0, t], Id−2qsv 6∈
Gd(R)} ∈ (0, t]. On the one hand, we have v 6∈ D0,a;t̃ and v ∈ D0,a;s for s ∈ [0, t̃). On the other hand, we
have by Jensen’s inequality:

s ∈ [0, t], exp((t− s)Tr(vaT a)) exp(Tr(vXx
s )) ≤ E[exp(Tr(vXx

t ))|Fs],

which gives s ∈ [0, t] 7→ exp(−sTr(vaTa))E[exp(Tr(vXx
s ))] is nondecreasing and finite. Since (10) holds for

s < t̃, we get that E[exp(Tr(vXx
t̃
))] = +∞, which leads to a contradiction. Let us now consider the case

b 6= 0. From Proposition 9 (which is a consequence of the characteristic function obtained above), we have

v ∈ D̃x,α,b,a;t ⇐⇒ θTt vθt ∈ D0,In
d ;t ⇐⇒ ∀s ∈ [0, t], det(Id − 2(s/t)qtv) 6= 0.

In particular, D̃x,α,b,a;t is an open set. For v ∈ Gd(R), we have det(Id − 2(s/t)qtv) 6= 0 ⇐⇒ det(v−1 −
2(s/t)qt) 6= 0 (resp. det(Id − 2qsv) 6= 0 ⇐⇒ det(v−1 − 2qs) 6= 0). Since sqt ≤ s′qt (resp. qs ≤
qs′) for s ≤ s′, we know from Theorem 8.1.5 in [12] that the (real) eigenvalues of v−1 − 2(s/t)qt (resp.
v−1 − 2qs) are nonincreasing w.r.t. s. Since they are also continuous, and v−1 − 2(s/t)qt = v−1 − 2qs for
s ∈ {0, t}, we get that ∀s ∈ [0, t], det(v−1 − 2(s/t)qt) 6= 0 ⇐⇒ ∀s ∈ [0, t], det(v−1 − 2qs) 6= 0, and thus
D̃x,α,b,a;t ∩ Gd(R) = Db,a;t ∩ Gd(R). Let v ∈ D̃x,α,b,a;t. Since D̃x,α,b,a;t is an open set, there is ε > 0 such that

v ± εId ∈ D̃x,α,b,a;t ∩ Gd(R). Since Db,a;t is convex, v = (v + εId + v − εId)/2 ∈ Db,a;t. 2
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C Proofs of Section 2

C.1 Proof of Theorem 10

Proof : From (8), we get:

Li = α∂{i,i} + 2x{i,i}∂
2
{i,i} + 2

∑

1≤m≤d
m 6=i

x{i,m}∂{i,m}∂{i,i} +
1

2

∑

1≤m,l≤d
m 6=i,l 6=i

x{m,l}∂{i,m}∂{i,l} (46)

We want to show that LiLj = LjLi for i 6= j. Up to a permutation of the coordinates, Li and Lj are the
same operators as L1 and L2. It is therefore sufficient to check that L1L2 = L2L2. By a straightforward but
tedious calculation, we get
L1L2 =

α2∂{1,1}∂{2,2}
︸ ︷︷ ︸

(0)

+ 2αx{2,2}∂{1,1}∂
2
{2,2}

︸ ︷︷ ︸

(1)

+ 2α
∑

j 6=2

x{2,j}∂{1,1}∂{2,2}∂{2,j}

︸ ︷︷ ︸

(2)

+

α

2
(∂2{1,2}
︸ ︷︷ ︸

(3)

+
∑

j 6=2,k 6=2

x{j,k}∂{1,1}∂{2,j}∂{2,k}

︸ ︷︷ ︸

(4)

) + 2αx{1,1}∂
2
{1,1}∂{2,2}

︸ ︷︷ ︸

(1)

+ 4x{1,1}x{2,2}∂
2
{1,1}∂

2
{2,2}

︸ ︷︷ ︸

(5)

+

4
∑

j 6=2

x{1,1}x{2,j}∂
2
{1,1}∂{2,j}∂{2,2}

︸ ︷︷ ︸

(6)

+ x{1,1}(2∂{1,1}∂
2
{1,2}

︸ ︷︷ ︸

(7)

+
∑

j 6=2,k 6=2

x{j,k}∂
2
{1,1}∂{2,j}∂{2,k}

︸ ︷︷ ︸

(8)

) +

2α
∑

m 6=1

x{1,m}∂{1,1}∂{1,m}∂{2,2}

︸ ︷︷ ︸

(2)

+ 4
∑

m 6=1

x{1,m}x{2,2}∂{1,1}∂{1,m}∂
2
{2,2}

︸ ︷︷ ︸

(6)

+

4(
∑

m 6=1,j 6=2

x{1,m}x{2,j}∂{1,1}∂{1,m}∂{2,j}∂{2,2}

︸ ︷︷ ︸

(9)

+ x{1,2}∂{1,1}∂{1,2}∂{2,2}
︸ ︷︷ ︸

(10)

)

+
∑

m 6=1,k 6=2,j 6=2

x{1,m}x{j,k}∂{1,1}∂{1,m}∂{2,j}∂{2,k}

︸ ︷︷ ︸

(11)

+
∑

m 6=1,m 6=2

x{1,m}∂
2
{1,2}∂{1,m}

︸ ︷︷ ︸

(12)

+2
∑

m 6=1,m 6=2

x{1,m}∂{1,1}∂{1,2}∂{2,m}

︸ ︷︷ ︸

(13)

+ x{1,2}∂
3
{1,2} + 2x{1,2}∂{1,1}∂{1,2}∂{2,2}

︸ ︷︷ ︸

(14)

α

2

∑

m 6=1,l 6=1

x{m,l}∂{1,m}∂{1,l}∂{2,2}

︸ ︷︷ ︸

(4)

+
∑

m 6=1,l 6=1

x{2,2}x{m,l}∂{1,m}∂{1,l}∂
2
{2,2}

︸ ︷︷ ︸

(8)

+

∑

m 6=1,l 6=1,j 6=2

x{2,j}x{m,l}∂{1,m}∂{1,l}∂{2,2}∂{2,j}

︸ ︷︷ ︸

(11)

+ 2
∑

m 6=1,m 6=2

x{2,m}∂{1,2}∂{1,m}∂{2,2}

︸ ︷︷ ︸

(13)

+ 2x{2,2}∂
2
{1,2}∂{2,2}

︸ ︷︷ ︸

(7)

+

1

4

∑

m 6=1,l 6=1
j 6=2,k 6=2

x{m,l}x{j,k}∂{1,m}∂{1,l}∂{2,k}∂{2,j}

︸ ︷︷ ︸

(15)

+
∑

m 6=1,l 6=1
m 6=2,l 6=2

x{m,l}∂{1,l}∂{1,2}∂{2,m}

︸ ︷︷ ︸

(16)

+
∑

m 6=1,m 6=2

x{2,m}∂
2
{1,2}∂{2,m}

︸ ︷︷ ︸

(12)

.
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Obviously, we have the same formula for L2L1 simply by exchanging the index 1 and 2. It is then sufficient
to check that the above formula remains unchanged when we exchange the two index. Each term above is
marked with a number. If this number is in the form (r), then the associated term is symmetric. Otherwise,
there exist in the formula its corresponding symmetric term which is marked with the same number. 2

C.2 Proof of Proposition 11

Proof : Let Xx
t ∼ WISd(x, α, 0, I

n
d ; t). We will check that for any polynomial function f of the matrix

elements, we have E[f(Xx
t )] = E[f(Xn,...X

1,x
t

t )]. Let us consider a polynomial function f of degree m:

x ∈ Sd(R), f(x) = ∑

γ∈Nd(d+1)/2,|γ|≤m

aγ x̄
γ ,

where |γ| = ∑

1≤i≤j≤d |γ{i,j}| and x̄γ =
∏

1≤i≤j≤d x
γ{i,j}

{i,j} . Since the operator are affine, it is easy to check

that Lf(x) and Lif(x) are also polynomial functions of degree m. We set:

‖f‖P =
∑

γ∈Nd(d+1)/2,|γ|≤m

|aγ | and |L| = max
γ∈Nd(d+1)/2,|γ|≤m

‖Lx̄γ‖P,
so that ‖Lkf‖P ≤ |L|k‖f‖P for any k ∈ N. Therefore, the series

∑∞
k=0 t

kLkf(x)/k! converges absolutely. By
using l + 1 times Itô’s formula, we get:E[f(Xx

t )] =

l∑

k=0

tk

k!
Lkf(x) +

∫ t

0

(t− s)l

l!
E[Ll+1f(Xx

s )]ds.

Wishart processes have bounded moments since the drift and diffusion coefficients have a sublinear growth.

Thus, C = maxγ∈Nd(d+1)/2,|γ|≤m sups∈[0,t] E[|Xx
s

γ |] < ∞ and we obtain that |
∫ t

0
(t−s)l

l! E[Ll+1f(Xx
s )]ds| ≤

C‖f‖P(t|L|)l+1/(l + 1)! →
l→+∞

0. Thus, we have E[f(Xx
t )] =

∑∞
k=0 t

kLkf(x)/k! and similarly we get thatE [f(Xn,...X
1,x
t

t )|Xn−1,...X
1,x
t

t

]

=

+∞∑

kn=0

tkn

kn!
Lkn
n f(Xn−1,...X

1,x
t

t ).

Now, we remark that C̃ = maxγ∈Nd(d+1)/2,|γ|≤m sups∈[0,t] max(E[|X1,x
t

γ

|], . . . ,E[|Xn,...X
1,x
t

t

γ

|]) < ∞ by using

once again that Wishart processes have bounded moments. Since E[|Lkn
n f(Xn−1,...X

1,x
t

t )|] ≤ C̃‖f‖P|Ln|kn ,
we can switch the expectation with the series and get (14). Then, since Lkn

n f(x) are polynomial function of
degree m, we can iterate this argument and finally get (15), which gives the result. 2

C.3 Proof of Theorem 13

The proof is divided into two parts. First, we prove that the SDE (24) has a unique strong solution which
is given by (25) and is well defined on S+

d (R). Second, we show that its infinitesimal generator is equal to
the operator L1 defined in (16).
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First step. Let us assume that (Xx
t )t≥0 is a solution to (24). We use the matrix decomposition of

(xi,j)2≤i,j≤d given by (23) and set:

(Ut){1,l+1} =
r∑

i=1

(c−1
r )l,i(X

x
t ){1,i+1}, l ∈ {l, . . . , r},

(Ut){1,1} = (Xx
t ){1,1} −

r∑

l=1

(
r∑

i=1

(c−1
r )l,i(X

x
t ){1,i+1}

)2

= (Xx
t ){1,1} −

r∑

l=1

((Ut){1,l+1})
2.

We get by using Lemma 35 that:





1 0 0
0 cr 0
0 kr Id−r−1









(Ut){1,1} +
∑r

k=1((Ut){1,k+1})
2 ((Ut){1,l+1})

T
1≤l≤r 0

((Ut){1,l+1})1≤l≤r Ir 0
0 0 0









1 0 0
0 cTr kTr
0 0 Id−r−1





=





(Ut){1,1} +
∑r

k=1((Ut){1,k+1})
2 ((Ut){1,l+1})

T
1≤l≤rc

T
r ((Ut){1,l+1})

T
1≤l≤rk

T
r

cr((Ut){1,l+1})1≤l≤r crc
T
r crk

T
r

kr((Ut){1,l+1})1≤l≤r krc
T
r 0



 = Xx
t .

Since





1 0 0
0 cr 0
0 kr Id−r−1



 is invertible, Xx
t ∈ S+

d (R) if, and only if:

∀z ∈ Rd, zT





(Ut){1,1} +
∑r

i=1((Ut){1,i+1})
2 ((Ut){1,l})2≤l≤r+1 0

((Ut){l,1})2≤l≤r+1 Ir 0
0 0 0



 z (47)

= z21(Ut){1,1} +
r∑

i=1

(zi+1 + (Ut){1,i+1}z1)
2 ≥ 0, ⇐⇒ (Ut){1,1} ≥ 0.

In particular, we get that (U0){1,1} = u{1,1} ≥ 0 since x ∈ S+
d (R). Now, by Itô calculus, we get from (24)

that d(Ut){1,l+1} =
∑r

i=1

∑r
k=1(c

−1
r )l,i(cr)i,kdZ

k+1
t = dZ l+1

t and

d(Ut){1,1} = (α− r)dt + 2
√
(Ut){1,1}dW

1
t + 2

∑r
l=1

∑r
k=1(c

−1
r )l,k(Xt){1,k+1}dW

l+1
t

−∑r
l=1 2((Ut){1,l+1})dW

l+1
t

= (α− r)dt + 2
√
(Ut){1,1}dW

1
t .

Thus, the solution (Xx
t )t≥0 is necessarily the one given by (25) (pathwise uniqueness holds for ((Uu

t ){1,l})1≤l≤r+1,
and especially for the CIR diffusion (Uu

t ){1,1} since α ≥ d − 1 ≥ r). Reciprocally, it is easy to check by Itô
calculus that (25) solves (24).

Second step. Now, we want to show that L1 is the infinitesimal operator associated to the process
(Xx

t )t≥0. It is sufficient to compare the drift and the quadratic covariation of the process Xx
t with L1. Since

the drift part of (Xx
t )t≥0 clearly corresponds to the first order of L1, we study directly the quadratic part.

From (24), we have for i, j ∈ {2, . . . , d}2 :

d〈(Xx
t ){1,1}, (X

x
t ){1,1}〉 = 4((Xx

t ){1,1} −
∑r

k=1

[∑r
l=1(c

−1
r )k,l(X

x
t ){1,l+1}

]2
+
∑r

k=1[
∑r

l=1(c
−1
r )k,l(X

x
t ){1,l+1}]

2)
= 4(Xx

t ){1,1}dt,
d〈(Xx

t ){1,i}, (X
x
t ){1,j}〉 =

∑r
k=1(cr)i−1,k(cr)j−1,kdt = (ccT )i−1,j−1dt = (Xx

t ){i,j}dt,
d〈(Xx

t ){1,1}, (X
x
t ){1,i}〉 = 2

∑r
k=1

∑r
l=1(cr)i−1,k(c

−1
r )k,l(X

x
t ){1,l+1}dt = 2(Xx

t ){1,i}dt, if i ≤ r + 1,
d〈(Xx

t ){1,1}, (X
x
t ){1,i}〉 = 2

∑r
k=1

∑r
l=1(kr)i−1−r,k(c

−1
r )k,l(X

x
t ){1,l+1}dt

= 2
∑r

l=1(krc
−1
r )i−1−r,l(X

x
t ){1,l+1}dt = 2(Xx

t ){1,i}dt if i > r + 1, by Lemma 35.

Thus, we deduce that L1 is the infinitesimal generator of (Xx
t )t≥0.
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Lemma 35 — Let y ∈ S+
d (R). We set r = Rk((yi,j)2≤i,j≤d), y

r
1 = (y1,i+1)1≤i≤r and yr,d1 = (y1,i+1)r+1≤i≤d.

We assume that there are an invertible matrix cr and a matrix kr defined on Md−r−1×r(R), such that

(yi,j)2≤i,j≤d =

(
cr 0
kr 0

) (
cTr kTr
0 0

)

.

Then, we have yr,d1 = krc
−1
r yr1.

Proof : We set p =





1 0 0
0 cr 0
0 kr Id−r−1



 and have p−1 =





1 0 0
0 c−1

r 0
0 −krc−1

r Id−r−1



. Since the matrix

p−1y(p−1)T =





y1,1 (c−1
r yr1)

T (yr,d1 − krc
−1
r yr1)

T

c−1
r yr1 Ir 0

yr,d1 − krc
−1
r yr1 0 0





is positive semidefinite, we necessarily have yr,d1 − krc
−1
r yr1 = 0. 2

D Proofs of Section 3

Lemma 36 — Let us consider an operator L on D that satisfies the required assumption and such that b
and σ have a sublinear growth, i.e. ∃K > 0, ‖b(x)‖2+‖σ(x)‖2 ≤ K(1+‖x‖2). Let us consider X̂x

t a potential
νth-order scheme for L, with ν ≥ 1. Then, condition (31) holds.

Proof : We have D ⊂ Rζ , and we set for p ∈ N∗, fp(x) =
(
∑ζ

i=1 x
2
i

)p

= (‖x‖2)2p, x ∈ D. Clearly,

fp ∈ C∞
pol(D), and since X̂x

t is a potential νth-order scheme for L, we have

lim
t→0+

[E[fp(X̂x
t )]− fp(x)]/t = Lfp(x). (48)

Since we have ∂ifp(x) = 2pxifp−1(x) and ∂i∂jfp(x) = 4p(p− 1)xixjfp−2(x) + 1i=j(2pfp−1(x)), it is easy to

check that |Lfp(x)| ≤
∑ζ

i=1 2pK(1 + ‖x‖2)‖x‖2p−1
2 +

∑ζ
i,j=1 4p

2K2(1 + ‖x‖2)1‖x‖2p−2
2 < Cp(1 + ‖x‖2p2 ) =

Cp(1 + fp(x)), for some constant Cp > 0. From (48), we get that:

∃η > 0, ∀t ∈ (0, η),E[fp(X̂x
t )] ≤ fp(x) + tCp(1 + fp(x)).

We consider now the scheme (X̂N
tNi
, i = 0, . . . , N) with N > T/η that starts from x0 ∈ D. We haveE[fp(X̂N

tNi+1
)] ≤ E[fp(X̂N

tNi
)]+Cp(T/N)(1+E[fp(X̂N

tNi
)]). Let u0 = fp(x0) and ui+1 = ui(1+CpT/N)+CpT/N .

We have E[fp(X̂N
tNi+1

)] ≤ ui and ui = (1 + CpT/N)i(fp(x0) + 1)− 1 ≤ eCpT (fp(x0) + 1). Therefore we have

sup
N>T/η

sup
0≤i≤N

E[‖X̂N
tNi
‖2p2 ] ≤ eCpT (‖x0‖2p2 + 1) <∞,

which gives (31). 2
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D.1 Proof of Theorem 23

Theorem 23 defines the scheme as πThr(Û
u
t )π. We can prove (see later) that Ûu

t is a potential νth-
order scheme for some operator, and it would be then easy to analyze the error if hr were in C∞

pol(S+
d (R)).

Unfortunately, hr is only smooth w.r.t. to the coordinates u{1,1}, . . . u{1,d} and is not a priori in C∞
pol(S+

d (R)).
In fact, this is sufficient to show that πThr(Û

u
t )π is a potential νth-order scheme because these coordinates

are the only one that are modified by the scheme. This requires however some further analysis which is made
below.

Let D ⊂ Rζ be a domain. We introduce for any domain D̃ ⊂ Rξ, ξ ∈ N∗ the set

C∞
pol

∣
∣D(D×D̃) = {f ∈ C∞(D×D̃,R), ∀γ ∈ Nζ , ∃Cγ > 0, eγ ∈ N∗, ∀(x, x̃) ∈ D, |∂γf(x, x̃)| ≤ Cγ(1+‖(x, x̃)‖eγ )},

where ‖.‖ is a norm on Rζ+ξ and ∂γ = ∂γ1

1 , . . . , ∂
γζ

ζ denotes the derivatives w.r.t. the coordinates of D. For

f ∈ C∞
pol

∣
∣D(D × D̃), we will say that (Cγ , eγ)γ∈Nζ is a good sequence for f if it is such that |∂γf(x, x̃)| ≤

Cγ(1 + ‖(x, x̃)‖eγ ) for any (x, x̃) ∈ D× D̃.
Let us now consider an operator L that satisfies the required assumption on D. It is easy to check that

all the iterated functions Lkf are well defined and belong to C∞
pol

∣
∣D(D × D̃) as soon as f ∈ C∞

pol

∣
∣D(D × D̃).

Let us fix x̃ ∈ D̃ and consider X̂x
t sampled according to a potential weak νth-order scheme for L. Since

x 7→ f(x, x̃) belongs to C∞
pol(D), we know by (30) that there are constants Cx̃, Ex̃, ηx̃ such that

∀t ∈ (0, ηx̃),

∣
∣
∣
∣
∣
E[f(X̂x

t )]−
ν∑

k=0

1

k!
tkLkf(x, x̃)

∣
∣
∣
∣
∣
≤ Cx̃t

ν+1(1 + ‖x‖Ex̃).

In practice, one would like instead to get some bounds where the dependence with respect to x̃ is more
tractable. This is why we introduce the following definition.

Definition 37 — Let L be an operator that satisfies the required assumption on D. We will say that a
potential weak νth-order scheme for L satisfies the immersion property if for any D̃ ⊂ Rξ, ξ ∈ N∗ and any
function f ∈ C∞

pol

∣
∣D(D × D̃) with a good sequence (Cγ , eγ)γ∈Nζ , there exist positive constants C, E, and η

depending only on (Cγ , eγ)γ∈Nζ such that

∀t ∈ (0, η),

∣
∣
∣
∣
∣
E[f(X̂x

t , x̃)]−
ν∑

k=0

1

k!
tkLkf(x, x̃)

∣
∣
∣
∣
∣
≤ Ctν+1(1 + ‖(x, x̃)‖E).

In practice, most of the usual schemes satisfy this property. In fact, to prove that a scheme is a potential
νth-order scheme, it is common to use a Taylor expansion that gives generally at the same time the immersion
property. We illustrate this for the exact scheme below.

Proposition 38 — Let D ⊂ Rζ , b : D→ Rζ and σ : D→ Mζ(R) such that ‖b(x)‖+‖σ(x)‖ ≤ C(1+‖x‖) for
some C > 0, and assume that Lf(x) =

∑ζ
i=1 bi(x)∂if(x)+

1
2

∑ζ
i,j=1(σσ

T (x))i,j∂i∂jf(x) satisfies the required
assumption on D. Then, for any ν ∈ N, the exact scheme is a potential weak νth-order scheme for L and it
satisfies the immersion property.

Proof : Let f ∈ C∞
pol

∣
∣D(D× D̃). We know from the sublinear growth condition that we have bounds on the

moments of Xx
t : ∀q ∈ N∗, ∃Cq > 0, ∀t ∈ [0, 1],E[‖(Xx

t , x̃)‖q] ≤ Cq(1 + ‖(x, x̃)‖q). By iterating Itô’s Formula,
we get then easily for t ∈ [0, 1],E[f(Xx

t , x̃)] =

ν∑

k=0

tk

k!
Lkf(x, x̃) +

∫ t

0

(t− s)ν

ν!
E[Lν+1f(Xx

s , x̃)]ds.
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Since Lν+1f ∈ C∞
pol

∣
∣D(D × D̃), there are constants C > 0 and q ∈ N∗ depending only on a good sequence

of f such that |Lν+1f(x, x̃)| ≤ C(1 + ‖(x, x̃)‖q). Thus, we deduce that |E[f(Xx
t , x̃)]−

∑ν
k=0

tk

k!L
kf(x, x̃)| ≤

tν+1

(ν+1)!C(1 + Cq(1 + ‖(x, x̃)‖q)). 2

Besides, the immersion property is easily preserved by scheme composition.

Proposition 39 — Let L1 and L2 be two operators that satisfy the required assumptions on D, and assume
that p̂1x(t)(dz) and p̂2x(t)(dz) are respectively potential weak νth-order discretization schemes on D for these
operators that satisfy the immersion property. Let λ1, λ2 > 0 and X̂2◦1,x

λ2t,λ1t
∼ p̂2(λ2t) ◦ p̂1x(λ1t)(dz). Let

f ∈ C∞
pol

∣
∣D(D× D̃). Then, there are constants C,E, ν that only depend on a good sequence of f such that

∀t ∈ (0, η),

∣
∣
∣
∣
∣
∣

E[f(X̂2◦1,x
λ2t,λ1t

, x̃)]−
∑

l1+l2≤ν

λl11 λ
l2
2

l1!l2!
tl1+l2Ll1

1 L
l2
2 f(x, x̃)

∣
∣
∣
∣
∣
∣

≤ Ctν+1(1 + ‖(x, x̃)‖E).

Therefore,

• If L1L2 = L2L1, p̂
2(t) ◦ p̂1x(t)(dz) is a potential weak νth-order discretization scheme for L1 + L2

satisfying the immersion property.

• If ν ≥ 2, p̂2(t/2) ◦ p̂1(t) ◦ p̂2x(t/2) and 1
2

(
p̂2(t) ◦ p̂1x(t) + p̂1(t) ◦ p̂2x(t)

)
are potential weak second order

schemes for L1 + L2 satisfying the immersion property.

This proposition is a straightforward extension of Proposition 1.15, Corollary 1.16 and Theorem 1.17 of
Alfonsi [1], and we do not repeat the proof here. Thanks to this result, we can prove the immersion property
of the schemes that are obtained by splitting. The Ninomiya-Victoir scheme [20] which is obtained by a
composition of exact schemes naturally satisfies this property. By looking at the proof of Theorem 1.18
in [1], it still satisfies this property if we replace the Gaussian samples by moment matching variables. Also,
we can check that the second and third order schemes for the CIR process presented in Alfonsi [1] satisfy
the immersion property.

Corollary 40 — The Ninomiya-Victoir scheme and the second and third order scheme for the Cox-Ingersoll-
Ross process given in [1] satisfy the immersion property.

Corollary 41 — Let L1 (resp. L2) be an operator that satisfies the required assumptions on D1 (resp.D2). Let X̂1,x1

t and X̂2,x2

t be potential weak νth-order schemes for L1 and L2 sampled independently. Then,
(X̂1,x1

t , X̂2,x2

t ) is a potential weak νth-order schemes on D1 × D2 that satisfies the immersion property.

Proof : From the immersion property, it is easy to check that (X̂1,x1

t , x2) (resp. (x1, X̂
2,x2

t )) is a potential
νth order scheme for L1 (resp. L2) on D1 × D2 that satisfies the immersion property. The composition of
these schemes is simply (X̂1,x1

t , X̂2,x2

t ). Since L1 and L2 operate on different domains, we have L1L2 = L2L1,
which gives the result. 2

Proof of Theorem 23.
Let x ∈ S+

d (R) and f ∈ C∞
pol(S+

d (R)) and r = Rk((xi,j)2≤i,j≤d). Since the operator L1 satisfies the required
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assumption, we know that the exact scheme is a potential νth-order scheme (Proposition 38), and there are
constants C,E, η > 0 depending on a good sequence of f such that

∀t ∈ (0, η), |E[f(Xx
t )]−

ν∑

k=0

tk

k!
Lk
1f(x)| ≤ C(1 + ‖x‖E). (49)

On the other hand, we know from Theorem 13, equation (28) and Corollary 15 that we have

Xx
t = πThr(U

u
t )π,

where (Uu
t ){1,l} solves the SDEs (26) starting from the initial condition u1,l for 1 ≤ l ≤ r+1, and (Uu

t ){i,j} =

u{i,j} for the other coordinates. We have also X̂x
t = πThr(Û

u
t )π by construction, and it is natural to focus

on the function u 7→ f(πThr(u)π).
Let us consider the set

{x ∈ Sd(R), s.t. (xi,j)2≤i,j≤d ∈ S+
d−1(R), x1,1 ≥ 0}.

It is isomorphic to (R+×Rd−1)×S+
d−1(R) by the map x 7→ ((x1,1, . . . , x1,d), (xi,j)2≤i,j≤d). We have to notice

now that the function hr defined by (28) is such that hr ∈ C∞
pol

∣
∣R+×Rd−1(R+ ×Rd−1 ×S+

d−1(R)). It is indeed
a polynomial function with respect to u1,1, . . . , u1,d. Then, it is easy to check that u 7→ f(πThr(u)π) ∈
C∞
pol

∣
∣R+×Rd−1(R+ × Rd−1 × S+

d−1(R)) since f ∈ C∞
pol(S+

d (R)). Moreover, by the chain rule, we can get a good

sequence for this function that only depend on a good sequence of f since π and hr are fixed.
By assumption, (Ûu

t ){1,1} is a potential νth-order scheme for the operator (α − r)∂{1,1} + 2u{1,1}∂
2
{1,1}

and satisfy the immersion property. The schemes (Ûu
t ){1,i} (2 ≤ i ≤ r + 1) can be seen as a Ninomiya-

Victoir scheme with moment matching variables. They are therefore potential νth-order scheme for the
operator 1

2∂
2
{1,i} ([1], Theorem 1.18) and satisfy the immersion property from Corollary 40. Therefore, from

Corollary 41, ((Ûu
t ){1,1}, . . . , (Û

u
t ){1,d}) is a potential νth order scheme for (α − r)∂{1,1} + 2u{1,1}∂

2
{1,1} +

1
2

∑r
i=1 ∂

2
{1,i} satisfying the immersion property. Thus, there are constants that we still denote by C,E, η > 0

depending on a good sequence of f such that:

∀t ∈ (0, η), |E[f(πThr(U
u
t )π)]− E[f(πThr(Û

u
t )π)]| ≤ Ctν+1(1 + ‖u‖E). (50)

Now, one has to notice that ‖u‖ ≤ C′(1+‖x‖) for some constantC′ > 0 since we have u{1,1}+
∑r

k=1(u{1,k+1})
2 =

x̃{1,1} and x̃ and x have the same Frobenius norm. We get then the result by gathering (49) and (50). 2

Remark 42 — We can check by looking at the proof above that the scheme obtained for L1 also satisfies the
immersion property. Since we do not need it for the construction of the further schemes for WISd(x, α, b, a)
or AFFd(x, ᾱ, B, a), we will no longer mention it.

D.2 Proof of the third condition of Theorem 21 for Wishart processes

The scope of this part is to show the following result.

Proposition 43 — Let (Xx
t )t≥0 ∼ WISd(x, α, b, a), f ∈ C∞

pol(Sd(R)), x ∈ S+
d (R) and T > 0. Then,

ũ(t, x) = E[f(Xx
t )] is C∞ on [0, T ]× S+

d (R), solves ∂tũ(t, x) = Lũ(t, x) and its derivatives satisfy

∀l ∈ N, ∀n ∈ N d(d+1)
2 ∃Cl,n, el,n > 0, ∀x ∈ S+

d (R), ∀t ∈ [0, T ],

∣
∣
∣
∣
∣
∣

∂lt
∏

1≤i≤j≤d

∂
n{i,j}

{i,j} ũ(t, x)

∣
∣
∣
∣
∣
∣

≤ Cl,n(1 + ‖x‖el,n).

(51)
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For technical reasons on the boundary of S+
d (R), it is convenient here to work with f ∈ C∞

pol(Sd(R)) rather
than f ∈ C∞

pol(S+
d (R)). The proof of Proposition 43 is based on a remarkable identity on the derivatives of

the Laplace transform which is stated below.

Lemma 44 — Let (Xx
t )t≥0 ∼

Law
WISd(x, α, b, a) and v = vR + ivI such that vR ∈ Db,a;t and vI ∈ Sd(R).

We denote by φ(t, α, x, v) the Laplace transform of Xx
t given by (10), the other parameters a, b being fixed.

Then, the derivative w.r.t x{k,l} satisfies the following equality

∂{k,l}φ(t, α, x, v) = φ(t, α+ 2, x, v)p
{k,l}
t (v),

where p
{k,l}
t is a polynomial function of the matrix elements of degree d defined by :

p
{k,l}
t (v) = Tr

[

vadj(Id − 2qtv)mt(e
k,l
d + 1k 6=le

l,k
d )mT

t

]

=:
∑

γ∈Nd(d+1)
2 ,|γ|≤d

a
γ,{k,l}
t vγ , where vγ =

∏

{i,j}
v
γ{i,j}

{i,j} .

Moreover, its coefficients are bounded uniformly in time:

∃Kt > 0, ∀s ∈ [0, t], max
γ∈N d(d+1)

2 ,|γ|≤d

(

|aγ,{k,l}s |
)

≤ Kt.

Proof : We get from (10),

∂{k,l}φ(t, α, x, v) =
Tr
[

vadj(Id − 2qtv)mt(e
k,l
d + 1k 6=le

l,k
d )mT

t

]

det(Id − 2qtv)
× exp

(
Tr
[
v(Id − 2qtv)

−1mtxm
T
t

])

det(Id − 2qtv)
α
2

= φ(t, α+ 2, x, v)Tr
[

vadj(Id − 2qtv)mt(e
k,l
d + 1k 6=le

l,k
d )mT

t

]

.

Since s 7→ ‖ms‖ and s 7→ ‖qs‖ are continuous functions on [0, t], we obtain the bounds on the polynomial
coefficients. 2

Proof of Proposition 43: Let f ∈ C∞
pol(Sd(R)). First, let us observe that (51) is obvious when l = |n| = 0

Since we have ∀l ∈ N, Llf ∈ C∞
pol(Sd(R)), and ∂ltũ(t, x) = E(Llf(Xx

t )), it is sufficient to prove (51) only for
the derivatives w.r.t. x.

We first focus on the case |n| = 1 and want to show that ∂{k,l}ũ(t, x) satisfies (51). The sketch of
this proof is to write f as the inverse Fourier transform of its Fourier transform and then use Lemma 44.
Unfortunately, f has not a priori the required integrability to do that, and we have to introduce an auxiliary
function fρ.

Definition of the new function fρ. Since Db,a;T given by (9) is an open set and 0 ∈ Db,a;T , there
is ρ > 0 such that ρId ∈ Db,a;T . Let µ : R → R be the function such that µ(x) = 0 if x ≤ −1 or
x ≥ 0, µ(x) = exp( 1

x(x+1) ) if −1 < x < 0. We have µ ∈ C∞(R). We consider then the cutoff function

ζ : R → R ∈ C∞(R) defined as ∀x ∈ R, ζ(x) =
∫

x
−∞

µ(y)dy
∫Rµ(y)dy . It is nondecreasing, such that 0 ≤ ζ(x) ≤ 1,

ζ(x) = 0 if x ≤ −1 and ζ(x) = 1 if x ≥ 0. Besides, we have ζ ∈ C∞
pol(R) since all its derivatives have a

compact support. Now, we define a ϑ ∈ C∞
pol(Sd(R)) as

ϑ : Sd(R) → R
x 7→ ∏d

i=1 ζ(x{i,i})
∏

i6=j ζ(x{j,j}x{i,i} − x2{i,j}).
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It is important to notice that 0 ≤ ϑ ≤ 1, ϑ(x) = 1 if x ∈ Sd(R) and ϑ(x) = 0 if there is i ∈ {1, . . . , d}
such that x{i,i} < −1 or i < j ∈ {1, . . . , d} such that x2{i,j} > 1 + x{i,i}x{i,i}. Let γ ∈ Nd(d−1)/2. Since

f ∈ C∞
pol(Sd(R)), there are constants K,E > 0 and K ′, E′ > 0 such that, ∀x ∈ Sd(R)
|∂γ(ϑf)(x)| ≤ K(1 + ‖x‖E)

∏d

i=1

(

1{|x{i,i}|>−1}
) ∏

1≤i<j≤d

(1{x2
{i,j}

≤1+x{i,i}x{j,j}}

)

≤ K ′(1 + ‖(x{i,i})1≤i≤d‖E1)
∏d

i=1

(

1{|x{i,i}|>−1}
) ∏

1≤i<j≤d

(1{x2
{i,j}

≤1+x{i,i}x{j,j}}

)

.

Here, the upper bound only involves the diagonal coefficients. We define

x ∈ Sd(R), fρ(x) := ϑ(x)f(x) exp(−Tr(ρx)),

and obtain from the last inequality that fρ belongs to the Schwartz space of rapidly decreasing functions
since ρ > 0. Thus, its Fourier transform also belongs to the Schwartz space and we have

fρ(x) =
1

(2π)
d(d+1)

2

∫R d(d+1)
2

exp(−Tr(ivx))F(fρ)(v)dv, where F(fρ)(v) =

∫R d(d+1)
2

exp(Tr(ivx))fρ(x)dx,

and in particular fρ,F(fρ) ∈ L1(Sd(R)) ∩ L∞(Sd(R)).
A new representation of ũ(t, x). We have f(x) = exp(ρTr(x))fρ(x) for x ∈ S+

d (R), and therefore

ũ(t, x) = E[exp(Tr(ρXx
t ))fρ(X

x
t )]

=
1

(2π)
d(d+1)

2

E [∫R d(d+1)
2

exp(Tr[(−iv + ρId)X
x
t ])F(fρ)(v)dv

]

=
1

(2π)
d(d+1)

2

∫R d(d+1)
2

E[exp(Tr[(−iv + ρId)X
x
t ])]F(fρ)(v)dv.

The last equality holds since
∫R d(d+1)

2
|E[exp(Tr[(−iv+ ρId)X

x
t ])]| × |F(fρ)(v)|dv ≤ φ(t, α, x, ρId)‖F(fρ)‖1 <

∞. Here, we have used that ρId ∈ Db,a;T to get φ(t, α, x, ρId) <∞.
Derivation with respect to x{k,l} , k, l ∈ {1, . . . , d}. From Lemma 44, we have by Lebesgue’s theorem

∂{k,l}ũ(t, x) =
1

(2π)
d(d+1)

2

∫R d(d+1)
2

φ(t, α+ 2, x,−iv + ρId)p
{k,l}
t (ρId − iv)F(fρ)(v)dv (52)

since |∂x{k,l}φ(t, α, x,−iv + ρId)F(fρ)(v)| ≤ |φ(t, α + 2, x, ρId)||p{k,l}t (ρId − iv)F(fρ)(v)| and p
{k,l}
t (ρId −

iv)F(fρ)(v) is a rapidly decreasing function.
Let 1 ≤ k′, l′ ≤ d. An integration by part gives

∫R(ρId−iv){k′,l′} exp (Tr[x(iv − ρId)])ϑ(x)f(x)dx{k′ ,l′} =

(
1k′ 6=l′

2 + 1k′=l′)
∫R exp (Tr[x(iv − ρId)])∂{k′,l′}(ϑ(x)f(x))dx{k′ ,l′}, and thus

(ρId − iv){k′,l′}F(exp[−ρTr(x)]ϑ(x)f(x))(v) = (
1k′ 6=l′

2
+ 1k′=l′)F(exp[−ρTr(x)]∂{k′,l′}[ϑ(x)f(x)])(v).

We set ϕ(γ) =
∏

1≤k′≤l′≤d(
1k′ 6=l′

2 + 1k′=l′)
γ{k′,l′} for γ ∈ Nd(d+1)/2 and get by iterating the argument that:

∏

1≤k′≤l′≤d

(ρId − iv)
γ{k′,l′}

{k′,l′} F(fρ)(v) = ϕ(γ)F (exp [−ρTr(x)] ∂γ(ϑ× f)(x)) (v). (53)

Since p
{k,l}
t (ρId − iv) =

∑

γ∈Nd(d+1)
2 ,|γ|≤d

a
γ,{k,l}
t

∏

1≤k′≤l′≤d(ρId − iv)
γ{k′,l′}

{k′,l′} , we get from (52) and (53):

∂{k,l}u(t, x) =
∑

|γ|≤d

a
γ,{k,l}
t ϕ(γ)E (∂γ(f × ϑ)(Y x

t )) =
∑

|γ|≤d

a
γ,{k,l}
t ϕ(γ)E (∂γf(Y x

t )) , (54)
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where (Y x
t )t≥0 ∼

Law
WISd(x, α + 2, b, a). Here, we have used that ∂γ(ϑ × f)(y) = ∂γf(y) for y ∈ S+

d (R).
From Lemma 44 (a

γ,{k,l}
t )

γ∈N d(d+1)
2 ,|γ|≤d

is bounded for t ∈ [0, T ], and we get (51) when |n| = 1 since

∂γf ∈ C∞
pol(Sd(R)). Thanks to (54), a derivative of order |n|, can be seen as a (bounded) linear combination

of derivatives of order |n| − 1, and we easily get (51) by an induction on |n|.
It remains to check that we have indeed ∂tũ(t, x) = Lu(t, x). Let t, h > 0. By the Markov property, we

have ũ(t+ h, x) = E[ũ(t,Xx
h )]. From (51) and Itô’s formula, we get [ũ(t+ h, x)− u(t, x)]/h →

h→0+
Lu(t, x). 2

Lemma 45 — Let α, x ∈ S+
d (R), B ∈ L(S+

d (R)) that satisfies (4), and x(t) be the solution of the following
ODE

x(t) = x+

∫ t

0

(α+B(x(s)))ds. (55)

Then, we have x(t) ∈ S+
d (R) for t ≥ 0.

Proof : The ODE (55) is affine and has unique solution on S+
d (R) which is given by

t ≥ 0, x(t) = exp(tB)(x) +

∫ t

0

exp (sB) (α)ds, (56)

where ∀t ∈ R+, ∀x ∈ Sd(R), exp(tB)(x) =
∑∞

k=0
tkBk(x)

k! , Bk(x) = B ◦ . . . ◦B
︸ ︷︷ ︸

k times

(x) such that B0(x) = x.

We assume first that α, x ∈ S+,∗
d (R) and consider τ = inf{t ≥ 0, x(t) /∈ S+

d (R)}, with the convention
inf ∅ = +∞. We have τ > 0. Let us assume by a way of contradiction that τ < ∞. Then, x(τ) cannot be
invertible and there is y ∈ S+

d (R) such that y 6= 0 and Tr(yx(τ)) = 0. From (56) and (4), we get

Tr(x′(τ)y) = Tr ([B(x(τ)) + α]y) > 0,

since α is positive definite. Therefore, there is ǫ ∈ (0, τ) such that Tr(yx(τ − ǫ)) < 0. Let us recall now that
z ∈ S+

d (R) ⇐⇒ ∀y ∈ S+
d (R),Tr(yz) ≥ 0. Thus, x(τ − ǫ) 6∈ S+

d (R), which contradicts the definition of τ .
In the general case α, x ∈ S+

d (R), we observe that the solution (56) is continuous w.r.t. x and α, and
thus ∀t ≥ 0, x(t) ∈ S+

d (R) since S+
d (R) is a closed set. 2
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