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EXISTENCE OF SOLUTIONS FOR SECOND-ORDER DIFFERENTIAL INCLUSIONS INVOLVING PROXIMAL NORMAL CONES by

In this work, we prove global existence of solutions for second order differential problems in a general framework. More precisely, we consider second order differential inclusions involving proximal normal cone to a set-valued map. This set-valued map is supposed to take admissible values (so in particular uniformly prox-regular values, which may be non-smooth and non-convex). Moreover we require the solution to satisfy an impact law, appearing in the description of mechanical systems with inelastic shocks.

Résumé. -Nous prouvons dans ce travail un résultat d'existence globale de solutions pour des inclusions différentielles du second ordre. Nous considérons plus précisément des inclusions différentielles du second ordre faisant apparaître le cône proximal normal d'un ensemble C dépendant du temps. La multifonction C(•) est supposée admissible (et en particulier prendre des valeurs uniformément prox-régulières éventuellement non régulières et non convexes). De plus, nous imposons à la solution de vérifier une loi d'impact, apparaissant dans la description de systèmes mécaniques avec des chocs inélastiques.

Introduction

We consider second order differential inclusions, involving proximal normal cones. These differential inclusions appear in several fields (granular media [START_REF] Moreau | Liaisons unilatérales sans frottements et chocs inélastiques[END_REF][START_REF] Moreau | Standard inelastic shocks and the dynamics of unilateral constraints[END_REF], robotics [START_REF] Ellis | Two numerical issues in simulating constrained robot dynamics[END_REF], [START_REF] Featherstone | Robot dynamics Algorithms[END_REF] and virtual reality [START_REF] Perry | Contact analysis in virtual environment[END_REF] ... ).

They describe an evolution problem where the state-variable is submitted to some constraints and so has to live in an admissible set).

Numerous works deal with the particular case where the admissible set is given by several constraints. Let us first detail them. We write C ⊂ R d for the closed admissible set defined by constraints (g i ) 1≤i≤p as follows :

C := p i=1 q ∈ R d , g i (q) ≥ 0 . (1) 
The tangent cone to C at q is T C (q) := u ∈ R d , u, ∇g i (q) ≥ 0 ∀i ∈ I(q)

where I(q) is the set of "active constraints" I(q) := {i, g i (q) = 0}.

The second order problem is the following one: let I be a bounded time-interval, f : I ×R d → R d be a map, find q ∈ W 1,∞ (I, R d ) such that q ∈ BV (I, R d ) and

           d q + N C (q)dt ∋ f (t, q)dt
∀t ∈ I, q(t + ) = P T C (q(t)) ( q(t -))

q(0) = q 0 ∈ Int(C) q(0) = u 0 , (2) 
where Int(C) is the interior of the set C and N C (q) is the normal cone defined by

N C (q) :=          {0} if q ∈ Int(C) -i∈I(q) λ i ∇g i (q), λ i ≥ 0 if q ∈ ∂C ∅ if q / ∈ C.
This differential inclusion can be thought as follows: the point q(t), submitted to the external force f (t, q(t)), has to live in the set C. The differential inclusion d q + N C (q)dt ∋ f (t, q)dt does not uniquely define the evolution of the velocity during an impact. To complete the description, we impose the impact law q(t + ) = P T C (q(t)) q(t -), introduced by J.J. Moreau in [START_REF] Moreau | Liaisons unilatérales sans frottements et chocs inélastiques[END_REF] and justified by L. Paoli and M. Schatzman in [START_REF] Paoli | Penalty approximation for non smooth constraints in vibro-impact[END_REF][START_REF] Paoli | Penalty approximation for dynamical systems submitted to multiple non smooth constraints[END_REF] (using a penalty method) for inelastic impacts. This law can be extended with a restitution coefficient to model the elastic shocks.

The existence of a solution for such second-order problems is still open in a general framework. The first positive results were obtained by M.P.D. Monteiro Marques [START_REF] Monteiro-Marques | Differential inclusions in non-smooth mechanical problems: shocks and dry friction[END_REF], L. Paoli and M. Schatzman [START_REF] Paoli | A numerical scheme for impact problems I and II[END_REF] in the case of a smooth admissible set (which locally corresponds to the single constraint case p = 1 in (1)). The single constraint case is also treated in [START_REF] Monteiro-Marques | An existence result in non-smooth dynamics[END_REF][START_REF] Dzonou | A convergence result for a vibro-impact problem with a general inertia operator[END_REF] where an additional mass-matrix depending on q. The proofs use a time-discretization of (2) and rely on the convergence of the approximate solutions. The multi-constraint case with analytical data was then treated by P. Ballard with a different method in [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF]. In this paper, a positive result of uniqueness for such problems was also obtained. Then in [START_REF] Paoli | An existence result for non-smooth vibro-impact problems[END_REF], an existence result is proved in the case of a non-smooth convex admissible set C (given by multiple constraints). There, the active constraints are supposed to be linearly independent in the following sense: for each q ∈ ∂C, the gradients (∇g i (q)) i∈I(q) are supposed to be linearly independent. This assumption is quite strong since it implies that the number of active constraints |I(q)| is always lower than the dimension d (which may fail for some applications). Moreover the impact law is proved under a geometrical assumption:

∀(i, j) ∈ I(q) 2 , i = j, ∇g i (q), ∇g j (q) ≤ 0.

In [START_REF] Paoli | Time-stepping approximation of rigid-body dynamics with perfect unilateral constraints. I-The inelastic impact case[END_REF][START_REF] Paoli | Time-stepping approximation of rigid-body dynamics with perfect unilateral constraints. II-The partially inelastic impact case[END_REF], similar results are obtained without requiring the convexity of C. Note that excepted in [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF], all these results are local in the following sense: for each initial data (q 0 , u 0 ), there exists a time τ = τ (|u 0 |) and a solution q of (2) on I = [0, τ ].

Recently, time-dependent constraints are considered. More precisely, the constraints g i : I × R d → R define the following set-valued map

C(•) := p i=1 q ∈ R d , g i (•, q) ≥ 0 . (4) 
Then Problem (2) becomes: find q ∈ W 1,∞ (I, R d ) such that q ∈ BV (I, R d )              d q + N C(t) (q)dt ∋ f (t, q)dt ∀t ∈ I, q(t + ) = P V t,q(t) q(t -) q(0) = q 0 ∈ Int(C(0))

q(0) = u 0 , (5) 
where V t,q is the set of admissible velocities:

V t,q := {u, ∂ t g i (t, q) + ∇ q g i (t, q), u ≥ 0 if g i (t, q) = 0} .

Local existence results were obtained in [START_REF] Schatzman | Penalty method for impact in generalized coordinates[END_REF] assuming that ∂C(•) belongs to C 3 (I × R d ) (which locally corresponds to a single constraint). Recently in [START_REF] Bernicot | Existence results for non-smooth second order differential inclusions, convergence result for a numerical scheme and application to the modelling of inelastic collisions[END_REF], a global result was proved by the first author and A. Lefebvre for convex C 2 constraints g i (no regularity on the boundaries ∂C(t) is required). Moreover, Assumption (3) and the independence of the gradients (∇ q g i (t, q)) i∈I(t,q) are relaxed to a positive linearly independence: global results are shown under the existence of ρ, γ > 0 such that for all q ∈ C(t) and nonnegative reals λ i i∈Iρ(t,q) λ i |∇ q g i (t, q)| ≤ γ i∈Iρ(t,q) λ i ∇ q g i (t, q) , (R ρ )

where I ρ (t, q) := {i, g i (t, q) ≤ ρ} .

In this paper, we are interested in local and global existence results for second order problems involving a general set-valued map C(•) (not necessary defined with constraints). This problem was solved in the case of first order differential inclusions called sweeping process. Let us briefly recall the corresponding context. For a bounded time-interval I, a set-valued map C : I ⇉ R d with nonempty closed values and a map f : I × R d ⇉ R d , the associated sweeping process takes the following form:    dq dt (t) + N(C(t), q(t)) ∋ f (t, q(t))

q(0) = q 0 , (7) 
with an initial data q 0 ∈ C(0) and where N(C, q) denotes the proximal normal cone of C at any point q. This kind of evolution problem has been introduced by J.J. Moreau in 70's (see [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF]) with convex sets C(t). He proposed a time-discretization of ( 7) called the catching-up algorithm. This scheme was later adapted to the second order problems (2) and [START_REF] Bernicot | Existence results for non-smooth second order differential inclusions, convergence result for a numerical scheme and application to the modelling of inelastic collisions[END_REF]. Later the convexity assumption was weakened by the concept of "uniform prox-regularity" (a set C is said to be uniformly prox-regular with constant η or η-prox-regular if the projection onto C is single-valued and continuous at any point distant at most η from C). In this framework, the well-posedness of [START_REF] Bounkhel | Nonconvex sweeping process and prox-regularity in Hilbert space[END_REF] was proved by G. Colombo, V.V. Goncharov in [START_REF] Colombo | The sweeping processes without convexity[END_REF], H. Benabdellah in [START_REF] Benabdellah | Existence of solutions to the nonconvex sweeping process[END_REF], L. Thibault [START_REF] Thibault | Sweeping process with regular and nonregular sets[END_REF] and by G. Colombo, M.D.P. Monteiro Marques in [START_REF] Colombo | Sweeping by a continuous prox-regular set[END_REF]. The sweeping process problem is still extensively studied but the recent results are not detailed here (see the works of M. Bounkhel, J.F. Edmond and L. Thibault in [START_REF] Bounkhel | Nonconvex sweeping process and prox-regularity in Hilbert space[END_REF][START_REF] Thibault | Sweeping process with regular and nonregular sets[END_REF][START_REF] Edmond | Relaxation of an optimal control problem involving a perturbed sweeping process[END_REF][START_REF] Edmond | BV solutions of nonconvex sweeping process differential inclusion with perturbation[END_REF] and of the authors in [START_REF] Bernicot | Differential inclusions with proximal normal cones in Banach spaces[END_REF][START_REF] Bernicot | Stochastic perturbations of sweeping process[END_REF]).

Note that a major difference exists between the first and the second order differential inclusions. Indeed, even with smooth data the uniqueness does not hold for second order problem such [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF] or [START_REF] Bernicot | Existence results for non-smooth second order differential inclusions, convergence result for a numerical scheme and application to the modelling of inelastic collisions[END_REF], see [START_REF] Schatzman | A class of nonlinear differential equations of second order in time[END_REF] and [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF]. The only positive results are proved in [START_REF] Schatzman | Uniqueness and continuous dependence on data for one-dimensional impact problems[END_REF] for one-dimensional impact problems and in [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF] in the context of analytic data. Here we are only interested in existence results for general second order problems.

In the case of a general set-valued map C(•), we introduce the following set (which extends the concept of T C (q) and V t,q ): Definition 1.1. -For a set-valued map C : I ⇉ R d , for every t 0 ∈

• I and q 0 ∈ C(t), the cone of admissible velocities is defined as follows:

C t 0 ,q 0 := v = lim ǫց0 v ǫ , with v ǫ ∈ C(t 0 + ǫ) -q 0 ǫ = lim inf ǫց0 C(t 0 + ǫ) -q 0 ǫ .
We assumed that the set-valued map C(•) is Lipschitz continuous on I: there exists c 0 > 0 such that for all t, s ∈ I

d H (C(t), C(s)) ≤ c 0 |t -s|, (8) 
where d H denotes the Hausdorff distance.

We are interested in the following problem:

find q ∈ W 1,∞ (I, R d ) such that q ∈ BV (I, R d ) such that              d q + N(C(t), q) ∋ f (t, q)dt ∀t ∈ • I, q(t + ) = P C t,q(t) [ q(t -)] q(0) = q 0 , q(0) = u 0 (9) 
where q 0 ∈ Int[C(0)] and u 0 are initial data and N(C(t), q) is the proximal normal cone to C(t) at q (see Definition 2.3). Let us give a more precise sense to this differential problem.

Definition 1.2. -Let I := [0, T ] be a bounded time-interval. A continuous function q : I → R d is a solution of ( 9) if there exists another function k : I → R d such that : a) q belongs to W 1,∞ (I, R d ) b) q and k belong to BV (I, R d ) c) the following differential equation is satisfied in the sense of time-measures

d q + dk = f (t, q)dt (10) 
d) for all t ∈

• I, the impact law q(t + ) = P C t,q(t) [ q(t -)] holds e) the initial conditions are verified : q(0) = q 0 and q(0) = u 0 f) the differential measure dk is supported on {t, q(t) ∈ ∂C(t)}:

|k|(t) = t 0 1 q(s)∈∂C(s) d|k|(s), k(t) = t 0 ξ(s)d|k|(s), (11) 
where ξ : I → R d is a measurable function satisfying for all s ∈ I:

ξ(s) ∈ N(C(s), q(s)), |ξ(s)| = 1 and |k|(t) := Var (k, [0, t]).
The main subject of this work is to prove the following global existence result. 

∃K L > 0 , ∀t ∈ I , ∀q, q ∈ C(t) , |f (t, q) -f (t, q)| ≤ K L |q -q| (12) ∃F ∈ L 1 (I) , ∀t ∈ I , ∀q ∈ C(t) , |f (t, q)| ≤ F (t). ( 13 
)
Then the differential inclusion ( 9) admits at least one solution.

The paper is structured as follows: the notions of uniform prox-regularity and admissibility related to the main assumptions of Theorem 1.3 are detailed in Section 2. Moreover, we prove a natural expression of the set C t 0 ,q 0 with the help of the tangent cone of Ω := {(t, q) ∈ R × R d , t ∈ I, q ∈ C(t)} at (t 0 , q 0 ). Then Section 3 is devoted to the proof of Theorem 1.3. In Section 4, we deal with a set-valued map C(•), defined by constraints as in [START_REF] Bernicot | Differential inclusions with proximal normal cones in Banach spaces[END_REF]. More precisely, we prove under (R ρ ) global existence results (Theorem 4.6). For time-independent constraints, Assumption (R 0 ) is shown to be sufficient to obtain local existence results (see Theorem 4.7), which is weaker than the usual geometrical assumptions.

Preliminaries and Definitions

First we precise some notations. For a time interval I, we write

W 1,∞ (I, R d ) (resp. W 1,1 (I, R d )) for the Sobolev space of functions in L ∞ (I, R d ) (resp. L 1 (I, R d )) whose derivative is also in L ∞ (I, R d ) (resp. L 1 (I, R d )). BV (I, R d ) is the space of functions in L ∞ (I, R d
) with bounded variations on I. We define the dual space M(I) := (C c (I)) ′ where C c (I) is the space of continuous functions with compact support (corresponding to the set of Radon measure due to Riesz Theorem). We set M + (I) for the subset of positive measures.

We emphasize that the different notions defined in this section can be extended in the case of an infinite dimensional Hilbert space H. We consider the Euclidean space R d , equipped with its euclidean metric | | and its inner product If these two sets both equal a set D ⊂ R d , then we say that D ǫ converges to D and we write lim

•, • . For a subset Q of R d ,
ǫց0 D ǫ = D. Definition 2.2. -Let Q be a closed subset of R d . The set-valued projection operator P Q is defined on R d by ∀x ∈ R d , P Q (x) := {y ∈ Q, |x -y| = d Q (x)} . Definition 2.3. -Let Q be a closed subset of R d and x ∈ Q, we write N(Q, x)
for the proximal normal cone of Q at x, defined by:

N(Q, x) := v ∈ R d , ∃s > 0, x ∈ P Q (x + sv) .
The cone N(Q, x) somehow generalizes the notion of the outward normal direction. In Figure 1, we have plotted a set Q with several points x i . At the regular point x 4 (where the boundary is smooth), the proximal normal cone is exactly the half-line directed by the outward direction. At the points x 0 , x 1 and x 3 the boundary is not smooth and the proximal normal vectors constitute a cone. At the point x 2 , notice that the proximal normal cone is reduced to {0}.

We now define the tangent cone as follows:

x 0 x 1 x 2 x 3 x 4 N(Q, x 0 ) N(Q, x 1 ) N(Q, x 3 ) N(Q, x 4 ) Q Figure 1. Examples of proximal normal cones Definition 2.4. -Let Q be a closed subset of R d and x ∈ Q, we write T Q (x)
for the tangential cone of Q at x, defined by the following outer limit:

T Q (x) := lim sup ǫց0 Q -x ǫ = v ∈ R d , ∃v k → v, ∃ǫ k ց 0, v k ∈ Q -x ǫ k .
2.1. Uniform Prox-regularity. -We now come to the main notion of "prox-regularity". It was initially introduced by H. Federer (in [START_REF] Federer | Curvature measures[END_REF]) in finite dimensional spaces under the name of "positively reached sets". Then it was extended in infinite dimensional space and studied by F.H. Clarke, R.J. Stern and P.R. Wolenski in [START_REF] Clarke | Proximal smoothness and the lower-C 2 property[END_REF] and by R.A. Poliquin, R.T. Rockafellar and L. Thibault in [START_REF] Poliquin | Local differentiability of distance functions[END_REF].

Definition 2.5. -Let Q be a closed subset of R d and η > 0. The set Q is said η-prox-regular if for all x ∈ Q and v ∈ N(Q, x) \ {0} B x + η v |v| , η ∩ Q = ∅.
By extension, a closed set Q is said uniformly prox-regular if there exists η > 0 such that Q is η-prox-regular.

We refer the reader to [START_REF] Clarke | Proximal smoothness and the lower-C 2 property[END_REF][START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF] for other equivalent definitions related to the limiting normal cone. The previous definition is very geometric, it describes the fact that we can continuously roll an external ball of radius η on the whole boundary of the set Q. The main property is the following one: for a η-prox-regular set Q, and every x satisfying d Q (x) < η, the projection of x onto Q is well-defined (i.e. P Q (x) is a singleton) and the projection is continuous. 

(α, β) ∈ N(Q, x) × N(Q, y), we have α -β, x -y ≥ - 1 2η [|α| + |β|] |x -y| 2 or equivalently α, y -x ≤ 1 2η |α||x -y| 2 . ( 14 
) Proposition 2.7. -Let Q be a η-prox-regular set of R d . Consider y ∈ R d with d Q (y) < 2η. Then y ∈ Q if and only if ∀x ∈ Q ∩ B(y, d Q (y)), ∀α ∈ N(Q, x), α, y -x ≤ 1 2η |α||x -y| 2 .
Proof: Consider a point y / ∈ Q satisfying the above property and choose x ∈ P Q (y). Then yx ∈ N(Q, x) and we get

|y -x| 2 ≤ 1 2η |x -y| 3 ,
which leads to a contradiction with the assumption d Q (y) < 2η.

⊓ ⊔

Since the prox-regularity of a set implies its Clarke's regularity (see Definition 6.4 of [START_REF] Rockafellar | Variational Analysis[END_REF]), we have the following lemma (Corollary 6.29 of [START_REF] Rockafellar | Variational Analysis[END_REF]).

Lemma 2.8. -Let Q be a uniformly prox-regular set. Then for all x ∈ Q the normal and tangential cones are mutually polar :

N(Q, x) • = T Q (x).
That means:

T Q (x) = u ∈ R d , ∀v ∈ N(Q, x) u, v ≤ 0 .
In particular, it comes that every tangential cone of a uniformly prox-regular set is convex.

Proposition 2.9. -Let C(•) be a Lipschitz continuous set-valued map taking uniformly proxregular values on I. For all t 0 ∈ I and q 0 ∈ C(t 0 ), we set C t 0 ,q 0 := lim inf hց0 C(t 0 + h)q 0 h and Ct 0 ,q 0 := lim inf h→0 q→q 0 t→t 0 q∈C(t)

C(t + h) -q h .
Then C t 0 ,q 0 = Ct 0 ,q 0 .

Proof: Let t 0 ∈ I and q 0 ∈ C(t 0 ), the first inclusion C t 0 ,q 0 ⊂ Ct 0 ,q 0 is obvious and we only deal with the other one. So let us fix v ∈ Ct 0 ,q 0 . By definition, there exist vectors v h,t,q ∈ C(t+h)-q h such that v = lim

h→0 t→t 0 q→q 0 v h,t,q .
We write z h,t,q ∈ P C(t 0 +h) (q 0 + hv h,t,q ) and w h,t,q := z h,t,qq 0 h ∈ C(t 0 + h)q 0 h .

It comes

|v h,t,q -w h,t,q | = |hv h,t,q -z h,t,q + q 0 | h = d C(t 0 +h) (q 0 + hv h,t,q ) h . (15) 
Moreover q 0 + hv h,t,qz h,t,q ∈ N(C(t 0 + h), z h,t,q ). Let ξ h,t,q ∈ P C(t 0 +h) (q + hv h,t,q ), we have

|q 0 + hv h,t,q -z h,t,q | ≤ |ξ h,t,q -z h,t,q | + |ξ h,t,q -(q 0 + hv h,t,q )|. ( 16 
)
Then for h > 0, let us choose t h ∈ I such that |t ht 0 | ≤ h 2 and q h ∈ C(t h ) satisfying |q hq 0 | ≤ h 2 . So by this way,

|ξ h,t h ,q h -(q 0 + hv h,t h ,q h )| ≤ |ξ h,t h ,q h -(q h + hv h,t h ,q h )| + |q h -q 0 | ≤ d C(t 0 +h) (q h + hv h,t h ,q h ) + |q h -q 0 | ≤ d H (C(t 0 + h), C(t h + h)) + |q h -q 0 | ≤ c 0 |t h -t 0 | + |q h -q 0 | ≤ (c 0 + 1)h 2 . ( 17 
)
In addition,

d C(t 0 +h) (q 0 + hv h,t h ,q h ) ≤ d C(t 0 ) (q 0 + hv h,t h ,q h ) + d H (C(t 0 + h), C(t 0 )) ≤ h|v h,t h ,q h | + c 0 h and d C(t 0 +h) (q h + hv h,t h ,q h ) ≤ d C(t h ) (q h + hv h,t h ,q h ) + d H (C(t 0 + h), C(t h )) ≤ h|v h,t h ,q h | + c 0 |t h -t 0 -h|.
For h small enough, it comes

d C(t 0 +h) (q 0 + hv h,t h ,q h ) ≤ η 2 and d C(t 0 +h) (q h + hv h,t h ,q h ) ≤ η 2 .
By Theorem 4.8 in [START_REF] Clarke | Proximal smoothness and the lower-C 2 property[END_REF], since C(t 0 + h) is η-prox-regular, the projection operator is Lipschitz on a neighborhood of C(t 0 + h). As a consequence, for h small enough

|ξ h,t h ,q h -z h,q h | = P C(t 0 +h) (q h + hv h,t h ,q h ) -P C(t 0 +h) (q 0 + hv h,t h ,q h ) ≤ 2η 2η -d C(t 0 +h) (q 0 + hv h,t h ,q h ) -d C(t 0 +h) (q h + hv h,t h ,q h ) |q h -q 0 | ≤ 2|q h -q 0 | ≤ 2h 2 . ( 18 
)
It follows from ( 16), ( 17) and ( 18)

|q 0 + hv h,t h ,q h -z h,q h | ≤ |ξ h,t h ,q h -z h,t h ,q h | + |ξ h,t h ,q h -(q 0 + hv h,t h ,q h )| ≤ 2h 2 + (c 0 + 1)h 2 ≤ Ch 2 ,
for some numerical constant C. It follows from [START_REF] Edmond | BV solutions of nonconvex sweeping process differential inclusion with perturbation[END_REF] that

|v h,t h ,q h -w h,t h ,q h | ≤ Ch and so v = lim h→0 v h,t h ,q h = lim h→0 w h,t h ,q h
with w h,t h ,q h ∈ C(t 0 +h)-q 0 h . Hence v ∈ C t 0 ,q 0 , which concludes the proof of this inclusion Ct 0 ,q 0 ⊂ C t 0 ,q 0 . ⊓ ⊔ 2.2. The sets of admissible velocities. -In this subsection, we consider a set-valued map C(•) Lipschitz continuous and taking (nonempty) uniformly prox-regular values. We aim to describe the sets of admissible velocity C t,q with the help of the whole set Ω := {(t, q), t ∈ I and q ∈ C(t)} and to prove its convexity.

Let first recall the notion of the derivable tangent cone (see Section 6.A in [START_REF] Rockafellar | Variational Analysis[END_REF]).

Definition 2.10.

-Let Q be a closed set of R d . A vector v ∈ T Q (x) is said derivable if for all small enough ǫ > 0 there exists v ǫ ∈ Q-x ǫ such that v ǫ converges to v. We note T D Q (x) ⊂ T Q (x)
the set of derivable vectors, which can be seen as the following inner limit

T D Q (x) := lim inf ǫց0 Q -x ǫ = v ∈ R d , v = lim ǫց0 v ǫ with v ǫ ∈ Q -x ǫ .
A closed subset Q is said geometrically derivable if every tangent vector is derivable, i.e. for all

x ∈ Q T Q (x) = T D Q (x)
. In this particular case, the inner and outer limits are equal and so the limit is well-defined:

T Q (x) = T D Q (x) = lim ǫց0 Q -x ǫ .
For example, it is well-known that every uniformly prox-regular or even Clarke's regular set is geometrically derivable (see Corollary 6.30 in [START_REF] Rockafellar | Variational Analysis[END_REF]).

These definitions allow us to describe the set of admissible velocities with the the tangent cone of Ω. For (t, q) ∈ Ω, we have defined the set of admissible velocities

C t,q := v = lim ǫց0 v ǫ , with v ǫ ∈ C(t + ǫ) -q ǫ .
Proposition 2.11. -For every (t, q) ∈ Ω with t ∈

• I, we have

C t,q = u ∈ R d , (1, u) ∈ T D Ω ((t, q)) . (19) 
Proof: Let us denote by C t,q the set of the right side in [START_REF] Hare | Estimating tangent and normal cones without calculus[END_REF]. It is obvious that for v ∈ C t,q , the vector (1, v) is tangent to Ω at (t, q) and derivable. Consequently the inclusion C t,q ⊂ C t,q is proved.

Let us now study the inverse inclusion. So consider v ∈ C t,q . By definition (1, v) is a derivable vector to Ω at (t, q) so for small enough ǫ > 0, there exists a vector (s ǫ , v ǫ ) converging to (1, v) such that (s ǫ , v ǫ ) ∈ Ω -(t, q) ǫ which is equivalent to q + ǫv ǫ ∈ C(t + ǫs ǫ ). Since the set-valued map C is Lipschitz continuous (with a Lipschitz constant c 0 ), it comes

d C(t+ǫ) (q + ǫv ǫ ) ≤ d H (C(t + ǫs ǫ ), C(t + ǫ)) ≤ c 0 ǫ|s ǫ -1|. ( 20 
)
So let us denote z ǫ ∈ P C(t+ǫ) (q + ǫv ǫ ) and choose w ǫ such that

z ǫ := q + ǫw ǫ . By definition, z ǫ ∈ C(t + ǫ), which means (1, w ǫ ) ∈ Ω -(t, q) ǫ .
Moreover (20) yields |v ǫw ǫ | ≤ c 0 |s ǫ -1|. Since s ǫ converges to 1 and v ǫ to v, we deduce that w ǫ converges to v too. Thus v ∈ C t,q , which ends the proof of the inclusion C t,q ⊂ C t,q .

⊓ ⊔

Then we can state the main result concerning the sets of admissible velocities.

Proposition 2.12. -For every (t, q) ∈ Ω with t ∈ • I, the set C t,q is convex.

Proof: If C t,q is supposed to be nonempty, we can choose two vectors v 1 and v 2 belonging to C t,q . Let α ∈]0, 1[, we aim to prove that

v := αv 1 + (1 -α)v 2 ∈ C t,q .
According to the previous lemma, for i = 1, 2 and small enough parameter ǫ, we have a sequence

v i ǫ , converging to v i such that q + ǫv i ǫ ∈ C(t + ǫ). Writing v ǫ := αv 1 ǫ + (1 -α)v 2 ǫ
, we want to estimate d C(t+ǫ) (q + ǫv ǫ ). Suppose that q + ǫv ǫ does not belong to C(t + ǫ) and let z ǫ ∈ P C(t+ǫ) (q + ǫv ǫ ). So q + ǫv ǫz ǫ is a proximal normal vector at z ǫ . Since C(t + ǫ) is η-prox-regular, thanks to the hypomonotonicity property of the proximal normal cone (see Proposition 2.6), we have for i = 1, 2

q + ǫv i ǫ -z ǫ , q + ǫv ǫ -z ǫ ≤ |q + ǫv ǫ -z ǫ | 2η |q + ǫv i ǫ -z ǫ | 2 .
Multiplying by α the previous inequality for i = 1 and by 1α the one for i = 2 and summing them, we obtain

|q + ǫv ǫ -z ǫ | ≤ 1 2η α|q + ǫv 1 ǫ -z ǫ | 2 + (1 -α)|q + ǫv 2 ǫ -z ǫ | 2 . Since q + ǫv i ǫ ∈ C(t + ǫ) for i = 1, 2, we have |q + ǫv i ǫ -z ǫ | ≤ |q + ǫv ǫ -z ǫ | + ǫ|v ǫ -v i ǫ | ≤ 2ǫ|v ǫ -v i ǫ | ≤ 2ǫ(|v 1 ǫ | + |v 2 ǫ |) ≤ 4M ǫ, where M denotes a uniform bound of v 1
ǫ and v 2 ǫ (since they are convergent). So we deduce that

|q + ǫv ǫ -z ǫ | ≤ 8M 2 η ǫ 2 . ( 21 
)
Then let us choose w ǫ such that

z ǫ = q + ǫw ǫ ∈ C(t + ǫ).
From ( 21), we know that

ǫ|v ǫ -w ǫ | ≤ 8M 2 η ǫ 2
and so w ǫ converges to v. We have proved that v = αv 1 + (1α)v 2 is the limit of velocities w ǫ satisfying q + ǫw ǫ ∈ C(t + ǫ).

That means v ∈ C t,q , which shows the convexity of this cone. ⊓ ⊔ 

∀p, ∀x ∈ ∂C(s) ∩ B(x p , 2r), ∀v ∈ N(C(s), x), v, u p ≥ δ|v|. (22) 
For an admissible set, the "good directions" u p allow us to build inward cones. 

Fix t 0 ∈ I, x p ∈ C(t 0 ) and ν > 0. Then if t ∈ I with |t 0 -t| + ν ≤ τ and x ∈ B(x p , 3r/2) C(t), B x -νκ 0 u p , νδ 2 ⊂ C(t + ν),
as soon as ν < ν min := min ηδ

(2κ 0 + 2c 0 + δ) 2 , r 2(c 0 + δ + 2κ 0 )
and κ 0 := c 0 δ + 1, where c 0 is the Lipschitz constant of the set-valued map C(•) (see [START_REF] Clarke | Proximal smoothness and the lower-C 2 property[END_REF]) and η the prox-regularity constant.

Proof: Let ν < ν min and x ∈ B(x p , 3r/2) C(t). We consider z = x -νκ 0 u p + θ, with |θ| ≤ νδ 2 . Suppose that z / ∈ C(t + ν) and set y ∈ P C(t+ν) (z), v := z -y ∈ N(C(t + ν), y) \ {0}. Necessarily, y belongs to B(x, r/2) because |x -y| ≤ |x -z| + |z -y| ≤ 2|x -z| + c 0 ν ≤ 2 κ 0 ν + νδ 2 + c 0 ν ≤ ν(δ + 2κ 0 + c 0 ) < r/2,
where we have used that

d C(t+ν) (z) ≤ d C(t) (z) + d H (C(t), C(t + ν)) and x ∈ C(t). Letξ ∈ P C(t+ν) (x), since C(t + ν) is η-prox-regular, it comes ξ -y, v ≤ 1 2η |ξ -y| 2 |v|.
That yields

ξ -z, v + |v| 2 ≤ 1 2η (|ξ -x| + |x -y|) 2 |v| ≤ 1 2η ν 2 (δ + 2κ 0 + 2c 0 ) 2 |v|.
Consequently,

κ 0 νu p , v -θ, v ≤ 1 2η (ν(δ + 2κ 0 + 2c 0 )) 2 |v| + d C(t+ν) (x)|v| ≤ 1 2η (ν(δ + 2κ 0 + 2c 0 )) 2 + c 0 ν |v|. ( 23 
)
As y ∈ B(x, r/2), y belongs to B(x p , 2r) and the admissibility assumption gives u p , v ≥ δ|v|. Thus [START_REF] Monteiro-Marques | An existence result in non-smooth dynamics[END_REF] implies that

κ 0 δν -ν δ 2 ≤ 1 2η (ν(δ + 2κ 0 + 2c 0 )) 2 + c 0 ν and so that ν ≥ ηδ (2κ 0 +δ+2c 0 ) 2 , which leads to a contradiction. Thus z ∈ C(t + ν). ⊓ ⊔
The following lemma is a consequence of the previous one.

Lemma 2.15. -Under the previous assumptions and notations, fix t 0 ∈ I and x p ∈ C(t 0 ).

For all t ∈ I and x ∈ B(x p , 3r/2) C(t), for all ν < ν min , -κ

0 u p ∈ C(t + ν) -x ν . Moreover for all y ∈ C(t+ν)-x ν B(0, r 2ν ), -κ 0 u p ∈ T C(t+ν)-x ν (y).
In addition, -κ 0 u py belongs to T C(t+ν)-x ν (y) as soon as

ν|y| 2 ≤ δη/2. ( 24 
)
Proof: Concerning the first point, by Lemma 2.14,

x-κ 0 νu p ∈ C(t+ν) if x ∈ B(x p , 3r/2) C(t) and ν < ν min . Thus -κ 0 u p ∈ C(t + ν) -x ν . Let y ∈ C(t+ν)-x ν B(0, r 2ν ), x + νy ∈ B(x, r/2) ⊂ B(x p , 2r) and x + νy ∈ C(t + ν). The admissibility assumption implies that for all v ∈ N(C(t + ν), x + νy), -u p , v ≤ -δ|v| ≤ 0. Since N(C(t + ν), x + νy) = N( C(t+ν)-x ν , y), we have for all v ∈ N( C(t+ν)-x ν , y), -u p , v ≤ 0. As a consequence, -u p ∈ N( C(t+ν)-x ν , y) • = T C(t+ν)-x ν (y) (due to Lemma 2.8).
Let us now prove the last point. Since C(t+ν)-x ν is η ν -prox-regular and contains a ∈

P C(t+ν) (x)-x ν (satisfying |a| ≤ c 0 ), for all y ∈ C(t + ν) and v ∈ N( C(t+ν)-x ν , y) = N(C(t + ν), x + νy) a -y, v ≤ ν 2η |v||a -y| 2 ≤ ν η |v| c 2 0 + |y| 2 ,
by the hypomonotonicity property of the proximal normal cone. It follows from [START_REF] Moreau | Décomposition orthogonale d'un espace Hilbertien selon deux cônes mutuellement polaires[END_REF] that

-κ 0 u p -y, v ≤ -κ 0 δ|v| + -y, v ≤ -κ 0 δ|v| + ν η |v| c 2 0 + |y| 2 + c 0 |v| ≤ - 3δ 4 |v| + ν η |v||y| 2 ≤ 0
(since νc 2 0 ≤ ηδ/4 and κ 0 δ = δ + c 0 ), which proves the expected result (thanks to Lemma 2.8). ⊓ ⊔ Proposition 2.16. -Let C(•) be an admissible and Lipschitz continuous set-valued map on I. For all t 0 ∈ I and q 0 ∈ C(t 0 ), we set

C t 0 ,q 0 := lim inf hց0 C(t 0 + h) -q 0 h and Ct 0 ,q 0 := lim inf h→0 q→q 0 t→t 0 q∈C(t) C(t + h) -q h .
Then C t 0 ,q 0 = Ct 0 ,q 0 = ∅.

Proof: We refer the reader to Proposition 2.9 for the equality C t 0 ,q 0 = Ct 0 ,q 0 . It remains us to check that these sets are nonempty. If q 0 ∈ Int(C(t 0 )) then we easily have C t 0 ,q 0 = Ct 0 ,q 0 = R d . Else q 0 ∈ ∂C(t 0 ) and by Lemma 2.14, there exist u p = 0, κ 0 > 0 and ν min > 0 such that for all ν ∈]0, ν min [, q 0νκ 0 u p ∈ C(t 0 + ν).

So we deduce that -κ 0 u p ∈ C t 0 ,q 0 = ∅. ⊓ ⊔

Discretization and convergence of approximate solutions

This section is devoted to the proof of Theorem 1.3. As usual, we obtain existence results for (9) by proving the convergence of a sequence of discretized solutions. To do so, we extend the Catching-up algorithm (proposed by J.J. Moreau for the firt-order differential inclusions) to the considered second-order problem. Let us describe the numerical scheme.

Let h := T /N < ν min /4 be the time step, where ν min is defined in Lemma 2.14. We denote by q n h ∈ R d and u n h ∈ R d the approximated solution and velocity at time t n h = nh for n ∈ {0, .., N }. The approximated solutions are built using the following scheme:

1. Initialization :

(q 0 h , q 1 h ) := (q 0 , q 0 + hu 0 + h 2 f 0 h ) with f 0 h := 1 h t 1 h 0 f (s, q 0 h )ds. ( 25 
)
Since q 0 ∈ Int(C(0)), q 1 h belongs to C(h) for h small enough (such that (|u

0 |+ I F (t)dt)h < d ∂C(0) (q 0 )) .

Time iterations: q i

h are given for i ∈ {0, ..., n}. We define

f n h := 1 h t n+1 h t n h f (s, q n h )ds and q n+1 h ∈ P C(t n+1 h ) 2q n h -q n-1 h + h 2 f n h . ( 26 
)
This algorithm is a "prediction-correction algorithm": the predicted point 2q n hq n-1 h + h 2 f n h , that may not be admissible at the time t n+1 h , is projected onto C(t n+1 h ). We define the following functions: for all t ∈ [t n h , t n+1 h [,

q h (t) := q n h + (t -t n h ) q n+1 h -q n h h (27) 
and the velocity u h by

u h (t) := u n+1 h := q n+1 h -q n h h . (28) 
Note that, for every h < d ∂C(0) (q 0 ) |u 0 |+ I F (t)dt , the scheme is well-defined. Moreover the computed configurations are feasible :

∀h > 0, ∀n ∈ {0, ..., N }, q h (t n h ) = q n h ∈ C(t n h ). ( 29 
)
For the intermediate times t ∈]t n h , t n+1 h [, the point q h (t) may not belong to C(t). However from (29) and the Lipschitz regularity of the set-valued map C(•) (see ( 8)), we have the following estimate :

∀h > 0, ∀t ∈ I, d C(t) (q h (t)) ≤ max{d C(t) (q n h ), d C(t) (q n+1 h )} ≤ c 0 h. ( 30 
)
The proof of Theorem 1.3 is quite technical and will be decomposed into 4 steps, which we shall briefly describe below.

-In Subsection 3.1, we obtain uniform bounds on the computed velocities u h when h goes to 0 in L ∞ (I, R d ) and in BV (I, R d ).

-In Subsection 3.2, we use compactness arguments in order to extract a subsequence of (q h , u h ) h>0 converging to (q, u). -In Subsection 3.3, we check that the limit functions q, u satisfy the second order differential equation (the momentum balance) and the initial conditions. -In Subsection 3.4, we verify the impact law for u. After that, we will have proved that the limit function q is a solution of Problem [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF], which shows Theorem 1.3.

⊓ ⊔

3.1. Uniform estimates on the computed velocities. -This subsection is devoted to the proof of uniform estimates in BV (I, R d ) for the computed velocities in order to extract a convergent subsequence by compactness arguments.

First, we check that the velocities are uniformly bounded in L ∞ (I, R d ). Aiming that, we prove the following lemma giving a first estimate on the velocities.

Lemma 3.1. -For all integer n ∈ {0, ..., T /h}

|u n+1 h | ≤ 2|u n h + hf n h | + c 0 .
Proof: By rewriting (26) in terms of velocity, we deduce that

u n+1 h ∈ P C(t n+1 h )-q n h h [u n h + hf n h ] . With z := P C(t n+1 h ) (q n h ) (as c 0 h ≤ c 0 ν min /4 ≤ η, the projection de q n h is single-valued), it comes |u n h + hf n h -u n+1 h | ≤ u n h + hf n h - z -q n h h .
The proof is also achieved thanks to |z -

q n h | ≤ d H (C(t n+1 h ), C(t n h )) ≤ c 0 h. ⊓ ⊔
To iterate this reasoning, it would be very interesting to obtain a similar estimate without the factor 2 in Lemma 3.1. This is the main difficulty in order to obtain a uniform bound of the velocities and we solve it in the following proof.

Proposition 3.2. -There exists h 1 > 0 such that the sequence of computed velocities

(u h ) h<h 1 is bounded in L ∞ (I, R d ).
We set

K := sup h<h 1 u h L ∞ (I) < ∞.
Proof: 1-) Estimate on the velocities for small time intervals.

Let us fix h < h 1 with h 1 later defined and satisfying h 1 ≤ min{ν min , τ }. Consider a small time interval [t -, t + ] ⊂ I of length satisfying

h ≤ |t + -t -| ≤ min    r 5 |u n 0 h | + 2κ 0 + T 0 F (t)dt , τ 2    (31)
where κ 0 is introduced in Lemma 2.14 and n 0 is the smallest integer n such that t n h ≥ t -. Thus t n 0 h ∈ [t -, t + ]. We are looking for a bound on the velocity on this time interval. Rewriting the scheme in terms of velocities, we have that

u n+1 h ∈ P C(t n+1 h )-q n h h [u n h + hf n h ] , involving u n h + hf n h -u n+1 h ∈ N C(t n+1 h )-q n h h , u n+1 h .
By the admissibility of C, there are balls B(x p , r), which cover C(t n 0 h ). So there exists at least one index p such that q n 0 h ∈ B(x p , r) and we denote ω := u p . Then for n satisfying

t n h ∈ [t -, t + ] (since h + |t n h -t n 0 h | ≤ τ ), Lemma 2.15 yields that for h < ν min if q n h ∈ B(q n 0 h , r/2) (32) 
(which implies q n h ∈ B(x p , 3r/2)) and

h|u n+1 h | 2 ≤ ηδ/2, (33) 
then

-κ 0 w -u n+1 h ∈ N C(t n+1 h )-q n h h , u n+1 h •
. So we deduce that

u n h + hf n h -u n+1 h , -κ 0 w -u n+1 h ≤ 0, which implies |u n+1 h + κ 0 w| ≤ |u n h + hf n h + κ 0 w| ≤ |u n h + κ 0 w| + h|f n h |.
We set m the smallest integer (bigger than n 0 ) such that m + 1 does not satisfy [START_REF] Paoli | Time-stepping approximation of rigid-body dynamics with perfect unilateral constraints. I-The inelastic impact case[END_REF], [START_REF] Paoli | Time-stepping approximation of rigid-body dynamics with perfect unilateral constraints. II-The partially inelastic impact case[END_REF] 

+ κ 0 w| ≤ |u n 0 h + κ 0 w| + t m+1 h 0 F (t)dt.
Finally, it comes sup

n 0 ≤p≤m+1 |u p h | ≤ |u n 0 h | + 2κ 0 + t m+1 h 0 F (t)dt. ( 34 
)
By integrating in time, we deduce

|q m+1 h -q n 0 h | ≤ |u n 0 h | + 2κ 0 + t m+1 h 0 F (t)dt (|t + -t -| + h) ≤ 2r 5 < r 2 ,
by [START_REF] Paoli | An existence result for non-smooth vibro-impact problems[END_REF]. Consequently by definition of m, t m h ≤ t + < t m+1 h as soon as [START_REF] Paoli | Time-stepping approximation of rigid-body dynamics with perfect unilateral constraints. II-The partially inelastic impact case[END_REF] holds for n = m + 1. Moreover thanks to Lemma 3.1, we have

|u m+2 h | ≤ 2|u m+1 h | + c 0 + 2 T 0 F (t)dt.
From [START_REF] Perry | Contact analysis in virtual environment[END_REF], [START_REF] Paoli | Time-stepping approximation of rigid-body dynamics with perfect unilateral constraints. II-The partially inelastic impact case[END_REF] is satisfied for n = m + 1 as soon as

h 2(|u n 0 h | + 2κ 0 + T 0 F (t)dt) + c 0 + 2 T 0 F (t)dt 2 ≤ ηδ 2 .
Finally, we obtain sup

t -≤t n h ≤t + |u n h | ≤ |u n 0 h | + 2κ 0 + T 0 F (t)dt,
as soon as

h 2(|u n 0 h | + 2κ 0 + T 0 F (t)dt) + c 0 + 2 T 0 F (t)dt 2 ≤ ηδ 2 .
2-) End of the proof. Let h < h 1 (later defined), we are now looking for a bound on u h on the whole time interval I = [0, T ], in assuming that T < τ /2 without loss of generality. Let us start with t -= t(0) := 0. We know that with

t + = t(1) := min r 5A(1)
, T

where

A(1) := |u 0 | + 2κ 0 + T 0 F (t)dt
we have sup

0≤t n h ≤t(1) |u n h | ≤ A(1) ≤ |u 0 | + 2κ 0 + T 0 F (t)dt,
as soon as

h 2A(1) + c 0 + 2 T 0 F (t)dt 2 ≤ ηδ 2 .
Then, let us suppose that there exists n 1 such that t(0

) < t n 1 h ≤ t(1) < t n 1 +1 h . We have 0 ≤ δ 1 := t(1) -t n 1 h < h.
In that case, we set t -= t n 1 h and

t + = t(2) := min t n 1 h + r 5A(2)
, T

= min t(1) -δ 1 + r 5A(2)
, T , with

A(2) := |u 0 | + 4κ 0 + 2 T 0 F (t)dt ≥ |u h (t n 1 h )| + 2κ 0 + T 0 F (t)dt.
From the previous point, we deduce that sup t(1)≤t n h ≤t(2)

|u n h | ≤ sup t n 1 h ≤t n h ≤t(2) |u n h | ≤ |u n 1 h | + 2κ 0 + T 0 F (t)dt ≤ |u 0 | + 4κ 0 + 2 T 0 F (t)dt = A(2)
as soon as

h 2A(2) + c 0 + 2 T 0 F (t)dt 2 ≤ ηδ 2 .
Hence sup

0≤t n h ≤t(2) |u n h | ≤ A(2) = |u 0 | + 4κ 0 + 2 T 0 F (t)dt.
By iterating this reasoning, for any integer k ≥ 1 we set

A(k) := |u 0 | + 2kκ 0 + k T 0 F (t)dt = A(k -1) + 2κ 0 + T 0 F (t)dt and t(k) := min t(k -1) -δ k-1 + r 5A(k) , T = min - k-1 i=1 δ i + k i=1 r 5A(i) , T .
where δ k < h for all k. This construction of t(k) can be made while t(k -1)t(k -2) > h. This condition will be verified as long as

-δ k-2 + r 5A(k -1) > h.
Using the fact that 0 ≤ δ k-2 < h, we see that we can construct t(k) for k < N verifying r

5 |u 0 | + 2(k -1)κ 0 + (k -1) T 0 F (t)dt > 2h,
which is implied by

k ≤ k 0 (h) := 1 + r 10h -|u 0 | 2κ 0 + T 0 F (t)dt -1 . (35) 
Consequently, we know that the velocities can be bounded on [0, t(k 0 (h))] as follows sup

0≤t n h ≤t(k 0 (h)) |u k h | ≤ A(k 0 (h))
where

t(k 0 (h)) = min    - k 0 (h)-1 i=1 δ i + k 0 (h) i=1 r 5A(i) , T    , (36) 
under the property

h 2 sup 0≤t n h ≤t(k 0 (h)) |u n h | + c 0 + 2 T 0 F (t)dt 2 ≤ h 2A(k 0 (h)) + c 0 + 2 T 0 F (t)dt 2 ≤ ηδ/2.
Now, using the fact that k 0 (h) goes to infinity when h goes to zero, that the harmonic serie diverges and that (35) yields

k 0 (h)-1 i=1 δ i ≤ hk 0 (h) ≤ C,
we see by [START_REF] Rockafellar | Variational Analysis[END_REF] that t(k 0 (h)) is equal to T for h small enough. Therefore, there exists h 0 < ν min such that, for h < h 0 , T = t(k 0 (h 0 )) = t(k 0 (h)). Finally, we see that, for h < h 0 , t(k) can be constructed until k = k 0 (h 0 ) (since h → k 0 (h) is non decreasing) and that t(k 0 (h 0 )) = T (independently from h < h 0 ). Hence u h can be bounded as follows sup

0≤t n h ≤T |u n h | ≤ A(k 0 (h 0 )), ( 37 
) if h 2A(k 0 (h 0 )) + c 0 + 2 T 0 F (t)dt 2 ≤ ηδ/2. ( 38 
)
However, (38) holds for

h < h 1 := min      h 0 , ηδ 2 2A(k 0 (h 0 )) + c 0 + 2 T 0 F (t)dt 2      .
So we finally obtain the uniform bound sup

h<h 1 sup 0≤t n h ≤T |u n h | ≤ A(k 0 (h 0 )) = |u 0 | + 2k 0 (h 0 )κ 0 + k 0 (h 0 ) T 0 F (t)dt,
which concludes the proof of a uniform bound in L ∞ for the velocities u h .

⊓ ⊔

Having obtain a uniform bound of the velocities, we can now prove that they have a uniformly bounded variation on the whole time-interval I.

Theorem 3.3. -There exists h 2 ∈]0, h 1 [ such that the sequence of computed velocities (u h ) h<h 2 is bounded in BV (I, R d ).

Proof: We adapt the proof of Theorem 3.2 in [START_REF] Bernicot | Existence results for non-smooth second order differential inclusions, convergence result for a numerical scheme and application to the modelling of inelastic collisions[END_REF]. To study the variation of u h on I, we split I into smallest intervals. We define (s j ) j for j from 0 to P such that:

s 0 = 0 , s P = T, |s j+1 -s j | = 1 2 min τ, r K , for j = 0 . . . P -2, |s P -s P -1 | ≤ 1 2 min τ, r K ,
where τ and r are given by Definition 2.13 of the admissibility and K is the Lipschitz constant of q h (see Proposition 3.2). All these constants are independent on h and such a construction gives

P = 2T min τ, r K + 1, (39) 
which is independent of h. Then, for all h < h 1 , we define n j h for j from 0 to P -1 as the first time step strictly greater than s j :

t n j h -1 h ≤ s j < t n j h h ,
and n P h is set equal to N (t N h = t n P h h = T ). In the sequel, we suppose h < min{|s j+1s j |}/2. We also obtain a strictly increasing sequence of (t

n j h h ) j verifying |t n j h h -t n j-1 h h | ≤ min τ, r K . ( 40 
)
The variation of u h on I can be estimated as follows

Var I (u h ) = N -1 n=0 |u n+1 h -u n h | = P -1 j=0 
Var j u h where Var j (u h ) :=

n j+1 h -1 n=n j h |u n+1 h -u n h | corresponds to the variation on [t n j h h , t n j+1 h h
[. To study these terms, we recall that

u n+1 h ∈ P C(t n+1 h )-q n h h [u n h + hf n h ] (41) 
by writing the scheme in term of velocities and we state the following lemma:

Lemma 3.4. -There exist uniformly bounded vectors y n j h (|y n j h | ≤ κ 0 ) such that, for all small enough h, for all j ∈ {0, . . . , P } and n ∈ N ∩ [n j h , n j+1 h [ , we have

x 1 ∈ P C(t n+1 h )-q n h h [x 0 ] =⇒ |x 1 -x 0 | ≤ 2 δ |x 0 -y n j h | 2 -|x 1 -y n j h | 2
as soon as x 1 is bounded by K (constant introduced in Proposition 3.2).

Proof: First for small enough h < ν min and h < τ /2, it comes

n ∈ [n j h , n j+1 h [=⇒ |t n j h h -t n h | + h < τ /2 + τ /2 = τ and |q n j h h -q n h | ≤ K|t n j h h -t n h | < r/2
So thanks to Lemma 2.14 (applied for t

n j h h , q n j h h
), we know that there exist unit vectors v n j h such that

n ∈ [n j h , n j+1 h [ =⇒ B(-κ 0 v n j h , δ/2) ⊂ C(t n+1 h ) -q n h h . ( 42 
)
Indeed v n j h is "a good direction", given by the admissibility assumption, associated to the point (t

n j h h , q n j h h ).
Then, we develop similar arguments than those used in [START_REF] Colombo | Sweeping by a continuous prox-regular set[END_REF] and [START_REF] Bernicot | Existence results for non-smooth second order differential inclusions, convergence result for a numerical scheme and application to the modelling of inelastic collisions[END_REF][START_REF] Paoli | An existence result for non-smooth vibro-impact problems[END_REF][START_REF] Dzonou | A convergence result for a vibro-impact problem with a general inertia operator[END_REF]. In these works, the set onto which the velocity is projected was convex. In the present case, the set

C(t n+1 h )-q n h h is η/h-prox-regular, which is slightly weaker. Let n belong to [n j h , n j+1 h [. We define z n j h := y n j h + δ 2 x 0 -x 1 |x 0 -x 1 | where y n j h := -κ 0 v n j h .
(Here we suppose x 0 = x 1 , else the desired result is obvious.) We have

z n j h ∈ B(-κ 0 v n j h , δ/2) ⊂ C(t n+1 h ) -q n h h .
The point x 1 being the projection of x 0 onto the η h -prox-regular set

C(t n+1 h )-q n h h
, we get

x 0 -x 1 , z n j h -x 1 ≤ h 2η |x 0 -x 1 ||z n j h -x 1 | 2
thanks to the hypomonotonicity property (see Proposition 2.6). Thus

|x 0 -y n j h | 2 = |x 1 -y n j h | 2 + |x 0 -x 1 | 2 + 2 z n j h -y n j h , x 0 -x 1 + 2 x 1 -z n j h , x 0 -x 1 ≥ |x 1 -y n j h | 2 + 2 z n j h -y n j h , x 0 -x 1 - h η |x 0 -x 1 ||z n j h -x 1 | 2 ≥ |x 1 -y n j h | 2 + δ|x 0 -x 1 | - h η |x 0 -x 1 ||z n j h -x 1 | 2 .
Using that the vectors z n j h are uniformly bounded by κ 0 + δ/2 and that x 1 is bounded by K, it follows that for h

≤ ηδ 2(κ 0 +δ/2+K) 2 |x 0 -y n j h | 2 ≥ |x 1 -y n j h | 2 + δ 2 |x 0 -x 1 |.
This, together with the fact that the vectors y n j h are uniformly bounded by κ 0 , ends the proof of Lemma 3.4.

⊓ ⊔

We now come back to the proof of Theorem 3.3. For n in [n j h , n j+1 h [, using [START_REF] Thibault | Sweeping process with regular and nonregular sets[END_REF] and the previous lemma (with x 0 = u n h + hf n h and x 1 = u n+1 h ), it comes

|u n+1 h -u n h -hf n h | ≤ 2 δ |x 0 -y n j h | 2 -|x 1 -y n j h | 2 ≤ 2 δ |u n h + hf n h -y n j h | 2 -|u n+1 h -y n j h | 2 ≤ 2 δ |u n h -y n j h | 2 -|u n+1 h -y n j h | 2 + 2 δ |hf n h | 2 + 4 δ |hf n h ||u n h -y n j h | ≤ 2 δ |u n h -y n j h | 2 -|u n+1 h -y n j h | 2 + 2 δ |hf n h | 2 + 4 δ |hf n h | (K + κ 0 ) .
By summing up these terms for n from n j h to n j+1 h -1 we get

Var j (u h ) = n j+1 h -1 n=n j h |u n+1 h -u n h | ≤ 2 δ |u n j h h -y n j h | 2 -|u n j+1 h h -y n j h | 2 + n j+1 h -1 n=n j h 2 δ |hf n h | 2 + 4 δ K + κ 0 + δ 4 n j+1 h -1 n=n j h |hf n h | and finally Var(u h ) = P -1 j=0 Var j (u h ) ≤ 2 δ P -1 j=0 |u n j h h -y n j h | 2 -|u n j+1 h h -y n j h | 2 + 2 δ T 0 F (t)dt 2 + 4 δ K + κ 0 + δ 4 T 0 F (t)dt ≤ 4 δ (K + κ 0 ) 2 P + 2 δ T 0 F (t)dt 2 + 4 δ K + κ 0 + δ 4 T 0 F (t)dt .
This completes the proof of Theorem 3.3, since P does not depend on h from [START_REF] Schatzman | Uniqueness and continuous dependence on data for one-dimensional impact problems[END_REF]. ⊓ ⊔ 3.2. Extraction of a convergent subsequence. -The previous uniform bounds on the computed velocities allow us to extract a convergent subsequence.

Proposition 3.5. -There exist subsequences of (q h ) and (u h ) (still denoted by q h and u h ) which respectively converge to q ∈ W 1,∞ (I, R d ) and u ∈ BV (I, R d ). Moreover (u h ) h strongly converges to u in L 1 (I, R d ) and for all t ∈ I

q(t) ∈ C(t). ( 43 
)
The initial condition is satisfied: q(0) = q 0 and u(0) = u 0 .

Proof: By Proposition 3.2, the sequence (u h ) h is bounded in L ∞ (I, R d ). Arzelà-Ascoli theorem proves that (q h ) h is also relatively compact in W 1,∞ (I, R d ). So up to a subsequence, we can assume that q h strongly converges to q ∈ W 1,∞ (I, R d ). Moreover, as (u h ) is bounded in BV (I, R d ), there exists a subsequence (still denoted by u h ) converging to u in L 1 (I, R d ). It is easy to show that necessarily u = q in the distributional sense. In addition, by the uniform bound of the variation Var(u h ), u belongs to BV (I, R d ) with Var(u) ≤ sup h Var(u h ). Inclusion ( 43) is a direct consequence of the uniform convergence of q h to q together with (30).

Let us now check the last point concerning the initial condition. Since for all h > 0, q h (0) = q 0 so q(0) = q 0 . Moreover, the initial point q 0 ∈ Int(C(0)). The maps q h and q are Lipschitz with the same constant, which implies there exist s > 0 and l > 0 such that for all t ∈ [0, s] and all small enough h > 0 d ∂C(t) (q h (t)) + d ∂C(t) (q(t)) ≥ l. So the computed points are far away from the boundary of C(•) during the whole interval [0, s]. 

That implies

q n+1 h = 2q n h -q n-1 h + h 2 f n h ,
|u h (t) -u 0 | ≤ s+h 0 F (t)dt.
Since u h converges almost everywhere to u (up to a subsequence), it comes that

u -u 0 L ∞ ([0,s],R d ) ≤ s 0 F (t)dt.
Taking the limit when s goes to 0 implies the desired result: u(0) = u 0 . ⊓ ⊔

Solution of the continuous differential inclusion.

-In this subsection, we prove that the limit function (obtained in the previous subsection) satisfies the differential inclusion of Problem ( 9), according to Definition 1.2.

Proposition 3.6. -The limit function q satisfies the continuous differential inclusion: there exists k ∈ BV (I, R d ) such that in the sense of time-measures

d q + dk = f (t, q)dt (44)
and the differential measure dk is supported on {t, q(t) ∈ ∂C(t)} :

|k|(t) = t 0 1 q(s)∈∂C(s) d|k|(s), k(t) = t 0 ξ(s)d|k|(s), (45) 
with ξ(s) ∈ N(C(s), q(s)), |ξ(s)| = 1 and |k|(t) := Var (k, [0, t]).

The idea is to let h goes to 0 in the relation

u n h + hf n h -u n+1 h ∈ N C(t n+1 h ) -q n h h , u n+1 h . (46) 
We refer the reader to [START_REF] Lions | Stochastic differential equations with reflecting boundary conditions[END_REF], [START_REF] Saisho | Stochastic differential equations for multi-dimensional domain with reflecting boundary[END_REF] and [START_REF] Bernicot | Stochastic perturbations of sweeping process[END_REF] for similar reasonings in the framework of first order differential inclusions.

Proof: The scheme

u n+1 h ∈ P C(t n+1 h )-q n h h [u n h + hf n h ]
implies (46) and so

u n h + hf n h -u n+1 h ∈ N(C(t n+1 h ), q n+1 h ). ( 47 
)
Let us define a piecewise-constant function k h , defined for t

∈ [t n-1 h , t n h [ by k h (t) := k n h := u 0 -u n h + n-1 i=0 t i+1 h t i h f (s, q i h )ds.

So we have

k n+1 h -k n h = u n h + hf n h -u n+1 h ∈ N(C(t n+1 h ), q n+1 h ). ( 48 
)
By Proposition 3.5, u h converges to u in L 1 (I, R d ) and q h uniformly converges to q. Moreover f is Lipschitz with respect to the second variable thus we deduce that k h strongly converges to some function k ∈ L 1 (I, R d ) verifying for almost every t ∈ I k(t) := u 0u(t) + t 0 f (s, q(s))ds.

Thanks to the uniform bounded variation of u h , k belongs to BV (I, R d ) and then (44) holds. So it remains us to check (45). We recall that Ω is the set of (t, q) with t ∈ I and q ∈ C(t). Let χ : I × R d → R d be any nonnegative smooth function compactly supported in Int(Ω). Then

0 ≤ T 0 χ(s, q(s))d|k|(s) ≤ lim inf h→0 T 0 χ(s, q h (s))d|k h |(s). (49) 
However,

T 0 χ(s, q h (s))d|k h |(s) = N -1 n=0 t n+1 h t n h χ(s, q n h + (s -t n h )u n+1 h )(k n+1 h -k n h )ds.
Assume that for some integer n, k n+1 h

-k n h = 0, then q n h + hu n h + h 2 f n h / ∈ C(t n+1 h ). Thus, for every t ∈ [t n h , t n+1 h [ d ∂C(t) (q n h ) ≤ h c 0 + K + T 0 F (s)ds , because q n h ∈ C(t n h ), |u n h | ≤ K (see Proposition 3.
2) and c 0 is the Lipschitz constant of C. Consequently, for h small enough

d ∂C(t) (q n h ) + hK ≤ d H (supp(χ), ∂Ω) and so χ(s, q n h + (s -t n h )u n+1 h ) = 0, for s ∈ [t n h , t n+1 h [. Finally, we obtain that for h small enough T 0 χ(s, q h (s))d|k h |(s) = 0,
hence from (49), we obtain T 0 χ(s, q(s))d|k|(s) = 0, for any nonnegative smooth function χ, compactly supported in Int(Ω). Taking a sequence of such functions converging (increasingly) to 1 Int(Ω) , then we have

T 0 1 Int(Ω) (s, q(s))d|k|(s) = 0,
or equivalently

|k| T = T 0 1 ∂Ω (s, q(s))d|k|(s) = T 0 1 ∂C(s) (q(s))d|k|(s).
To finish, it remains us to check that "dk(s) ∈ N(C(s), q(s))". We move the reader to [START_REF] Lions | Stochastic differential equations with reflecting boundary conditions[END_REF] (the end of the proof for Theorem 1.1 in [START_REF] Lions | Stochastic differential equations with reflecting boundary conditions[END_REF]) for precise details. Indeed the arguments relie on the hypomonotonicity property of the proximal normal cones (see Proposition 2.6). By (47),

u n h + hf n h -u n+1 h belongs to N(C(t n+1 h ), q n+1 h
) for all integer n. So for every continuous map φ : I → R d such that φ(t) ∈ C(t), we have

φ(t n+1 h ) -q n+1 h , u n h + hf n h -u n+1 h ≤ 1 2η |u n h + hf n h -u n+1 h ||φ(t n+1 h ) -q n+1 h | 2 .
Summing all these inequalities from 0 to N -1, it comes with (48) for every nonnegative function ψ

T 0 ψ(t) φ(θ h (t)) -q h (θ h (t)), dk h (t) ≤ 1 2η T 0 ψ(t)|φ(θ h (t)) -q h (θ h (t))| 2 d|k h |(t) (50) 
where we denote θ h (t) = t n+1 h for t ∈ [t n h , t n+1 h [. Since dk h and d|k h | are uniformly bounded measures. Up to extract a subsequence, we can assume that they are weakly convergent to dk (the differential measure of k) and da (where da is a nonnegative measure). Necessarily, the measure dk is absolutely continuous with respect to the measure da. So there exists a bounded and measurable function g such that dk = gda. Taking the limit in (50) when h goes to 0, it comes

T 0 ψ(t) φ(t) -q(t), g(t) da(t) ≤ 1 2η T 0 ψ(t)|φ(t) -q(t)| 2 da(t).
Since this inequality holds for every nonnegative function ψ, we deduce that for all t ∈ I and all map φ φ(t)q(t), g(t

) ≤ 1 2η |φ(t) -q(t)| 2 ,
which yields by Proposition 2.7 that g(t) ∈ N(C(t), q(t)). Indeed for every t 0 ∈ I and φ 0 ∈ C(t 0 ), there exists a continuous map φ :

I → R d satisfying φ(t) ∈ C(t), ∀t ∈ I φ(t 0 ) = φ 0 .
It suffices to consider the solution of the following sweeping process (see [START_REF] Thibault | Sweeping process with regular and nonregular sets[END_REF])

-φ(t) ∈ N(C(t), φ(t)) for a.e. t ∈ I φ(t 0 ) = φ 0 .
That also concludes the proof of (45). ⊓ ⊔ 3.4. Collision law. -Finally, Theorem 1.3 will be proved, provided that the collision law is satisfied for the limits u and q, which is the aim of the following proposition.

Proposition 3.7.

-The impact law is satisfied:

∀t 0 ∈ • I , u + (t 0 ) = P C t 0 ,q(t 0 ) (u -(t 0 )).
Proof: Note that, from Proposition 3.5, u ∈ BV (I, R d ), so that the left-sided u -(t 0 ) and the right-sided u + (t 0 ) limits are well-defined.

The proof is quite technical so for an easy reference, we remember the definitions of the sets C t 0 ,q 0 (see Definition 1.1)

C t 0 ,q 0 := v = lim ǫ→0 + v ǫ , with v ǫ ∈ C(t 0 + ǫ) -q 0 ǫ .
Moreover, we recall that these sets are nonempty due to Proposition 2.16. From now on, let us fix the instant t 0 ∈ I. The desired property

u + (t 0 ) = P C t 0 ,q(t 0 ) (u -(t 0 )) ( 51 
)
can be seen as the limit (for h going to 0) of the "discretized property"

u n+1 h ∈ P C(t n+1 h )-q n h h [u n h + hf n ]. ( 52 
)
Step 1:

We claim that u + (t 0 ) ∈ C t 0 ,q(t 0 ) . ( 53 
)
By definition, q ∈ W 1,∞ (I, R d ) and u ∈ BV (I, R d ) so we have that

u + (t 0 ) := lim ǫ→0 + u(t 0 + ǫ) = lim ǫ→0 + q(t 0 + ǫ) -q(t 0 ) ǫ .
The last equality comes from

u + (t 0 ) - q(t 0 + α) -q(t 0 ) α = u + (t 0 ) - 1 α t 0 +α t 0 u(s)ds ≤ sup s∈[t 0 ,t 0 +α] |u + (t 0 ) -u(s)| ---→ α→0 0. Since q(t 0 + ǫ) ∈ C(t 0 + ǫ), u + (t 0 ) ∈ lim ǫ→0 + C(t 0 + ǫ) -q(t 0 ) ǫ = C t 0 ,q(t 0 ) ,
which completes the proof of (53).

Let us now come back to the proof of (51). As we just proved u + (t 0 ) ∈ C t 0 ,q(t 0 ) and since C t 0 ,q(t 0 ) is a convex set (see Proposition 2.12), ( 51) is equivalent to

∀w ∈ C t 0 ,q(t 0 ) , u -(t 0 ) -u + (t 0 ), w -u + (t 0 ) ≤ 0. ( 54 
)
So, in the following, let us fix w ∈ C t 0 ,q(t 0 ) . In Step 2, we construct a family of points w ν for ν > 0 such that w ν tends to w when ν goes to zero satisfying w ν ∈ C(t+h)-q h for h sufficiently small and (t, q) close to (t 0 , q(t 0 )). Then in Step 3, for each ν, we go to the limit on h, t and q to show that u -(t 0 )u + (t 0 ), w νu + (t 0 ) ≤ 0 and finally, we make ν go to zero to conclude.

Step 2: From the admissibility assumption, there exist a neighborhood U ⊂ Ω ⊂ I × R d around (t 0 , q(t 0 )) and a "good direction" ζ ∈ R d such that for all (t, q) ∈ U

∀v ∈ N(C(t), q) , ζ, v ≤ -δ|v|, (55) 
with a numerical constant δ > 0. For ν ∈]0, 1[, we consider the point w ν := w + νζ. We claim that for each fixed ν > 0, there are ǫ ν and h ν such that for every h < h ν , (t, q) ∈ U , we have

|t -t 0 | + |q -q(t 0 )| ≤ ǫ ν =⇒ w ν ∈ C(t + h) -q h ( 56 
)
Let us detail this point. Thanks to Proposition 2.16, we know that for any θ there exists a neighborhood V θ ⊂ U of (t 0 , q(t 0 )) and h θ such that for all (t, q) ∈ V θ and h ∈]0, h θ [

d C(t+h)-q h (w) ≤ θ.
Let us denote wt,q a point of P C(t+h)-q h (w).

If h ≤ h θ ≤ 2η/(c 0 + |w| + 1), it can be proved that for (t, q) ∈ V θ , w ν ∈ C(t+h)-q h i.e q + hw ν ∈ C(t + h). By Proposition 2.7 and as d C(t+h) (q + hw ν ) ≤ 2η, it suffices to show that for all x ∈ C(t + h) and v ∈ N(C(t + h), x)

q + hw ν -x, v ≤ |v| 2η |q + hw ν -x| 2 (57) as soon as |x -q + hw ν | ≤ h(c 0 + |w| + 1). ( 58 
)
Let x ∈ C(t + h) satisfying (58), we have

q + hw ν -x, v = q + hw + νhζ -x, v = q + h wt,q -x, v + νh ζ, v + h w -wt,q , v ≤ 1 2η |v||q + h wt,q -x| 2 -νhδ|v| + h|w -wt,q ||v| ≤ |v| 1 2η |q + h wt,q -x| 2 -νhδ + hθ ,
where we have used that q + h wt,q and x belong to C(t + h) with the hypomonotonicity property of the proximal normal cone and (55). Then taking θ ≤ min{νδ/2, c 1 } with c 1 := 1/(6(c 0 + 2|w| + 2)), we get

|q + h wt,q -x| 2 ≤ |q + hw ν -x| 2 + h 2 |w ν -wt,q | 2 + 2h|w ν -wt,q ||q -x| ≤ |q + hw ν -x| 2 + h 2
and so

1 2η |q + h wt,q -x| 2 -νhδ + hθ ≤ 1 2η |q + h wt,q -x| 2 -h νδ 2 ≤ 1 2η |q + hw ν -x| 2 -h νδ 2 - h 2η ≤ 1 2η |q + hw ν -x| 2
as soon as h ≤ νδη. Thus, for

ν ≤ c 1 , θ ≤ min{νδ/2, c 1 }, h ≤ h ν := min{h θ , νδη} and (t, q) ∈ V θ , it comes 1 2η |q + h wt,q -x| 2 -νhδ + hθ ≤ 1 2η |q + hw ν -x| 2
for all x ∈ C(t + h) satisfying (58) and v ∈ N(C(t + h), x). That proves (57) and so (56).

Step 3: Let us now fix the parameter ν ≤ c 1 .

Thanks to the uniform Lipschitz regularity of the maps q h and their uniform convergence towards q, there exists hν ≤ h ν such that for ǫ ≤ ǫ ν /(2 + 2K) and h ≤ hν ,

t k h , t k+1 h ∈ [t 0 -ǫ, t 0 + ǫ] =⇒ |t k+1 h -t 0 | + |q k h -q(t 0 )| ≤ ǫ ν . We recall that K := sup h u h L ∞ (I,R d ) < ∞.
Consequently, as q k h ∈ C(t k h ), the property (56) (with

t = t k h ) gives w ν ∈ C(t k+1 h )-q k h h
. Moreover (52) describes that

u k h + hf k -u k+1 h ∈ N C(t k+1 h ) -q k h h , u k+1 h .
Therefore,

C(t k+1 h )-q k h h
being η h -prox-regular, we have (due to the hypomonotonicity property)

u k h + hf k h -u k+1 h , w ν -u k+1 h ≤ h 2η |u k h + hf k h -u k+1 h ||w ν -u k+1 h | 2 . (59) 
We sum up these inequalities for k from n to p, integers chosen such that

t n h is the first time step in [t 0 -ǫ, t 0 -ǫ + h] and t p h the last one in [t 0 + ǫ -h, t 0 + ǫ]. First, we know that p k=n h f k , w ν -u k+1 h ≤ (|w| + K + 1) t 0 +ǫ+h t 0 -ǫ F (t)dt, (60) 
with K := sup h u h ∞ . We also have

p k=n u k h -u k+1 h , w ν = u h (t n-1 h ) -u h (t p h ), w ν . (61) 
We deal with the remainder as follows:

p k=n u k h -u k+1 h , -u k+1 h = p k=n u k h -u k+1 h , u k h -|u n h | 2 + |u p+1 h | 2 , which gives p k=n u k h -u k+1 h , -u k+1 h = 1 2 p k=n |u k h -u k+1 h | 2 + 1 2 -|u h (t n-1 h )| 2 + |u h (t p h )| 2 = 1 2 Var 2 (u h ) 2 [t n-1 h ,t p h ] + 1 2 -|u h (t n-1 h )| 2 + |u h (t p h )| 2 , (62) 
where we wrote Var 2 for the L 2 -variation of a function. Using (59), ( 60), ( 61) and (62), we finally get :

1 2 Var 2 (u h ) 2 [t n-1 h ,t p h ] + 1 2 -|u h (t n-1 h )| 2 + |u h (t p h )| 2 + u h (t n-1 h ) -u h (t p h ), w ν ≤ (|w| + K + 1) t 0 +ǫ+h t 0 -ǫ F (t)dt + h 2η p k=n |u k h + hf k h -u k+1 h ||w ν -u k+1 h | 2 .
However

p k=n |u k h + hf k h -u k+1 h | ≤ p k=n |u k h -u k+1 h | + p k=n h|f k h | ≤ Var(u h ) + T 0 F (t)dt ≤ B 1
for some numerical constant, due to Theorem 3.3

|w ν -u k+1 h | 2 ≤ (|w| + 1 + K) 2 = B 2 2 ,
due to Proposition 3.2. Consequently, we deduce that

1 2 Var 2 (u h ) 2 [t n-1 h ,t p h ] + 1 2 -|u h (t n-1 h )| 2 + |u h (t p h )| 2 + u h (t n-1 h ) -u h (t p h ), w ν ≤ B 2 t 0 +ǫ+h t 0 -ǫ F (t)dt + h 2η B 1 B 2 2 . (63) 
Let us now choose a sequence of ǫ m going to zero, such that u h pointwisely converges to u at the instants t 0ǫ m and t 0 + ǫ m (which is possible as u h converges almost everywhere towards u). For each ǫ m and h ≤ hν , we have shown that inequality (63) holds. Then, passing to the limit for h → 0 we get

1 2 Var 2 (u) 2 [t 0 -ǫm,t 0 +ǫm] + 1 2 -|u(t 0 -ǫ m )| 2 + |u(t 0 + ǫ m )| 2 + u(t 0 -ǫ m ) -u(t 0 + ǫ m ), w ν ≤ B 2 t 0 +ǫm t 0 -ǫm F (t)dt, which gives for ǫ m → 0 1 2 Var 2 (u) 2 [t - 0 ,t + 0 ] + 1 2 -|u -(t 0 )| 2 + |u + (t 0 )| 2 + u -(t 0 ) -u + (t 0 ), w ν ≤ 0.
Finally we obtain

1 2 u + (t 0 ) -u -(t 0 ) 2 + 1 2 -|u -(t 0 )| 2 + |u + (t 0 )| 2 + u -(t 0 ) -u + (t 0 ), w ν ≤ 0.
By expanding the square quantities, we obtain for all ν < c 1

u -(t 0 ) -u + (t 0 ), w ν -u + (t 0 ) ≤ 0. ( 64 
)
Recall that w ν = w + νζ, we obtain (54) by letting ν go to 0 in (64). ⊓ ⊔

A particular case

As explained in the introduction, all the second-order differential inclusions, already studied in the literature, concern a particular case where the moving set C(•) is given by a finite number of constraints. This section is also devoted to prove that the previous abstract result covers this case, as soon as the constraints satisfy some reasonable assumptions.

So we consider the Euclidean space R d , B the closed unit ball in R d+1 and I = [0, T ] a bounded time-interval. For i ∈ {1, ..., p} let g i : I × R d → R be functions (which can be thought as "constraints"). For t ∈ I, we introduce the sets

Q i (t) := x ∈ R d , g i (t, x) ≥ 0 ,
and the following one

Q(t) := p i=1 Q i (t),
which represents the set of "feasible configurations x". We remember that Ω := {(t, x), t ∈ I, x ∈ Q(t)} and we similarly define Ω i in replacing Q(t) by Q i (t). Moreover we assume that there exist α, β, M, κ > 0 such that g i ∈ C 2 (Ω + κB) and satisfies :

∀(t, x) ∈ Ω i + κB, α ≤ |∇ x g i (t, x)| ≤ β, (A1) 
∀(t, x) ∈ Ω i + κB, |∂ t g i (t, x)| ≤ β, (A2) 
∀(t, x) ∈ Ω i + κB, |D 2 x g i (t, x)| ≤ M (A3) and ∀(t, x) ∈ Ω i + κB, |∂ 2 t g i (t, x)| + |∂ t ∇ x g i (t, x)| ≤ M. ( A4 
) For all t ∈ I, we denote by

I(t, x) := {i, g i (t, x) = 0}
the set of "active contraints" and for ρ > 0

I ρ (t, x) := {i, g i (t, x) ≤ ρ} .
We suppose that there exist constants ρ, γ > 0 such that for all x ∈ Q(t) and all nonnegative reals λ i i∈Iρ(t,x)

λ i |∇g i (t, x)| ≤ γ i∈Iρ(t,x) λ i ∇g i (t, x) , (R ρ ) Theorem 4.1.
-Under the assumptions (A1), (A3) and (R 0 ), there exists η := η(α, M, γ) such that the set Q(t) is η-prox-regular for all t ∈ I.

Proof: The time t is fixed in this proof so for simplicity we omit it in the notations. We will follow the arguments and the ideas of [START_REF] Venel | Modélisation mathématique et numérique de mouvements de foule[END_REF] (Subsections 3.1 and 3.2) and [START_REF] Maury | A discrete contact model for crowd motion[END_REF] 

(Subsection 2.2)
where the desired result is already proved in the case of convex constraints g i . First let us study the set Q i for a fixed index i. We refer the reader to Proposition 3.2 of [START_REF] Venel | Modélisation mathématique et numérique de mouvements de foule[END_REF] for the following well-known fact. Due to the assumptions, Q i has a C 1 -boundary

∂Q i = x ∈ R d , g i (x) = 0
and for x ∈ ∂Q i , its proximal normal cone is given by

N(Q i , x) = -R + ∇g i (x).
We now want to check that Q i is uniformly prox-regular with a constant η 0 . It suffices to check the hypomonotonicity property: for all x ∈ ∂Q i and y

∈ Q i x -y, -∇g i (x) ≥ - 1 2η 0 |x -y| 2 |∇g i (x)|. ( 65 
)
Indeed since g i (x) = 0, a first order expansion together with Assumption (A3) give

0 ≤ g i (y) ≤ x -y, -∇g i (x) + M 2 |x -y| 2 .
So (65) is satisfied with η 0 := α/M , hence Q i is η 0 -prox-regular (thanks to Proposition 2.6).

Then let us study Q the intersection of sets Q i . We first have to prove that for all x ∈ ∂Q

N(Q, x) = i∈I(x) N(Q i , x) = - i∈I(x) R + ∇g i (x). (66) 
Let us denote

N x := - i∈I(x) R + ∇g i (x).
The inclusion N x ⊂ N(Q, x) is proved in Proposition 2.16 [START_REF] Maury | A discrete contact model for crowd motion[END_REF] (this part did not use the convexity of the functions g i ) and so we just deal with the other one. By the way, we point out that N x is the polar cone of

Υ x := z ∈ R d , ∀i ∈ I(x), ∇g i (x), z ≥ 0 .
So using the orthogonal decomposition related to polar cones (see [START_REF] Moreau | Décomposition orthogonale d'un espace Hilbertien selon deux cônes mutuellement polaires[END_REF]), any v ∈ N(Q, x) can be written v = w + z = P Nx v + P Υx v, with w⊥z. Suppose z = 0. Since v ∈ N(Q, x), there exists t > 0 such that x ∈ P Q (x + tv). Let s = min(t, τ ) with τ := min i / ∈I(x)

g i (x) (2β + δα)|z| ,
by the well-known property of the projection, the inequality s ≤ t implies

x ∈ P Q (x + sv). (67) 
From Lemma 5.2 in [START_REF] Bernicot | Stochastic perturbations of sweeping process[END_REF], we know that Q satisfies the second property of the admissibility: there exist a bounded covering of ∂Q with balls B((x p , r)) p , a collection of "good direction (u p ) p " and constants ρ, δ such that for all x ∈ B(x p , 2r) and all v ∈ N(Q, x) v, u p ≥ δ|v|.

There exists p such that x ∈ B(x p , r) and we set

x := x + svsw -ǫs|z|u p = x + sz -ǫs|z|u p , where ǫ will be later chosen small enough (ǫ << 1). We claim that x ∈ Q. Indeed thanks to Assumption (A3) we have for all i,

g i (x) ≥ g i (x) + s ∇g i (x), z -ǫ|z|u p -s 2 M (1 + ǫ) 2 |z| 2 .
Consequently,

∀i ∈ I(x), g i (x) ≥ sǫ|z|δα -s 2 M (1 + ǫ) 2 |z| 2 ≥ 0 if s ≤ ǫδα |z|M (1+ǫ) 2 . Furthermore, if i / ∈ I(x), then s ≤ τ ≤ g i (x) (ǫδα + (1 + ǫ)β)|z|
. Hence which leads to a contradiction with (67). So we conclude that z = 0, which completes the proof of (66). Finally, the prox-regularity of the set Q is shown by invoking the "reverse triangle inequality" Assumption (R ρ ), as done in Proposition 2.17 [START_REF] Maury | A discrete contact model for crowd motion[END_REF]. ⊓ ⊔ Remark 4.2. -Note that for all t ∈ I, x ∈ Q(t)

g i (x) ≥ g i (x) -sβ|z|(1 + ǫ) ≥ 0.
Υ t,x := z ∈ R d , ∀i ∈ I(t, x), ∇ x g i (t, x), z ≥ 0 = T Q(t) (x)
Indeed Υ t,x and T Q(t) (x) are two convex cones whose polar cones are equal: 

N t,x := - i∈I(t,x) R + ∇ x g i (t, x) = N(Q(t), x).
C t,x = z ∈ R d , ∀i ∈ I(t, x), ∂ t g i (t, x) + z, ∇ x g i (t, x) ≥ 0 .
Proof: The set Ω is given by the functions h i as Ω := (t, x) ∈ R d+1 , ∀i ∈ {0, ..., p + 1}, h i (t, x) ≥ 0, with h i := g i for i ∈ {1, ..., p}, h 0 (t, x) := t and h p+1 (t, x) := Tt. In order to apply Theorem 4.1, we check the different assumptions relatively to h i : for all i ∈ {0, ..., p + 1}

∀(t, x) ∈ Ω i + κB, min{α, 1} ≤ |∇ (t,x) h i (t, x)| ≤ max{2β, 1}, (68) 
∀(t, x) ∈ Ω i + κB, |D 2 (t,x) h i (t, x)| ≤ 2M, (69) 
and

i∈I(t,x) λ i |∇ (t,x) h i (t, x)| ≤ γ 1 + β + 2 α i∈I(t,x) λ i ∇ (t,x) h i (t, x) . (70) 
Indeed Properties (68) and (69) are obvious for i = 0 and i = p + 1. Let i ∈ {1, ..., p} and (t, x) ∈ Ω i + κB. Inequality (68) is proved by

α ≤ |∇ x g i (t, x)| ≤ |∇ (t,x) h i (t, x)| ≤ |∇ x g i (t, x)| + |∂ t g i (t, x)| ≤ 2β.
The second one (69) is due to Assumptions (A3) and (A4):

|D 2 (t,x) h i (t, x)| ≤ |∂ 2 t g i (t, x)| 2 + |D 2 x g i (t, x)| 2 + 2|∂ t ∇ x h i (t, x)| 2 1/2 ≤ 2M.
Concerning Assumption (70), we just deal with the case where I(t, x) ∩ {1, ..., p} = ∅ (else the inequality is obvious). For all i ∈ {1, ..., p}, we have

|∂ t g i (t, x)| ≤ β α |∇ x g i (t, x)| which implies |∇ (t,x) h i (t, x)| ≤ |∂ t g i (t, x)| 2 + |∇ x g i (t, x)| 2 1/2 ≤ 1 + β α |∇ x g i (t, x)|.
For i = 0 or i = p + 1, it comes similarly

|∇ (t,x) h i (t, x)| = 1 ≤ 1 α |∇ x g i 0 (t, x)|
where i 0 ∈ I(t, x) ∩ {1, ..., p}. Then (70) is involved by Assumption (R ρ ). By Theorem 4.1, we conclude to the uniform prox-regularity of Ω.

Thanks to Proposition 2.11, we know that for all (t, x) ∈ Ω with t ∈

• I C t,x = u ∈ R d , (1, u) ∈ T D Ω ((t, x)) = u ∈ R d , (1, u) ∈ T Ω ((t, x))
because Ω is uniformly prox-regular (see Corollary 6.30 [START_REF] Rockafellar | Variational Analysis[END_REF]). By Remark 4.2, we get More precisely, for all (t 0 , q 0 ) ∈ Ω there exist a "good direction u" and constants r, δ such that for all (t, q) ∈ Ω ∩ B((t 0 , q 0 ), 2r) and all proximal vector v ∈ N(Q(t), q) = -i∈I(t,q) R + ∇g i (t, q) v, u ≥ δ|v|.

T Ω ((t, x)) = z ∈ R d+1 , ∀i ∈ I(t, x), ∇ (t,x) h i (t, x), z ≥ 0 = z = (z 1 , z u ) ∈ R × R d ,
Moreover the set-valued map Q is Lipschitz continuous on I.

We refer the reader to Lemma 5.2 in [START_REF] Bernicot | Stochastic perturbations of sweeping process[END_REF] for the admissibility property and to Proposition 2.11 of [START_REF] Venel | A numerical scheme for a whole class of sweeping process[END_REF] for the Lipschitz continuity.

The case of a set-valued map Q has already been studied in [START_REF] Bernicot | Existence results for non-smooth second order differential inclusions, convergence result for a numerical scheme and application to the modelling of inelastic collisions[END_REF]. We look for explaining that the current results of existence solutions for differential inclusions covers the one obtained in [START_REF] Bernicot | Existence results for non-smooth second order differential inclusions, convergence result for a numerical scheme and application to the modelling of inelastic collisions[END_REF].

Proposition 4.5. -Under the above assumptions, Problem ( 9) is equivalent to the following one : find q ∈ W 1,∞ (I, R d ) , q ∈ BV (I, R d ) and time-measures

λ i ∈ M + (I) such that                              ∀t ∈ I, q(t) ∈ Q(t) d q = f (t, q)dt + p i=1
∇ q g i (t, q)dλ i supp(λ i ) ⊂ {t , g i (t, q(t)) = 0} for all i ∀t ∈ I, q(t + ) = P C t,q(t) q(t -) q(0) = q 0 q(0) = u 0 .

(72)

Proof: By the characterization of the proximal normal cones (see Remark 4.2), it is obvious that a solution of Problem (72) is a solution of Problem (9) too. Indeed, consider q, λ 1 , ..., λ p a solution of Problem (72). Then we define the measure λ = λ 1 + ... + λ p in order that each measure λ i is absolutely continuous with respect to λ. There also exist bounded nonnegative and mesurable functions ℓ i such that for all i = 1, ..., p: dλ i = ℓ i dλ. Then

d q = f (t, q)dt + p i=1
∇ q g i (t, q)dλ i = f (t, q)dt + p i=1 ∇ q g i (t, q)ℓ i (t) dλ.

By writing ξ(t) = p i=1 ∇ q g i (t, q)ℓ i (t) ∈ -N(Q(t), q(t)), we set ξ(t) = ξ(t)/| ξ(t)| if ξ(t) is non-vanishing and ξ(t) = 0 else. So, we obtain d q = f (t, q)dt + ξ(t)dν(t) with dν = | ξ(t)|dλ. Since the functions ℓ i are bounded by 1, the function ξ is bounded on I and ν ∈ M + (I). We conclude that q is a solution of Problem [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF]. Let us explain the other relation. Let q be a solution of [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF]. By definition, there exist a function k ∈ BV (I, R d ) and a measurable map ξ : I → R d such that

d q + dk = f (t, q)dt and k(t) = t 0 ξ(s)d|k|(s)
with ξ(s) ∈ N(C(s), q(s)) and |ξ(s)| = 1. The technical difficulty is to represent the map ξ in terms of Kuhn-Tucker multipliers (this corresponds to a problem of selection for a particular set-valued map). For all t ∈ I, we define

F(t) := (λ 1 , ..., λ p ) ∈ (R + ) p , ξ(t) = - p i=1 λ i ∇ q g i (t, q(t)), λ i = 0 only if g i (t, q(t)) = 0 .
We are now looking to obtain a measurable selection of the set-valued map F. It is easy to see that F takes non-empty closed values. Moreover its graph Γ F 

F := (t, λ 1 , ..., λ p ) ∈ I × (R + ) p , (λ 1 , ..., λ p ) ∈ F(t) is given by Γ F := G -1 ({0}) ∩ I × (R + ) p where G is defined as follows G(t, λ 1 , ..., λ p ) := ξ(t) + i∈I(t,q(t)) λ i ∇ q g i (t, q(t)) +   i / ∈I(t,q(t)) |λ i |χ I(t,q(t)) c (i)   e
where e is any vector e ∈ R d \ {0} and χ I(t,q(t)) c is the characteristic function:

χ I(t,q(t) c (i) = 0, i ∈ I(t, q(t)) +∞, i / ∈ I(t, q(t)).
Consequently, since ξ is measurable and t → I(t, q(t)) is upper semicontinuous, we deduce that G is measurable and so it follows that the graph Γ F is a measurable set. Then, Theorem 8.1.4 in [START_REF] Aubin | Set-Valued Analysis[END_REF] yields that the set-valued map F is measurable and that F admits a measurable selection. Let us write (a 1 , ..., a p ) for such a measurable selection of F. Then, we let the reader to check that the measures dλ i := a i d|k| are solutions of Problem (72) (since the reverse triangle inequality (R ρ ), it comes that the functions a i belong to L ∞ (I, R)).

⊓ ⊔

We have checked that the set-valued map Q takes uniformly prox-regular values (see Theorem 4.1). Moreover the Lipschitz regularity and the admissibility property have already been proved (see Proposition 4.4). We can now apply Theorem 1.3 and we get the following one:

Theorem 4.6. -Under the above assumptions ((A1)-(R ρ )) and with f satisfying ( 12) and ( 13), the problems ( 5) and ( 72) are equivalent and admit at least one solution on any time interval I.

We would like to finish this section with a local existence result for a constant set Q(t) = Q defined by time-independent constraints.

Theorem 4.7.

-Let κ > 0 and consider Q := p i=1 x ∈ R d , g i (x) ≥ 0 , where g i ∈ C 2 (Q + κB(0, 1)) satisfy (A1), (A3) and (R 0 ). Then for all initial data q 0 ∈ Int(Q) and u 0 ∈ R d , there exist T 0 := T 0 (|u 0 |) > 0 and q solution of ( 2) on [0, T 0 ] where f satisfies ( 12) and ( 13) with F ∈ L ∞ (I).

Proof: First, Q is uniformly prox-regular by Theorem 4.1. Thanks to Theorem 5.1, there exists T 0 := T 0 (|u 0 |) > 0 such that the computed velocities (u h ) h are uniformly bounded in L ∞ ([0, T 0 ], R d ) (for h going to 0). We can also conclude that all the computed solutions q h are uniformly bounded: there exists L > 0 such that for all small enough h > 0 and all t ∈ [0, T 0 ] :

|q h (t)| ≤ L.
Due to Lemma 4.8, there exist ρ := ρ(L) and γ := γ(L) > 0 such that (R ρ ) holds for every q ∈ B(0, 2L). By Lemma 5.2 in [START_REF] Bernicot | Stochastic perturbations of sweeping process[END_REF], the set Q verifies a "local admissibility" property: there exist δ, r > 0, sequences (x p ) p and (u p ) p with |u p | = 1 and x p ∈ Q ∩ B(0, 2L) such that (B(x p , r)) p is a bounded covering of the boundary ∂Q ∩ B(0, 2L) and

∀p, ∀x ∈ ∂Q ∩ B(0, 2L) ∩ B(x p , 2r), ∀v ∈ N(Q, x), v, u p ≥ δ|v|.
We let the reader to check that the proof of Theorem 1.3 still holds since we consider points q n h ∈ Q ∩ B(0, L) (indeed we can choose r ≤ L in order that for all q n h ∈ B(0, L), the whole ball B(q n h , r) is included in B(0, 2L) where the admissibility property is verified). Thus we get the existence of a solution on [0, T 0 ].

⊓ ⊔ Lemma 4.8. -Let L > 0 then there exist ρ := ρ(L) and γ := γ(L) > 0 such that (R ρ ) holds for every q ∈ B(0, 2L).

Proof: Assume that (R ρ ) does not hold for all ρ > 0 in B(0, 2L). So there exist a sequence (q n ) n ∈ B(0, 2L) and (λ n i ) i,n such that i∈I 1/n (qn)

λ n i |∇g i (q n )| ≥ n i∈I 1/n (qn)
λ n i ∇g i (q n ) , with λ n i ≥ 0. Without loss of generality, we can assume that i∈I 1/n (qn) λ n i = 1. By compactness, up to a subsequence, there exist q ∈ B(0, 2L) and (λ i ) i=1,...,p such that q n → q and for all i ∈ {1, ..., p}, λ n i → λ i . It comes with (A3)

n i∈I 1/n (qn) λ n i ∇g i (q) -nM |q n -q| ≤ i∈I 1/n (qn) λ n i |∇g i (q)| + M |q n -q|. So i∈I 1/n (qn) λ n i ∇g i (q) ≤ 1 n i∈I 1/n (qn) λ n i |∇g i (q)| + M + M n |q n -q| ≤ β n + M + M n |q n -q|.
Furthermore, since g i ∈ C 1 (R d ), g i is uniformly continuous and so it is easy to check that I 1/n (q n ) ⊂ I(q) for n large enough. For such n, (R 0 ) and (A1) imply

α γ ≤ 1 γ i∈I 1/n (qn) λ n i |∇g i (q)| ≤ i∈I 1/n (qn) λ n i ∇g i (q) .
Finally, we obtain

α γ ≤ β n + M + M n |q n -q|
which leads to a contradiction for n → ∞. ⊓ ⊔

In Theorem 4.7, the assumptions on the gradients (∇g i ) i are weakened with respect to the existing results (see the introduction). Indeed the gradients of active constraints are usually supposed to be linearly independent, which implies that Assumption (R 0 ) holds on any compact (see Remark 4.9). Assumption (R 0 ) permits also to deal with a large number of active constraints, while the linearly independence requires that |I(q)| ≤ d. In addition, we emphasize that the classical geometrical assumption: for all i = i ′ ∈ I(q) ∇g i (q), ∇g i ′ (q) ≤ 0 is not required.

Remark 4.9.

-Let K ⊂ R d be a compact set and assume that for all q ∈ Q∩K, (∇g i (q)) i∈I(q) is linearly independent. This collection can be extended to a basis of R d , denoted by (e q i ) i=1,...,d . Let us consider (ℓ q j ) j=1,...,d the associated dual basis such that for all i, j ∈ {1, .., d} ℓ q j (e q i ) =

1, i = j 0, i = j.

Then for q ∈ Q ∩ K and nonnegative reals (λ i ) i∈I(q) , it comes 

i∈I(q) λ i |∇g i (q)| ≤ β i∈I(q) λ i ℓ q i (∇g i (q)) ≤ β i∈I(q) d j=1 λ i ℓ q j (∇g i (q)) ≤ β d j=1 ℓ q j   i∈I(q) λ i ∇g i (q)   ≤ β d j=1 ℓ q j i∈I(q) λ i ∇g i (q) .

Appendix

This section is devoted to another proof of uniform bounds for the computed velocities in L ∞ (I, R d ) (Proposition 3.2). However, we are looking for a proof in the framework of a constant set C, requiring only the prox-regularity property on C and we do not assume it is admissible. We will see that we can just obtain a local result: the velocities are bounded on a time interval [0, T 0 ], where the time T 0 depends on the initial conditions. It is not clear how can we extend the proof to a global result without extra properties such the admissibility. 12) and ( 13) with F ∈ L ∞ (I). Then, the computed velocities (still by using the scheme ( 26)) (u h ) h≤1 are uniformly bounded in L ∞ (I, R d ) on [0, T 0 ], where T 0 depends on the initial data u 0 as follows:

T 0 = 1 2(J + 1) 2|u 0 | + 3 F ∞ + F ∞ ,
with a numerical constant J (defined in Lemma 5.3).

We first detail three technical lemmas and postpone the proof after them.

Lemma 5.2. -Let n be an integer and γ ∈]0, 1/4] (later defined in Lemma 5.3). Then if

|q n+2 h -q n+1 h | ≤ η and |q n+1 h -q n h + h 2 f n+1 h | ≤ γη then |q n+2 h -q n+1 h | ≤ |q n+1 h -q n h + h 2 f n+1 h | + J|q n+1 h -q n h + h 2 f n+1 h | 2 .
Proof: By definition, for each integer n,

q n+2 h := P C 2q n+1 h -q n h + h 2 f n+1 h .
It follows that with z := 2q n+1 h q n h + h 2 f n+1 h , zq n+2 h is a proximal normal vector of C at the point q n+2 h . The hypomonotonicity property of the proximal normal cone yields

q n+2 h -z, q n+2 h -q n+1 h ≤ 1 2η |q n+2 h -q n+1 h | 2 |z -q n+2 h |.
It also comes

|q n+2 h -q n+1 h | 2 -z -q n+1 h , q n+2 h -q n+1 h ≤ 1 2η |q n+2 h -q n+1 h | 2 |z -q n+1 h | + |q n+2 h -q n+1 h | .
Using Cauchy-Schwarz inequality, we deduce

|q n+2 h -q n+1 h | -|z -q n+1 h | ≤ 1 2η |q n+2 h -q n+1 h | |z -q n+1 h | + |q n+2 h -q n+1 h | .
Thanks to Lemma 5.3 (later proved) with a := |q n+2 h q n+1 h | ≤ η and b := |z - for some numerical constant M = M (γ, η).

q n+1 h | ≤ γη, it comes |q n+2 h -q n+1 h | ≤ |z -q n+1 h | + J|z -q n+1 h | 2 . ⊓ ⊔ Lemma 5.
x

± -- b 2 + η ± η - 3b 2 ≤ M 2 b 2 .
So x -≤ b+M b 2 /2 and x + ≥ 2η-2b-M b 2 /2. Furthermore, there exists a small enough constant γ > 0 such that 2γη + M (γη) 2 /2 ≤ η, which implies with b ≤ γη that x + ≥ η. Consequently, since a / ∈]x -, x + [ and a ≤ η, we deduce that necessarily

a ≤ x -≤ b + M 2 b 2 ,
which concludes the proof of (74). ⊓ ⊔ Lemma 5.4. -Let J ′ be a fixed positive real. We denote by φ n J ′ the n-th iterated of φ J ′ := x → x + J ′ x 2 .

For every x ≥ 0 with J ′ nx = 1, we have

φ n J ′ (x) ≤ x (J ′ nx) 2 n -1 -1 J ′ nx -1 = x 1 + (J ′ nx) + • • • + (J ′ nx) 2 n -1 . ( 75 
)
Proof: It is obvious that φ n J ′ is a polynomial function of degree 2 n with nonnegative coefficients. So we know that φ n J ′ can be written as

φ n J ′ (x) = 2 n k=1 a (n) k x k .
We want to prove that for all n ≥ 1 and k ∈ {1, ...,

2 n } a (n) k ≤ (J ′ n) k-1 . ( 76 
)
It is obvious that (76) holds for n = 1 (in fact, there is equality). Let us assume that (76) holds for an integer n and prove it for n + 1. Since

φ n+1 J ′ (x) = φ n J ′ (x) + J ′ φ n J ′ (x) 2 , for all k ∈ {1, ..., 2 n+1 } a (n+1) k = a (n) k + J ′ k-1 j=1 a (n) j a (n) k-j ≤ (J ′ n) k-1 + J ′ k-1 j=1 (J ′ n) j-1 (J ′ n) k-1-j ≤ (J ′ n) k-1 + J ′ (k -1)(J ′ n) k-2 ≤ (J ′ (n + 1)) k-1 .

By agreement, a (n)

k is set equal to 0 if k > 2 n . That ends the recursive proof.

⊓ ⊔

We now come back to the proof of Theorem 5.1.

Proof of Theorem 5.1: We define a sequence (x n ) n as follows:

x 0 := |q 1 h -q 0 h | + h 2 F ∞ + h F ∞ and x n+1 = φ J+1 (x n
), where J is introduced in Lemma 5.3 and functions φ J in Lemma 5.4. We choose h < min{T 0 , 1} small enough in order that x 0 ≤ 1 2 γη (this is possible since |q 1 hq 0 h | ≤ h|u 

-q n h | ≤ |q n h -q n-1 h + h 2 f n h | + J|q n h -q n-1 h + h 2 f n h | 2 ≤ φ J (|q n h -q n-1 h + h 2 f n h |). Consequently |q n+1 h -q n h | + h 2 |f n+1 h | ≤ φ J (|q n h -q n-1 h | + h 2 |f n h |) + h 2 F ∞ ≤ φ J (|q n h -q n-1 h | + h 2 |f n h |) + (x 0 ) 2 ≤ φ J (|q n h -q n-1 h | + h 2 |f n h |) + (x n-1 ) 2 ,
where we have used that the sequence (x n ) n is increasing. Consequently, we easily deduce by iteration that for all n = 1, ..., P ,

|q n+1 h -q n h | + h 2 |f n+1 h | ≤ x n . (77) 
Indeed, (77) is satisfied for n = 0. Moreover assuming (77) for n -1, we have

|q n+1 h -q n h | + h 2 |f n+1 h | ≤ φ J (|q n h -q n-1 h | + h 2 |f n h |) + (x n-1
) 2 ≤ φ J+1 (x n-1 ) = x n , because φ J is nondecreasing on [0, ∞[. Thanks to Lemma 5.4 (with J ′ = J + 1), we have for every n ≤ P

|q n+1 h -q n h | + h 2 |f n+1 h | ≤ x n ≤ 1 1 -(J + 1)nx 0 x 0 .
Moreover for all n ≤ N = T 0 /h (J + 1)nx 0 ≤ (J + 1)

T 0 h |q 1 h -q 0 h | + h 2 F ∞ + h F ∞ ≤ (J + 1)T 0 |u 1 h | + h F ∞ + F ∞ ≤ (J + 1)T 0 2|u 0 | + 3h F ∞ + F ∞ ≤ 1 2 ,
where we have used Lemma 3.1 to estimate |u 1 h | by 2|u 0 | + 2h F ∞ and the definition of T 0 . Thus for n = P , we get

|q P +1 h -q P h | + h 2 |f P +1 h | ≤ 2x 0 ≤ γη.
Due to Lemma 3.1, it comes

|q P +2 h -q P +1 h | ≤ 2|q P +1 h -q P h | + 2h 2 |f P +1 h | ≤ 2γη ≤ η.
Finally, P + 1 ∈ P and so P = N = T 0 /h. We also conclude that sup

0≤t n h ≤T 0 |u n h | ≤ sup n≤N |q n h -q n-1 h | |h| ≤ 2 |x 0 | h ≤ 2 |u 1 h | + h F ∞ + F ∞ ≤ 2 2|u 0 | + 3h F ∞ + F ∞ ,
which is uniformly bounded with respect to h when h goes to 0. ⊓ ⊔

  we denote by d Q the distance function to this set : d Q (x) := inf y∈Q |y -x|. Definition 2.1. -Given a family of sets D ǫ ⊂ R d indexed by ǫ > 0, the outer and inner limits are defined respectively by lim sup ǫց0 D ǫ := x ∈ R d , ∃x k → x, ∃ǫ k ց 0 with x k ∈ D ǫ k , and lim inf ǫց0 D ǫ := x = lim ǫ→0 x ǫ , x ǫ ∈ D ǫ .

Lemma 2 . 14 .

 214 -Let us consider an admissible Lipschitz set-valued map C : I ⇉ R d and let us keep the notations of the previous definition.

Proposition 4 . 3 .

 43 -Let Q be the set-valued map defined at the beginning of the current section. The set Ω := (t, x) ∈ I × R d , x ∈ Q(t) is uniformly prox-regular. Moreover for all (t, x) ∈ Ω with t ∈ • I, the set C t,x (defined in Definition 1.1) verifies

Γ

  

  So, we obtain (R 0 ) on K with γ := β sup

Theorem 5 . 1 .

 51 -Assume that C(•) := C where C is a uniformly prox-regular (possibly not admissible) set and f satisfies (

3 .-

 3 Let a and b two nonnegative reals satisfyinga 2 + (b -2η)a + 2ηb ≥ 0. (73)Then for some numerical constant γ ∈]0, 1/4[ and J > 0 (independent on a, b), we havea ≤ η b ≤ γη =⇒ a ≤ b + Jb 2 . (74)Proof: We remark that (73) is a second degree polynomial function with respect to a, whose discriminant is given by ∆ := (b -2η) 2 -8ηb. The real ∆ is nonnegative as soon as b ≤ γη ≤ η/4. Then we know that (73) implies a / ∈]x -, x + [

  -, t + ]. By summing these previous inequalities from n = n 0 to n = p with n 0 ≤ p ≤ m,

		or
	t m+1 h ∈ [t we get /	
	∀p ∈ {n 0 , ..., m},	|u p+1 h

  That is why x ∈ Q as soon as s ≤ ǫδα |z|M (1+ǫ) 2 and in this case d Q (x + sv) ≤ |x + sv -x| = s w + ǫ|z|u p := s √ A. By expanding A = w + ǫ|z|u p 2 = |w| 2 + ǫ 2 |z| 2 + 2ǫ|z| w, u p

		≤ |w| 2 + ǫ 2 |z| 2 + 2ǫ|z||w| ≤ |w| 2 + 1 2 |z| 2
	for ǫ ≤ 1 2	< |v| 2 := |w| 2 + |z| 2 , 4|w|+|z| . Finally we have obtained that for small enough ǫ and s |z|
		d Q (x + sv) < s|v|

  ∀i ∈ I(t, x) ∩ {1, ..., p}, z1 ∂ t g i (t, x) + ∇ x g i (t, x), z u ≥ 0 , Consequently, u ∈ C t,x if and only if ∂ t g i (t, x) + u, ∇ x g i (t, x) ≥ 0 for all i ∈ I(t, x) = I(t, x) ∩ {1, ..., p}. ⊓ ⊔ Proposition 4.4.-Under the previous assumptions, the set-valued map Q(•) is admissible.

	since t ∈

• I.

  1 h | ≤ 2h|u 0 |+ 2h 2 F ∞ , see Lemma 3.1).We want to prove that P = N where N := T 0 /h. Let fix n ∈ {1, ..., P }, since|q n+1 h q n h | ≤ η and |q n hq n-1 h | + h 2 |f n h | ≤ γη,thanks to Lemma 5.2 it comes |q n+1 h

	Now we set	
	P := n ≤ T /h, |q n+1 h	-q n h | ≤ η and |q n h -q n-1 h | + h 2 |f n h | ≤ γη
	and	
	P := min {n ≥ 0, n / ∈ P} -1.