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On p-tuples of the Grassmann manifolds

Joël Rouyer

June 10, 2010

Abstract

We provide a matrix invarariant for isometry classes of p-tuples of
points in the Grassmann manifold Gn

�
Kd
�
(K = R or C). This invariant

fully caracterizes the p-tuple. We use it to determine the regular p-tuples
of G2

�
Rd
�
, G3

�
Rd
�
and G2

�
Cd
�
.

1 Introduction and notation

A triangle (triple of points) of the Euclidean space is fully de�ned, up to isom-
etry, by three numbers, namely its side lengths. Of course, three given positive
numbers may or may not be the side lengths of some triangle. Indeed, they are
if and only if they satisfy the well known triangle inequality. More generally, we
can consider p-tuples of points. Once again, a p-tuple of the Euclidean space
is fully characterized by the data of the distances determined by each pair of
points. The existence criterion is a little less easy, but could be stated in terms
of signs of the minors of some matrix build up from the square of the prescribed
distances (see for instance [1, p. 239]). The aim of this paper is too discuss
analogous matter for p-tuples of points in the Grassmann manifold Gn (Kpn),
where K = R or C. It will turn out that in this case, the data of distances
between the points of a p-tuple are no longer su¢ cient to characterize it up to
a global isometry of Kpn, and so, we have to de�ne another matrix invariant.
The Grassmann manifold Gn

�
Kd
�
is the set of n-dimensional linear sub-

spaces (n-spaces, for aim of shortness) of Kd. The group U (d) of isometries of
Kd acts on Gn

�
Kd
�p
on a natural way. We say that two p-tuples are isometric if

and only if they lie in the same orbit under this action. We say that two p-tuples
(�1; : : : ;�p) and

�
�01; : : : ;�

0
p

�
are congruent if and only if d (�i;�j) = d

�
�0i;�

0
j

�
(see below for the de�nition of the geodesic distance d in Gn

�
Kd
�
) for all i,

j 2 f1; : : : ; pg. Of course, two isometric p-tuples are congruent, but the con-
verse is not true.
The problem we investigate here is to �nd some numerical invariant for p-

tuples up to isometry. The solution is well known for p = 2. Given two n-spaces
�1, �2 � Kd, we consider the function � : P (�1)! R which associates to a line
l of �1 the angle between l and its orthogonal projection onto �2. Of course, Kd
is endowed with its canonical scalar product (i.e. h(u1; : : : ; ud) ; (v1; : : : ; vd)i =
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Pd
k=1 �ukvk). So, we can de�ne the angle between two lines Ku and Kv 2 P

�
Kd
�

as cos�1 jhu;vijp
hu;uihv;vi

. The stationary values of the function � are called the

critical angles between �1 and �2. Critical angles allow us to de�ne the so-
called geodesic distance between �1 and �2 as the square root of the sum of the
squares of the critical angles.
It can be proven that two pairs of n-spaces are isometric if and only if they

have the same critical angles. Moreover, given n numbers �1, . . . , �n 2
�
0; �2

�
,

there always exist two n-spaces embedded in K2n such that these numbers are
the critical angles between them.
A convenient way to compute the critical angles between two n-spaces �1,

�2 � Kd is to equip each of them with an orthonormal basis
�
ei1; : : : ; e

i
n

�
(i =

1; 2), and to put the coordinates (in the canonical basis of Kd) of eij into the
jth column of a d� n matrix Bi. Then the cosines of the critical angles are the
singular values of the matrix B�1B2[9].

1.1 Earlier results

If the case of two n-spaces is for long quite well-understood, there are hitherto
very few investigations concerning triples, or more general p-tuples.
Augustin Fruchard investigated the case triples of real planes (i.e. 2-spaces)

in [4]. Projecting orthogonally the unit circle of each plane onto the two others
yields two ellipses in each plane. The angles between the major axes of these
ellipses are called the inner angles. Of course, this notion makes sense if and
only if the projection of a unit circle is never a circle, i.e. each pair of planes has
two distinct critical angles. A. Fruchard de�ned a generic triangle as a triple
for which the inner angles are well de�ned, and for which all the angles (critical
and inner) belong to

�
0; �2

�
. He proved that a generic triangle is fully de�ned by

the six critical angles, the three inner angles, and four signs "1; "2; "3; "4 = �1,
the pack of which he refers to as the signature of the triangle. We shall give in
section 3 an analogous result, but our method leads to an invariant involving
only one sign ". This is due to the fact that the class of triples we can investigate
with our method is slightly larger than the class of generic triples. What appear
in A. Fruchard�s work as 16 distinct continuous families can be glued into two
bigger ones. The triples of the interface are those that can be treated by our
method, but are not generic.
Another point of view for the study of a p-tuple � = (�1; : : : ;�p) is to con-

sider the orthogonal projections onto �1, . . . , �p. The traces and determinants
of various products of these projections are numerical invariants of the isometry
class of �. Giovani Masala obtained nice results in this way, still in the case of
real planes. He gave a list of invariants which fully characterizes a p-tuple. His
invariant system allows him to classify the regular quadruples of G2

�
R8
�
. How-

ever, although the statements of his theorems di¤er considerably in spirit from
those of A. Fruchard, the proofs are more or less similar. In particular, they
chie�y involve the notion of inner angles, and so, let few hope of generalization
in higher dimensions [6][7].
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Another important investigation is the case of p-tuples of equi-isoclinic n-
spaces. Two n-spaces are said to be isoclinic if their critical angles are all equal.
Further, p n-spaces are said to be equi-isoclinic if they are pairwise isoclinic with
the same angle. In this quite restrictive case, a theory does exist. A normal
Seidel matrix (named after J.J. Seidel in [2]) is a Hermitian np � np matrix
with the following property: if we see it as a p � p matrix whose coe¢ cients
are n� n matrices, then (i) the diagonal coe¢ cients vanish, (ii) the coe¢ cients
of the �rst row and the �rst column (except the �rst one which is zero) are
identity matrices, and (iii) all other blocks are unitary (or orthogonal if K = R).
The unitary (or orthogonal) group acts on the set of normal Seidel matrices by
conjugation of each block. The theory provides a way to associate to a p-tuple of
equi-isoclinic n-spaces of angle � one of the orbits of the Seidel matrices under
this action. Moreover, the data of this orbit and the angle � fully determine
the p-tuple. The existence problem has also a nice solution: given a normal
Seidel matrix S and an angle �, there exist a p-tuple of equi-isoclinic n-spaces
with angle � and associated Seidel matrix S if and only if cos� is lower than
or equal to the opposite of the inverse of the smallest eigenvalue of S. In case
of equality, the p-tuple can be embedded in Knp��, where � is the multiplicity
of the smallest eigenvalue of S; otherwise the p-tuple spans Knp [5][2]. These
results were actually stated in the real case, but all the proofs hold verbatim for
K = C.
The method we propose in this article will include as particular cases both

A. Fruchard�s and J. J. Seidel�s points of view.

1.2 Notation

Throughout this article, we shall have to deal with np� np matrices which are
de�ned by n � n blocks. If M is such a matrix, Mij will stand for the n � n
block consisting of the intersection of the lines (i� 1)n + 1, . . . ,(i� 1)n + n
and the columns (j � 1)n + 1, . . . , (j � 1)n + n. As usual, if M is a n � n
matrix, Mij is the scalar coe¢ cient which lie on line i and the column j. If M
and N are np � np matrices, M �N stands for the np � np matrix de�ned by
(M �N)ij =MijNij , 1 � i; j � p.
If X is a set of square matrices of order n, and N is a diagonal matrix of the

same size,

� M (k) stands for the set of k � k matrices with coe¢ cients in K.

� D (k) stands for the set of k � k diagonal matrices with coe¢ cients in R.

� D+ (k) stands for the set of k�k diagonal matrices with positive diagonal
coe¢ cients.

� U (k) stands for the unitary group of degree k if K = C, or the orthogonal
group if K = R.

� SU (k) stands for the special unitary group of degree k if K = C, or the
special orthogonal group if K = R.
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� O (k) stands for the orthogonal group of degree k.

� SO (k) stands for the special orthogonal group of degree k.

� M (X; p) stands for the set of np � np matrices whose diagonal block-
coe¢ cients are In and other coe¢ cients belongs to X.

� H (X; p) stands for the subset of Hermitian (symmetric if K = R) matrices
of M (X; p).

� S (N) stands for the set on n � n matrices whose singular values are the
diagonal coe¢ cients of N .

� D (X; p) stands for the set of np� np matrices which are block-diagonal,
with diagonal block-coe¢ cients belonging to X.

If M1, . . . , Mp belongs toM (n) we denote by diag (M1; : : : ;Mp) the block-
diagonal matrix whose diagonal block-coe¢ cients are M1, . . . , Mp. As usual, if
�1, . . . , �n are scalars, diag (�1; : : : ; �n) 2 D (n) stands for the diagonal matrix
with diagonal coe¢ cients �1, . . . , �n.
For M 2 M (n), we denote by [M ]p the square matrix of order np whose

block-coe¢ cients are all equal to M , save the diagonal ones which are identity
matrices.

2 General theory

2.1 A matrix invariant

Let � = (�1; : : : ;�p) be a p-tuple of Gn (Knp). The most obvious matrix invari-
ant is a matrix built up from critical angles. We say that a symmetric matrix
� 2M (D (n) ; p) is an edge matrix associated to � if the diagonal coe¢ cients
of �ij 2 D (n) are the cosines of the critical angles between �i and �j . It is
clear that a p-tuple is, in general, associated to more than one edge-matrix, for
the critical angles can be arranged in any order. If we ask furthermore that the
cosines are arranged in non-increasing order of multiplicity, and, for cosines of
the same multiplicity, in decreasing order, the obtained matrix will be called
the� with the de�nite article� edge matrix of �.
We say that a p-tuple is homogeneous if its edge matrix � is such that

i. All of the diagonal coe¢ cients of �ij are positive (1 � i; j � p).

ii. The set C
def
= fU 2 U (n) jU�ij = �jiUg does not depend on i, j (1 �

i < j � p)

It is clear that C is a subgroup of U (n); we call it the group of �. Note
that the �rst point ensures that �ij is invertible.
If the n angles between any two n-spaces are pairwise distinct and less than

�
2 , the p-tuple will be said to be anisoclinic. It is clear that anisoclinic p-tuples
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are homogeneous. Indeed, an homogeneous p-tuple is anisoclinic if and only ifC
is the group of diagonal unitary matrices, if and only if C is Abelian. Moreover,
a generic p-tuple of planes is necessarily anisoclinic.
The following Lemma will be useful for further development.

Lemma 1 Let N 2 D+ (n). Assume that U1, V1, U2, V2 2 U (n) are such that
U1NV

�
1 = U2NV

�
2 . Then there exists a matrix E 2 U (n) which commutes with

N and such that U2 = U1E and V2 = V1E.

Proof. Let M = U1NV
�
1 ; we have MM

� = U1N
2U�1 = U2N

2U�2 . Hence
the columns of U1 and U2 are eigenvectors of the same matrix MM�. More
precisely, if we denote by B�i the block of Ui (i = 1; 2) consisting of eigenvectors
associated to one given eigenvalue � of MM�, then the columns of B�i form
an orthonormal basis of the eigenspace of MM� associated to �. Therefore,
there exists an unitary matrix E� (whose order is the multiplicity of �) such
that B�2 = B

�
1 E

�. Since the argument holds for any eigenvalue �, there exists
E 2 U (n) which commute with N and such that U2 = U1E.
On the other hand, M�M = V1N

2V �1 = V2N
2V �2 , whence there exists F 2

U (n) such that V2 = V1F . Now, U1NV �1 = U2NV
�
2 = U1NEF

�V1, whence
EF � = In.
From now on, we suppose that � is homogeneous. Let � be the edge matrix

of �, and C be the group of �.
Let each n-space �k be endowed with an orthonormal basis

�
eki ; : : : e

k
j

�
and

consider the Gram matrix G of the family�
e11; e

1
2; : : : ; e

1
n; e

2
1; : : : ; e

p
n�1; e

p
n

�
.

As a Gram matrix, G is Hermitian and positive semi-de�nite. Moreover, due
to the fact that

�
eki ; : : : e

k
j

�
is orthonormal, G belongs to H (M (n) ; p). If you

choose some other orthonormal basis
�
e0ki ; : : : e

0k
j

�
in �k, 1 � k � p, then there

exists V k 2 U (n) such that e0ki =
Pn

j=1 e
k
jV

k
ji. It follows that the correspond-

ing Gram matrix G0 is obtained from G by the formula G0 = DGD�, where
D 2 D (U (n) ; p) is de�ned by Dii = V i�. This fact motivates the following
de�nition: two matrices of H (M (n) ; p) are equivalent if they are conjugated
by a matrix of D (U (n) ; p). It follows that two Gram matrices are equivalent if
and only if they are the matrices of the same p-tuple of n-spaces, up to a global
isometry.
By construction of G, the critical angles between �i and �j are the singular

values of Gij , whence there exist Uij , Vij 2 U (n) such that Gij = Uij�ijV
�
ij .

Since Gij = G�ji, we have Vij�ijU
�
ij = Uji�jiV

�
ji. By Lemma 1, there exists

Cji 2 C such that Uij = VjiCji and Vij = UjiCji. Moreover, these two formulae
infer that CijCji = In. It follows that there exist C 2 H (C; p) and U 2
M (U (n) ; p) such that G = U �C �� �U�. A Gram matrix which admits such
a decomposition will be called a �-Gram matrix.
We say that M 2 S (�ij) is of L-kind (respectively R-kind) if there exists

W 2 U (n) such that M = W�ij (respectively M = �ijW ). It follows from
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Lemma 1 that, if U; V 2 U (n) are such that the matrix U�ijV � is of L-kind
(respectively R-kind), then V 2 C (respectively U 2 C).
We say that a �-Gram matrix G is prereduced if for j � 2, G1j is of L-kind,

and G12 = �12. Since G is Hermitian, the prereduceness implies furthermore
that Gi1 is of R-kind for i � 2, and G21 = �21 .

Lemma 2

i. Each �-Gram matrix is equivalent to a prereduced Gram matrix.

ii. Two prereduced �-Gram matrix G and G0 are equivalent if and only if
there exists D 2 D (C; p) such that D11 = D22 and G0 = DGD�.

Proof. Chose a decomposition G = U �C �� �U� of G. Let D 2 D (U (n) ; p)
be de�ned by

D11 = C
�
12U

�
12

Dii = U
�
i1 if i > 1,

and put G0 = DGD�. We have for j > 1,

G0ij = DiiGijD
�
jj = DiiUij�ijCijU

�
jiUj1.

Hence G01i = D
�
11U1jC1j�ij is of L-kind and G

0
12 = �12.

Assume now that G and G0 are prereduced and equivalent, there exists D 2
D (U (n) ; p) such that G0 = DGD�. By hypothesis G is prereduced, so G1j is of
L-kind (j > 1) and G12 = �12. It follows that there exist U2 = In, U3, ...,Up 2
U (n) such that G1j = Uj�1j (j > 1). Since G01j = D11G1jD

�
jj = D11Uj�ijD

�
jj

is of L-kind, D�
jj 2 C for all j > 1. Since G012 = D11�12D

�
22 = �12, by Lemma

1, we have D11 = D22 2 C.
It is clear that a decomposition of a �-Gram matrix G of the form U �

C � � � U� is not unique, and worst, there is no canonical way to de�ne one
preferred decomposition among all the possible ones. So it will be necessary to
arbitrary distinguish such a decomposition. For this purpose, we choose a (not
necessary continuous) function s : U (n) ! U (n) such that, for all U 2 U (n),
the restriction of s to the left coset UC is constant, and such that s (U) 2
UC. In other words, we chose in each left coset UC an arbitrary distinguished
element s (U). We assume furthermore that s is chosen such that s (C) = fIng.
Such a map s will be called a split map. We also de�ne � : U (n) ! C by
� (U) = s (U)

�
U , and, for any U 2 U (n), the map bU : C ! C de�ned bybU (E) = � (EU).

We say that a decomposition G = U � C �� � U� of a �-Gram G matrix is
s-normal if U 2 M (Im s; p). It is clear that each �-Gram matrix has a single
s-normal decomposition. We say that a �-Gram matrix is reduced if, on the
one hand, it is prereduced, and on the other hand, the �rst block row of the
matrix C of its s-normal decomposition contains only identity matrix. Note
that, since C is Hermitian, the latter condition may be equivalently stated on
the �rst block column.
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Lemma 3

i. Each �-Gram matrix is equivalent to a reduced one.

ii. If two reduced �-Gram matrices G and G0 are equivalent, then there exist
E 2 C such that

G0 = diag
�dU11 (E) ; : : : ;dU1p (E)�G�diag �dU11 (E) ; : : : ;dU1p (E)��� ,

where U is the �rst matrix of the s-normal decomposition of G.

Proof. Let G = U �C �� �U� be the s-normal decomposition of a prereduced
�-Gram matrix G. Since G is prereduced, Ui1 = U12 = C21 = C12 = In. De�ne
D 2 D (C; p) by Dii = C1i for i � 2. Put G0 = DGD�; de�ne U 0 and C 0

such that G0 = U 0 � C 0 � � � U 0� is the s-normal decomposition of G0. Since
D11 = In = D12, by virtue of Lemma 2, the matrix G0 is prereduced. Moreover,
for i � 2, G0i1 = DiiUi1Ci1�1iU�1iD�

11 = C1iCi1�1iU
�
1i, whence C

0
i1 = In.

Now assume that G = U �C ���U� and G0 = DGD� = U 0 �C 0 ���U 0� are
reduced and that the above decompositions are s-normal. By virtue of Lemma 2,
D 2 D (C; p). Moreover G0i1 = Dii�i1 (D11U1i)

� and In = C 01i = DiicU1i (D11)�,
thus Dii = cU1i (D11).
We de�ne a s-pair as an ordered pair (U;C) 2 M (Im s; p) �H (C; p) such

that for all i 2 f1; : : : ; pg, Ui1 = Ci1 = C1i = U12 = In. If G = U � C ��p � U�
is a s-normal decomposition of a reduced �-Gram matrix G associated to �,
then (U;C) is a s-pair, which is said to be associated to �. We de�ne an action
of C on the set of s-pairs by E � (U;C) = (E � U;E � C), where

(E � U)ij = s
�cU1i (E)Uij� (1)

(E � C)ij = cUij � cU1i (E)Cij �cUji �dU1j (E)�� . (2)

Note that the notation E � C is abusive, for E � C actually depends on U . A
thorough veri�cation shows that E � (U;C) is the s-pair corresponding to the
Gram matrix D (U � C �� � U�)D�, where D is the block-diagonal matrix de-
�ned by Dii = cU1i (E). Hence, by virtue of Lemma 3, two s-pairs are associated
to the same p-tuples if and only if they lie in the same orbit. An orbit under
this action will be called a s-orbit. The following Theorem summarize the above
considerations.

Theorem 1 Two homogeneous p-tuple of Gn (Knp) are isometric if and only if
they have the same edge matrix, and the same s-orbit.

Remark 4 In the case of an p-tuple � of equi-isoclinic n-spaces of angle �,
�ij = cos (�) In, C = U (n) and s = 1. If (U;C) is a s-pair associated to �,
then U = [In]p. It follows that the p-tuple is wholly determined by the orbit of
the matrix C 2 H (U (n) ; p). The matrix C � Inp is the normal Seidel matrix
mentioned in the introduction. See section 5.2.
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Remark 5 The center Z of U (p) (which is clearly a normal subgroup of C)
�xes any s-pair. Hence this action can be seen as an action of C=Z.

In the special case where U = [In]p, we say that the s-pair (U;C) is special.
On the other hand, if U contains exactly 2p (i.e. the minimum number) block-
coe¢ cients equal to In, then (U;C) is said to be common. Of course, a s-pair
may be neither common nor special. Note that, if one s-pair is common, then
all the s-pairs of its s-orbit are also common; in this case the corresponding
s-orbit and p-tuples are said to be common.

Proposition 6 Assume that C is Abelian. If the s-pair (U;C) is special, then
its s-orbit is a singleton.

Proof. Let
�
U = [In]p ; C

�
be a special s-pair and choose E 2 C, we have

(E � U)ij = s
� bIn (E) In� = s (E) = In, whence E �U = U . Moreover (E � C)ij =

idC � idC (E)Cij (idC � idC (E))� = ECijE� = Cij . Hence E � (U;C) = (U;C).

2.2 Regularity

A p-tuple � = (�1; : : : ;�p) is said to be regular, if it is isometric to ��
def
=�

��(1); : : : ;��(p)
�
for any permutation � 2 Sp. The aim of this section is to

give some characterization of regular p-tuples by mean of its s-pair. Of course,
the critical angles between any two n-spaces of a regular p-tuple do not depend
on the considered pair of n-spaces. In other words, the p-tuple admits an edge
matrix in which all the non-diagonal block are identical.

Theorem 2 Let � = [N ]p be an edge matrix in which all the non-diagonal
blocks are equal to N 2 D+ (n). A p-tuple with edge matrix � and s-pair (U;C)
is regular if and only if there exist F1, F3, . . . , Fn 2 C such that

U2j = s (F1U1j) (3 � j � p) (3)

U1j = s (F1U2j) (3 � j � p) (4)

s
�
C2jU

�
j2

�
= s

�dU1j (F1)Uj2� (3 � j � p) (5)

s (C2iU
�
i2Uij) = s

�cU1i (F1)Uij� (3 � i 6= j � p) (6)

dU�j2 (C2j)� = dU2j (F1)C2j �dUj2 �dU1j (F1)��
(3 � j � p) (7)

\U�i2Uij (C2i)Cij
�
\U�j2Uji (C2j)

��
= cUij � cU1i (F1)Cij �cUji �dU1j (F1)��

(3 � i 6= j � p) (8)

s (FkU1k) = s (U�1k) (3 � k � p) (9)

s (FkU1j) = s (U�1kU1j) (3 � k 6= j � p) (10)
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s (FkU2k) = Uk2 (3 � k � p) (11)

s (FkU2j) = Ukj (3 � k 6= j � p) (12)

s
�dU1k (Fk)Uk2� = s (� (U�1k)U2k) (3 � k � p) (13)

s
�cU1i (Fk)Ui2� = s (� (U�1kU1i)Uik) (3 � k 6= i � p) (14)

s
�dU1k (Fk)Ukj� = s (� (U�1k)U2j) (3 � k 6= j � p) (15)

s
�cU1i (Fk)Uik� = s (� (U�1kU1i)Ui2) (3 � k 6= i � p) (16)

s
�cU1i (Fk)Uij� =s (� (U�1kU1i)Uij)

(3 � i; j; k � p; i 6= j; j 6= k; k 6= i) (17)dU2k (Fk)C2k �dUk2 �dU1k (Fk)�� = Ck2dU2k (� (U�1k))� (3 � k � p) (18)

dU2j (Fk)C2j �dUj2 �dU1j (Fk)�� = CkjdUjk (� (U�1kU1j))�
(3 � k 6= j � p) (19)dUkj �dU1k (Fk)Ckj �dUjk �dU1j (Fk)�� = dU2j (� (U�1k))C2jdUj2 (� (U�1kU1j))�
(3 � k 6= j � p) (20)cUij � cU1i (Fk)Cij �cUji �dU1j (Fk)�� = cUij (� (U�1kU1i))CijcUji (� (U�1kU1j))�

(3 � i; j; k � p; i 6= j; j 6= k; k 6= i) . (21)

Proof. Let (�1; : : : ;�p) be a p-tuple of edge matrix � = [N ]p and s-pair (U;C),
where s is a split map with respect to the group C of �. For k 6= 2, we denote
by Gk be the matrix obtained from G

def
= U � C � � � U� by exchanging the

block lines of indices 2 and k, and the corresponding block columns. Clearly Gk

is a Gram matrix corresponding to the p-tuple (2 k) �. Since Sp is generated
by the the transpositions (1 2), (2 3), . . . , (2 p), � is regular if and only if the
s-pairs

�
Uk; Ck

�
corresponding to Gk (k = 1, 3, 4, . . . , p) lie in the same orbit

as (U;C). From now on, i and j are indices distinct from 1 and 2, and distinct
to each other. By de�nition of G1 we have

G112 = N , G
1
1j = U2jC2jNU

�
j2, G

1
2j = U1jN , G

1
ij = UijCijNU

�
ji.

De�ne
G1

0 def
= diag (U�12; : : : ; U

�
n2)G

1diag (U�12; : : : ; U
�
n2)

� ,

we obtain

G1
0

12 = N , G
10

1j = U
�
12U2jC2jNU

�
j2Uj2 = U2jC2jN ,

G1
0

2j = U1jNUj2, G
10

ij = U
�
i2UijCijNU

�
jiUj2.

Put
G1

00 def
= diag (C21; : : : ; C2n)G

10diag (C21; : : : ; C2n)
� ,

9



we have

G1
00

12 = N , G
100

1j = U2jN , G
100

2j = U1jN
�
C2jU

�
j2

��
,

G1
00

ij = C2iU
�
i2UijCijN

�
C2jU

�
j2Uji

��
.

The matrix G1
00
is reduced, it follows that

U11j = U2j , U
1
2j = U1j , U

1
i2 = s

�
C2jU

�
j2

�
U1ij = s (C2iU

�
i2Uij) , C

1
2;j =

dU�j2 (C2j)�
C1i;j = \U�i2Uij (C2i)Cij

�
\U�j2Uji (C2j)

��
.

Now, � is isometric to (1 2) � if and only if there exist F1 2 C such that�
U1; C1

�
= F1 � (U;C), i.e. such that the relations (3), . . . , (8) hold.

Let k be �xed in f3; : : : ; pg. From now on, i and j are moreover supposed
to be distinct from k. By de�nition of Gk, we have

Gk12 = U1kN , G
k
1j = U1jN , G

k
1k = N , G

k
2j = UkjCkjNU

�
jk,

Gk2k = Uk2Ck2NU
�
2k, G

k
kj = U2jC2jNU

�
j2, G

k
ij = UijCijNU

�
ji.

Put
Gk

0 def
= diag (U�1k; In; : : : ; In)G

kdiag (U�1k; In; : : : ; In)
� ,

we obtain

Gk
0

12 = N , G
k0

1j = U
�
1kU1jN , G

k0

1k = U
�
1kN , G

k0

2j = UkjCkjNU
�
jk,

Gk
0

2k = Uk2Ck2NU
�
2k, G

k0

kj = U2jC2jNU
�
j2, G

k0

ij = UijCijNU
�
ji.

Let D be the block-diagonal matrix de�ned by D11 = D22 = In, Dkk = � (U�1k)

and Djj = � (U�1kU1j). Put G
k00 def= DGkD�, we have

Gk
00

12 = N , G
k00

1j = s (U
�
1kU1j)N , G

k00

1k = s (U
�
1k)N ,

Gk
00

2j = UkjCkjN (� (U
�
1kU1j)Ujk)

� , Gk
00

2k = Uk2Ck2N (� (U
�
1k)U2k)

� ,

Gk
00

kj = � (U
�
1k)U2jC2jN (� (U

�
1kU1j)Uj2)

� ,

Gk
00

ij = � (U
�
1kU1i)UijCijN (� (U

�
1kU1j)Uji)

� .

The matrix Gk
00
is reduced, whence

Uk1k = s (U
�
1k) , U

k
1j = s (U

�
1kU1j) , U

k
2k = Uk2, U

k
2j = Ukj ,

Ukk2 = s (� (U
�
1k)U2k) , U

k
i2 = s (� (U

�
1kU1i)Uik) , U

k
kj = s (� (U

�
1k)U2j) ,

Ukik = s (� (U
�
1kU1i)Ui2) , U

k
ij = s (� (U

�
1kU1i)Uij) ,

Ck2k = Ck2
dU2k (� (U�1k))� , Ck2j = CkjdUjk (� (U�1kU1j))� ,

Ckkj =dU2j (� (U�1k))C2jdUj2 (� (U�1kU1j))� ,
Ckij = cUij (� (U�1kU1i))CijcUji (� (U�1kU1j))� .

10



Now, � is isometric to (2 k) � if and only if there exist Fk 2 C such that�
Uk; Ck

�
= E � (U;C), i.e. such that the relations (9), . . . , (21) hold.

We say that a s-pair is regular, if it is associated to some regular p-tuple.
By Theorems 2 and 4 (see below), it is equivalent to say that it satis�es the
relations (3), . . . , (21). A s-orbit will be said to be regular if one (or equivalently
each) of its s-pair is regular.

Proposition 7 A regular p-tuple is either common of special.

Proof. Follows from relations (3), (11), (12) and (15).

Theorem 3 Let � be a special anisoclinic p-tuple with edge matrix � = [N ]p

and s-pair
�
[In]p ; C

�
. Then � is regular if and only if there exist E 2 C such

that E2 = In and Cij = E for 2 � i 6= j � p

Proof. Put Uij = In in the relations (3), . . . , (21). The relations (3), . . . , (6),
(9), . . . , (17) and (21) are always satis�ed. The others become

C�2j = C2j , (3 � j � p) (22)

C2iCijC2j = Cij , (3 � i 6= j � p) (23)

C2k = Ck2, (3 � k � p) (24)

C2j = Ckj , (3 � k 6= j � p) (25)

Ckj = C2j , (3 � k 6= j � p) (26)

From (25), Ckj does not depends on k = 2; : : : ; p, k 6= j. From (22), Ckj
is Hermitian. On the other hand, C is also Hermitian, whence Ckj does not
depends on j either. Conversely, if all the Cij are equal for 2 � i 6= j � p, the
relations (22), . . . , (26) are satis�ed.

2.3 The existence problem

The problem of existence of a p-tuple with prescribed edge matrix � and s-pair
(U;C) admits an obvious solution: such a p-tuple will exist if and only if the
matrix U �C �� �U� is positive semi-de�nite. The criterion can be restated in
signs of some minors of the matrix, and so appears to be as easy as the Euclidean
case. It seems di¢ cult to expect a better one in such a general theory. However,
the criterion is no so easy to use in practice, so it will be convenient to have
some su¢ cient conditions. We shall prove in particular that a p-tuple with a
small enough edge matrix (i.e. large enough prescribed critical angles) always
exists. We says that a matrix M is lower than or equal to a matrix N , and
write M � N , if and only if each scalar coe¢ cient of M is lower than or equal
to its corresponding coe¢ cient in N .

Theorem 4 For any integers n � 1, p � 2 there exits a positive number �,
which depends only on n and p, such that for any s-pair (U;C) and any edge-
matrix � 2M (D+ (n) ; p) lower than or equal to [diag (�; : : : ; �)]p, there exist
a p-tuple which is associates to them.

11



Proof. If H is an Hermitian matrix, we denote by l (H) its smallest eigenvalue.
It is well known that the map l hereby de�ned is continuous. For any s-pair
(U;C) and edge matrix �, we have

l (U � C �� � U�) � min
V 2M(U(n);p)
K2H(U(n);p)

l (V �K �� � V �) def= L (�) .

SinceU (n) is compact, it is clear that the minimum exists and that the function

L is continuous. Moreover, L
�
[0]p

�
= 1, whence there exists � such that, for

any edge matrix � � [diag (�; : : : ; �)]p, L (�) � 0. Hence, for any s-pair (U;C),
and any � satisfying the above inequality, we have l (U � C �� � U�) � 0,
i.e. U � C �� � U� is a Gram matrix.

Remark 8 Augustin Fruchard proved in [4] that, for K = R, p = 3 and n = 2,
1
3 is the best possible value for �.

The second Theorem of this section states that, roughly speaking, if we
choose a s-pair and the critical angles of one edge of the p-tuple, then it will
exist, provided that the other critical angles are large enough. We need for its
proof the (rather well-known) following Lemma. As for its proof, we refer, for
instance, to [8].

Lemma 9 Let A;B;C;D be four square matrices of order k. Let M be the
matrix of order 2k de�ned by

M =

�
A B
C D

�
.

If CD = DC, then detM = det(AD �BC).

Theorem 5 Let N 2 D+ (n) be such that Nii 2 ]0; 1[ (1 � i � n). Choose
distinct indices i0 and j0 in f1; : : : ; pg. Let E (
) be the set of np � np edge
matrix � such that �i0j0 = �j0i0 = N and �ij � diag (
; : : : ; 
) for i 6= j and
fi; jg 6= fi0; j0g. Let C be the group of unitary matrices commuting with N and
s a split map with respect to C. For any s-pair (U;C) there exists 
 > 0 such
that, for any � 2 E (
), a p-tuple with Gram matrix U � C �� � U� exists.

Proof. Let �0 2 M (D (n) ; p) be such that (�0)i0j0 = (�0)j0i0 = N and
(�0)ij = 0 2 M (n) for 1 � i 6= j � p, fi; jg 6= fi0; j0g. Since the eigenvalues
of a matrix depends continuously of its coe¢ cients, it is su¢ cient to prove that

G = U � C ��0 � U� is positive de�nite. Put A
def
= Gi0j0 = Ui0j0Ci0j0NU

�
j0i0
,

we have AA� = U2i0j0�
2
i0j0
U�i0j0 . Rearranging lines and columns, and by virtue

12



of Lemma 9, we have

det (G� xIn) =

������������

(1� x)In A 0 � � � 0
A� (1� x)In 0 � � � 0

0 0
. . .

. . .
...

...
...

. . . (1� x)In 0
0 0 � � � 0 (1� x)In

������������
= (1� x)(p�2)n

���� (1� x)In A
A� (1� x)In

����
= (1� x)(p�2)n det

�
(1� x)2 In � Ui0j0�2i0j0U

�
i0j0

�
= (1� x)(p�2)n det

�
(1� x)2 In ��2i0j0

�
= (1� x)(p�2)n

nY
i=1

(1� �i � x) (1 + �i � x) .

It follows that the eigenvalues of G are 1, 1 � �i and 1 + �i, and so are all
positive.
The last theorem of this section concerns special regular p-tuple.

Theorem 6 Let �1; : : : ; �n be pairwise distinct numbers of ]0; 1[. Let C be the
group of diagonal unitary matrices of order n. Let E be an element of C such
that E2 = In (i.e. E 2 D (n) and Eii = �1). Let C 2 H (C; p) be de�ned by
C1j = In (1 � j � p) and Cij = E (2 � i 6= j � p). Then the (special regular
anisoclinic) p-tuple with edge matrix [diag (�1; : : : ; �n)]p and s-pair

�
[In]p ; C

�
exists if and only if, for each index i, either Eii = 1 or �i � 1

p�1 .

Proof. Put N
def
= diag (�1; : : : ; �n) and G = C � [N ]p. The p-tuple with edge

matrix [N ]p and s-pair
�
[In]p ; C

�
exists if and only if G is positive semi-de�nite.

Note that G and [NE]p are conjugated by diag (E; In; : : : ; In) and thus have the
same spectrum. Denote by Jp the p� p matrix whose diagonal coe¢ cients are
0 and the others are 1. we have [NE]p = Inp+Jp
NE, and so the eigenvalues
of G are the product of eigenvalues of Jp by eigenvalues of NE, plus 1. The
computation of the eigenvalues of Jp is classical, they are �1 (with multiplicity
p � 1) and p � 1. Hence the eigenvalues of G are 1 � �1E11, . . . , 1 � �pEpp
(multiplicity p � 1) and 1 + (p� 1)�1E11, . . . , 1 + (p� 1)�pEpp. The p �rst
eigenvalues are non-negative, the non-negativeness of the other ones yields the
conditions Eii = 1 or �i � 1

p�1 .

3 The real anisoclinic case

In this section we consider only real anisoclinic p-tuples. In this case, the group
C is the group of diagonal matrices whose diagonal coe¢ cients are �1, or in

13



other words, the group generated by the re�ections with respect to the hyper-
planes orthogonal to the vectors of the canonical basis. Obviously C is of order
2n, and the center Z of O (n) is f�Ing, hence the s-orbits have at most 2n�1
s-pairs.

3.1 Case of planes

In this section, we only consider p-tuples of planes, i.e. n = 2. We denote
by R (�) the rotation of angle � and by S the symmetry with respect to the
axis R (1; 0). It is well known that O (2) = fR (�) ; R (�)S j � 2 R=2�Zg. The
group C has four elements, namely �I2;�S, and the left coset of R (�) is
fR (�) ; R (�+ �) ; R (�)S;R (�+ �)Sg. We de�ne s by

s (R (�)S)= s (R (�))= R (�) , if � 2 [0; �[ ,
s (R (�)S)= s (R (�))= R (�+ �) , otherwise.

Of course, the interval [0; �[ should be understood as an interval of the circle
R=2�Z. It�s clear that this function s is a split map. We de�ne � : C ! C by
� (�I2) = �I2 and � (�S) = �S. If V 2 Im snfI2g, then bV = � and cV � = ��.
Moreover, if A is a the rotation of angle �, we denote by A0 the rotation of angle
� � �.

Proposition 10 Let (U;C) be a s-pair associated to a common p-tuple of real
planes. Then its orbit contains exactly two s-pairs. Moreover, the other s-pair
( ~U; ~C) is related to (U;C) according the following relations

~Uij= U
0
ij, 1 � i � n, 2 � j � n, i 6= j, (i; j) 6= (1; 2)

~Cij= Cij, 3 � i 6= j � n
~C2j= �C2j, 3 � j � n.

It follows that each common s-orbit contains exactly one s-pair such that C23 2
fI2; Sg. This s-pair and the edge matrix fully characterized the p-tuple.

Proof. Apply the formulae (1) and (2) with E = S.

3.1.1 Triangles

A s-pair will depends on three rotations of Im s (the block-coe¢ cients U13, U23
and U32) and one element of C (the block-coe¢ cient C23 = C32). The s-orbit of
the s-pair (U;C) has at most two elements which are (U;C) and S � (U;C). By a
straightforward veri�cation (S � C)23 = "23"32"13C23, where "ij = 1 if Uij = I2
and �1 otherwise. It follows that, if the number of identity blocks in U is
even, there are exactly two elements in the orbit of (U;C), and exactly one with
C23 2 fI2; Sg. This s-pair is a numerical invariant which fully characterizes the
p-tuple.

If some block Uij equals I2, then (S � U)ij = s
�cU1i (S)� = I2, and if some

block Uij does not equal I2, (S � U)ij = �U�ij . It follows that there are exactly
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16 s-orbits which are singletons, those whose matrix U contains only identity
blocks, and those whose matrix U contains one identity block and two blocks
equal to R

�
�
2

�
. The other orbits have two elements. For �, �, 
 2

�
��
2 ;

�
2

�
and

E 2 C, we denote by O (E;�; �; 
) the s-orbit of the s-pair

(U;C) =

0@0@ I2 I2 R
�
�
2 + �

�
I2 I2 R

�
�
2 + �

�
I2 R

�
�
2 + 


�
I2

1A ;
0@ I2 I2 I2
I2 I2 E
I2 E I2

1A1A .
Strictly speaking, if one of the angle �, �, 
 is equal to �

2 , then the above pair
(U;C) is not a s-pair. In this case, O (E;�; �; 
) should be de�ned as the orbit
of a s-pair corresponding to the �-Gram matrix U �C �� � U�, where � is an
edge matrix small enough to ensure that U �C ���U� is positive semi-de�nite.
We have the following equalities:

O (E;�; �; 
) = O (�E;��;��;�
)

O
�
E;��

2
; �; 


�
= O

�
E;��

2
;��;�


�
O
�
E;�;��

2
; 

�
= O

�
E;��;��

2
;�


�
O
�
E;�; �;��

2

�
= O

�
E;��;��;��

2

�
.

It follows that the space of orbits has two connected components (E = �I2 and
E = �S); each of them is homeomorphic to a cube on which the points of each
face are identi�ed by the symmetry with respect to the center of the face.

Remark 11 A generic triple, as de�ned in [4], corresponds to an orbit O (�E; �
�;��; �
), with 0 < j�j, j�j, j
j < �

2 . There is, in such an orbit, exactly one
s-pair (U;C) such that C23 belongs to fI2; Sg. So the triple is characterized by
its edge matrix, one sign " = detC23 and the angles �, �, 
 2

�
0; �2

�
.

As stated in the introduction, Augustin Fruchard has proven that a generic
triple is determined by its critical angles, its inner angles !1, !2, !3 2

�
0; �2

�
,

and its signature ("1; "2; "3; "4) 2 f�1g4. Using the canonical form (see [4,
p.130]), one can compute a Gram matrix from these invariants, and derive the
s-pair. A. Fruchard�s invariants and ours are related by the following formulae

2� = (2!1 � �)"1"2"3"4
2� = (2!2 � �)"1"2"4
2
 = (2!3 � �)"1"3
" = "1"2.

3.1.2 Regular anisoclinic p-tuples in G2
�
R2p
�

From Proposition 7, a regular p-tuple is either common or special. The case of
special p-tuples is settled by Theorem 3 and Theorem 6. So we now consider
the case of common regular p-tuples. In this case, we have necessarily p = 3 or
p = 4, as stated by the

15



Theorem 7 Let � be an anisoclinic regular p-tuple of real planes. If p > 4,
then � is special.

Proof. Let � be regular, common, anisoclinic p-tuple of real planes with p � 5.
Let (U;C) be one of its two s-pairs. Since � is common, the relation (18)
becomes � (Fk)C2kFk = �C2k (k = 3; : : : ; p), whence Fk = �S; we can thus
chose Fk = S. The formula (17) becomes s

�
U�ij
�
= Uij ; hence for 3 � i 6= j � p,

Uij = R
�
�
2

�
(the hypothesis p > 4 is used here, for if p � 4, there is no

triples of distinct indices i; j; k 2 f3; : : : ; pg, and so, the formula (17) gives no
relation). The relations (12) becomes s

�
U�2j
�
= Ukj , whence U2j = R

�
�
2

�
.

Put " = detF1. The relation (3) yields U1j = "R
�
"�2
�
. At last, (10) becomes

s
�
U�1j
�
= s (U�1kU1j), i.e. R

�
�
2

�
= I2, which is absurd.

The case of triangles is given by the

Theorem 8 Let � be an anisoclinic, regular, common triple of real planes.
Then � admits a unique s-pair which is either of the form0@0@ I2 I2 A

I2 I2 A
I2 A0 I2

1A ;
0@ I2 I2 I2
I2 I2 S
I2 S I2

1A1A
or of the form 0@0@ I2 I2 A0

I2 I2 A
I2 A0 I2

1A ;
0@ I2 I2 I2
I2 I2 I2
I2 I2 I2

1A1A ,
where A = R (�), 0 < � < �.

Remark 12 The Theorem 8 can be restated using the invariants �, �, 
, "
de�ned in Remark 11: a common triangle of planes is regular if and only if
��" = � = �
. Each family of regular triangles corresponds to a diagonal of
one the two cubic connected components of the space of s-orbits. The endpoints
of these diagonals correspond to the special regular triangles.

Proof of Theorem 8. Let (U;C) be the s-pair associated to an anisoclinic

regular common triple of real planes, such that E
def
= C23 2 fI2; Sg. Put

A = U23, "1 = detF1 and " = detE. As seen in the proof of Theorem 7, we can
choose F3 = S in the relations (3), . . . , (21). By straightforward computation,
those of the relations (3), . . . , (21) which are not always satis�ed become

A = s (F1U13)

U13 = s (F1A)

s (EU�32) = s (F1U32)

�" = "1
A0 = U32

U
0

32 = A,
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whence the conclusion.
Now let us examine the case of quadruples.

Theorem 9 Given two distinct angles �; � 2
�
0; �2

�
, there exist at most four

common regular quadruples of G2
�
R8
�
with critical angles � and �. They admit

a s-pair which is either of the form0BB@
0BB@
I2 I2 A A0

I2 I2 A A0

I2 A0 I2 A
I2 A A0 I2

1CCA ;
0BB@
I2 I2 I2 I2
I2 I2 S �S
I2 S I2 �S
I2 �S �S I2

1CCA
1CCA

or of the form0BB@
0BB@
I2 I2 A0 A
I2 I2 A A0

I2 A0 I2 A
I2 A A0 I2

1CCA ;
0BB@
I2 I2 I2 I2
I2 I2 I2 �I2
I2 I2 I2 ��I2
I2 �I2 ��I2 I2

1CCA
1CCA ,

where � = �1 and A = R
�
�
2 � �

�
6

�
.

Proof. Let (U;C) be the s-pair associated to an anisoclinic regular common
quadruple of real planes, such that C23 2 fI2; Sg. Put A = U23. As seen
in the proof of Theorem 7, we can choose Fk = S for k � 3 in relations (3),
. . . , (21). In particular, (11), (12) and (16) become respectively Uk2 = U 02k
(3 � k � p), Ukj = U 02j (3 � j 6= k � p) and U 0ik = Ui2 (3 � i 6= k � p). Hence
U34 = U42 = A and U24 = U33 = U43 = A0. Put B

def
= R (�)

def
= U13, by (3), we

have U14 = B0 and either B = A or B = A0. With this notation, those of the
relations (3), . . . , (21) which are not always satis�ed become

A = s (F1B) (27)

s (C23A
0�) = s (� (F1)A

0) (28)

s (C24A
�) = s (� (F1)A) (29)

s (C23A
0�A)= s (� (F1)A) (30)

s (C24A
�A0)= s (� (F1)A

0) (31)

�� (C23)= "C23 (32)

�� (C24)= "C24 (33)

[A0�A (C23)= [A�A0 (C24) (34)

B0= s (B0�B) (35)

�C23= C43�
�
�
�
B0

�
B
��
, (36)

where " = detF1. From (35), we get that 3� = 0 (mod �), hence � = �
2 ��

�
6

for � = �1. The angles of A0�A and A�A0 are opposite to each other and
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do not vanish, whence [A0�A = �� and [A�A0 = �� and thus (34) becomes
� (C23) = �� (C24), whence C23 = �C24. Now we discuss two cases.
Case 1: F1 = I2. By (27), A = B. The relations (32) implies C23 = �S.

Since, by choice of the s-pair, C23 2 fS; I2g, we have C23 = S and C24 = �S.
The equation (36) becomes C34 = ��

�
�
�
R
�
�� �2

���
S = �S. With these values

of C and U , all the relations (27), . . . , (36) are satis�ed.
Case 2: F1 = S. By (27), A = B0. The relations (32) implies C23 = �I2.

Since, by choice of the s-pair, C23 2 fS; I2g, we have C23 = I2 and C24 = �I2.
The equation (36) becomes C34 = ��

�
�
�
R
�
� �2
���

I2 = ��I2. With these
values of C and U , all the relations (27), . . . , (36) are satis�ed.

3.2 Anisoclinic regular p-tuples of real 3-spaces.

We recall that a rotation R 2 SO (3) is associated to a pair of mutually opposite
quaternions in the following way: if we identify R3 with the set of pure imaginary
quaternions, the rotation of angle � and unitary axis vector u 2 R3 is represented
by the unitary quaternions �q = �

�
cos �2 + sin

�
2 u
�
. Then, for any vector

of v 2 R3, i.e. for any pure imaginary quaternion v, we have R (v) = qv�q.
In order to avoid confusion with indices, we denote by bold characters (i, j,
k) the vectors of the canonical basis of R3. Denote by R"0"1"2"3 ("0, "1, "2,
"3 2 f0;�1g) the set of those rotations which are associated to a quaternion
number q = a0+a1i+a2j+a3k, such that "i = sgn (ai) (i = 0, . . . , 3). Obviously
R�"0 �"1 �"3 �"3 = R"0"1"3"3 and the 40 elements set

P
def
= fR"0"1"3"3 j"0; "1; "2; "3 = �1; 0; 1g

is a partition of SO (3). In order to shorten the notation, we shall only write the
sign (+ or �) when one of the indices "k equals �1. We also de�ne Rz (z = 0,
1, 2, 3) as the union of those R"0"1"3"3 such that exactly z indices among "0,
. . . , "3 equal zero. Clearly

Q
def
= fRkjk = 0; : : : 3g

is also a partition of SU (3), coarser that P .
In the case of anisoclinic tuples of real 3-spaces, C = �fI3; Si; Sj; Skg, where

Sq (q = i; j;k) is the half-turn of axis q, or in other words, the rotation associated
to the quaternion q. It is easy to check that the right or left multiplication by
Sq (q = i; j;k) respects the partition P of SO (3). More precisely we have

SiR"0"1"2"4 = R�"1 "0 �"3 "2 R"0"1"2"4Si = R�"1 "0 "3 �"2
SjR"0"1"2"4 = R�"2 "3 "0 �"1 R"0"1"2"4Sj = R�"2 �"3 "0 "1
SkR"0"1"2"4 = R�"3 �"2 "1 "0 R"0"1"2"4Sk = R�"3 "2 �"1 "0 .

(37)

In particular each set Rz 2 Q is globally invariant under multiplications by

elements of C+
def
= C\SO (3). Now let us examine the left cosets. If U belongs

to some R" 2 P (" 2 f�1; 0g4), then the three other elements of the coset UC,
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lie in three elements of P that does not depends on U 2 R". Using (37), we get
the following table.
R" R+000 R++00 R+0+0 R+00+ R0�++
R"Si R0+00 R+�00 R0+0� R0++0 R+0+�
R"Sj R00+0 R00++ R+0�0 R0�+0 R++0+
R"Sk R000+ R00�+ R0+0+ R+00� R+��0

R0+�+ R0++� R0+++ R+��� R++++
R+0�� R+0++ R+0�+ R++�+ R+��+
R+�0+ R+�0� R++0� R+++� R++��
R+++0 R++�0 R+�+0 R+�++ R+�+�

Hence, each coset UC contains exactly one element lying in one of the ten
sets of the �rst line of the above table. By de�nition s (U) is this element. If
U 2 C, i.e. , if either U or �U belongs to one of the sets of the �rst column of
the table, then s (U) belongs to R+000 = fI3g. Hence s is a split map. It is now
easy to compute the maps bU , which depends only of the set R" 2 P in which
lies U . We obtain

if U 2 R+000, then bU = cU� = idC,
if U 2 R++00, then bU = �jk and cU� = �i,
if U 2 R+0+0, then bU = �ik and cU� = �j,
if U 2 R+00+, then bU = �ij and cU� = �k,
if U 2 R1 \ Im s, then bU = cU� = idC,
if U 2 R+���, then bU = � and cU� = ��1,
if U 2 R++++, then bU = ��1 and cU� = �,

where �qq0 (q, q0 = i, j, k) exchanges �Sq and �Sq0 and �xes the other elements
of C, �q exchanges �Sq and �I3 and �xes the other elements of C, and � is
de�ned by

� (�I3) = �I3 � (�Si) = �Sj
� (�Sj) = �Sk � (�Sk) = �Si.

Using this split map, one can obtain some results analogous to section 3.1.1,
namely, can determine the topology of the space of anisoclinic triangles. How-
ever, this would involve to discuss a wild number of cases, and we choose to not
include such a technical piece of work in the present article.
Therefore, we shall restrict our study to regular p-tuples. The �rst step of

this study is the following re�nement of Proposition 7.

Proposition 13 Let (U;C) be a s-pair associated to an anisoclinic p-tuples of
real 3-spaces. Then there exists z = 0, 1, 2, 3 such that for all indices i, j
(1 � i � p, 2 � j � p, i 6= j, (i; j) 6= (1; 2)), Uij belongs to Rz. Moreover, this
number z is the same for all the s-pair of a given s-orbit.
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Proof. The statement follows from relations (3), (11), (12), (15) and (1), and
from the fact that Rz is stable by multiplication by any element of C, as well
as by s.
The number z de�ned in the above Proposition will be called the degree of

the regular p-tuple. The case of special p-tuples (i.e. of degree 3) is treated in
section 2, so we consider now the case of common ones.

Theorem 10 There is no anisoclinic regular triangle of 3-spaces of degree 0.

Proof. Let (U;C) be a s-pair associated to an anisoclinic regular triangle of 3-
spaces of degree 0. The matrix U13 belongs to R0, i.e. there exists " = �1 such
that U13 2 R+""". The relation (9) yields s (F3U13) = s (U�13). On the one hand,
a direct computation shows that, for any E 2 C, R+""" is stable by the map
U 7�! s (EU), whence s (U�13) 2 R+""". On the other hand U�13 2 R�""" � Im s,
whence s (U�13) = U

�
13 2 R�""".

Theorem 11 An anisoclinic regular triangle of 3-spaces of degree 1 admits a
unique s-pair of the form0@0@ I3 I3 F1AF1

I3 I3 A
I3 A I3

1A ;
0@ I3 I3 I3
I3 I3 "F1
I3 "F1 I3

1A1A ,
where A 2 R0+++, F1 2 C+ and " = �1.

Proof. Let R" be one of the sets R0+��, R0+�+, R0++� or R0+++. A straight-
forward veri�cation shows that s (ER") equals successively each of the above sets
when E run through C+. It follows that, a s-orbit associated to an anisoclinic
regular p-tuple of 3-spaces of degree 1 contains exactly four s-pairs, and exactly

one of them such that U23 2 R0+++. Let (U;C) be this s-pair and put A
def
= U23.

By (3), there exists F1 2 C+ such that U13 = F1AF1. For k = 3, the equation
(9) becomes F3U13F3 = U13, so the axis of U13 2 R1 is invariant under F3. It
follows that F3 = I3. Now, (13) implies U32 = U23. For j = 3, the equation (5)
becomes C23AC23 = F1AF1, whence the axis of A is invariant by C23F1, and so
C23 = F1.
Conversely, a s-pair of the above form satis�es all the formulae (3), . . . , (21).

Theorem 12

i. For p > 4, there is no anisoclinic regular p-tuples of degree 1 in G3
�
R3p
�
.

ii. An anisoclinic regular quadruple of 3-spaces of degree 1 admits a s-pair of
the form0BB@

0BB@
I3 I3 F1AF1 F1BF1
I3 I3 A B
I3 A I3 B
I3 B A I3

1CCA ;
0BB@
I3 I3 I3 I3
I3 I3 "F1 "F1
I3 "F1 I3 "F1Sq
I3 "F1 "F1Sq I3

1CCA
1CCA ,
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where A 2 R0+++ is a half-turn whose axis makes an angle �
3 with one

vector q 2 fi; j;kg, B = SqASq, F1 2 C+n fSqg.

Proof. As seen in the proof of Theorem 11, a s-orbit associated to an anisoclinic
regular p-tuple of 3-spaces of degree 1 contains exactly four s-pairs, and exactly

one of them such that U23 2 R0+++. Let (U;C) be this s-pair and put A
def
= U23.

Since all non-identity block-coe¢ cients of U are half-turns, the relation (9) be-
comes s (FkU1k) = U1k. Moreover s (FkU1k) = FkU1kdU1k (Fk) = FkU1kFk,
whence Fk preserves the axis of U1k, and so Fk = I3 (k � 3). Now the
relations (11) and (12) give U2k = Uk2 and Ukj = U2j . The relation (5)
yields C2jUj2C2j = F1Uj2F1, whence there exist "3, . . . , "p = �1 such that
C2j = "jF1. The relation (8) becomes

"i"j \U2iU2j (F1)Cij \U2jU2i (F1) = Cij . (38)

Since Im s � SO (3), we have the formula det
�bV (E)� = detV detE. Hence,

(38) infers that "i does not depends on i = 3, . . . , p and that Fij
def
= \U2iU2j (F1) =

Fji. The formula (3) shows that U1i = F1U2iF1.
Assume now that p � 5. For any pair of distinct indices i; k 2 f1; : : : ; pg,

there exists an index j 2 f1; : : : ; pg distinct from i and j. Hence the relation
(17) gives Uij = � (U1kU1i)Uij� (U1kU1i). It follows that the axis of Uij 2 R1 is
stable under � (U1kU1i) 2 C+, whence s (U1kU1i) = U1kU1i. Now (10) becomes
U1j = U1kU1j , in contradiction with the fact that U1k 2 R1.
Put B

def
= U24. For (k; i) = (3; 4), the equation (14) becomes

B = s (� (F1ABF1)A) (39)

= s (F34F1A) = F34F1AF34F1.

Hence B and A are conjugated by some matrix of C. The equation (6) gives
s (F1AB) = s (F1B), i.e. ABF34 = BF1. Moreover A 6= B follows from (6).
Combining this equation and (39) gives (F34F1A)

3
= I3. It follows that F34F1A

is a rotation of angle 2�=3, and that F34F1 6= I3. Hence there exists q 2 fi; j;kg
such that F1F34 = Sq. Since the angle of SqA is 2�=3, the angle between the
axis of A and q is �=3. It remains to prove that C34 = "F34; this follows from
equation (20).
Conversely, one can check that a s-pair of the above form satis�es all the

equations (3), . . . , (21).
From now on, if V if a rotation of angle �, we shall denote by V 0 the rotation

with the same axis and angle � � �. A direct computation shows that, if
V 2 R++00 and F 2 C+, then s (FV ) is either V (if F = I3 or F = Si) or
V 0 = SiV

� = V �Si (if F = Sj or F = Sk).

Theorem 13

i. There is no anisoclinic regular quintuples of 3-spaces of degree 2.
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ii. An anisoclinic regular quadruple of G3
�
R12
�
admits a s-pair which is ei-

ther of the form0BB@
0BB@
I3 I3 A A0

I3 I3 A A0

I3 A0 I3 A
I3 A A0 I3

1CCA ;
0BB@
I3 I3 I3 I3
I3 I3 "� (Sq) "��1 (Sq)

I3 "� (Sq) I3 "� (Sq)S
(��1)=2
q

I3 "��1 (Sq) "� (Sq)S
(��1)=2
q I3

1CCA
1CCA ,

or of the form0BB@
0BB@
I3 I3 A0 A
I3 I3 A A0

I3 A0 I3 A
I3 A A0 I3

1CCA ;
0BB@
I3 I3 I3 I3
I3 I3 "I2 "Sq

I3 "I2 I3 "S
(�+1)=2
q

I3 "Sq "S
(�+1)=2
q I3

1CCA
1CCA ,

where q 2 fi; j;kg, �; " = �1, and A is a rotation of axis q and angle
�
2 � �

�
6 . Moreover this s-pair is unique.

Proof. Let ( ~U; ~C) be a s-pair associated to such a p-tuple (p � 4). Since ( ~U; ~C)
is of degree two, ~U23 belongs to one of the three sets R++00, R+0+0 or R+00+.
We assume here that ~U23 2 R++00; one can easily check that the proofs in the
two other cases are similar. By (2), we have (Sj � ~C)23 = Si ~C23. Hence, there
is in the s-orbit of ( ~U; ~C) a s-pair (U;C) such that E

def
= C23 2 f�I3;�Sjg.

Moreover, since Si � ( ~U; ~C) = ( ~U; ~C) and Sj � ( ~U; ~C) = Sk � ( ~U; ~C), this s-pair is
unique.
By virtue of (4), (11), (12) and (16), each block Uij (1 � i � p, 2 � j � p,

i 6= j, (i; j) 6= (1; 2)) equal either A
def
= U23 or A0. Assume that there exists

k � 3 such that Fk = I3 or Fk = Si, then by (9), U1k = U 01k, and so all the
non-identity block-coe¢ cients of U are all equal to a same rotation of angle
�=2. In this case the relation (6) becomes I3 = s (�jk (F1)Uij), which is absurd.
Hence, for k � 3, Fk equals either Sk or Sj.
If p � 5, then for (i; j; k) = (3; 4; 5), the relation (17) becomes U

0

34 =
s (� (U�15U13)U34). Since U

�
15 and U13 are rotation of axis i, � (U

�
15U13) 2 fI3; Sig,

whence U
0

34 = U34. This would imply once again that all the non-identity blocks
of U are equal, in contradiction with (6). If follows that p = 4.
It follows from (11) that U32 = A0. For (i; k) = (3; 4), the relation (16) gives

U 034 = A. By (12) (with (j; k) = (4; 3)), we have U24 = A
0. By (4) we have either

U13 = A and U14 = A0, or U13 = A0 and U14 = A. In both cases U13 = U 014.
For (j; k) = (3; 4) the relation (10) gives U 013 = s (U

0�
13U13). Hence the angle of

U13 is either �=3 or 2�=3. It follows that there exists � = �1 such that A is the
rotation of axis i and angle �

2 � �
�
6 . Now we discuss two cases.
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Case 1: F1 2 fI3; Sig. In this case U13 = A and U14 = A0. The relation (7)
becomes �i (C2j) = C2j , whence C23 = "Sj for " = �1. For (j; k) = (3; 4), (19)
becomes SiC23 = C43�jk (� (A0�A)), thus C43 = "SjS

(��1)=2
i . For (j; k) = (4; 3)

the same relation becomes SiC24 = C43�jk (� (A�A0)), whence C24 = "Sk.
Case 2: F1 2 fSj; Skg. In this case U13 = A0 and U14 = A. The relation (7)

becomes �i (C2j) = SiC2j , whence C23 = "I3 for " = �1. For (j; k) = (3; 4), (19)
becomes SiC23 = C43�jk (� (A

�A0)), thus C43 = "S
(�+1)=2
i . For (j; k) = (4; 3)

the same relation becomes SiC24 = C43�jk (� (A0�A)), whence C24 = "Si.
So the s-pair (U;C) is necessarily of one of the two forms given in the state-

ment of the Theorem. It is now straightforward to check that these s-pairs are
actually regular.

Theorem 14 An anisoclinic regular triangle of 3-spaces of degree 2 admits a
unique s-pair (U;C) which is either of the form0@0@ I3 I3 A

I3 I3 A
I3 A0 I3

1A ;
0@ I3 I3 I3
I3 I3 �� (Sq)
I3 �� (Sq) I3

1A1A ,
or of the form 0@0@ I3 I3 A0

I3 I3 A
I3 A0 I3

1A ;
0@ I3 I3 I3
I3 I3 �I3
I3 �I3 I3

1A1A
where A 2 R2 \ Im s is a rotation of axis q 2 fi; j;kg.

Proof. Let ( ~U; ~C) be a s-pair associated to an anisoclinic regular triangle of

3-spaces of degree 2. We assume for the proof that A
def
= U23 2 R++00; the

two other cases are similar. As seen in the proof of Theorem 13, there is in the

s-orbit of ( ~U; ~C) a unique s-pair (U;C) such that E
def
= C23 2 f�I3;�Sjg.

The relation (18) gives �jk (F3)F3E = ESi, whence F3 2 fSj; Skg. Hence,
by (11), we have U32 = A0. We now discuss two cases.
Case 1: F1 2 fI3; Sig. The relation (4) implies that U13 = A. The relation

(5) gives s (EA) = A0, and so E = �Sj. It is a straightforward veri�cation to
check that (U;C) satis�es all the equation (3), . . . , (21).
Case 2: F1 2 fSj; Skg. The relation (4) implies that U13 = A0. The relation

(5) gives s (EA) = A, and so E = �I3 It is a straightforward veri�cation to
check that (U;C) satis�es all the equation (3), . . . , (21).

4 Anisoclinic p-tuple of C-spaces
4.1 The split map

In this section K = C and n = 2. For � 2
�
0; �2

�
, and �, � 2 R=2�Z, we put

v� (�; �) =

�
cos � ei� � sin � e�i�
sin � ei� cos � e�i�

�
.
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It is well-known that SU (2) is the set of those matrices v� (�; �). Therefore,
each unitary matrix V admits a decomposition of the form V = z v� (�; �), with
z 2 U, where U stands for the unitary circle in C. Indeed, V admits exactly two
decompositions of this form, for z v� (�; �) = (�z) v� (�+ �; � + �).
We shall use the following notation

v� (�) = v� (�; 0)

c (�) = v0 (�; 0)

d (�) = v�
2
(0; �) .

We shall consider here anisoclinic p-tuples of complex planes, thus the group
C is the group of unitary diagonal matrix:

C = fzc (�)j z 2 U; � 2 R=2�Zg .
Elementary calculus gives the following formulae

c (�) v� (�; �) = v� (�+ �; � � �)
v� (�; �) c (�) = v� (�+ �; � + �) .

If follows that, if � 2
�
0; �2

�
, there is exactly one element of the form v� (�)

in the left coset

v� (�; �)C = fz v� (�+ �; � + �) j� 2 R; z 2 Ug ,
namely v� (�� �). For � = �

2 , the left coset d (�)C is the set

fzd (�) j�2 R; z 2 Ug .
It follows that the map s de�ned by

s (zv� (�; �)) = v� (�� �) , z 2 U; � 2
i
0;
�

2

h
; �; � 2 R=2Z,

s (zd (�)) = d (0) , z 2 U; � 2 R,
s (E) = I2, E 2 C,

is a split map. The associated map � is given by the formulae

� (v� (�; �)) = c (�)

� (d (�)) = c (�) ,

and the maps bV and cV �, for V 2 Im s are given by
\v� (�) (c (�)) = c (��)

�
� 2

i
0;
�

2

h
; �; �;2 R

�
\v� (�)� (c (�)) = �c (��)

�
� 2

i
0;
�

2

h
; �; �;2 R

�
dd (0) (c (�)) = c (��)
\d (0)� (c (�)) = �c (��) .

As explained in the Remark 5, the s-orbits under C are indeed the orbits under

C+
def
= fc (�) j� 2 Rg.
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4.2 Anisoclinic triangles of G2 (C6)
Consider a triangle of G2

�
C6
�
associated to a s-pair (U;C) such that

U =

0@ I2 I2 v�1 (�1)
I2 I2 v�2 (�2)
I2 v�3 (�3) I2

1A .
It follows from (1) and from the formulae of the above Section that the numbers
�i that appear in the above matrix depend only of the s-orbit. These numbers
are invariants of the triangle, which are indeed closely related to inner angles.
We say that an anisoclinic triangle is generic if these three numbers �1, �2, �3
belong to

�
0; �2

�
. This de�nition generalizes A. Fruchard�s one. It is quite clear

that the set of generic triangles is open and dense in the set of all triangles.

Proposition 14 Each generic triangle admits a single s-pair of the form0@0@ I2 I2 v�1 (�1)
I2 I2 v�2 (�2)
I2 v�3 (�3) I2

1A ;
0@ I2 I2 I2
I2 I2 !I2
I2 �!I2 I2

1A1A ,
where �1, �2, �3 2

�
0; �2

�
, �1, �2, �3 2 R=2�Z, ! 2 U. Therefore, the set of

s-orbits of generic triangles of G2
�
C6
�
is homeomorphic to ]0; 1[3 � U4.

Proof. The result follows from the formula

c (�=2) �

0@0@ I2 I2 v�1 (�1)
I2 I2 v�2 (�2)
I2 v�3 (�3) I2

1A ;
0@ I2 I2 I2
I2 I2 !c (�)
I2 �!c (��) I2

1A1A =

0@0@ I2 I2 v�1 (�1 + �)
I2 I2 v�2 (�2 + �)
I2 v�3 (�3 � �) I2

1A ;
0@ I2 I2 I2
I2 I2 !c (�� �)
I2 �!c (��+ �) I2

1A1A ,
which in turn, follows from (1), (2) and the formulae of Section 4.1.

4.3 Regular p-tuples in G2
�
Cd
�

Proposition 15 Let (U;C) be a s-pair associated to a common anisoclinic p-
tuple of complex 3-spaces. Then, either all or none of the Uij (1 � i � p,
2 � j � p, i 6= j, (i; j) 6= (1; 2) equal d (0).

Proof. The statement follows from relations (3), (11), (12) and (15) and from
the fact that s (E d (0)) = d (0) for any E 2 C.

Theorem 15 A common anisoclinic triangle of G2
�
C6
�
is regular if and only

if it admits a s-pair which is of the form0@0@ I2 I2 v� (0)
I2 I2 v� (0)
I2 v� (�) I2

1A ;
0@ I2 I2 I2
I2 I2 �S
I2 �S I2

1A1A ,
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or of the form0@0@ I2 I2 v� (�)
I2 I2 v� (0)
I2 v� (�) I2

1A ;
0@ I2 I2 I2
I2 I2 �I2
I2 �I2 I2

1A1A ;
or of the form 0@0@ I2 I2 d (0)

I2 I2 d (0)
I2 d (0) I2

1A ;
0@ I2 I2 I2
I2 I2 !I
I2 �!I I2

1A1A ,
where � 2

�
0; �2

�
, � = �1, ! 2 f1; ig. Moreover, this s-pair is unique.

Remark 16 It follows from Theorem 15 that the regular triangles of G3
�
C6
�

are isometric to regular triangles of G2
�
R6
�
. The correspondence between the

above s-pairs and the regular orbits described in section 3.1.2 is the follow-
ing: for � 6= 0, O (S; �; �;��) corresponds to a s-pair of the �rst form, and
O (I2;��; �;��) corresponds to a s-pair of the second form. The correspon-
dence between (�; �) and � is given by � = �

2 � j�j and � = �sgn (�). The
s-orbits O (I2; 0; 0; 0) and O (S; 0; 0; 0) correspond to s-pairs of the third form,
with ! = 1 and ! = i respectively.

Proof of Theorem 15. Let ( ~U; ~C) be a s-pair associated to a common aniso-
clinic regular triangle. From Proposition 15, either all the non-identity blocks of
~U or none of them equal d (0). Assume �rst that we are in the second case. Let
! be the square root of det( ~C23) whose argument belongs to [0; �[. There exists

� 2 R such that ~C23 = !c (�). By (2),
�
c (�=2) � ~C

�
23
= !I2. Therefore, there

exists in the same orbit a s-pair (U;C) such that C23 = !I2. Put F1 = c (�1=2).
The s-pair (U;C) satis�es the relation (7), which becomes �!c (��+ �) = !F �21 ,
whence !2I2 = c (� + �1) 2 C+. It follows that !2 = �1 and ! 2 f1; ig. Con-
versely, given any numbers � 2 R, ! 2 f1; ig, there exists �1 2 R such that the
relation is satis�ed. All other relations become d (0) = d (0), except (18) which
becomes, for F3 = c (�3), !c (�� 2�3) = �! c (� � �). Obviously, one can �nd �3
such that this last relation is satis�ed.
Now assume that ~U13, ~U23, and ~U32 are not d (0). Put ~U23 = v� (�2). By

(1),
�
c (��2=2) � ~U

�
23
= v� (0). So there exists in the same orbit a unique s-

pair (U;C) such that U23 = v� (0). Since the triangle is regular, there exists

F1
def
= c (�1=2) and F3

def
= c (�3=2) such that the relations (3), . . . , (21) are

satis�ed. Put U13 = v�1 (�1) and U32 = v�3 (�3). By the relation (11) becomes
v� (�3) = v�3 (�3), whence �3 = � and �3 = �3. The relations (3) and (4),
become respectively v� (0) = v�1 (�1 + �1) and v�1 (�1) = v� (�1). It follows
that �1 = � and �1 = �1 2 f0; �g. The relation (9) becomes v� (�1 + �3) =
v� (��1 � �), whence �3 = �. Put C23 = !c (�), the relations (7) and (18)
becomes c (�1)!2 = �I2 and c (2�)!2 = I2. So (U;C) is necessarily one of the
two �rst s-pairs of the Theorem. It is now straightforward to check that these
s-pairs actually satis�ed all the relations (3), . . . , (21).
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Theorem 16

i. There is no anisoclinic common regular quintuple in G2
�
C10
�
.

ii. An anisoclinic common quadruple of G2
�
C8
�
is regular if and only if it

admits a s-pair of the form0BB@
0BB@
I2 I2 v�

3
(0) v�

3
(�)

I2 I2 v�
3
(0) v�

3
(�)

I2 v�
3
(�) I2 v�

3
(0)

I2 v�
3
(0) v�

3
(�) I2

1CCA ;
0BB@
I2 I2 I2 I2
I2 I2 "S �"S
I2 "S I2 "S
I2 �"S "S I2

1CCA
1CCA ,

or of the form0BB@
0BB@
I2 I2 v�

3
(�) v�

3
(0)

I2 I2 v�
3
(0) v�

3
(�)

I2 v�
3
(�) I2 v�

3
(0)

I2 v�
3
(0) v�

3
(�) I2

1CCA ;
0BB@
I2 I2 I2 I2
I2 I2 "I2 �"I2
I2 "I2 I2 �"I2
I2 �"I2 �"I2 I2

1CCA
1CCA ,

where " = �1. Moreover, this s-pair is unique.

Remark 17 As in the case of triangles, the common regular quadruples are iso-
metric to real ones. The above s-pairs and those of Theorem 9 are corresponding
�rst form to �rst form, and second to second, with � = ".

Proof of Theorem 16. Let (U;C) be a s-pair associated to an anisoclinic
common regular p-tuple (p � 4). By Proposition 15, either all of the Uij (1 �
i � p, 2 � j � p, i 6= j, (i; j) 6= (1; 2)) or none of them equal d (0). In the latter
case, the relation (6) implies I2 = d (0). Hence this case is not possible.
So there exists some numbers �i;j 2

�
0; �2

�
and �ij 2 R=2�Z such that

Uij = v�ij (�ij) (1 � i � p, 2 � j � p, i 6= j, (i; j) 6= (1; 2)). As seen in the proof
of Theorem 15, there is in the s-orbit of (U;C) an only s-pair such that �23 = 0;
we assume that (U;C) is this one. From (3), (11), (12) and (14) it follows
that �ij does not depends on i; j; we simply denote by � the common value.
Put Fi = c (�i=2); the relations (3) and (4) become v� (�2j) = v� (�1j + �1)
and v� (�1j) = v� (�2j + �1), whence �2j = �1j + �1 and either �1 = 0 or
�1 = �. The relation (9) gives for k � 3, v� (�2k + �k + �1) = v� (� � �2k + �1),
therefore �k = � � 2�2k. The relation (10) becomes v� (�2j + � � 2�2k + �1) =
s (v� (��2k + �1; �) v� (�2j + �1)). Thus, there exists z 2 U such that

v� (�2j + � � 2�2k + �1) = v� (��2k + �1; �) v� (�2j + �1) diag (z; �z) .

Computing the matrix product and equaling the three last coe¢ cients give

�zei�1
�
e�i�2k � e�i�2j

�
cos �� 1 = 0

z cos � e�i�1
�
ei�2j � ei�2k

�
+ 1 = 0

�e�i(�2j�2�2k��1) cos �� �z
�
e�i(�2j��2k) cos2 �+ sin2 �

�
= 0.
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The second equation shows that �2j 6= �2k. If we use it to compute z, and then
replace it in the two other ones we get�

ei�2k � ei�2j
�2
cos2 �+ ei(�2j+�2k) =0�

ei�2j � ei�2k
� �
ei(�2k��2j) cos2 �+ sin2 �

�
� ei(2�2k��2j) =0. (40)

Eliminating � in these equations gives e2i�k = e2i�j , whence �k = �j + � for
j 6= k 2 f3; : : : ; pg. It follows that p = 4 and �24 = �23 + � = �, and thus,
�3 = �4 = �. Now, for (k; j) = (3; 4), (40) becomes

4 cos2 � = 1,

and implies � = �
3 . The relation (12) becomes v� (�2j + �k) = v� (�k;j), thus

�kj = �2j+� (k; j = 3; 4, k 6= j). At last, the relation (11) gives �k2 = �2k+�.
Hence the matrix U must be of one of the two forms given in the Theorem.
Put Cij = !ijc (�ij) with !ij 2 U and �ij 2 [0; �[. The relation (5) becomes

v�
3
(��j2 + 2�2i) = v�3 (�2j + � + �1) ,

whence �23 = �24 = �1+�
2 (mod�). From now on, we distinguish two cases:

Case 1: �1 = 0 and �23 = �24 =
�
2 . For j = 3 the relation (7) gives

!223 = �1, hence there exists " = �1 such that !23 = �"i. For (j; k) = (4; 3),
the relation (20) becomes !23!34I2 = c

�
�43 � �

2

�
. Hence c

�
�43 � �

2

�
is a scalar

matrix, �34 = �
2 and !34 = !23 = �"i. For (j; k) = (4; 3), the same relation

gives !24 = �!34 = "i. Finally

C23 = C34 = �"ic
��
2

�
= "S

C24 = "ic
��
2

�
= �"S.

Case 2: �1 = � and �23 = �24 = 0. For j = 3 the relation (7) gives !223 = 1,

hence "
def
= !23 = �1. For (j; k) = (3; 4), the relation (20) becomes !23!34I2 =

�c (�43). Hence c (�43) is a scalar matrix, �34 = 0 and !34 = �!23 = �". For
(j; k) = (4; 3) the same relation gives !24 = !34 = �".
It follows that a s-pair associated to a regular quadruple lies necessarily

in one of the four s-orbits described in the Theorem. On the other hand, by
Theorem 9, there are at least four regular s-orbits. Thus, we do not even have
to check that all the relations (3), . . . , (21) are satis�ed.

5 Miscellaneous comments

5.1 On special p-tuples

Although special p-tuples are de�ned by mean of their s-pairs, the notion ac-
tually does not depends on the choice of the split map. This is clear from the
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fact that all split maps are asked to map the group C on the identity matrix.
It follows that specialness carries some geometrical meaning. In the case of an
anisoclinic p-tuples of G2

�
Rd
�
, special p-tuples are simply those for which all

the inner angles equal either 0 or �=2. This could be generalized for any homoge-
neous p-tuple � = (�1; : : : ;�p) in the following way. Projecting the unit sphere
of �i onto �k yields an ellipsoid Eki � �k. The p-tuple is special if and only if,
for each n-space �k of the p-tuple, there exist (n� 1) (n� 2) linear maps fkij of
�k which are all diagonal in the same basis of �k, and such that fkij

�
Eki
�
= Ekj .

If the main axes of the ellipsoids are well de�ned, (i.e. in the anisoclinic case),
it is equivalent to state that all the ellipsoids of a given n-spaces share the same
axes.
In the three cases we have studied (G2

�
Rd
�
, G3

�
Rd
�
and G2

�
Cd
�
), it ap-

pears that a regular quintuple is always special. Whether this fact holds with a
greater degree of generality is an important open question.

5.2 On the (equi-)isoclinic case

If the p-tuple is isoclinic, then C = U (n) and s = 1. It follows that each s-
pair is special. The group C act on the second matrix of s-pairs according the
formula

(E � C)ij = ECijE
�.

So the situation is analogous to the equi-isoclinic one. An isoclinic p-tuple is
determined by the critical angles (which are p(p�1)

2 numbers) and by the orbit
of its normal Seidel matrix. The only di¤erence is that we cannot compute
this matrix from the Gram matrix with a global formula, but need to de�ne it
blockwise.
We have not studied in this paper the isoclinic regular p-tuples, for this

has already be done, at least in the cases of G2
�
Rd
�
[2] and G3

�
Rd
�
[3]. We

just recall some of the results of these two papers in order to emphasize the
di¤erences between isoclinic and anisoclinic case.
First of all, an equi-isoclinic triangle of Gn

�
R3n

�
is always regular. This fact

could be, of course, derived from Theorem 2, had it not already been proven
in [2]. It follows that the set of (regular) s-orbits of equi-isoclinic triangles is
homeomorphic to the set of conjugation classes of the orthogonal group of degree
n. If n = 2, it is homeomorphic to the disjoint union of the segment [0; �] (where
x 2 [0; �] corresponds to the class fR (x) ; R (�x)g) and a singleton (the class
of conjugation of all the symmetries).
Doing the same job in the complex case gives the following result: an equi-

isoclinic triangle with s-pair ([In]3 ; C) is regular if and only if C23 and C
�
23 are

conjugated. Hence, some non-regular equi-isoclinic triangles exist in Gn
�
C3n

�
.

The dimension (over R) of the space of s-orbits of equi-isoclinic triangles is
n, while the dimension (over R) of the space of regular s-orbits is only

�
n
2

�
.

Knowing that the matrices of U (n) which are conjugated to their conjugate
transpose are exactly those which are conjugated to some real matrix of O (n)
leads to the following

29



Proposition 18 An isoclinic regular triangle of Gn
�
C3n

�
is associated to a

s-pair ([I2]3 ; C) such that C23 2 O (n).

For p � 4, the regularity of a real p-tuple is no longer systematic, and

indeed, occurs rather rarely. It is known that, a s-pair
�
[In]p ; C

�
such that all

the coe¢ cient blocks Cij (2 � i 6= j 6= p) are equal to a symmetric matrix of
O (n) is regular (Proposition 2.12 in [2]). If an isoclinic regular s-orbit does not
contain one s-pair (or, equivalently, only s-pairs) of this form, we shall call it
exceptional. For n = 2; 3, the complete list of regular isoclinic s-orbit is known
(Theorem 6.2 in [2] for n = 2, and Theorem 9 in [3] for n = 3). It appears that,
in both cases, there is no exceptional s-orbit for p > 5. In the case of planes,
the set of exceptional s-orbits is �nite, while in the case of 3-spaces, there exists
two continuous families of s-orbits of quadruples.

5.3 Isoclinic limit of anisoclinic p-tuples

It is clear, from Theorem 4, that for a given anisoclinic s-pair (U;C), there exists
some isoclinic p-tuple in the closure of the set of anisoclinic p-tuple associated
to (U;C). If (U;C) is regular, then the corresponding p -tuple is clearly regular
too. It follows that there exists a canonical map � from the set of regular
anisoclinic s-orbits to the set of isoclinic ones. If a regular isoclinic s-orbit
does not belong to Im�, we say that it is rigid. The intuitive meaning is that
the corresponding p-tuples cannot be deformed into an anisoclinic one, without
breaking the regularity. It is a natural problem to determine the list of rigid
s-orbits. For K = R and n = 2 or n = 3, the answers follows from [2], [3] and the
present article. We present here the sole results. The proofs are straightforward,
but, in some case, involve unpleasant computations.
First, we can see that the non-exceptional regular s-orbits are the images by

� of the special regular s-orbits. So only exceptional s-orbits may be rigid.
Second, no (regular) triangles of G2

�
R6
�
or G3

�
R9
�
is rigid. Indeed, if we

denote by O (V1; V2; V3; E) the anisoclinic s-orbit of the s-pair (U;C) such that
(V1; V2; V3; E) = (U13; U23; U32; C23), and by O (V ) the isoclinic s-orbit of the
s-pair ([In]3 ; C

0) such that C 023 = V , then we have

� �O (R (� � t) ; R (t) ; R (� � t) ; I2) = O (R (3t)) .

Since the orbit O (S) is not exceptional, the case of triangles of G2
�
R6
�
is

settled. Concerning G3
�
R9
�
, if we denote by Ri (�) the rotation of angle � and

axis i, we have for " = �1

� �O (Ri (� � t) ; Ri (t) ; Ri (� � t) ; "I2) = O ("Ri (3t)) ,

and so, no triangles of G3
�
R9
�
is rigid.

It remains the case of quadruples. The four s-orbits of anisoclinic regular
quadruples of G2

�
R8
�
are given by Theorem 9. The image by � of the two �rst
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of these s-orbits are the isoclinic s-orbit of0BB@[I2]4 ;
0BB@
I2 I2 I2 I2
I2 I2 �I2 �I2
I2 �I2 I2 �I2
I2 �I2 �I2 I2

1CCA
1CCA ,

where � = �1 is the parameter used in Theorem 9. The two last one have the
same image by � which is the orbit of0BB@[I2]4 ;

0BB@
I2 I2 I2 I2
I2 I2 R

�
� 2�

3

�
S S

I2 R
�
� 2�

3

�
S I2 R

�
2�
3

�
S

I2 S R
�
2�
3

�
S I2

1CCA
1CCA .

It follows that, among the �ve existing regular isoclinic s-orbits which are listed
in Theorem 6.1 of [2], only the third and fourth are rigid.
The anisoclinic regular s-orbits of quadruples of G2

�
R8
�
are given by The-

orems 12 and 13. We denote by O (�) (� 2
�
0; �2

�
) the anisoclinic orbit of

quadruple of G3
�
R12
�
described in Theorem 12, when q = i, " = 1, F1 = Sk,

and A is the half-turn of axis
�
1
2 ;

p
2
2 cos�,

p
2
2 sin�

�
. Then � (O (�)) is an s-

orbit of the continuous family described in Theorem 24 of [3]. The relation
between � and the parameters � and � of [3] are the following:

64 cos! = 27 cos 6�� 54 cos 4�� 27 cos 2�� 10

� = sgn

 
�� cos�1

p
3

3

!
.

Of course, if " = �1, we obtain the corresponding indirect quadruple. It follows
that none of the quadruples of the continuous family of [3] is rigid, except
possibly those corresponding to ! = �, i.e. � 2

�
0; �2

	
, that is, those given by

the s-pairs

p0
def
=

0BB@[I2]4 ;
0BB@
I2 I2 I2 I2
I2 I2 "Si "Si
I2 "Si I2 "Si
I2 "Si �Si I2

1CCA
1CCA ,

p�=2
def
=

0BB@[I2]4 ;
0BB@
I2 I2 I2 I2
I2 I2 "S1 "S2
I2 "S1 I2 "S3
I2 "S2 "S3 I2

1CCA
1CCA ,

where " = �1 and S1, S2 and S3 are half-turns of equiangular coplanar axes.
However, the image by � of a s-orbit of the �rst form described in Theorem

13 is the s-orbit of p�=2. As for p0, its orbit is not exceptional. So no regular
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quadruple of the continuous family is rigid. Hence, among the regular direct
equi-isoclinic quadruples which are listed in [3, Theorem 7], only one is rigid.
The non-identity blocks of its Seidel matrix are all equal to a same rotation of
angle �=2.

5.4 Real and complex p-tuples

It is clear that any p-tuple of Gn (Rpn) can also be seen as a p-tuple of Gn (Cpn).
Of course, there are, in general, many more p-tuples in Gn (Cpn). However, it
is easy to derive from Theorem 3 the following

Corollary 19 Any special anisoclinic regular p-tuple of Gn (Cpn) actually be-
longs to Gn (Rpn).

Moreover, the following corollary is yields by the Theorems of sections 3.1.2
and 4.3

Corollary 20 Any common anisoclinic regular p-tuple of G2
�
C2p
�
actually be-

longs to G2
�
R2p
�
.

From Proposition 18, we get the

Corollary 21 Any regular isoclinic triangle of Gn
�
C3n

�
actually belongs to

Gn
�
R3n

�
.

However, regularity in Gn (Cpn) does not imply realness with full generality,
for there exist examples of regular isoclinic quadruples of G2

�
C8
�
which are not

isometric to any quadruple of G2
�
R8
�
. One of them is given by the following

s-pair 0BB@[I2]4 ;
0BB@
I2 I2 I2 I2
I2 I2 R

�
�
2

�
E1

I2 R
�
��
2

�
I2 E2

I2 E�1 E�2 I2

1CCA
1CCA ,

where

E1 =
1

4

�
�3i 2 + i

p
3

�2 + i
p
3 3i

�
, E2 =

1

4

�
3i 2� i

p
3

�2� i
p
3 �3i

�
.

The reader can check that the formulae (3), . . . , (21) are satis�ed for

F1 = v�3

��
2
;
�

2

�
F3 = v�6

��
2
;��
2

�
F4 =

1

4

�
�i
p
3 i� 2

p
3

i+ 2
p
3 i

p
3

�
.

Whether an anisoclinic regular p-tuple of Gn (Cpn) is necessarily isometric
to a real one remains an open question.
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5.5 Dimensions

As we have seen, it is often di¢ cult to determine the topology of the set of
s-orbits for a given �eld K and given numbers n; p. It is of course easier to
determine its dimension, especially in the anisoclinic real case. In this case,
all the orbits are �nite, whence the dimension of the set of s-orbits equals the
dimension of the set of those matrices U in s-pairs. On the other hand, since
the left cosets are �nite, dim (Im s) = dim (O (n)) = n(n�1)

2 . It follows that the
space of anisoclinic s-orbits of p-tuples in Gn (Rnp) has dimension

DR (n; p) =
1

2
n (n� 1) p (p� 2) .

If we add the 1
2np (p� 1) critical angles, we obtain that a �generic� (with a

meaning which would deserve to be clari�ed) p-tuples of Gn (Rnp) is de�ned by
1
2np (np� 2n+ 1) numbers. This formula generalizes the one given at the end
of [7], in the case n = 2.
In the case of G2

�
C2p
�
, dim (Im s) = dimC =2 and the s-orbit of a generic

p-tuple is always homeomorphic to U, thus

DC (2; p) = (p� 2) (3p� 1)� 1.

Hence a generic p-tuples of G2
�
C2p
�
is de�ned by 4p2�8p+1 numerical invari-

ants.
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