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Introduction

Let x n = {x (1) , . . . , x (n) } be an ordered sample of real data points of size n. The goal is to find an automatic procedure which based on the data delivers a histogram with an appropriate number and widths of bins. This is known as the problem of histogram construction. We use the term "automatic procedure" (or simply "procedure") to refer to a fully prescribed algorithm for constructing a histogram that requires no further input by a user.

Most available histogram procedures yield so called regular histograms having equal length bins. Even for a regular histogram, the choice of the proper bin length has no generally accepted automatic solution. The number of proposed regular histogram procedures has become amazingly large. In contrast, irregular histogram constructions, which may adapt to local variability and result in histograms of varying bin width, are more rare. This may be due to a reliance on classical statistical decision theory to drive model selection. That is, a decision theory framework has produced many regular histogram procedures but has applied less easily in selecting highly parametrised irregular histograms. While some irregular histogram constructions have been proposed, these typically depend on tuning parameters without default values. Thus, they are not fully automatic procedures [START_REF] Engel | The multiresolution histogram[END_REF][START_REF] Kanazawa | Hellinger distance and Akaike's information criterion for the histogram[END_REF] and [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]. In addition, regular histogram procedures are often fast while many irregular histograms come with more extreme computational demands involving exhaustive search routines [START_REF] Kanazawa | An optimal variable cell histogram[END_REF][START_REF] Kanazawa | Hellinger distance and Akaike's information criterion for the histogram[END_REF]; Rissanen, Speed and Yu 1992; [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]. One exception is the taut string method of [START_REF] Davies | Densities, spectral densities and modality[END_REF] which produces an automatic generally irregular histogram at a computational cost of O(n log n). We include this method here as well as a method motivated by the taut string procedure which produces a regular histogram using appropriate Kuiper metrics.

The construction of histograms is an excellent problem for comparing the different paradigms of model choice. Our goal is to examine the performance of existing histogram procedures, each motivated by varying concepts of model quality, through simulation. We consider only histogram constructions available through full procedures. With the exception of the taut string, this treatment does exclude most irregular histogram methods mentioned above that depend on tuning parameters. However, it is fair to say that there are no guidelines available for using these in practice and we wish to avoid inventing implementations which may not accurately reflect these methods. Instead, we focus our investigation also on how existing histogram procedures perform in terms of a visual measure of model quality. This model metric assesses the extent to which a histogram construction matches the shape of a data generating density in terms of modes. The ability to identify the peaks in underlying densities is graphically an important property that has not received much consideration among histogram procedures. In addition we consider Hellinger distance as a measure of histogram quality.

Histogram procedures

Almost all histogram procedures involve optimality considerations based on statistical decision theory, where the performance of any data-based histogram procedure f (

x) ≡ f (x | x n ) is quantified through its risk R n (f, f , ) = E f (f, f ) (1) 
with respect to a given, nonnegative loss function and a density f , that is assumed to have generated the data x n . One usually seeks the histogram procedure f that minimizes [START_REF] Akaike | A new look at the statistical model identification[END_REF], which is then deemed optimal. The choice of a loss is important for judging histograms. There are many possibilities which include L r -metrics

(f, g) = R |f (x) -g(x)| r dx 1/r , 1 ≤ r < ∞; sup x |f (x) -g(x)|, r = ∞, the squared Hellinger distance 2 (f, g) = 1 2 R f (x) -g(x)
2 dx and the Kullback-Leibler discrepancy

(f, g) = R log f (y) g(y) f (y)dy ∈ [0, ∞].
Although the choice of a loss function is to some extent arbitrary, reasons can be put forward for using one or the other. [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF] argue that Kullback-Leibler divergence is inappropriate because (f, f ) = ∞ whenever a histogram f has an empty bin. However, there are histogram methods based on AIC, [START_REF] Akaike | A new look at the statistical model identification[END_REF], or cross-validation rules by [START_REF] Hall | Akaike's information criterion and Kullback-Leibler loss for histogram density estimation[END_REF], which are derived from risk minimization with this type of loss. The L 2 -loss is popularly used because the asymptotic risk from (1) can then often be expanded and analysed [c.f. Wand (1997) and references therein]. [START_REF] Barron | Risk bounds for model selection via penalization[END_REF] and [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF] rely on squared Hellinger distance for determining histograms. [START_REF] Devroye | Nonparametric density estimation: the L 1 view[END_REF] give arguments in favour of the L 1 -metric.

The construction of a histogram on the data range [x (1) , x (n) ] is essentially the same for all histogram procedures. A histogram is of the form

f m (x) ≡ f m,tm (x) = N 1 n I{t 0 ≤ x ≤ t 1 } + m j=2 N j n I{t j-1 < x ≤ t j }, (2) 
with the bin positions as a sequence of m + 1 knots t m = (t 0 , t 1 , . . . , t m ) ∈ R m+1 , t j < t j+1 . The number of bins of the histogram is m ∈ N. The corresponding bin frequencies are

N j,m = {i : x (i) ∈ [t 0 , t 1 ]} j = 1, {i : x (i) ∈ (t j-1 , t j ]} j = 2, . . . , m. (3) 
For regular histograms with equisized bins we get

t m = t 0 + (t m -t 0 ) m (0, 1, . . . , m) ∈ R m+1 , t 0 < t m ∈ R (4) 
and a regular histogram

f reg m (x), x ∈ [x (1) , x (n) ]
, with m bins is determined by the knots

tj = x (1) + j(x (n) -x (1) ) m , j = 0, . . . , m. (5) 
The bin frequencies are estimated by Nj,m as in (3) with t j replaced by tj . The so called 'anchor position' of the histogram [see [START_REF] Simonoff | Measuring the stability of histogram appearance when the anchor position is changed[END_REF]] is thus chosen here as x [START_REF] Akaike | A new look at the statistical model identification[END_REF] . Regular histogram procedures reduce to rules for determining an optimal number m opt of bins that minimizes some type of risk in selecting a histogram from (5):

R n (f, f reg m opt , ) = inf m∈N R n (f, f reg m ,
). Three broad categories of regular histogram constructions which differ by the methods used for determining m opt in (5) are described in Sections 2.1, 2.2 and 2.3. We present the taut string procedure and a Kuiper-metric based method in Section 2.4.

Plug-in methods

Assuming a sufficiently smooth underlying density f , the asymptotic risk (1) of a histogram f reg m from (5) can often be expanded and minimized to obtain an asymptotically optimal bin number m opt , which often depends on a constant C(f ) > 0 determined by f . For example, a bin number m opt = C(f )n 1/3 is asymptotically optimal for minimizing the L r -risk for 1 ≤ r < ∞ as well as the squared Hellinger distance, while m opt = C(f )[n/ log(n)] 1/3 is asymptotically optimal with the L ∞ -risk [c.f. [START_REF] Scott | On optimal and data-based histograms[END_REF], [START_REF] Freedman | On the histogram as a density estimator: L 2 theory[END_REF], [START_REF] Wand | Data-based choice of histogram bin width[END_REF] for L 2 ; Devroye and Györfi (1985), [START_REF] Hall | Minimizing L 1 distance in nonparametric density estimation[END_REF] for L 1 ; [START_REF] Kanazawa | Hellinger distance and Akaike's information criterion for the histogram[END_REF] for Hellinger distance; [START_REF] Silverman | Choosing the window width when estimating a density[END_REF] for L ∞ ]. The estimation of unknown quantities in C(f ) yields a plug-in estimate m of m opt . Additionally, expressions for C(f ) and estimates of m are often simplified by assuming an underlying normal density f [c.f. [START_REF] Scott | On optimal and data-based histograms[END_REF]]. We will consider in greater detail a more sophisticated kernel method proposed by [START_REF] Wand | Data-based choice of histogram bin width[END_REF] for estimating m. The WAND procedure is defined here using the two-stage bin width estimator h2 with M = 400 given in [START_REF] Wand | Data-based choice of histogram bin width[END_REF] and implemented by dpih in the R-package KernSmooth (Wand and Ripley, 2007).

Cross-validation

Cross-validation (CV) attempts to directly estimate the risk R n (f, f reg m , ) in approximating f by f reg m . This empirical risk can then be minimized by an estimate m. In particular, the data x n are repeatedly divided into two parts, one of which is used to fit f reg m and the other to evaluate an empirical loss. These repeated loss evaluations can be averaged to estimate the risk R n (f, f reg m , ). Based on loss functions evoked by their names, L 2 cross-validation (L2CV) and Kullback-Leibler (KLCV) procedures require maximization of

m(n + 1) n 2 m j=1 N 2 j,m -2m and m j=1
N j,m log(N j,m -1) + n log(m), respectively [c.f. [START_REF] Rudemo | Empirical choice of histograms and kernel density estimators[END_REF], L2CV; [START_REF] Hall | Akaike's information criterion and Kullback-Leibler loss for histogram density estimation[END_REF], KLCV].

Penalized-maximum likelihood

Many regular histogram procedures determine a histogram f reg m from (5) based on a bin number m that maximizes a penalized log-likelihood

L n (m) = m j=1 N j,m log(mN j,m ) -pen(m). ( 6 
)
Apart from an irrelevant constant, the first sum above corresponds to the log-likelihood n j=1 log( f reg m (x (j) )) of the observed data. The value L n (m) is viewed as a single numerical index that weighs a regular histogram's fit to the data, as measured by the likelihood, against its complexity measured by the penalty term. The final histogram f reg m is judged to achieve the best balance between model fit and model complexity. The penalty in [START_REF] Davies | Local extremes, runs, strings and multiresolution (with discussion)[END_REF] heavily influences the histogram f reg m and numerous choices have been proposed:

pen(m) :=        m AIC, m + {log(m)} 2.5 BR, m log(n)/2 BIC, log(C m,n ) NML.
Akaike's Information Criterion (AIC), [START_REF] Akaike | A new look at the statistical model identification[END_REF], is based on minimizing estimated Kullback-Leibler discrepancy. [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF] propose a modified AIC penalty (BR above) to improve the small-sample performance of the AIC procedure. The Bayes Information Criterion (BIC) follows from a Bayesian selection approach introduced by [START_REF] Schwartz | Estimating the dimension of a model[END_REF]. The Normalized Maximum Likelihood (NML) criterion uses an asymptotic ideal code length expansion [c.f. [START_REF] Rissanen | Fisher information and stochastic complexity[END_REF]], derived by Szpankowski (1998), as a penalty:

log(C m,n ) = m -1 2 log n 2 + log √ π (Γ( m 2 )) + √ 2mΓ( m 2 ) 3 √ nΓ( m-1 2 ) + 1 n 3 + m(m -2)(2m + 1) 36 - m 2 Γ 2 ( m 2 ) 9Γ 2 ( m-1 2 )
, where Γ(•) denotes the gamma function. [START_REF] Rissanen | A universal prior for integers and estimation by minimum description length[END_REF][START_REF] Rissanen | Stochastic Complexity (with discussion)[END_REF][START_REF] Rissanen | Stochastic complexity in statistical inquiry[END_REF] proposes several model selection techniques based on the principle of minimum description length (MDL). Information theory is applied to characterize the best model, with respect to a given model class, as the one providing the shortest encoding of the data x n . [START_REF] Hall | On stochastic complexity and nonparametric density estimation[END_REF] apply different coding formulations to derive two further selection rules. To choose a bin number m, the stochastic complexity (SC) and the minimum description length (MDL) procedures require maximization of

m n (m -1)! (m + n -1)! m j=1 N j,m ! or m j=1 N * j,m log(N * j,m ) -n - m 2 log n - m 2 n log(m) - m 2 log(n), respectively, with N * j,m = N j,m -1/2.

The Taut string histogram procedure and a Kuiper-method

The taut string procedure is described in [START_REF] Davies | Densities, spectral densities and modality[END_REF]. It assumes no true density and hence there is no loss or risk function. Instead it defines what is meant by an adequate approximation of the data and then attempts to find an adequate histogram with minimum number of peaks. This second step constitutes a kind of regularization.

We first give a brief description of the original taut string procedure. Let E n denote the empirical distribution function of the data x n . Write the so called Kolmogorov tube of radius > 0 centered at E n as

T (E n , ) = G; G : R → [0, 1], sup x |E n (x) -G(x)| ≤ .
The taut string function is best understood by imagining a string constrained to lie within the tube T (E n , ) and tied down at (x (1) , 0) and (x (n) , 1) which is then pulled until it is taut. There are several equivalent analytic ways of defining this. The taut string defines a spline function

S n on [x (1) , x (n) ] that is piecewise linear between knots {x (1) , x (n) } ∪ {x (i) : 1 < i < n, |S n (x (i) ) -E n (x (i) )| = },
corresponding to points where S n touches the upper or lower boundary of the tube T (E n , ). The knots define the bins and hence the histogram bin number, bin locations and bin probabilities as follows. If two consecutive knots are x (ij ) and x (ij+1) , then the area of the bin (x (ij ) , x (ij+1) ] is proportional to the number of data points in (x (ij ) , x (ij+1) ] except for the first bin where the left point x (1) is included. The thus constructed taut string histogram s n is known to have the fewest peaks or modes of any histogram whose integral lies in T n (E n , ).

The size of the tube radius is important for the shape of the taut string histogram s n . Davies and Kovac (2004) prescribe a tube squeezing factor n that determines the tube T (E n , n ) and s n as part of the taut string histogram procedure. This is done using a data approximation concept involving weak metrics applied to a continuous distribution function E and the empirical distribution E n based on an i.i.d. sample from E. The κ-order Kuiper metric, κ ∈ N, is defined by

d ku,κ (E, E n ) = sup    κ j=1 E(b j ) -E(a j ) -E n (b j ) -E n (a j ) : a j ≤ b j ∈ R, b j ≤ a j+1    . (7) 
The definition of adequacy is based on the differences between successive Kuiper metrics

ρ 1 (E, E n ) = d ku,1 (E, E n ) and ρ i (E, E n ) = d ku,i (E, E n )-d ku,i-1 (E, E n ) for i > 1.
The distribution of ρ i (E, E n ), i ∈ N, does not depend on E for continuous E. This can be seen as follows. If we denote a random i.i.d. sample from E by X 1 , . . . , X n then this can be generated as X i = E -1 (U i ) where E -1 denotes the inverse of E and the U i are i.i.d. random variables uniformly distributed on (0, 1). It follows that E(b j ) -E(a j ) = d j -c j and E n (b j ) -E n (a j ) = Ẽn (d j ) -Ẽn (c j ) where c j = E(a j ), d j = E(b j ) and Ẽn denotes the empirical distribution function of the U i . As E is continuous E((-∞, ∞)) ⊃ (0, 1) and hence the sup in ( 7) is taken over all c j and d j in (0, 1) with c j ≤ d j ≤ c j+1 . The above argument follows the proof of the corresponding result for the Kolmogorov metric. We now take κ ≥ 3 to be a fixed odd integer. The software allows a maximum value of 19. Given this κ we choose q κ,i , i = 1, 2, . . . κ and say that a taut string distribution S n from a tube T (E n , ) provides an adequate data approximation if

ρ i (S n , E n ) ≤ q κ,i for each i = 1, . . . , κ. (8) 
The q κ,i are chosen such that if E is the uniform distribution on (0, 1) then with probability 0.95 the resulting histogram has just the one bin. Asymptotically the chosen value of κ is irrelevant as the correct number of modal values will be found [START_REF] Davies | Densities, spectral densities and modality[END_REF]). The finite sample performance does depend on κ. If it were known a priori that the density corresponding to E has k peaks then it is intuitively clear that κ = 2k + 1 would be the optimal choice. Failing this κ has to be fixed in advance. As it is clearly a hopeless task to find 10 peaks on a sample of size n = 20 from a ten-peaked distribution we choose κ as a function of the sample size n. In particular we put

κ = κ(n) =    5 n ≤ 50, 9 51 ≤ n ≤ 100, 19 n ≥ 101 (9) 
but clearly other choices are possible. In the taut string (TS) procedure we now reduce the tube radius of T (E n , ) until the approximation standard, ρ i (S n , E n ) ≤ q κ,i , i = 1, . . . , κ, is first met; this provides the squeezing factor n to determine a final, usually irregular, taut string histogram s n .

The software we use is available at http://www.stat-math.uni-essen.de/davies.html. The R-package ftnonpar by [START_REF] Davies | ftnonpar, R package, version 0.1[END_REF] contains another version pmden of the TS algorithm which essentially has the same features.

Although not used in the remainder of the paper we mention that the version of the software applied here also includes a multiscale analysis of the data as developed by [START_REF] Dümbgen | Multiscale inference about a density[END_REF]. This removes one weakness of the Kuiper metric definition of adequacy which sometimes fails to pick up low power peaks centred on small intervals. If this is included then one bin only is returned in 90% (as against 95%) of the cases for uniformly distributed data.

Motivated by the taut string procedure we can derive a method which automatically produces regular histograms. We denote it by KUIP. This histogram results from computing histogram distribution functions for an increasing number of bins until all Kuiper-conditions, i.e. condition [START_REF] Davies | ftnonpar, R package, version 0.1[END_REF] above, are fulfilled.

Real data examples

We illustrate histogram construction with three data sets: eruptions of the Old Faithful geyser, the duration of treatment of patients in a suicide study, and the velocities of 82 galaxies from 6 well-separated conic sections of an unfilled survey of the Corona Borealis region. The first data set is found in [START_REF] Azzalini | A look at some data on the Old Faithful geyser[END_REF], the second in [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF] and the last one in [START_REF] Postman | Probes of large-scale structures in the Corona Borealis region[END_REF]. Extensive analyses by other authors have produced right skewed histograms for the suicide study data (cf. [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF][START_REF] Scott | Multivariate density estimation: theory, practice, and visualization[END_REF]) and histograms of varying modality for the galaxy data (cf. [START_REF] Postman | Probes of large-scale structures in the Corona Borealis region[END_REF][START_REF] Roeder | Density estimation with confidence sets exemplified by superclusters and voids in galaxies[END_REF]). There are various versions of the Old Faithful data, which often produce histograms with two peaks; the version here (from geyser(MASS) in R) is heavily rounded with several observations identically "2" or "4".

Figures 123provide histograms constructed with procedures from Section 2. The point made visually is the degree to which the histograms disagree in their shapes, largely when it comes to the number and position of peaks. We explore this aspect further in our numerical studies.

Simulation Study

Our simulation study focuses on regular histogram procedures described in Section 2 as well as the irregular taut string procedure and the regular Kuiper-histogram. To limit the size of the study, we have excluded several regular histogram procedures involving plug-in estimates, such as Sturges's rule of 1 + log 2 (n) bins (Sturges 1926), as well as methods from [START_REF] Daly | Construction of optimal histograms[END_REF] and [START_REF] He | Selecting the number of bins in a histogram: A decision theoretic approach[END_REF]. Numerical studies in [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF] indicate that these are not competitive with the other methods that we consider.

We outline a new performance criterion in Section 4.1, motivated by the data examples in Figures 123. Section 4.2 describes the design of the simulation study to compare performances of histogram construction methods and the simulation results are summarized in Section 4.3.

Performance criterion: Peak identification loss

We define a mode or peak of a density f as the midpoint of an interval (

x 1 , x 2 ) ⊂ I ⊂ [x 1 , x 2 ] which satisfies the following: f (x) = c > 0 is constant on x ∈ I and, for some δ > 0, it holds that c > f (x) if x ∈ I δ \ I for the enlargement I δ = ∪ y∈I {x ∈ R : |x -y| ≤ δ} of I.
Identifying the locations of peaks in a reference density f is known to be a difficult problem for many histograms; see the discussion in [START_REF] Scott | Multivariate density estimation: theory, practice, and visualization[END_REF] for the normal density. To illustrate this, Figure 4 provides histograms for a sample from the claw density, which is a normal mixture with five peaks taken from [START_REF] Marron | Exact mean integrated squared error[END_REF]. Two main errors in identifying peaks of the claw density f become evident in Figure 4. Histogram constructions can miss peaks of f (e.g., BIC, MDL) or they can produce unnecessary peaks (e.g., AIC). With these observations in mind, we propose the following loss to measure a histogram's performance in identifying peaks of a density f . Suppose f is a density with p = p(f ) ∈ N peaks at z 1 , . . . , z p satisfying (z i -δ i , z i + δ i ) ∩ (z j -δ j , z j + δ j ) = ∅, i = j, for some positive vector δ = δ(f ) ≡ (δ 1 , . . . , δ p ) ∈ R p . Assume that a histogram f has p = p( f ) peaks at AIC, SC (111 bins) y 1 , . . . , y p. We say a peak of f at y j matches a peak of f at z i if min 1≤j ≤ p |z i -y j | = |z i -y j | < δ i . An f -peak that matches no peak of f is spurious for f while an f -peak that has no matches is said to be unidentified by f . We can then define a peak identification loss as a count: The test densities are depicted in Figures 5 and6. We use them for evaluating the performance of eleven histogram procedures: AIC, BIC, BR, KLCV, L2CV, MDL, NML, SC, WAND, KUIP, TS. We include the taut string histogram (TS) to consider this natural irregular competitor of KUIP. To measure the quality of histograms, we consider risks based on two different losses: squared Hellinger distance and the peak identification (PID) loss from [START_REF] Dümbgen | Multiscale inference about a density[END_REF]. The peak identification loss has an immediate interpretation, while the Hellinger loss seems appropriate for likelihood-based histograms. For each reference density f and sample size n = (30, 50, 100, 500, 1000), we use 1000 independent size n samples x j,n ≡ x j,n (f ), j = 1, . . . , 1000, to approximate the risk of each histogram procedure f :

R n (f, f , ) = 1 1000 1000 j=1 (f, fj,n ),
with loss evaluations (f, fj,n ) from histograms fj,n at each simulation run x j,n .

Simulation results

Tables 1 and2 provide the peak identification and Hellinger risks, respectively, for all procedures and for the sample sizes n = 50, 500, 1000.

To present a rough overview of the results of the simulation study, Figures 7 -10 show the average ranks of the eleven histogram methods, resulting from ranking the procedures by their risks. In Figures 7 and9 the ranks are calculated over all considered densities and all sample sizes of the simulation study; in Figures 8 and 10 the ranks are only taken over the unimodal and the multimodal densities separately.

From these figures, the differences among the average ranks for Hellinger loss are generally smaller than those for peak identification across the procedures. This indicates that more disagreement consistently emerges among The data sample was chosen here so that the histogram realisations have peak identification losses roughly matching the average losses (or risks) for each procedure in Table 1.

the histograms when identifying modes rather than Hellinger distance. Such differences in peak identification are particularly evident in considering the ranks over unimodal densities (Figure 8), where AIC, L2CV and WAND methods were generally the worst performers and BIC and TS methods performed relatively well. This demonstrates that regular histogram procedures generally tend to find too many peaks, which is also clear in examining the unimodal cases in Table 1. Such behavior can carry over to multimodal cases as well but some caution is required in interpreting the results. For illustration, we may consider the "bimodal" density in Table 1 where most regular histograms appear to perform well and BIC has the lowest peak identification risk of only 0.09 for samples of size n = 500. This compares to 1.37 for the taut string. However, if we look at the nearest unimodal density to the bimodal, shown in Figure 5, the performance of BIC deteriorates and its risk is now 0.82 as against 0.09 for the taut string; this pattern holds for many other regular histograms as well. The explanation is that the two peaks of the bimodal are not very pronounced and are difficult to find reliably. In this case, BIC seems to identify these peaks because it always tends to put two peaks there whether they are present in the density or not. The taut string cannot detect such weak peaks and has an error around 1. In fact no method can detect these peaks reliably, BIC only gives the illusion of doing so. The irregular taut string histogram often exhibited the lowest Hellinger risk over many test densities and sample sizes, but differences were often relatively small compared to regular histograms (Table 2). The real weakness of regular histograms in being unable to adapt to local variability emerges most clearly in peak identification. The taut string procedure does not suffer from this weakness. This is also evident in comparing the taut string to its regular counterpart KUIP.

We can now summarize the results of the simulation study as follows:

• L2CV consistently is the worst performer in both peak identification and Hellinger distance.

• Of the information theory-based histograms, according to work of [START_REF] Rissanen | Stochastic Complexity (with discussion)[END_REF][START_REF] Rissanen | Stochastic complexity in statistical inquiry[END_REF], the NML and SC tend to perform similarly and are typically worse than MDL. Agreement between NML and SC also appears in the data examples (Figures 234). • Among the regular histogram construction methods BIC, MDL and KUIP emerge (determined by average ranks in this order) as superiour in terms of identifying the peaks of a density properly. BIC and KUIP show better results for unimodal densities while MDL has a small peak identification loss for multimodal densities (see Figure 8). • Among the regular histogram construction methods BR, MDL and WAND perform best in terms of Hellinger distance. BR yields small Hellinger risks consistently for unimodal and multimodal densities. WAND performs best for unimodal densities and MDL for multimodal densities (see Figure 10). In particular, the WAND method in our simulations, based on two-stage estimation as described in [START_REF] Wand | Data-based choice of histogram bin width[END_REF], performed better in Hellinger distance than in simulations from Birgé and Rozenholc (2006) (which used one-stage estimation described in [START_REF] Wand | Data-based choice of histogram bin width[END_REF]). • The irregular TS method performs best in terms of Hellinger distance as well as in terms of peak identification for almost all densities. As was to be expected, there is no overall optimal regular histogram procedure that delivers the best histogram for every data-generating density. However, the BR, BIC, WAND and MDL procedures provide good compromise methods for regular histogram construction over a wide range of densities and a variety of sample sizes. The BR method is better in terms of Hellinger risk and the BIC method with respect to detecting the peaks of a density. Altogether, the irregular TS histogram procedure is generally the best performer. q q q q q q q q q q q Average rank AIC BIC BR KLCV L2CV SC MDL NML WAND KUIP TS Average ranks, PID Figure 7. Average ranks for PID (all sample sizes and all densities). q q q q q q q q q q q Average rank AIC BIC BR KLCV L2CV SC MDL NML WAND KUIP TS Average ranks, PID, only unimodal densities q q q q q q q q q q q Average rank AIC BIC BR KLCV L2CV SC MDL NML WAND KUIP TS Average ranks, PID, only multimodal densities Figure 8. Average ranks for PID (all sample sizes) and unimodal or multimodal densities, respectively. q q q q q q q q q q q Average rank AIC BIC BR KLCV L2CV SC MDL NML WAND KUIP TS Average ranks, Hellinger risk Figure 9. Average ranks for Hellinger loss (all sample sizes and all densities). q q q q q q q q q q q Average rank AIC BIC BR KLCV L2CV SC MDL NML WAND KUIP TS Average ranks, Hellinger risk, only unimodal densities q q q q q q q q q q q Average rank AIC BIC BR KLCV L2CV SC MDL NML WAND KUIP TS Average ranks, Hellinger risk, only multimodal densities Figure 10. Average ranks for Hellinger loss (all sample sizes) and unimodal or multimodal densities, respectively. 
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 1 Figure 1. Histogram constructions from Old Faithful geyser data, n = 299.
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 3 Figure 3. Histogram constructions from galaxy data, n = 82.
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 4 Figure 4. Histogram constructions for the claw density (first graph) based on a sample n = 500.The data sample was chosen here so that the histogram realisations have peak identification losses roughly matching the average losses (or risks) for each procedure in Table1.
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 5 Figure 5. Data-generating densities used in the simulation study.
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 6 Figure 6. Data-generating densities used in the simulation study.

Table 1 .

 1 Peak identification risk for histograms by density and sample size n.

	density	n	AIC	BIC	BR KLCV L2CV	SC MDL NML WAND KUIP	TS
		50	0.68	0.06	0.06	0.10	0.85	0.93	0.50	0.57	0.18	0.06	0.01
	N (0, 1)	500	1.37	0.04	0.22	0.23	1.64	0.18	0.26	0.17	0.75	0.01	0.01
		1000	1.78	0.07	0.42	0.28	1.99	0.22	0.29	0.21	1.13	0.02	0.02
		50	0.76	0.04	0.06	0.31	0.56	0.23	0.38	0.35	1.00	0.05	0.05
	U (0, 1)	500	0.61	0.01	0.05	0.52	0.57	0.00	0.01	0.01	2.32	0.06	0.15
		1000	0.60	0.00	0.09	0.55	0.55	0.00	0.00	0.00	3.33	0.06	0.18
		50	2.67	2.30	2.25	1.68	3.75	2.47	1.57	2.70	4.58	2.66	0.00
	cauchy	500	8.64	6.32	6.87	1.98	12.64	7.50	2.06	8.69	19.59	14.05	0.00
		1000 12.45	8.93	9.59	2.02	18.73 10.82	2.11 12.53	13.86	20.57	0.01
		50	3.63	2.70	2.68	2.39	4.49	3.52	2.90	3.61	3.29	2.25	1.22
	strongly skewed	500	8.42	2.42	4.05	2.08	13.92	3.81	2.74	3.91	8.60	3.89	0.09
		1000 12.41	3.17	7.86	2.19	17.38	5.82	3.51	6.13	12.31	5.67	0.01
		50	2.12	1.44	1.40	1.44	3.12	1.70	1.01	2.11	3.08	1.64	0.00
	Outlier	500 10.70	4.83	9.01	1.28	17.45	6.59	1.77	9.14	17.66	10.92	0.01
		1000 15.43	8.45 13.30	1.24	26.01 10.13	2.20 12.29	26.44	13.99	0.01
		50	1.48	0.23	0.23	0.28	1.53	1.84	1.02	1.21	1.04	0.24	0.26
	three uniform	500	0.64	0.00	0.00	0.46	0.94	0.00	0.01	0.00	3.54	0.10	0.07
		1000	0.58	0.00	0.00	0.52	0.93	0.00	0.00	0.00	4.99	0.09	0.07
		50	1.62	2.27	2.16	1.60	1.61	2.84	1.87	2.49	0.85	2.30	2.02
	bimodal	500	1.02	0.09	0.15	0.32	1.07	0.16	0.18	0.11	0.25	0.20	1.37
		1000	1.43	0.02	0.27	0.44	1.37	0.16	0.20	0.13	0.52	0.03	0.48
		50	0.98	0.16	0.22	0.47	0.96	0.51	0.65	0.56	0.64	0.16	0.10
	nearest	500	2.14	0.82	1.05	1.37	2.01	1.09	1.12	0.99	1.29	0.56	0.09
	unimodal 1000	2.75	1.01	1.54	1.77	2.56	1.39	1.43	1.32	1.83	0.62	0.06
		50	1.33	1.05	1.06	1.00	1.34	1.59	1.10	1.49	1.10	1.11	1.04
	skewed bimodal	500	1.88	0.46	0.60	0.65	1.95	0.56	0.58	0.55	0.97	0.74	1.00
		1000	2.51	0.33	0.87	0.59	2.65	0.55	0.58	0.57	1.66	0.39	0.92
		50	1.96	2.30	2.24	1.97	1.97	2.67	2.02	2.49	2.08	2.36	2.51
	trimodal	500	1.26	0.93	0.80	0.77	1.31	0.79	0.78	0.81	0.63	1.09	1.53
		1000	1.34	0.61	0.49	0.62	1.24	0.45	0.44	0.46	0.46	0.77	1.06
		50	1.88	2.19	2.19	3.62	2.91	2.79	2.08	3.05	2.98	2.76	1.11
	exp mixture	500	3.08	0.17	0.88	1.29	5.54	1.11	1.45	0.78	0.84	0.05	0.01
		1000	3.67	0.20	1.39	2.54	6.97	1.14	1.30	0.79	2.23	0.09	0.01
		50	4.81	4.31	4.29	4.11	4.96	5.41	4.38	5.18	4.45	4.14	4.00
	eight uniform	500	4.13	3.54	3.65	3.58	4.67	3.71	3.75	3.64	3.95	4.44	1.72
		1000	3.72	3.38	3.41	3.45	3.91	3.41	3.41	3.40	5.34	3.05	0.94
		50	4.75	5.33	5.22	5.14	5.09	6.09	4.81	5.76	5.47	5.42	4.49
	smooth comb	500	7.07	3.05	4.55	3.17	6.97	4.84	3.58	4.48	3.63	3.35	1.98
		1000	10.3	2.88	5.79	3.43	9.78	4.95	4.21	4.68	3.68	4.15	1.16
		50	4.03	4.57	4.39	4.91	4.21	4.96	3.82	4.78	5.73	4.68	3.83
	discrete comb	500	4.36	3.73	2.74	3.56	4.75	2.88	2.88	2.80	3.38	3.06	0.98
		1000	7.24	2.15	2.51	2.13	7.12	2.01	1.62	1.76	2.46	2.35	0.29
		50	5.23	5.30	5.30	5.36	5.18	5.43	5.18	5.44	5.6	5.34	4.72
	claw	500	5.47	5.35	4.12	4.98	7.10	4.14	4.41	4.25	5.07	3.99	0.34
		1000	7.44	4.08	4.46	4.65	10.17	3.51	3.72	3.72	4.11	4.36	0.02
		50	7.75 10.87 10.82	10.91	8.59	8.93 10.87	8.75	10.14	10.9	9.56
	ten normal	500	3.18	3.99	2.31	2.47	2.72	2.76	2.18	2.41	10.45	2.50	0.57
		1000	2.83	1.8	1.42	1.24	2.32	1.51	1.36	1.18	8.58	1.07	0.22
		50 31.14 24.71 24.73	24.94	32.84	39.8 25.37 40.05	25.32	25.58 22.94
	24 normal	500	1.44 10.31 34.45	30.67	2.10	1.41 32.12	1.27	27.14	17.22	0.24
		1000	0.52	0.92	4.03	31.28	1.70	0.23 34.18	0.40	28.07	2.15	0.02
		50	1.58	0.68	0.75	1.01	1.51	1.09	1.33	1.08	1.64	0.61	0.98
	triangle	500	1.98	0.93	1.11	1.76	1.85	1.13	1.10	1.03	1.20	0.99	0.35
		1000	2.01	0.92	0.98	1.80	1.79	0.96	0.97	0.96	0.88	0.98	0.21
		50	1.45	0.55	0.54	0.67	2.41	1.04	0.62	1.14	1.60	0.53	0.01
	exponential	500	2.98	0.90	1.45	0.61	5.50	1.15	0.78	1.35	7.78	0.68	0.02
		1000	3.82	1.17	2.16	0.64	7.38	1.40	0.87	1.70	12.04	1.19	0.03

Table 2 .

 2 Hellinger risk*100 for histograms by density and sample size n.

	density	n	AIC	BIC	BR KLCV L2CV	SC MDL NML WAND KUIP	TS
			5.13	4.68	4.59	4.31	5.33	6.84	4.60	5.60	3.41	5.44	4.96
	N (0, 1)		0.91	1.05	0.91	0.98	0.92	0.92	0.89	0.93	0.71	1.35	0.92
			0.55	0.69	0.56	0.71	0.55	0.59	0.56	0.60	0.45	0.80	0.56
			3.76	2.18	2.27	2.57	3.18	2.60	2.77	2.92	4.90	2.09	2.29
	U (0, 1)		0.31	0.20	0.22	0.30	0.30	0.20	0.21	0.20	1.37	0.21	0.26
			0.15	0.10	0.11	0.15	0.15	0.10	0.10	0.10	0.95	0.10	0.13
			12.78 14.96 17.15	39.22	12.22 12.61 29.67 12.15	10.60	13.49	5.84
	cauchy		9.02 14.03 15.47	65.61	7.99	9.99 57.25	8.81	3.28	9.23	1.17
			7.87 13.87 15.29	72.38	6.56	9.07 65.21	7.65	1.09	7.89	0.73
			7.25	5.93	5.92	5.70	8.57	7.05	5.19	7.59	5.42	5.95	4.76
	strongly skewed		2.04	2.36	1.99	2.93	2.30	2.00	2.32	2.01	1.93	2.29	0.99
			1.32	1.80	1.29	3.06	1.41	1.39	2.05	1.38	1.19	1.75	0.59
			8.37	8.56	8.57	26.01	8.90	8.38 15.92	8.47	7.98	8.57	5.16
	Outlier		2.88	3.75	2.93	15.87	3.44	3.29	7.76	2.93	3.39	2.85	1.02
			1.92	2.47	1.92	13.22	2.45	2.12	6.20	1.95	2.46	1.83	0.69
			5.69	3.98	3.87	3.67	5.56	7.64	4.36	5.83	4.89	4.24	4.37
	three uniform		0.45	0.36	0.36	0.43	0.48	0.36	0.36	0.36	1.35	0.38	0.49
			0.23	0.18	0.19	0.22	0.24	0.18	0.18	0.18	0.98	0.19	0.27
			5.16	4.54	4.51	4.30	4.99	5.58	4.64	5.22	3.53	4.65	4.50
	Bimodal		0.89	1.11	0.93	0.91	0.92	0.93	0.91	0.97	0.71	1.41	0.95
			0.55	0.70	0.57	0.60	0.56	0.60	0.58	0.61	0.45	0.89	0.58
			5.00	4.37	4.37	4.18	5.01	5.34	4.50	5.18	3.40	4.49	4.39
	nearest		0.86	1.05	0.91	0.87	0.93	0.91	0.90	0.94	0.70	1.49	0.81
	unimodal		0.52	0.68	0.55	0.56	0.55	0.57	0.56	0.59	0.44	0.99	0.49
			5.51	4.72	4.66	4.40	5.33	6.48	4.74	5.84	3.76	5.19	4.74
	skewed bimodal		1.00	1.20	1.04	1.21	1.01	1.05	1.01	1.07	0.81	1.51	0.91
			0.62	0.81	0.64	0.88	0.62	0.68	0.66	0.69	0.52	1.00	0.55
			5.26	4.32	4.33	4.30	5.08	5.33	4.57	5.21	3.71	4.34	4.32
	trimodal		0.94	1.15	0.98	0.94	0.97	0.97	0.96	1.01	0.76	1.44	0.97
			0.58	0.76	0.60	0.62	0.58	0.62	0.61	0.65	0.48	0.88	0.59
			9.43	8.08	7.89	7.35	11.01 11.11	6.05 11.49	12.96	7.00	6.58
	exp mixture		1.36	1.50	1.30	1.20	1.46	1.28	1.26	1.31	3.22	1.57	1.00
			0.77	0.94	0.76	0.73	0.83	0.78	0.77	0.80	2.23	0.99	0.59
			8.34	6.49	6.38	6.22	8.87 10.07	6.27	9.10	7.91	7.65	6.34
	eight uniform		1.02	1.17	0.97	1.03	1.09	0.97	0.97	0.98	2.91	2.64	0.98
			0.48	0.46	0.46	0.46	0.49	0.46	0.46	0.46	2.02	1.16	0.56
			9.97 10.14	10	9.63	10.39	12.7	8.67 12.32	10.55	10.32	9.40
	smooth comb		2.58	3.08	2.51	3.12	2.57	2.46	2.60	2.52	3.36	2.92	2.25
			1.78	2.16	1.70	2.24	1.75	1.72	1.76	1.74	2.35	2.07	1.34
			10.47 10.62 10.44	10.43	10.83 12.42	8.90 12.38	13.49	10.44 10.15
	discrete comb		2.47	3.38	2.49	3.27	2.50	2.41	2.85	2.51	3.47	3.01	2.31
			1.67	2.33	1.53	2.28	1.64	1.51	1.66	1.53	2.34	2.22	1.31
			7.59	6.47	6.39	6.21	8.27	9.17	6.06	8.58	5.46	7.26	6.28
	claw		1.92	2.31	1.82	2.52	2.05	1.84	1.94	1.86	2.15	1.73	1.49
			1.25	1.52	1.16	2.07	1.32	1.17	1.46	1.17	1.44	1.13	0.86
			12.86	8.19	8.25	8.55	12.10 13.56	8.74 14.14	10.34	8.39	8.91
	ten normal		2.80	3.51	2.71	2.70	2.66	2.72	2.46	2.72	7.10	2.74	2.64
			1.64	2.18	1.63	1.64	1.59	1.62	1.57	1.67	6.33	1.77	1.59
			59.81 62.70 62.72	62.83	58.28 53.68 62.86 53.51	63.68	63.10 60.63
	24 normal		8.65 14.76	35.9	60.22	8.14	8.64 60.11	8.41	61.86	10.64	8.33
			7.08	9.05 12.71	59.97	4.42	7.42 59.49	6.96	61.86	4.17	4.83
			4.83	4.25	4.15	3.86	4.64	5.70	4.46	5.13	3.20	4.32	4.50
	triangle		0.77	0.89	0.79	0.75	0.79	0.79	0.80	0.82	0.60	1.03	0.82
			0.46	0.59	0.49	0.45	0.48	0.50	0.51	0.53	0.38	0.65	0.53
			5.70	4.69	4.69	6.19	6.79	5.29	4.42	5.52	4.65	5.03	4.25
	exponential		1.03	1.10	0.99	2.90	1.18	1.03	1.32	1.01	1.28	1.14	0.78
			0.63	0.75	0.63	2.73	0.73	0.69	1.06	0.66	0.88	0.72	0.47
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AIC (17 bins)

identifying peaks of a density f with a histogram procedure f , which is a meaningful and interpretable measure of model quality.

Simulation study design

As test beds we select nineteen reference densities f of differing degrees of smoothness, tail behavior, support, and modality. The collection of reference densities includes: the standard Normal N (0, 1), the Uniform U (0, 1), standard Cauchy, Triangle, and Exponential distribution, eight mixture distributions from [START_REF] Marron | Exact mean integrated squared error[END_REF], a ten normal mixture used by [START_REF] Loader | Bandwidth selection: classical or plug-in?[END_REF], four densities, which are chosen to have roughly the same shapes as the test-case densities appearing in [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF], and the "nearest unimodal density" to the bimodal density of [START_REF] Marron | Exact mean integrated squared error[END_REF].