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S U M M A R Y
We consider a linear poroelastic material filled with a linear viscoelastic solvent like wet heavy
oils (oil as opposed to water or brines is wetting the surfaces of the pores). We extend the
electrokinetic theory in the frequency domain accounting for the relaxation effects associated
with resonance of the viscoelastic fluid. The fluid is described by a generalized Maxwell
rheology with a distribution of relaxation times given by a Cole–Cole distribution. We use the
assumption that the charges of the diffuse layer are uniformly distributed in the pore space
(Donnan model). The macroscopic constitutive equations of transport for the seepage velocity
and the current density have the form of coupled Darcy and Ohm equations with frequency-
dependent material properties. These equations are combined with an extended Frenkel–Biot
model describing the deformation of the poroelastic material filled with the viscoelastic fluid.
In the mechanical constitutive equations, the effective shear modulus is frequency dependent.
An amplification of the seismoelectric conversion is expected in the frequency band where
resonance of the generalized Maxwell fluid occurs. The seismic and seismoelectric equations
are modelled using a finite element code with PML boundary conditions. We found that the
DC-value of the streaming potential coupling coefficient is also very high. These results have
applications regarding the development of new non-intrusive methods to characterize shallow
heavy oil reservoirs in tar sands and DNAPL contaminant plumes in shallow aquifers.

Key words: Electrical properties; Electromagnetic theory; Magnetic and electrical proper-
ties; Hydrogeophysics.

1 I N T RO D U C T I O N

In the last 70 yr, a number of laboratory, field, and theoretical
investigations have established seismoelectric (seismic-to-electric)
and electroseismic (electric-to-seismic) conversions associated with
the charged nature of natural and synthetic porous materials filled
with a solvent (usually a Newtonian electrolyte). Preliminary in-
vestigations have attempted to image the subsurface and to locate
potential oil and gas reservoirs and ore bodies using these properties
(Martner & Spark 1959; Migunov & Kokorev 1977; Kepic et al.
1995; Russell et al. 1997). These methods were also used more re-
cently in hydrogeophysics to detect wet ice in glaciers (Kulessa et al.
2006), to localize fractures in a fractured aquifer (Fourie 2003), to
image interfaces within the vadose zone (Dupuis et al. 2007), and to
monitor electromagnetic disturbances associated with earthquakes
(see Nagao et al. 2002; Huang 2002; Huang & Liu 2006). Measure-
ments can be performed not only at the ground surface of the Earth

∗Now at: M2C, UMR 6143, CNRS, Morphodynamique Continentale et
Côtière, Université de Rouen, 76821 Mont Saint Aignan, France.

but also in boreholes (e.g. Butler et al. 1996; Mikhailov et al. 1997,
2000; Zhu & Toksoz 1998).

Neev & Yeatts (1989) proposed a macroscopic model of the
coupling between mechanical waves and electric fields in linear
poroelastic materials filled with a Newtonian electrolyte. However,
because their work was not based on the full set of Maxwell equa-
tions, they were not able to compute correctly electromagnetic dis-
turbances associated with shear waves. Pride (1994) completed the
theory for a charged porous material filled with water by upscal-
ing the local Navier–Stokes and Nernst–Planck equations using a
volume-averaging method to obtain the macroscopic equations. His
theory connects the Frenkel–Biot poroelastic equations (Frenkel
1944; Biot 1962a,b) and the Maxwell-Lorentz equations (Maxwell
1885; Lorentz 1904) through the electrokinetic coupling occurring
in the constitutive equations for the fluxes of water and current
density (see Garambois & Dietrich 2001, 2002). In doing so, he
also accounted for frequency dependence of the material properties
entering the coupled transport constitutive equations.

This paper is an attempt to provide a constitutive model of the
seismoelectric response of a charged porous medium filled with
a (Maxwell) viscoelastic solvent like a heavy wet-oil. They are
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numerous examples in the literature where oil is the wetting phase
for the solid grains (see Anderson 1986; Buckley & Liu 1998, for
some field examples). We are not aware of any work in this direction
so far. At low frequencies, it has been observed that electrokinetic
phenomena in oil-wet porous media are similar to those existing
in water-saturated porous materials (Yasufuku et al. 1977; Alkafeef
et al. 2001; Alkafeef & Smith 2005). Various authors have shown
that the components of oil that are responsible for wettability are
also polar components (Buckley & Liu 1998; Alkafeef et al. 2006).
An oil with such polar molecules is also a good solvent (Delgado
et al. 2007). We will show that the theory developed in this paper is
also consistent with recent developments in the theory of streaming
current/streaming potential associated with the flow of the pore
water in a deformable porous material (see Revil & Linde 2006;
Crespy et al. 2008).

2 P RO P E RT I E S O F T H E T W O P H A S E S

2.1 Properties of the fluid phase

We start this section by a description of the constitutive model of
the stress–strain relationships for a viscoelastic fluid such as a wet-
oil. A linear Maxwell fluid model consists of a linear dashpot in
series with a linear spring. In this situation, the fluid behaves like a
Newtonian viscous fluid at low frequency (or for long timescales)
and like a solid at high frequencies (or short timescales) (Behura
et al. 2007). The transition frequency is discussed below. We note
Ti j and ei j the components of the stress and deformation tensors
T f and e f of this fluid (subscript f ), respectively. Both T f and e f

are symmetric second-order tensors. The stress components of the
elastic and viscous contributions of the Maxwell fluid are given by

(Ti j )
e = λ f (ekk)eδi j + 2G f (ei j )

e, (1)

(Ti j )
v = 2η f (ėi j )

v − p f δi j , (2)

where the superscripts ‘e’ and ‘v’ stands for ‘elastic’ and ‘viscous’
contributions to the stress tensor and to the deformation tensor,
the dot above the symbol denotes the first time derivative of the
property, λ f and G f are the Lamé and shear moduli of the fluid, η f

is the dynamic (shear) viscosity and pf is the local fluid pressure.
The bulk modulus of the fluid is defined by the relationship

−p f I = K f (∇ · u f )I where I is the identity tensor and u f is the
displacement of the fluid phase. It is related to the Lamé constants
by K f = λ f +(2/3)G f . For a Maxwell body, the components of the
stress tensor of the fluid, T f , are given by Ti j = (Ti j )e = (Ti j )v and
ėi j = (ėi j )e + (ėi j )v . Using eqs (1) and (2) into ėi j = (ėi j )e + (ėi j )v

yields

Ṫi j + G f

η f

(
Ti j + p f δi j

) = 2G f ėi j + λ f (ėkk)eδi j . (3)

Using harmonic variations of the stress (the stress oscillates in
time as e−iωt ), we can take the previous equation in the frequency
domain using a Fourier transform (we keep however the same nota-
tions). The characteristic frequency is defined as ωm = G f /η f and
the associated relaxation time is τm = η f /G f . Typically, for the
Mexican crude oil investigated by Dante et al. (2007), the critical
frequency depends on the temperature and is in the range 10–100
Hz in the temperature range 20–40 ◦C. For heavy oils in tar sands
for example, the critical frequency of resonance can occurs at much
lower frequencies. Usually, heavy oils are heated to decrease their
dynamic viscosity and the resonance frequency can occurs in the
seismic frequency band (see Behura et al. 2007).

In the frequency domain, eq. (3) is written as,

Ti j = −p∗
f δi j + 2η∗

f (−iωei j )v

− iωτm

1 − iωτm

[
λ f (ekk)eδi j + 2G f (ei j )

e
]
, (4)

p∗
f = p f

1 − iωτm
, (5)

η∗
f = η f

1 − iωτm
. (6)

At low frequencies ω � ωm so that p∗
f = p f , η∗

f = η f , the third
term on the right-hand side of eq. (4) is negligible and the stress
tensor is given by (e.g. De Groot & Mazur 1984)

T f = K f (∇ · u f )I + 2η f

(
ḋ f

)v
, (7)

where the (ḋ f )v is the viscous contribution to the fluid strain deviator
(e.g. De Groot & Mazur 1984),

(
ḋ f

)v = 1

2

[∇v f + (∇v f )T
] − 1

3

(∇ · v f

)
I, (8)

where d f is the fluid strain deviator, v f denotes the velocity of the
fluid and where the superscript T means transpose. The deformation
tensor is related to the deviator by (e.g. De Groot & Mazur 1984),

e f = (1/3)
(∇ · u f

)
I + d f . (9)

At low frequencies the fluid behaves like a Newtonian fluid.
At high frequencies ω � ωm , the stress tensor is given by

T f = K f (∇ · u f )I + 2G f d f , (10)

and therefore at high frequencies the pore fluid behaves as a solid.
A perfect Maxwell fluid has a relaxation time distribution de-

scribed by a delta function. Such a model can be generalized using
a distribution of relaxation times, for example a Cole–Cole dis-
tribution [see for example, Revil et al. (2006) for deformation of
rocks by pressure solution, Cosenza et al. (2007) for spectral in-
duced polarization]. Behura et al. (2007) used a Cole–Cole model
to fit the hydromechanical behaviour of the Uvalde heavy-oil. A
comparison between the Maxwell and Cole–Cole behaviour of the
resonances of a generalized Maxwell fluid is shown in Fig. 1 where
we compare experimental data from Castrejon-Pita et al. (2003) for
a Maxwell fluid (a mixture of cetylpyridinium chloride and sodium
salicylate) with a model in which the Cole–Cole distribution of re-
laxation times is used. From this figure, it can be conclude that the
Cole–Cole model is able to represent the hydrodynamic behaviour
of the fluid quite well. The probability distribution (normalized) of
the relaxation time for a Cole–Cole distribution is given by (Cole
& Cole 1941)

f (τ ) = 1

2π

sin [π (c − 1)]

cosh [c ln(τ/τm)] − cos [π (c − 1)]
. (11)

In a semi-log plot, this distribution is symmetric with respect to
τ = τm , which corresponds to the peak of the distribution. For 0.5 ≤
c ≤ 1, the Cole–Cole distribution of relaxation times looks like a
log normal distribution The tail of the Cole–Cole distribution is
however increasingly broad as c decreases. This type of distribution
has been used recently by Leroy et al. (2008) and Leroy & Revil
(2009) to model the grain size distribution of packs of glass beads
and sedimentary rocks to compute their complex resistivity.

The behaviour of the Maxwell fluid can be considered from the
standpoint of the behaviour of an equivalent Newtonian viscous

C© 2009 The Authors, GJI, 180, 781–797

Journal compilation C© 2009 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/180/2/781/689125 by guest on 18 June 2021



Seismoelectric response of heavy oil 783

Figure 1. Hydrodynamic response of a viscoelastic fluid in a linear tube of radius R = 2.5 cm submitted to harmonic fluid pressure variations. The fluid is a
mixture of cetylpyridinium chloride and sodium salicylate (CPyCl/NaSal 60:100) (data from Castrejon-Pita et al. 2003). The experimental data are scaled with
respect to the viscous relaxation time τ = R2ρ f /η f (ηf = 60 Pa s, ρf = 1050 kg m−3). ξ̃ denotes the normalized conductance (relative to the DC-value) and
J0 is the Bessel function. (a) Comparison between the experimental data and the response predicted by a linear Maxwell fluid (τm = 1.9 s). (b) Comparison
between the experimental data and the response predicted by a generalized Maxwell fluid using a Cole–Cole distribution of relaxation times (τm = 2.9 s,
Cole–Cole exponent c = 0.9, parameters optimized with a Newton–Raphson minimization method using the L2-norm).

fluid with frequency dependent bulk modulus and dynamic shear
viscosity (Behura et al. 2007)

T f = K ∗
f (ω)(∇ · u f )I + 2η∗

f (ω)
(
ḋ f

)v

− (iωτm)c

1 − (iωτm)c

[
K f (∇ · u f )I + 2G f (d f )e

]
, (12)

K ∗
f (ω) = K f

1 − (iω/ωm)c
, (13)

K ∗
f (ω)(∇ · u f ) = −p∗

f , (14)

p∗
f (ω) = p f

1 − (iω/ωm)c
, (15)

η∗
f (ω) = η f

1 − (iω/ωm)c
. (16)

Using Boussinesq approximation, the flow of a fluid inside a de-
formable porous material is governed locally by the Navier–Stokes
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784 A. Revil and A. Jardani

equation,

ρ f
∂v f

∂t
= −∇ p f + ∇ · π + F f , (17)

∇ · v f = 0, (18)

respectively, where ρ f denote the local mass density of the fluid, F f

is the body force, and

π = T f + p∗
f I + iωτm

1 − iωτm

[
K f (∇ · u f )I + 2G f (d f )e

]
, (19)

represents the viscous (deviatoric) stress tensor of the fluid. For a
purely viscous Newtonian fluid, we have ∇ ·π = η f ∇2v f . Assum-
ing a linearized Maxwell model and using eq. (4), the viscous stress
tensor π is given by

π̇ +
(

G f

η f

)
π = 2G f ė f , (20)

τm π̇ + π = η f ∇v f . (21)

In the frequency domain, eq. (21) yields

(1 − iωτm)π = η f ∇v f , (22)

∇ · π = η f

1 − iωτm
∇2v f . (23)

Inserting eq. (23) inside the Navier–Stokes equation, eq. (17),
yields

−iωρ f v f = −∇ p f + η∗
f ∇2v f + F f . (24)

Consequently, we come to the important conclusion that the
Navier–Stokes equation of a viscous Newtonian fluid can be used
by replacing the classical viscosity η f by an effective (time or fre-
quency dependent) viscosity η∗

f . This is the main result of this
section with the new result of using a Cole–Cole distribution
of relaxation times to describe a generalized Maxwell fluid (see
Fig. 1b).

2.2 Properties of the solid phase

We consider that the solid phase is formed by a monomineralic
isotropic solid material assumed to be perfectly elastic. The local
elastic equation of motion for the solid phase is

∇ · Ts + Fs = ρs
∂2us

∂t2
. (25)

where us is the displacement of the solid phase, ρs is the bulk density
of the solid phase and Fs is the body force applied to the grains.
The microscopic solid stress tensor is given by

Ts = Ks (∇ · us) I + 2Gsds, (26)

ds = 1

2

[∇us + ∇uT
s

] − 1

3
(∇ · us) I, (27)

where ds is the solid strain deviator, Ks is the bulk modulus of the
solid phase assumed to be isotropic and Gs is the shear modulus.

Figure 2. Sketch of the porous material. (a) The representative elementary
volume is an averaging disc of radius R and length L. (b) The representa-
tive elementary volume (REV) corresponds to a porous body filled with a
viscoelastic fluid.

3 P RO P E RT I E S O F T H E P O RO U S
M AT E R I A L

We derived below the coupled constitutive equations between the
Darcy velocity (Section 3.1) and the total current density (Section
3.2) for a linear poroelastic material saturated by a polar (wet) oil
(Fig. 2).

We look for an average force balance equation on the fluid in
relative motion with respect to the solid phase. We introduce the
relative flow velocity v = v f − v̄s where v̄s = ˙̄us is the phase
averaged velocity of the solid phase. In the frequency domain, using
eq. (24) yields

−iωρ f v = −∇ p f + iωρ f v̄s + η∗
f ∇2v f + F f , (28)

η∗
f (ω) = η f

1 − (iωτm)c
, (29)

where c is the Cole–Cole distribution corresponding to the distribu-
tion of the relaxation times for the generalized Maxwell fluid. The
body force applied to the pore fluid corresponds to the electrostatic
force associated with the existence of the local net charge density
Q (expressed in C m−3) plus the body force due to the gravity field

F f = ρ f g + QEe−iωt , (30)

where ρ f is the mass density of the pore water, g the acceleration
of the gravity and E is the electric field. The average force F̄ f can
be also associated with a source mechanism (see below Section 6.4
and using the decomposition provided by eq. 56). We average now
eq. (28) over the fluid phase. This yields

−iωρ f v̄ = −∇ p̄ f + iωρ f v̄s + η∗
f ∇2v̄ f + F̄ f , (31)
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Seismoelectric response of heavy oil 785

The flow is also subjected to the no-slip boundary condition v̄ = 0
at the surface of the pores.

The local charge density Q depends on the position inside the pore
space. This local charge density is related to the concentrations of
the ionic species that are affected by the Coulombic field created by
the effective surface charge density of the mineral surface. These
surface concentrations are described by Boltzmann distributions.
The electrical double layer is always thin with respect to the size
of the pores and the size of the grains. In this paper, we use the
approximation developed by Revil & Linde (2006) that Q can be
replaced by its phase average over the fluid phase

Q̄V =
N∑

i=1

qi C̄i , (32)

where C̄i is the phase average of the concentration of species i in
the pore space and qi the charge (in C) of the ionic species i (qi

= 0 for neutral species) (see Pride 1994 for the definition of the
phase average). This approximation does not mean that we consider
that the double layer is thick, but only that the charge distribution
is averaged over the pore space. Using this approximation, Revil
& Linde (2006) and Revil (2007) have presented recently a model
to study electrokinetic properties of deformable porous materials
saturated by a viscous (Newtonian) solvent like an aqueous elec-
trolyte. This model was validated through experiments at different
scales (Revil et al. 2003; Bolève et al. 2007; Crespy et al. 2008)
and generalized to unsaturated conditions by Linde et al. (2007) and
Revil et al. (2007). It has been successfully used recently inside a
stochastic framework to determine the flow pattern in geothermal
fields (Jardani & Revil 2009).

The charge density Q̄V corresponds to the effective charge den-
sity of the diffuse layer per unit pore volume that can be carried by
the flow of the pore water relative to the mineral framework. The
surface charge density Q̄V Vp/S (Vp is a pore volume and S a sur-
face area of the solid–fluid interface) counterbalances the surface
charge density of the mineral surface plus the surface charge density
of the Stern layer of sorbed counterions (Leroy et al. 2007). The
mean charge density of the diffuse layer Q̄V can also be related to
the total volumetric charge density QV (traditionally determined by
cation exchange capacity measurements in water saturated rocks,
see Revil et al. 1998) by

Q̄V = (1 − fQ)QV , (33)

where fQ is the fraction of charges located in the Stern layer. The
Stern layer is a layer of sorbed counterions on the mineral surface.
The surface charge density of the mineral surface is counterbal-
anced by the surface charge density of the stern plus diffuse layers.
The counterions are charges of opposite site to the charge of the
mineral surface while the coions have charge of the same charge
than the mineral surface. According to the electrochemical models
developed by Leroy & Revil (2004) and Leroy et al. (2007) for clay
minerals, approximately 90 per cent of the counterions are usually
located in the Stern layer in the case of Illite and smectite and over
98 per cent in the case of kaolinite. For silica, an electrochemi-
cal model has been discussed recently by Leroy et al. (2008). This
model shows that the fraction fQ of counterions located in the Stern
layer at the surface of silica grains depends strongly on the salinity
(and pH) of the solution. At low salinities (≤10−3 mol L−1), most of
the counterions are located in the diffuse layer while at high salinity
(>10−3 mol L−1) the counterions are mainly located in the Stern
layer. The situation is different for clays for which fQ is much less
sensitive to the salinity of the free pore water.

Fig. 3 shows that for a wide range of porous media and for
electrolytes of different ionic strengths, the excess of charge per unit
pore volume Q̄V can be related to the DC-permeability k0. While
most of the data reported in Fig. 3 concern aqueous electrolytes, a
similar trend is expected for wet oils as discussed further at the end
of this section.

The boundary value problem for the fluid flow is expressed on an
averaging disc (see Pride 1994) by

η∗
f ∇2v + iωρ f v = ∇ p f − F f , (34)

∇ · v = 0, (35)

v = 0 on S, (36)

p f =
{

ẑ · (∇ p̄ f − iωρ f ˙̄us), z = L

0, z = 0
, (37)

where S represents the solid–pore fluid interface and ẑ is the unit
vector normal to the disc face of the representative elementary
volume. This boundary-value problem is exactly the same as the
boundary-value problem studied by Pride (1994) for a poroelastic
porous body saturated by a Newtonian fluid except that η f should
be replaced by η∗

f . We can therefore easily generalize the results
obtained by Pride (1994) to a poroelastic material saturated by
a viscoelastic solvent. This yields the following modified Darcy
equation

−iωw̄ = k(ω)

η f

[−∇ p̄ f + ρ f ω
2ūs + F̄ f

] − c(ω)σE, (38)

where w̄ = φ(ū f − ūs) is the filtration displacement of the fluid
phase relative to the mineral framework (Darcy velocity), φ is the
interconnected porosity, ˙̄w(ω) = φv̄(ω) is the Darcy velocity, k(ω) is
the dynamic permeability, c(ω) is the dynamic coupling coefficient
described below and σ is the electrical conductivity of the porous
material. The electrical conductivity is given by upscaling the local
Nernst–Planck equation. We assume that the wet oil carries a net
charge per unit volume to compensate the fixed charge density at
the surface of the minerals. In this case, using the Donnan model
described by Revil & Linde (2006), the total current density j (in
A m−2) of the porous material is given by j = σE + Q̄V ˙̄w. In this
equation, the last term corresponds to the source current density
given by the product between an effective charge density and the
Darcy-velocity. This equation differs from the more conventional
form, which employs the product of a cross-coupling coefficient
with the gradient of fluid pressure and an inertial coupling term.
This approach has much less parameters than the classical approach
because the charge density Q̄V can be determined from the DC-
permeability alone.

At low frequency, the electrical field E is related to the electrical
potential ψ by E = −∇ψ to satisfy ∇ × E = 0. The low-frequency
coupling coefficient is given by

c0 =
(

∂ψ

∂p0
f

)
j=0

= − Q̄V k0

η f σ
. (39)

This equation has been validated on core samples saturated by
electrolytic solvents (Revil et al. 2005). The electrical conductivity
of the porous material is given by (Johnson 1986)

σ = 1

F

(
σ̄ f + 2

�
�S

)
, (40)
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786 A. Revil and A. Jardani

Figure 3. Bulk charge density of the diffuse layer per unit pore volume of the rock as a function of the DC-permeability k0. The experimental data are from
different types of rocks and the pH of the electrolytes is comprised between 6 and 9. Experimental data from Jouniaux & Pozzi (1995), Pengra et al. (1999),
Revil et al. (2005), Bolève et al. (2007), Revil et al. (2007), Sheffer (2007) and Jardani et al. (2007). For porous materials filled with wet-oil, we expect that a
similar trend occurs but the volumetric charge density in the pore space would be smaller by comparison with an electrolyte-filled porous medium having the
same permeability.

where F is the electrical formation factor defined by the ratio be-
tween the tortuosity and the porosity, �S is the specific surface
conductivity associated with the electromigration of charge carriers
(counterions and protons) in the electrical double layer, σ̄ f is the
effective conductivity of the pore fluid including the effect of the
electrical diffuse layer as discussed by Revil & Leroy (2004) and
Revil et al. (2005) and � is the characteristic pore size defined by
Johnson (1986). A model of �S including the contribution of the
Stern layer has been developed recently by Leroy et al. (2008) for
aqueous solutions and can be used to assess the frequency depen-
dence of this parameter. For simplicity, however, we assume that
�S , and hence conductivity, are independent of frequency in the
developments that follow.

The generalized Darcy’s and Ohm’s laws appear therefore as
cross-coupled constitutive equations[

−iωw̄

j

]
=

⎡
⎣ k(ω)

η f
−c(ω)σ

−c(ω)σ σ
(

1 + c(ω)2η f σ

k(ω)

)
⎤
⎦

×
[

−∇ p̄ f + ρ f ω
2ūs + F̄ f

E

]
, (41)

where F̄ f is the applied body-force acting on the fluid phase.

The normalized dynamic permeability is given by

k̃(ω) ≡ k(ω)

k0
= 1 − (iωτm)c

1 − i (ω/ωc) [1 − (iωτm)c]
, (42)

where k0 = �2/(8F) (Johnson 1986) is the permeability at low
frequencies ω � Min(ωc, ωm), ωm = 1/τm and ωc = η f /(k0ρ f F).
Both F and � are two textural parameters defined by (Johnson 1986)

1

F
= 1

V

∫
Vp

e2dVp, (43)

� = 2

∫
Vp

e2dVp∫
S e2dS

, (44)

where dVp denotes an integration over the pore space and dS de-
notes an integration over the pore–solid interface. The normalized
electrical field e = ∇� is obtained by solving the following canon-
ical Laplace problem for an average disc in the direction of the
macroscopic electrical field (see Pride 1994): � has units of length,
� satisfies Laplace equation ∇2� = 0 throughout the pore space
with boundary conditions � = 0 on z = 0 and � = L on z = L,
and n̂ · ∇� = 0 on both the internal interface between the solid and
fluid phases (n̂ is the unit vector at the solid-fluid interface pointing
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Seismoelectric response of heavy oil 787

inside the solid) and on the external surface of the averaging disc
(n̂ is the outward unit vector). This approach assumed implicitly
the continuity of the solid phase at the scale of a representative
elementary volume of the porous rock.

The dynamic streaming potential coupling coefficient is given by

c(ω) = − Q̄V k(ω)

η f σ
. (45)

The normalized coupling coefficient is given by

c̃(ω) ≡ c(ω)

c0
= k̃(ω). (46)

Therefore, in our approach, the normalized dynamic coupling
coefficient is equal to the normalized dynamic permeability, the
normalization being made with respect to the DC value of these
parameters.

Using the thin double layer assumption and the Boltzmann distri-
bution for the concentrations in the diffuse layer (small size of the
diffuse layer with respect to the size of the pores), the dynamic rela-
tive coupling coefficient of a porous material saturated by a viscous
Newtonian fluid is given by (Pride 1994)

c̃(ω) = 1√
1 − 2iω/ωc

, (47)

and c0 = ε f ζ/(η f σ f ) (Helmholtz–Smoluchowski equation) where
ζ is the so-called zeta potential (the inner potential of the electrical
diffuse layer).

Using the dynamic viscosity defined by eq. (16) and using eq.
(47), the dynamic relative coupling coefficient of a porous material
saturated by a generalized Maxwell fluid in the thin double layer
assumption is given by

c̃(ω) = 1 − (iωτm)c√
1 − 2i(ω/ωc) [1 − (iωτm)c]

. (48)

In eq. (48), the effect of the viscosity appears twice: in the nu-
merator because of the dependence of c0 with the viscosity and
in the last term in the denominator because of the dependence of
the critical frequency ωc with the viscosity. It is interesting to see
that eq. (48) has the same asymptotic limit at low frequencies as
eqs (42) and (46) using the Donnan assumption. This limit is given
by 1 + i(ω/ωc) for a Newtonian fluid.

The excitation of the pore fluid in the resonance frequency band
of the viscoelastic fluid yields an amplification of the value of the
streaming potential coupling coefficient by several orders of mag-
nitude with respect to the value of the streaming potential coupling
coefficient at low frequencies. We expect that the determination of
c̃(ω) in a wide range of frequencies (e.g. 0.01–10 kHz in the labo-
ratory) could help to characterize the properties of the oil contained
in the pores through the determination of both τm , the peak of the
relaxation time, and the exponent c, which characterizes the broad-
ness of the distribution of the relaxation times associated with the
composition of the oil in terms of polymers.

We can determine also an order of magnitude of the DC-value
of the streaming potential coupling coefficient of a sandstone filled
with a polar oil. For the Berea sandstone (permeability ∼10−13 m2,
porosity ∼0.18), an analysis of the data displayed by Alkafeef et al.
(2006) for the streaming current density versus the fluid pressure
gradient yields Q̄V = 10−4 C m−3. Alkafeef et al. (2006) used a
crude oil containing asphaltene, a strongly polar polymer responsi-
ble for a high dielectric constant for this fluid. The previous analysis
implies a charge density 6 orders of magnitude smaller than existing
in a sandstone of same permeability filled by an electrolyte (Fig. 3).

The shear viscosity of the crude oil is equal to 5 × 10−3 Pa s at 25
◦C (Alkafeef et al. (2006). Using σ = 2 × 10−10 S m−1, we find a
streaming potential coupling coefficient on the order of c0 = −4 ×
10−5 V Pa−1. So the low value of the charge density is more than
compensated by the effect of the high value of the electrical resis-
tivity of the fluid. Indeed, −4 × 10−5 V Pa−1 is a very high value
by comparison with the value of the streaming potential coupling
coefficient of a typical soil or reservoir rock saturated by a brine
(typically in the range from –(10−6 to 10−8) V Pa−1, see Revil et al.
2003). This implies than even much below the relaxation frequency
of the resonance of the solvent, the streaming potential coupling
coefficient of a sandstone filled with such an oil can reach a very
large value.

4 T H E M E C H A N I C A L E Q UAT I O N S

The bulk stress tensor is defined by

T̄ = (1 − φ)T̄s + φT̄ f . (49)

where T̄s and T̄ f are the phase average stress tensors in the solid
phase and viscoelastic fluid, respectively. The confining pressure
and the deviatoric stress of the porous body are defined by

P ≡ −tr (T̄)/3 = (1 − φ) p̄s + φ p̄ f , (50)

T̄D ≡ T̄ + PI, (51)

where p̄s is the mean pressure in the solid phase. The deviatoric
stress is then given by

T̄D = (1 − φ)T̄D
s + φπ̄ , (52)

where T̄D
s = T̄s + p̄sI is the mean deviatoric stress of the solid

phase and π̄ is the mean deviatoric stress in the pore fluid phase
(see Appendix A).

Performing a volume-average of the force balance equations in
each phase, eqs (17) and (25), yield a total force balance equation
in the time domain

(1 − φ)∇ · T̄s + φ∇ · T̄ f + F = (1 − φ)ρs ¨̄us + φρ f ¨̄u f , (53)

∇ · T̄ + F = ρ ¨̄us + ρ f ¨̄w, (54)

where the bulk density and the bulk force are defined by

ρ = φρ f + (1 − φ)ρs, (55)

F = (1 − φ)F̄s + φF̄ f , (56)

respectively. An expression of the force in terms of source mecha-
nism will be given in Section 6.4.

The total stress tensor and the pore fluid pressure are given by
(see Appendix A)

T̄ = KU (∇ · ūs)I + C(∇ · w̄)I + 2GU ⊗ d̄s + 2CG ⊗ d̄w, (57)

T̄ f = C(∇ · ūs)I + M(∇ · w̄)I + 2CG ⊗ d̄s + 2MG ⊗ d̄w, (58)

where the circled cross stands for the Stieltjes convolution product,
KU and GU are the undrained bulk and shear moduli of the porous
medium, and C and M are two Biot moduli.
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5 T H E M A X W E L L E Q UAT I O N S

As shown by Pride (1994), the local Maxwell equations can be
volume-averaged to obtain the macroscopic Maxwell equations (see
also Revil & Linde 2006, who used the Donnan model discussed in
Section 3). With the Donnan model, the Maxwell equations are

∇ × E = −Ḃ, (59)

∇ × H = j + Ḋ, (60)

∇ · B = 0, (61)

∇ · D = φ Q̄V , (62)

where H is the magnetic field, B is the magnetic induction and
D is the displacement vector. These equations are completed by
two electromagnetic constitutive equations: D = εE and B = μH
where ε is the permittivity of the medium and μ is the magnetic
permeability. If the porous material does not contain magnetized
grains, these two material properties are given by (Pride 1994)

ε = 1

F

[
ε f + (F − 1)εs

]
, (63)

μ = μ0, (64)

where F is the electrical formation factor defined by eq. (43), ε f

and εs are the dielectric constants of the pore fluid and the solid,
respectively, and μ0 is the magnetic permeability of free space. Note
that only two textural properties � and F are required to describe
the influence of the topology of the pore network upon the material
properties entering the transport and electromagnetic constitutive
equations.

The coupling between the mechanical and the Maxwell equations
occurs in the current density, which can be written in the time
domain as

j = σE + jS, (65)

jS = Q̄V ẇ = −k(ω)Q̄V

η f

(∇ p̄ f + ρ f ¨̄us − F̄ f

)
, (66)

where jS is the source current density of electrokinetic nature. The
body force F̄ f can be responsible for electromagnetic signals that
are directly associated with the source.

6 I M P L E M E N TAT I O N O F T H E F I E L D
E Q UAT I O N S

6.1 Field equations

In this section, we are interested to solve the seismoelectric prob-
lem for poroelastic media saturated by Newtonian or generalized
viscoelastic fluids. As the case of a poroelastic body saturated by a
Newtonian fluid is a special case of the theory develop above, we de-
velop the general field equations below and we show that these equ-
ations yields the correct estimates in the limit of a Newtonian fluid.

For the seismoelectric problem and neglecting the electrosmotic
contribution in the Darcy velocity, the three equations to solve are
given, in the time domain, by Darcy’s law plus combined equations
of motion for the solid and the fluid phases,

b(t) ⊗ ˙̄w + ρ̃ f ¨̄w = − (∇ p̄ f + ρ f ¨̄us − F f

)
, (67)

ρ ¨̄us + ρ f ¨̄w − ∇ · T̄ = F, (68)

p̄ f

M
+ ∇ · w̄ + α∇ · ūs = 0, (69)

where M is one of the Biot’ moduli (see Appendix A). eq. (67) is
derived from eq. (41) in Appendix B, b(t) = η∗

f (t)/k0 is defined in
Appendix C, η∗

f (t) is the inverse Fourier transform of η∗
f (ω) defined

by eq. (16), ρ̃ f is defined by eq. (B3). Eq. (68) follows from eq.
(54) while eq. (69) follows from eq. (A41) using the relationship
α = C/M .

Taking the time derivative of eq. (69) and using Darcy’s law in
which we have neglected the electroosmotic contribution (the last
term of eq. 38) because we are only interested in this paper by
the seimoelectric coupling, we obtain, in the frequency domain,
the following hydraulic diffusion equation for the pore water (see
Appendix B)

−iω p̄ f

M
+ ∇ ·

[
k(ω)

η f

(−∇ p̄ f + ω2ρ f ūs

)] = α∇ · (iωūs). (70)

The assumption that the electroosmotic component can be ne-
glected if we are dealing with the electromagnetic field associ-
ated with hydromechanical disturbances has been investigated by
Revil et al. (1999) among others. The first term of the left-hand-side
of eq. (70) corresponds to the storage term while the second term
corresponds to the divergence of the Darcy velocity. The term on
the right-hand side of eq. (70) corresponds to a source term for this
PDE.

For a 2-D problem, eqs (67) and (68) can be combined to give
(see Appendix B)

∇ · ¯̄� = F̄, (71)

¯̄� ≡

⎡
⎢⎢⎢⎣

Txx Txz

Tzx Tzz

− p̄ f 0

0 − p̄ f

⎤
⎥⎥⎥⎦ , (72)

F̄ ≡

⎡
⎢⎢⎢⎣

−Fx + ρüx + ρ f ẅx

−Fz + ρ f üz + ρ f ẅz

ρ f üx + ρ̃ f ẅx

ρ f üz + ρ̃ f ẅz

⎤
⎥⎥⎥⎦ , (73)

where p̄ f is related directly to the components of the displace-
ment of the solid and the components of w̄ by eq. (69). This form
is suitable for the implementation into a finite element code. We
use Comsol Multiphysics 3.4 adding perfect matched layer (PML)
boundary conditions to the problem for the poroelastic waves and
associated electrical signals (see Zeng et al. 2001; Jardani et al.
2010). This is to avoid spurious reflections at the side and bottom
boundaries of the system. eq. (71) is solved first for the poroelas-
tic propagation problem, which gives the solution for the unknown
variables (ux , uz, wx , wz).

The electromagnetic problem is solved in the quasi-static limit. To
simplify the problem, we consider that the reservoir is close enough
from the sensors (antennas, non-polarizing electrodes and/or mag-
netometers). In this case, we can neglect the time required by the
electromagnetic disturbances to diffuse between the reservoir and
the electromagnetic sensors. With this additional assumption, we
can model the problem by solving only the quasi-static electromag-
netic problem (rather than the low-frequency diffusive problem) for
the electrical potential and the magnetic fields

∇ · (σ∇ψ) = ∇ · jS, (74)
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Seismoelectric response of heavy oil 789

∇2B = −μ0∇ × jS, (75)

where ψ is the electrostatic potential (E = −∇ψ in the quasi-static
limit of the Maxwell equations), and jS = Q̄V ˙̄w.

6.2 Dilatational wave speeds

Combining eqs (69) and (70) yields(
ρ − ρ f

F

)
¨̄us = ∇ · T̄ − 1

F
∇ · T̄ f + b(t)

F
⊗ ˙̄w, (76)

(
F − ρ f

ρ

)
ρ f ¨̄w = ∇ · T̄ f − ρ f

ρ
∇ · T̄ − b(t)

F
⊗ ˙̄w. (77)

These two equations have the same structure as eqs (183) and
(184) of Morency & Tromp (2008). As shown in Appendix C,
the frequency or time dependence of the material properties is
however quite different. While Morency & Tromp (2008) in-
vestigated dissipation mechanisms associated with the behaviour
of the skeleton in terms of an equivalent viscoelastic behaviour
of the material, the dissipation mechanism occurring in our
model is stemming from the viscoelastic properties of the pore
fluid.

In the time domain, the constitutive equations for the total
stress tensor and the fluid phase average stress tensor are given in
Appendix A

T̄ = KU (∇ · ūs) I + C (∇ · w̄) I + 2GU (t) ⊗ d̄s + 2CG(t) ⊗ d̄w,

(78)

T̄ f = C (∇ · ūs) I + M (∇ · w̄) I + 2CG(t) ⊗ d̄s + 2MG(t) ⊗ d̄w,

(79)

GU (t) = FT−1GU (ω), (80)

CG(t) = FT−1CG(ω), (81)

MG(t) = FT−1 MG(ω), (82)

where the deviators d̄s and d̄w are defined in Appendix A and d̄s

is the mean strain deviator of the solid phase, and the coefficients
GU (t), GU (ω), CG(t), CG(ω), MG(t) and MG(ω) are defined in
Appendix A.

We use the classical decomposition of the displacements into
dilatational components

∇ · ūs = e, (83)

∇ · w̄ = ς. (84)

The dilatational wave propagation is obtained by applying the
divergence operator to eqs (76) and (77) substituting eqs (78) and
(79). This yields(
ρ − ρ f

F

)
ë∇2 [H ⊗ e + Cς ] − 1

F
∇2 (Ce + Mς) + b(t)

F
⊗ ς̇ ,

(85)

(
F − ρ f

ρ

)
ρ f ς̈ = ∇2 [Ce + Mς] − ρ f

ρ
∇2 (H ⊗ e + Cς )

− b(t) ⊗ ς̇ , (86)

where H is the stiffness coefficient of Biot theory (H = KU +
(4/3)GU ). We assume plane wave propagation in the x-direction

e = A1 exp [i (lx − ωt)] , (87)

ς = A2 exp [i (lx − ωt)] , (88)

where ω is the angular frequency, l is the complex wavenumber, and
z p = ω/ l is the complex speed. Using eqs (87) and (88) into (85)
and (86), we obtain(
ρ − ρ f

F

)
(−ω2 A1) = H (ω)(−A1l2) − C A2l2

+ 1

F

(
C A1l2 + M A2l2

) − iω
b(ω)

F
A2,

(89)

(
F − ρ f

ρ

)
ρ f (−ω2 A2) = −Cl2 A1 − Ml2 A2

+ρ f

ρ

(
H (ω)l2 A1+ Cl2 A2

) + iωA2b(ω).
(90)

Eliminating A1 and A2 between these two equations yields the
following equation for the speed: az4

p + bz2
p + c = 0, with

a = ρ − ρ f

F
+ i

b(ω)

ω

(
ρ

ρ̃ f

)
, (91)

b = (−1)

[
Mρ

ρ̃ f
+ H (ω) − 2C

F
+ i

b(ω)

ωρ̃ f
H (ω)

]
, (92)

c = 1

ρ̃ f

[
H (ω)M − C2

]
. (93)

The two roots of this equation are

(
z I

p

)2 = −b + √
b2 − 4ac

2a
, (94)

(
z I I

p

)2 = −b − √
b2 − 4ac

2a
, (95)

with z I
p > z I I

p . These two waves correspond to the complex wave
speeds associated with the fast P wave when the solid and the
fluid move in phase and the slow dilatational (slow) wave when
the solid and the fluid move out of phase. The phase speeds are
given by 1/cI

p = Re[(z I
p)−1] and 1/cI I

p = Re[(z I I
p )−1] and the

inverse quality factors are 1/QI
p = Im(z I

p)2/Re(z I
p)2 and 1/QI I

p =
Im(z I I

p )2/Re(z I I
p )2.

6.3 Rotational wave speeds

Using the decomposition of the displacements into rotational com-
ponents

∇ × ūs = �, (96)

∇ × w̄ = �, (97)

applying the curl operator to eqs (76) and (77), and using eqs (78)
and (79), we obtain(
ρ − ρ f

F

)
�̈ = GU ⊗ ∇2� + CG ⊗ ∇2� − 1

F
CG ⊗ ∇2�

− 1

F
MG ⊗ ∇2� + b(t)

F
⊗ �̇, (98)
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(
F − ρ f

ρ

)
ρ f �̈ = CG ⊗ ∇2� + MG ⊗ ∇2� − ρ f

ρ
GU ⊗ ∇2�

−ρ f

ρ
CG ⊗ ∇2� − b(t) ⊗ �̇. (99)

We assume plane wave propagation in the x-direction

� = B1 exp [i (lx − ωt)] , (100)

� = B2 exp [i (lx − ωt)] , (101)

where ω is the angular frequency, l is the complex wavenumber, and
zS = ω/ l is the complex speed. Using these equations, we obtain(
ρ − ρ f

F

)
(−ω2 B1) = GU (ω)

(−B1l2
) − CG B2l2

+ 1

F

(
CG B1l2 + MG B2l2

) − iω
b(ω)

F
B2,

(102)

(
F − ρ f

ρ

)
ρ f (−ω2 B2) = −CGl2 B1 − MGl2 B2

+ρ f

ρ

(
GU l2 B1 + CGl2 B2

)+ iωB2b(ω).
(103)

Eliminating B1 and B2 between these two equations yields the
following equation for the speed: a′z4

S + b′z2
S + c′ = 0, with

a′ = ρ − ρ f

F
+ i

b(ω)

ω

(
ρ

ρ̃ f

)
, (104)

b′ = (−1)

[
MG(ω)ρ

ρ̃ f
+ GU (ω) − 2CG(ω)

F
+ i

b(ω)

ωρ̃ f
GU (ω)

]
,

(105)

c′ = 1

ρ̃ f

[
GU (ω)MG(ω) − CG(ω)2

]
. (106)

The two roots of this equation are

(
z I

S

)2 = −b′ +
√

b′2 − 4a′c′

2a′ , (107)

(
z I I

S

)2 = −b′ −
√

b′2 − 4a′c′

2a′ , (108)

with z I
S > z I I

S . These two waves correspond to the complex wave
speeds associated with a fast rotational S wave and a slow rotational
S wave. The slow rotational wave represents the classical shear
wave while the fast rotational wave is related to the fact that the
fluid can sustain shear stresses above its resonance frequency. This
wave does not exist at low frequencies (ω � ωm) because the pore
fluid behaves as a Newtonian fluid. The phase speeds of these two
waves are given by 1/cI

S = Re[(z I
S)−1] and 1/cI I

S = Re[(z I I
S )−1]

and the inverse quality factors are 1/QI
S = Im(z I

S)2/Re(z I
S)2 and

1/QI I
S = Im(z I I

S )2/Re(z I I
S )2, respectively.

To check the consistency of the model, we can look for the case
where G∗

f (ω) = 0 and GU = G f r , CG(ω) = 0, and MG(ω) = 0. In
this case, we obtain

a′ = ρ − ρ f

F
+ i

b(ω)

ω

(
ρ

ρ̃ f

)
, (109)

b′ = −G f r

[
1 + i

b(ω)

ωρ̃ f

]
, (110)

c′ = 0, (111)

and therefore(
z I

S

)2 = 0, (112)

(
z I I

S

)2 = G f r

(
ρ̃ f

ρ

) ρ̃ f − ρ2
f

ρ
+ b2(ω)

ω2 ρ̃ f
− i b(ω)

ω

ρ f

Fρ(
ρ̃ f − ρ2

f

ρ

)2

+
[

b(ω)
ω

]2
. (113)

In absence of dissipation, this second wave corresponds to the
classical shear wave with phase speed

c2
S = G f r

ρ − ρ f /F
, (114)

(see Morency & Tromp 2008).

6.4 Mechanical source

The macroscopic source term F is linearly partitioned between the
solid and the fluid phases, see eq. (56). It can be written in terms of
the moment tensor M by (Dahlen & Tromp 1998)

F = −M · ∇δ(x − xS)S(t), (115)

where xS refers to the position of the source, S(t) is the source–time
function, and δ(x) is the Dirac (delta) function. This source term
arises in eq. (71) to determine the initial values of the displacements
of the solid phase and the relative displacement of the fluid phase
with respect to the solid. Then the relative displacement of the fluid
phase with respect to the solid phase creates a source term in the
electrostatic and magnetostatic field equations, eqs (74) and (75).

7 S Y N T H E T I C C A S E S T U D I E S

Experiment #1 corresponds to the simulation of the seismoelec-
tric response of an oil-filled reservoir (see Fig. 4) in an half-space
with the oil considered as a Newtonian fluid. The ground surface
corresponds to the top surface of the system where the normal com-
ponent of the electrical field vanishes. The material properties of
the embedding medium (with the properties of a sandstone) and
the oil reservoir are reported in Table 1. We consider a volumetric
source located 50 m below the ground surface generating P waves.
The reservoir is 100 m thick and its top surface is located 250 m
below the ground surface (Fig. 4a). The time dependence of the
source S(t) is a Ricker with a dominant frequency of 30 Hz. We
consider the arrival of the seismic and seismoelectric signals at a
station P1(−50 m, 0 m) corresponding to a single electrode. The
reference for the electrical potential recorded at this electrode is lo-
cated at position Ref(−300 m, 0 m) (see Fig. 4). The four edges are
absorbing boundaries for which we use PML boundary conditions
(see Jardani et al. 2010 for more details). To solve numerically the
problem, we use the finite element modelling Comsol Multiphysics
3.5 to simulate both seismograms and electrograms at the ground
surface.

Both seismoelectric conversion and coseismic electrical signals
are generated at the reservoir boundaries (Figs 4b, 5 and 6). Fig. 6
shows two electrograms for station P1. The first type of signals
corresponds to the co-seismic electrical signal associated with the
propagation of the P wave. It is labelled ‘Coseismic’ in Figs 5(a) and
6. Other coseismic signals are associated with the reflected P waves
at the top and bottom interfaces of the reservoir. These coseismic
signals are labelled RCS1 and RCS2, respectively. These coseismic
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Seismoelectric response of heavy oil 791

Figure 4. The depth of the oil reservoir is 250 m. Its length and thickness are 200 and 100 m, respectively. The depth of the source is 50 m. The observation
station is P1. There is a signal associated with the source itself that diffuses nearly instantaneously at the observation station. We decided not to model this
signal. In the early times of the electrogram, various contributions include the seismoelectric conversions of the P wave reaching the top of the reservoir (2)
(labelled IR1) and the bottom of the reservoir (3) (labelled IR2). In addition, coseismic signals are associated with the direct wave (1) (labelled ‘coseismic’)
and the reflected waves (4) and (5) (labelled RCS1 and RCS 2).

signals occur when a seismic wave travels through a porous mate-
rial, creating a relative displacement between the pore water and the
solid phase. The associated current density is balanced by a con-
duction current density. It results an electrical field travelling at the
same speed as the seismic wave. The second type of seismoelectric
signals correspond to converted seimoelectric signals associated
with the arrival of the P waves at the top and bottom interface of
the oil reservoir. These converted seimoelectric signals are labelled
IR1 and IR2, respectively. When crossing an interface between

two domains characterized by different properties, a seismic wave
generates a time-varying charge separation, which acts as a dipole
radiating electromagnetic energy. These dipoles oscillate with the
waveform of the seismic waves. Because the electromagnetic diffu-
sion of the electrical disturbance is very fast (instantaneous in our
simulations), the seismoelectric conversions are observed nearly at
the same time by all the electrodes but with different amplitudes.
The seismoelectric conversions appear therefore as flat lines in the
electrograms shown in Fig. 5(a).
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Table 1. Properties of reservoir for the second nu-
merical experiment (Experiment #2).

Parameter Embedding medium Reservoir

Ks 35 GPa 37 GPa
Kfr 5.00 GPa 1.07 GPa
Kf 0.225 Gpa 2.4 Gpa
G 4 Gpa 5 Gpa
ηf 10−3 Pa s 0.8 Pa s
k0 10−14 m2 10−12 m2

σ 0.01 S m−1 10−4 S m−1

Q̄V 10 C m−3 1000 C m−3

φ 0.25 0.335

Experiment #2 uses the same geometry as Experiment #1 but
the fluid in the reservoir is now a viscoelastic wet-oil. The dynamic
permeability response of the reservoir filled with the viscoelastic
fluid is shown in Fig. 7(a). The time function of the source is a Dirac
and we investigate the electrical field response in the frequency band
(1–1000 Hz). A plot of the vertical component of the electrical field
at an observation point at depth is shown in Fig. 7(b). The maximum
at the electrical field occurs at the same frequency that the resonance
of the viscoelastic fluid. The amplification of the electrical field
reaches several orders of magnitude with respect to the DC-value.
This very strong amplification of the signal could be the basis of a
new detection and mapping method of heavy oils and DNAPL in
the ground.

8 C O N C LU D I N G S TAT E M E N T S

We have developed a model to simulate the seismoelectric coupling
in a poroelastic body saturated by a viscoelastic or a Newtonian
fluid ignoring the electroosmotic term in the Darcy equation and
assuming that the electromagnetic disturbances generated by the
seimoelectric conversions move instanteanously though the con-
ductive Earth. The following conclusions are reached.

(1) When the pore fluid is a wet oil, it can be also considered as a
viscoelastic non-aqueous solvent with a finite electrical conductivity
and a relatively high dielectric constant (but always lower than the
dielectric constant of water).

Figure 6. Seimogram and electrogram at an electrode (receiver P1 in Fig. 4).
The strongest signal on the electrogram corresponds to the coseismic dis-
turbance associated with the direct wave (see Fig. 4). RCS1 and RCS2
stand for the coseismic disturbances associated with the reflected P waves
(see Fig. 1). IR1 and IR2 stand for the two seismoelectric disturbances as-
sociated with the seismoelectric conversions at the top and bottom of the
reservoir.

Figure 5. Electrograms and sismograms. (a) The electrograms show the coseismic electrical potential field associated with the direct wave and with the
reflections of the P wave (labelled RCS1 and RCS 2) and the seismoelectric conversions with a smaller amplitude and a flat shape (labelled IR1 and IR2). (b)
The seismograms reconstructed by the geophones show the P-wave direct field and the reflections of the P waves. The reflections PPr1 and PPr2 correspond
to the re-elections on the top and bottom of the reservoir, respectively.
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Figure 7. Results of the second numerical experiment using the same geom-
etry as in Fig. 4. The fluid of the reservoir is viscoelastic. The source function
is a Dirac and we investigate the electrical response in the frequency band
(1–100 Hz). The dynamic permeability versus frequency shows the relax-
ation peak associated with the resonance of the viscoelastic fluid. The peak
of the vertical component of the electrical field E at a remote self-potential
station located at x = 150 m and y = 0 m.

(2) Resonance of this solvent occurs in a spectrum of frequencies
that depends on its composition. The distribution of the relaxation
times of such a fluid can be described by a Cole–Cole distribution.
For heavy oils and DNAPL, the resonance frequencies belongs to
the seismic band used by conventional seismic methods (10–100
Hz).

(3) If the porous body is excited by seismic waves with frequen-
cies inside this frequency band of resonance of the viscoelastic fluid,
the current density associated with the movement of the viscoelastic
solvent can be very strong with an enhancement of the streaming
potential coupling coefficient of several orders of magnitude with
respect to its value at low frequencies. In all the spectrum of fre-
quencies, the source current density, in turn, creates electromagnetic
disturbances that can diffuse away from the source of current den-
sity. If we are close enough to the source volume of current, the
electromagnetic problem can be considered in the quasi-static limit
of the Maxwell equations.

(4) A new type of shear wave has been discovered. This new shear
wave is controlled by the mechanical properties of the viscoelastic
fluid and is related to the resonance of the fluid and its ability to bear

shear stresses. This resonance creates a resonance in the electrical
field of electrokinetic nature that may be strongly amplified by
several orders of magnitudes.

Future works will be dedicated (1) to the check of the present
laboratory in the laboratory and in the field and (2) to the extension
of the theory to the case where the pore space of a porous material is
filled with two immiscible fluid phases like water and oil looking at
the effect of the wettability of the oil phase upon the seismoelectric
response.
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Delgado, A.V., González-Caballero, F., Hunter, R.J., Koopal, L.K. &
Lyklema, J., 2007. Measurement and interpretation of electrokinetic phe-
nomena, J. Coll. Interf. Sci., 309, 194–224.

Dupuis, J.C., Butler, K.E. & Kepic, A.E., 2007. Seismoelectric imag-
ing of the vadose zone of a sand aquifer, Geophysics, 72(6), A81–
A85.

Fourie, F.D., 2003. Application of Electroseismic Techniques to Geohydro-
logical Investigations in Karoo Rocks, PhD thesis. University of the Free
State, Bloemfontein, South Africa, 195 pp.

Frenkel, J., 1944. On the theory of seismic and seismoelectric phenomena
in a moist soil, J. Phys. (Soviet), 8(4), 230–241.

Garambois, S. & Dietrich, M., 2001. Seismoelectric wave conversions in
porous media: field measurements and transfer function analysis, Geo-
physics, 66(5), 1417–1430.

Garambois, S. & Dietrich, M., 2002. Full waveform numerical simulations
of seismoelectromagnetic wave conversions in fluid-saturated stratified
porous media, J. geophys. Res., 107(B7), doi:10.1029/2001JB000316.
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Mikhailov, O.V., Queen, J. & Toksöz, M.N., 2000. Using borehole electro-
seismic measurements to detect and characterize fractured (permeable)
zones, Geophysics, 65(4), 1098–1112.

Morency, C. & Tromp, J., 2008. Spectral-element simulations of wave prop-
agation in porous media, Geophys. J. Int., 175, 301–345.

Nagao, T. et al., 2002. Electromagnetic anomalies associated with 1995
Kobe earthquake. J. Geodyn., 33(4-5), 401–411.

Neev, J. & Yeatts, F.R., 1989. Electrokinetic effects in fluid-saturated poro-
elastic media, Phys. Rev. B, 40(13), 9135–9141.

Pengra, D.B., Li, S.X. & Wong, P.-Z., 1999. Determination of rock prop-
erties by low-frequency AC electrokientics, J. geophys. Res., 104(B12),
29 485–29 508.

Pride, S., 1994. Governing equations for the coupled electromagnetics and
acoustics of porous media, Phys. Rev. B, 50(21), 15 678–15 696.

Revil, A., 2007. Thermodynamics of transport of ions and water in
charged and deformable porous media, J. Coll. Interf. Sci., 307(1), 254–
264.

Revil, A. & Leroy, P., 2004. Governing equations for ionic transport in porous
shales, J. geophys. Res., 109, B03208, doi:10.1029/2003JB002755.

Revil, A. & Linde, N., 2006. Chemico-electromechanical coupling in mi-
croporous media, J. Coll. Interf. Sci., 302, 682–694.

Revil, A., Cathles, L.M., Losh, S. & Nunn, J.A., 1998. Electrical conductivity
in shaly sands with geophysical applications, J. geophys. Res., 103(B10),
23 925–23 936.

Revil, A., Schwaeger, H., Cathles, L.M. & Manhardt, P., 1999. Stream-
ing potential in porous media. 2. Theory and application to geothermal
systems, J. geophys. Res., 104(B9), 20 033–20 048.

Revil, A., Naudet, V., Nouzaret, J. & Pessel, M., 2003. Princi-
ples of electrography applied to self-potential electrokinetic sources
and hydrogeological applications, Water Resour. Res., 39(5), 1114,
doi:10.1029/2001WR000916.

Revil, A., Leroy, P. & Titov, K., 2005. Characterization of transport prop-
erties of argillaceous sediments. Application to the Callovo-Oxfordian
Argillite, J. geophys. Res., 110, B06202, doi:10.1029/2004JB003442.

Revil, A., Leroy, P., Ghorbani, A., Florsch, N. & Niemeijer, A.R.,
2006. Compaction of quartz sands by pressure solution using a
Cole–Cole distribution of relaxation times, J. geophys. Res., 111, B09205,
doi:10.1029/2005JB004151.

Revil, A., Linde, N., Cerepi, A., Jougnot, D., Matthäi, S. & Finsterle, S.,
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A P P E N D I X A : S T R E S S – S T R A I N
R E L AT I O N S H I P S

According to the rheological behaviour of the pore fluid described
in Section 2.1, its effective shear modulus is given in the frequency
domain by

G∗
f (ω) = −(iω/ωm)c

1 − (iω/ωm)c
G f . (A1)
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The fluid does not bear any shear stress at low frequencies (ω �
ωm) and behaves as a solid sustaining a net shear stress at high
frequencies (ω  ωm).We define the two phase averaged deviators
by

2d̄s ≡ ∇ūs + ∇ūT
s − 2

3
(∇ · ūs) ¯̄I, (A2)

2d̄ f ≡ ∇ū f + ∇ūT
f − 2

3

(∇ · ū f

) ¯̄I, (A3)

respectively. We introduce a relative deviator as,

d̄w ≡ φ
(
d̄ f − d̄s

)
, (A4)

2d̄w = ∇ [
φ(ū f − ūs)

] + ∇ [
φ(ū f − ūs)

]T

−2

3

(∇ · [
φ(ū f − ūs)

]) ¯̄I, (A5)

2d̄w = ∇w̄ + ∇w̄T − 2

3
(∇ · w̄) ¯̄I, (A6)

2 ˙̄dw = ∇ ˙̄w + ∇ ˙̄w
T − 2

3

(∇ · ˙̄w
) ¯̄I. (A7)

The total stress tensor and the fluid phase average stress tensors
are given by

T̄ = −PI + T̄D, (A8)

T̄ f = − p̄ f I + π̄ , (A9)

where P is the confining pressure, T̄D is the macroscopic deviatoric
stress, and π̄ is the phase average deviatoric stress of the pore
fluid.

In linear poroelasticity, it is customary to consider two distinct
thought experiments to obtain the phase averaged tensors in linear
isotropic porous materials. The first experiment corresponds to the
case of an ideal drained experiment in which a confining pressure
P = (1 −φ) p̄s ( p̄s is the pressure in the solid phase) and deviatoric
stress T̄

D
are applied to a porous sample with no change in the fluid

pressure (e.g. considering an empty or drained porous material). In
this case, the bulk deformation of the solid frame, the variation of
the porosity, and the deviators are

∇ · ūs(P, 0) = −P/K f r , (A10)

�φ(P, 0) = −
(

1 − K f r

Ks
− φ

)
P

K f r
, (A11)

2d̄s

(
T̄

D
, 0

)
= TD

G f r
, (A12)

2φ
(
d̄ f

)e
(

T̄
D
, 0

)
=

(
1 − G f r

Gs
− φ

)
1

G f r
TD, (A13)

where G f r and K f r are the shear and bulk moduli of the dry porous
frame (in other words the shear and bulk moduli of the skeleton of
the material).

In the second thought experiment, we apply a fluid pressure p̄ f

everywhere throughout the pore space and, simultaneously, a con-
fining pressure P = p̄ f to the external surface of the sample. At
the same time, we apply the mean deviatoric stress π̄ to the pore

space and, simultaneously, a deviatoric stress T̄D = π̄ to the exter-
nal surface of the sample. In this case, the bulk deformation of the
solid frame, the variation of the porosity, and the variation of the
deviators are given by

∇ · ūs( p̄ f , p̄ f ) = − p̄ f /Ks, (A14)

�φ( p̄ f , p̄ f ) = 0, (A15)

2d̄s (π̄ , π̄ ) = π̄

Gs
, (A16)

2φ
(
d̄ f

)e
(π̄ , π̄ ) = 0. (A17)

Using the superposition principle, we add together the results of
the two thought experiments discussed. For the general case, the
bulk deformation of the solid frame, the variation of the porosity,
and the deviator are

∇ · ūs(P, p̄ f ) = ∇ · ūs(P − p̄ f , 0) + ∇ · ūs( p̄ f , p f ), (A18)

�φ(P, p̄ f ) = �φ(P − p̄ f , 0) + �φ( p̄ f , p̄ f ), (A19)

2d̄s(T̄D, π̄ ) = 2d̄s(TD − π , 0) + 2d̄s(π̄ , π̄ ), (A20)

2φ(d̄ f )e(T̄D, π̄ ) = 2d̄ f (TD, 0) + 2d̄ f (π̄ , π̄ ). (A21)

This yields,

∇ · ūs(P, p̄ f ) = − (P − p̄ f )

K f r
− p̄ f

Ks
, (A22)

�φ(P, p̄ f ) = −
(

1 − K f r

Ks
− φ

)
P − p̄ f

K f r
, (A23)

2d̄s

(
TD, π̄

) = 1

G f r

(
TD − π̄

) + π̄

Gs
, (A24)

2φ
(
d̄ f

)e (
T̄D, π̄

) =
(

1 − G f r

Gs
− φ

)
1

G f r

(
T̄D − π̄

)
, (A25)

and therefore

∇ · ūs(P, p̄ f ) = − P

K f r
+ α

p̄ f

K f r
, (A26)

�φ(P, p̄ f ) = −(α − φ)
P − p̄ f

K f r
, (A27)

2d̄s

(
T̄D, π̄

) = 1

G f r
T̄D − αG

π̄

G f r
, (A28)

2φ
(
d̄ f

)e (
T̄D, π̄

) = (αG − φ)
1

G f r

(
T̄D − π̄

)
, (A29)

where α = 1− K f r/Ks is the classical Biot coefficient (φ ≤ α ≤ 1)
and αG = 1 − G f r/Gs is a newly introduced Biot shear coefficient.

The equation for the porosity variation �φ(P, p̄ f ) can be written
as a function of the increment of the fluid content ∇·w̄(P, p̄ f ) using
the continuity equation for the mass of the pore fluid. This equation
is given by

�φ + φ

K f
p̄ f + ∇ · w̄ + φ∇ · ūs = 0, (A30)
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∇ · w̄ = (α − φ)
P − p̄ f

K f r
− φ

K f
p̄ f + φ

P

K f r
− φα

p̄ f

K f r
, (A31)

∇ · w̄ = α
P

K f r
− p̄ f

K f r

[
α + φ

(
K f r

K f
− K f r

Ks

)]
. (A32)

A similar approach can be undertaken for the deviators. Starting

with the definition of the differential deviator ˙̄dw ≡ φ( ˙̄d f − ˙̄ds) and
using

˙̄d f =
(

˙̄d f

)v

+
(

˙̄d f

)e
, (A33)

˙̄d f = 1

2η∗
f

π̄ +
(

˙̄d f

)e
, (A34)

where the superscript v and e stands for the viscous and elastic
contributions, respectively, we obtain

− φ

2η∗
f

π̄ + ˙̄dw + φ
[

˙̄ds − (
d̄ f

)e
]

= 0, (A35)

− φ

2η f
(1 − iωτm)π̄ − iω

[
d̄w + φ

(
d̄s − (

d̄ f

)e)] = 0, (A36)

2φ
(
d̄ f

)e + φ

G∗
f

π̄ + 2d̄w + 2φd̄s = 0, (A37)

where we have used τm = η f /G f and the Debye approximation
for the distribution of the time constant. Using eq. (37), we can
write the elastic contribution of the mean deviator in the fluid
phase 2φ(d̄ f )e

(
T̄D, π̄

)
as a function of the differential deviator

d̄w(T̄D, π̄ ):

2d̄w = −αG
T̄D

G f r
+ π̄

G f r

[
αG + φ

(
G f r

G∗
f

− G f r

Gs

)]
. (A38)

This yields for the non-deviatoric and the deviatoric contributions
to the deformation[

∇ · ūs

∇ · w̄

]
= − 1

K f r

[
1 −α

−α φ
(

K f r

K f
− K f r

Ks

)
+ α

]
·
[

P

p̄ f

]
,

(A39)

2

[
d̄s

d̄w

]
= 1

G f r

[
1 −αG

−αG φ
(

G f r

G∗
f

− G f r

Gs

)
+ αG

]
·
[

T̄D

π̄

]
,

(A40)

respectively. These results generalize the Frenkel–Biot theory to
linear poroelastic bodies filled with a linear generalized Maxwell
fluid described by a Cole–Cole model. These equations can be also
inverted to give

−
[

P

p̄ f

]
=

[
KU C

C C/α

]
·
[

∇ · ūs

∇ · w̄

]
, (A41)

[
T̄D

π̄

]
=

[
GU CG

CG CG/αG

]
·
[

2d̄s

2d̄w

]
, (A42)

where the newly introduced material properties are defined as a
function of the properties of the constituents by

GU =
(
Gs − G f r

)2

Gs

[
1 + φ

(
Gs/G∗

f − 1
)] − G f r

+ G f r , (A43)

CG = Gs

(
Gs − G f r

)
Gs

[
1 + φ

(
Gs/G∗

f − 1
)] − G f r

, (A44)

MG = G2
s

Gs

[
1 + φ

(
Gs/G∗

f − 1
)] − G f r

, (A45)

and MG = CG/αG . We check that in the limit where G∗
f = 0, we

obtain GU = G f r , CG = 0 and MG = 0 and we recover in this
limit the classical equations of poroelasticity. The equations can
also be used to generalize the Gassmann substitution formula (see
Gassmann 1951) for the undrained bulk and shear moduli

KU = K f (Ks − K f r ) + φK f r (Ks − K f )

K f (1 − φ − K f r/Ks) + φKs
, (A46)

GU (ω) = G∗
f (ω)(Gs − G f r ) + φG f r [Gs − G∗

f (ω)]

G∗
f (ω)(1 − φ − G f r/Gs) + φGs

,
(A47)

where G∗
f (ω) is given by eq. (A1).

The two other Biot moduli are classically defined by

C = K f (Ks − K f r )

K f (1 − φ − K f r/Ks) + φKs
, (A48)

M = C

α
= K f Ks

K f (1 − φ − K f r/Ks) + φKs
. (A49)

Note that at low frequencies

lim
ω→0

G(ω) = G f r , (A50)

and therefore we recover the case of a Newtonian fluid for (A46)
and (A47).

It is also possible to write eq. (A41) as a function of the Skempton
coefficient B and the undrained bulk modulus KU[

P

p f

]
= −KU

[
1 B

B B/α

] [
∇ · ūs

∇ · w̄

]
, (A51)

KU = − P

∇ · ūs

∣∣∣∣
∇·w=0

= K

1 − Bα
, (A52)

B = p f

P

∣∣∣
∇·w=0

, (A53)

α = 1

B

(
1 − K

KU

)
, (A54)

and C = KU B and α is the bulk Biot coefficient defined above.

A P P E N D I X B : T H E F I E L D E Q UAT I O N S

We start with the Darcy equation, eq. (41), written in the following
form and neglecting the electroosmotic term
η f

k(ω)
˙̄w = −∇ p̄ f − ρ f ¨̄us + F f . (B1)

The dynamic permeability is written as

1

k(ω)
≡ 1 − i (ω/ωc) (1 − (iωτm)c)

k0 (1 − (iωτm)c)
, (B2)

from eq. (42). Using the fact that ¨̄w = −iω ˙̄w, we can easily rewrite
eq. (B1) as eq. (67) where the effective fluid density is given by:

ρ̃ f = ρ f F, (B3)
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where F is the formation factor defined by eq. (43). This is the
same result than for a viscous Newtonian fluid. Indeed for a viscous
Newtonian fluid, the frequency dependent permeability is given
by

k(ω) = k0

1 − iω/ωc
. (B4)

where ωc = η f /(k0ρ f F) where F is the formation factor. eq. (B4) is
a simplified version of eq. (236) of Pride (1994). Inserting eq. (B4)
into eq. (B1) results in eq. (67) with ρ̃ f = ρ f F .

The second point studied in this Appendix is to go from eqs (67)
and (68) to eq. (71). In the frequency domain, the stress tensor is
written as

T̄ =
(

KU − 2

3
GU

)
(∇ · ūs)I +

(
C − 2

3
CG

)
(∇ · w̄) I

+ GU

[∇ūs + ∇ūT
s

] + CG

[∇w̄ + ∇w̄T
]
,

(B5)

For a two 2-D problem, the components of the stress tensor are

T̄ ≡
[

Txx Txz

Tzx Tzz

]
(B6)

are given by

Txx =
(

KU − 2

3
GU

)(
∂ux

∂x
+ ∂uz

∂z

)

+
(

C − 2

3
CG

) (
∂wx

∂x
+ ∂wz

∂z

)

+ 2GU

(
∂ux

∂x

)
+ 2CG

(
∂wx

∂x

)
,

(B7)

Tzz =
(

KU − 2

3
GU

) (
∂ux

∂x
+ ∂uz

∂z

)

+
(

C − 2

3
CG

)(
∂wx

∂x
+ ∂wz

∂z

)

+ 2GU

(
∂uz

∂z

)
+ 2CG

(
∂wz

∂z

)
,

(B8)

Tzx = Txz = GU

(
∂ux

∂z
+ ∂uz

∂x

)
+ CG

(
∂wx

∂z
+ ∂wz

∂x

)
. (B9)

with these notations, eqs (67) and (68) yield directly eq. (71). In
the special case for which the fluid does not bear any shear stress
(Newtonian case), we have GU = Gfr and CG = 0 and we recover
the classical poroelastic equations.

A P P E N D I X C : I N V E R S E F O U R I E R
T R A N S F O R M O F T H E F R E Q U E N C Y
D E P E N D E N T M AT E R I A L P RO P E RT I E S

We look for an expression of b(t) = η∗
f (t)/k0,

b(t) = FT−1

[
η∗(ω)

k0

]
, (C1)

b(t) = FT−1

[
b(ω) ≡ η f

k0

1

1 − (iωτm)c

]
, (C2)

where FT−1 stands for the inverse Fourier transform of a given
frequency dependent function. Let start by the simpler case where
the distribution of the relaxation time obeys to a Dirac distribution
(Debye relaxation, c = 1). In this case, we have,

FT−1

(
η f

k0

1

1 − iωτm

)
= η f

k0
[1 − exp (−t/τm)] , (C3)

The more general case c ≤ 1 can be found in Revil et al. (2006).
It yields,

b(t) = η f

k0

⎡
⎢⎣1−

∞∑
n=0

(−1)n
(

t
τm

)nc

�(1 + nc)

⎤
⎥⎦ , (C4)

where �() is the Gamma function defined by,

�(x) ≡
∫ ∞

0
ux−1e−udu. (C5)

We can easily check that in the case where c = 1, eq. (C4) is
equal to (C3) (Revil et al. 2006). We can apply the same approach
to the properties of the fluid discussed in Section 2.1. For example,
we can determine the inverse Fourier transform of the frequency
dependent shear modulus of the fluid defined in Appendix A by eq.
(A1),

G∗
f (ω) = − (iω/ωm)c

1 − (iω/ωm)c
G f , (C6)

G∗
f (t) = FT−1G∗

f (ω). (C7)

If the Cole–Cole exponent is equal to 1, we have,

G∗
f (t) = G f exp(−t/τm). (C9)

The more general case c ≤ 1 can be found easily as,

G∗
f (t) = G f

∞∑
n=0

(−1)n
(

t
τm

)nc

�(1 + nc)
. (C10)
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