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CIRCULAR EDGE SINGULARITIES FOR THE LAPLACE EQUATION AND THE
ELASTICITY SYSTEM IN 3-D DOMAINS

ZOHAR YOSIBASH, SAMUEL SHANNON, MONIQUE DAUGE AND MARTIN COSTABEL

ABSTRACT. Asymptotics of solutions to the Laplace equation with Neumann or Dirichlet conditions in the
vicinity of a circular singular edge in a three-dimensional domain are derived and provided in an explicit
form. These asymptotic solutions are represented by a family of eigen-functions with their shadows, and the
associated edge flux intensity functions (EFIFs), which are functions along the circular edge. We provide
explicit formulas for a penny-shaped crack for an axisymmetric case as well as a case in which the loading
is non-axisymmetric. Explicit formulas for other singular circular edges such as a circumferential crack, an
external crack and a 3π/2 reentrant corner are also derived.

The mathematical machinery developed in the framework of the Laplace operator is extended to derive
the asymptotic solution (three-component displacement vector) for the elasticity system in the vicinity of a
circular edge in a three-dimensional domain. As a particular case we present explicitly the series expansion
for a traction free or clamped penny-shaped crack in an axisymmetric or a non-axisymmetric situation.

The precise representation of the asymptotic series is required for constructing benchmark problems
with analytical solutions against which numerical methods can be assessed, and to develop new extraction
techniques for the edge flux/intensity functions which are of practical engineering importance in predicting
crack propagation.
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1. INTRODUCTION.

Solutions of elliptic boundary value problems over two dimensional domains, for example those aris-
ing in heat transfer and elasticity, when posed and solved in non-smooth domains like polygons, have
non-smooth parts. These are described in terms of special singular functions depending on the geometry
and the differential operators on one hand, and of unknown coefficients depending on the given right
hand side and boundary conditions on the other hand, see e.g. [12].
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In three dimensional domains as polyhedra both vertex and edge singularities exist, see [4, 9]. For
straight edges we have provided explicit representation of the singular solutions [3, 8, 13] as a series
characterized by:

• an exponent α which belongs to a discrete set {αk, k ∈ N} of eigen-values depending only
on the geometry and the operator, and which determines the level of non-smoothness of the
singularity. Any eigen-value αk is computed by solving a 2-D problem.

• eigen-functions φk,0(ϕ) which depends on the geometry of the domain and the operator. These
eigen-functions are computed by solving a set of 2-D problems.

• a function along the edge, denoted by Ak(s) ( s is a coordinate along the edge) and called “Edge
Flux/Stress Intensity Function” (EFIF/ESIF) which determines the “amount of energy” residing
in each singularity.

Here we concentrate on circular edges (a “penny-shaped crack” being a special renown case) in 3-
D domain, and derive explicitly singular series expansion in the vicinity of such an edge first for the
simplest scalar elliptic operator, the Laplace operator, and then for the elasticity system. We demonstrate
that our asymptotic solution for the elasticity system in the simplified case of the penny-shaped crack
under axi-symmetric boundary conditions and geometry reduces to the one presented in [7].

From the engineering perspective the edge flux/stress intensity functions Ak(s) (EFIFs/ESIFs) when
αk < 1 ( α1 = 1

2 for the penny-shaped crack) are of major importance. These are used to predict failure
initiation and propagation, and are an important ingredient in any failure law for cracked and V-notched
structures. To efficiently and accurately compute them, the asymptotic solution has first to be explicitly
derived.

This work is motivated by the need to compute edge stress intensity functions (ESIFs) for elasticity
problems in 3-D domains. These are of significant engineering importance in cracked and V-notched
structures, in which the ESIFs may (and often do) vary along the crack front.

In order to explain the ideas of the implementation of the method and to test its efficiency, we con-
sider the Laplace operator first. This is a simpler elliptic operator that allows more transparent analytic
computations and invokes all necessary characteristics of the elasticity system. Thus, the characteristics
of the solution can be more easily addressed.

The first three singular terms for the solution of the Laplace equation in the vicinity of a circular
edge with homogeneous Dirichlet boundary conditions were analyzed from a theoretical viewpoint in
[10]. The first two terms in the Neumann case are provided in [1] when the edge is the boundary of a
smooth plane crack surface. For the elasticity system, Leblond&Torlai [6] provided the machinery for the
pointwise derivation of the solution up to second order for a general curved crack, whereas Leung&Su
derived the asymptotic series for the axi-symmetric case in [7]. Herein, we present a different approach
enabling the computation of the entire series solution up to an arbitrary order for any circular edge be it
in an axi-symmetric or non-axisymmetric setting. This explicit representation illustrates the distinct two
levels of complexity of shadow terms associated with the curved singular edge.

The Laplace equation and the notation are introduced in section 2. The systematic derivation of the
singular series expansion is presented for homogeneous Dirichlet and Neumann boundary conditions.
Both axi-symmetric and non-axi-symmetric configurations are addressed, and for a penny-shaped crack,
a circumferential crack, an external crack and a 3π/2 reentrant corner we also present closed form
explicit singular series expansion. The asymptotic expansion is provided in terms of eigen-functions,
their shadows, the EFIFs and their derivatives.

We then use the machinery developed in the framework of the Laplace equation to provide explicit
representation of similar cases associated with the elasticity system (with clamped or traction free bound-
ary conditions) in section 3. The elasticity explicit asymptotic solution is mandatory for the computation
of edge stress intensity functions for cracks occurring usually in pipes and pressure vessels.
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2. ASYMPTOTIC SOLUTION FOR THE LAPLACE EQUATION

As a model, we choose a domain generated by rotating the 2-D plane Ω having a reentrant corner
with an opening ω ∈ (0, 2π] (the case of a crack, ω = 2π , is included) along the axis x3 , as shown in
Figure 1. The cylindrical coordinate system r, θ, x3 and the coordinate system attached to the circular
edge ρ, ϕ, θ are shown in Figure 1. It is important to emphasize that domain’s geometry does not need
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FIGURE 1. Model domain of interest Ω and the coordinate systems.

to be axi-symmetric, but only the generated circular singular edge. An example of several different
circular singular edges to which the analysis in this manuscript is applicable are shown in Figure 2. For
example, the lower singular edge in Figure 2 (a) is determined by ϕ ∈ (−π, π/2) , the outer circular
crack in Figure 2 (b) is determined by ϕ ∈ (0, 2π) whereas the penny-shaped crack in (c) is determined
by ϕ ∈ (−π, π) . Finally the re-entrant corner with the solid angle ω in Figure 2 (d) is determined by
ϕ ∈ ((π − ω)/2, (π + ω)/2) .

!"# !$# !%# !&#

FIGURE 2. Different types of singular circular edges (only a sector is plotted so the
circular edge is clearly visible. The domain in (c) includes the renown ”penny-shaped”
crack.
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For the Laplace operator, we are interested in solutions τ(x) of the equation:

43Dτ
def=

(
∂rr +

1
r
∂r +

1
r2

∂θθ + ∂33

)
τ = 0, (1)

where ∂r
def= ∂

∂r , ∂rr
def= ∂2

∂r2 ∂θθ
def= ∂2

∂θ2 and ∂33
def= ∂2

∂x2
3

. Homogeneous Dirichlet or Neumann
boundary conditions are considered on Γ1 × [0, 2π] and Γ2 × [0, 2π] .

The solution in the vicinity of the edge is of interest so we perform a change of coordinates as follows:

r = ρ cos ϕ + R, x3 = ρ sinϕ. (2)

The Laplace operator in the new coordinates is given by:

43D = ∂ρρ +
1
ρ
∂ρ +

1
ρ2

∂ϕϕ +
1
r

[
cos ϕ∂ρ −

1
ρ

sinϕ∂ϕ

]
+

1
r2

∂θθ (3)

2.1. Axi-symmetric case. For an axi-symmetric domain and boundary conditions the solution is inde-
pendent of θ . Then the last term in (3) vanishes and the Laplace operator for ρ/R � 1 reads:

4Axi = ∂ρρ +
1
ρ
∂ρ +

1
ρ2

∂ϕϕ +
1
r

[
cos ϕ∂ρ −

1
ρ

sinϕ∂ϕ

]
. (4)

Remark 1. Since r →∞ as R →∞ , one may observe that 4Axi R→∞−→ 42D .

Axisymmetric solutions τ of (1) are equivalently the solutions of r
R4

Axiτ = 0 , i.e.

(1 +
ρ

R
cos ϕ)

[
∂ρρ +

1
ρ
∂ρ +

1
ρ2

∂ϕϕ

]
τ +

1
R

[
cos ϕ∂ρ −

1
ρ

sinϕ∂ϕ

]
τ = 0. (5)

Multiplying by ρ2 , we find another equivalent equation[
(ρ∂ρ)2 + ∂ϕϕ

]
τ +

ρ

R

[
cos ϕ(ρ∂ρ)− sinϕ∂ϕ + cos ϕ

(
(ρ∂ρ)2 + ∂ϕϕ

)]
τ = 0. (6)

The solution in the vicinity of the singular point in the 2-D cross-section Ω can be obtained in a simple
form as an asymptotic series defined by eigen-pairs of a one-dimensional boundary value problem on the
interval ϕ ∈ (ϕ1, ϕ1 +ω) . If we denote one such eigen-pair by α and φ0(ϕ) , then it is conceivable (as
to be shown in the sequel) that for the axi-symmetric case a solution is formed as an asymptotic series of
the form:

τ = Aρα
∞∑
i=0

( ρ

R

)i
φi(ϕ) (7)

Boundary Conditions: To satisfy the homogeneous boundary conditions, the series representation has to
satisfy the following constraints on ϕ = ϕ1 and ϕ = ϕ2 = ϕ1 + ω :

φi(ϕ = ϕ1, ϕ2) = 0 in Dirichlet case (8)
φ′i(ϕ = ϕ1, ϕ2) = 0 in Neumann case (9)

Substitute (7) in (6) to obtain:

A
{[

α2φ0 + φ′′0
]

(10)

+
ρ

R

[(
(α + 1)2φ1 + φ′′1

)
+ α cos ϕφ0 − sinϕφ′0 + cos ϕ

(
α2φ0 + φ′′0

)]
+

ρ2

R2

[(
(α + 2)2φ2 + φ′′2

)
+ (α + 1) cos ϕφ1 − sinϕφ′1 + cos ϕ

(
(α + 1)2φ1 + φ′′1

)]
+

ρ3

R3

[(
(α + 3)2φ3 + φ′′3

)
+ (α + 2) cos ϕφ2 − sinϕφ′2 + cos ϕ

(
(α + 2)2φ2 + φ′′2

)]
+ · · ·

}
= 0
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To satisfy the above equation for any A and ρ , the following relationships must hold:

α2φ0 + φ′′0 = 0 (11)

(α + 1)2φ1 + φ′′1 = −
(
α cos ϕφ0 − sinϕφ′0

)
− cos ϕ

(
α2φ0 + φ′′0

)
(12)

(α + 2)2φ2 + φ′′2 = −
(
(α + 1) cos ϕφ1 − sinϕφ′1

)
− cos ϕ

(
(α + 1)2φ1 + φ′′1

)
(13)

(α + 3)2φ3 + φ′′3 = −
(
(α + 2) cos ϕφ2 − sinϕφ′2

)
− cos ϕ

(
(α + 2)2φ2 + φ′′2

)
(14)

· · ·
Substituting the RHS of equation (11) in (12) one obtains:

α2φ0 + φ′′0 = 0, ϕ1 < ϕ < ϕ2 (15)

(α + 1)2φ1 + φ′′1 = −
(
α cos ϕφ0 − sinϕφ′0

)
, ϕ1 < ϕ < ϕ2 (16)

(α + i)2φi + φ′′i = −
[
(α + i)(α + i− 1) cos ϕφi−1 − sinϕφ′i−1 + cos ϕφ′′i−1

]
(17)

i ≥ 2, ϕ1 < ϕ < ϕ2

These equations have to be completed by the boundary conditions (8) or (9).
Note the following:

• The equation (15) with BCs (8) or (9) is the one dimensional eigenvalue problem corresponding
to the 2-D problem over Ω , with eigen-value α and eigen-function φ0 . Traditionally φ0 is
called primal eigen-function.

• A recursive system of ordinary differential equations is obtained - once φ0 is computed from
(15) it can be inserted in (16) to obtain φ1 then these both can be inserted in (17) to obtain φ2 ,
etc.

• Only particular solutions in (16) and (17) are required.
Because (7) corresponds only to one representative eigen-pair, the complete solution should be a sum

over all eigen-pairs αk, φk,i , thus is a double sum series:

τ =
∑

k

Akρ
αk

∞∑
i=0

( ρ

R

)i
φk,i(ϕ) (18)

Remark 2. For each eigen-function and shadow φk,i(ϕ) the first index k represents the eigen-value
αk to which this eigen-function is associated, whereas the second index i ≥ 1 represents the rank
of the shadow terms. Here αk = kπ

ω , where k = 0, 1, 2, . . . for homogeneous Neumann BCs, and
k = 1, 2, 3, . . . for homogeneous Dirichlet BCs.

Remark 3. If α + 1 is not an eigenvalue of equation (15) with BCs (8) or (9), there exists a unique
solution Φ1 to equation (16). On the other hand, if α + 1 is itself an eigenvalue, then it can either
happen that (16) has no solution (then the ansatz (7) has to be completed with logarithmic terms), or (16)
has infinitely many solutions. The same situation holds for equation (17), depending on whether α + i
is an eigenvalue or not.

In the special case of a crack, we have αk = k
2 , therefore resonances (i.e. α + i is an eigenvalue)

always occur. Nevertheless, as proved in [2], logarithmic terms never appear: Equations (16) and (17)
with Dirichlet or Neumann BCs are always solvable. An orthogonality condition against the eigenvector
makes the solution unique, see (20).

2.1.1. A specific example problem - penny-shaped crack with axisymmetric loading and homogeneous
Neumann BCs. As an example problem, consider a penny-shaped crack (Figure 2(c)), ϕ1 = −π ,
ω = 2π ( ϕ2 = π ) in an axisymmetric domain. For the crack in a 2-D cross-section with homo-
geneous Neumann BCs the following 2-D eigen-pairs are known – they are obtained by solving (15)
complemented by BCs (9):
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k αk φk,0

0 0 1
1 1

2 sin ϕ
2

2 1 cos ϕ

3 3
2 sin 3ϕ

2
4 2 cos 2ϕ

TABLE 1. First four eigen-pairs for a crack with homogeneous Neumann BCs.

Note that the angular part of the first singular function is sin ϕ
2 instead of the “usual” formula cos ϕ

2 :
This is due to the choice of the angular coordinate ϕ ∈ (−π, π) instead of ϕ ∈ (0, 2π) .

Equations (15)-(17) can be solved (cf. Remark 3) for αk = 0, 1/2, 1, 3/2 , obtaining φ0,i , φ1,i , φ2,i ,
φ3,i . They yield the following series solution for a penny-shaped crack with homogeneous Neumann
BCs:

τ = A0 (19)

+ A1ρ
1
2

[
sin

ϕ

2
+

( ρ

R

) 1
4

sin
ϕ

2
+

( ρ

R

)2
(

1
12

sin
ϕ

2
− 3

32
sin

3ϕ

2

)
+

( ρ

R

)3
(

1
16

sin
ϕ

2
− 1

30
sin

3ϕ

2
+

5
128

sin
5ϕ

2

)
+ · · ·

]
+ A2ρ

[
cos ϕ−

( ρ

R

) 1
4

+
( ρ

R

)2 3
16

cos ϕ−
( ρ

R

)3
(

9
128

+
5
64

cos 2ϕ

)
+ · · ·

]
+ A3ρ

3
2

[
sin

3ϕ

2
−

( ρ

R

) 1
4

sin
ϕ

2
−

( ρ

R

)2 1
32

(
3 sin

ϕ

2
− 16

5
sin

3ϕ

2

)
+

( ρ

R

)3
(
− 3

40
sin

ϕ

2
+

5
128

sin
3ϕ

2
− 3

70
sin

5ϕ

2

)
+ · · ·

]
+ · · ·

It is worthwhile to notice that we enforced the following orthogonality conditions on the shadow terms∫ ϕ2=π

ϕ1=−π
φk,i(ϕ) φk+i,0(ϕ) dϕ = 0, k = 0, 1, 2, 3 and i = 1, 2, 3. (20)

making them unique.
One may notice that for R → ∞ (the crack edge curvature tends to zero) only the first terms are

non-zero so the solution (19) reduces to the 2-D solution:

τ
R→∞−→ A0 + A1ρ

1/2 sin
ϕ

2
+ A2ρ cos ϕ + A3ρ

3/2 sin
3ϕ

2
+ · · ·

Remark 4. The eigen-functions and shadows associated with A0 and A2 above are polynomials in local
Cartesian variables z1 := ρ cos ϕ and z2 = ρ sinϕ . This can be predicted by the general theory [5, 4].

To verify the correctness of the solution (19) we consider a torus with an inner radius r1 = 1.5 and
an outer radius r2 = 2.5 having a circular crack with the tip at R = 2 , see Figure 3.

Taking A1 = 1 and Ak = 0 , k 6= 1 , (notice that the outer boundary of the torus is ρout = 1/2
and ρ/R = 1/4 in the considered example) we prescribed on the outer surface of the torus Dirichlet
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FIGURE 3. The axi-symmetric domain of interest (torus).

boundary conditions according to (19):

τ =

√
1
2

[
sin

ϕ

2
+

(
1
4

)
1
4

sin
ϕ

2
+

(
1
4

)2 (
1
12

sin
ϕ

2
− 3

32
sin

3ϕ

2

)

+
(

1
4

)3 (
1
16

sin
ϕ

2
− 1

30
sin

3ϕ

2
+

5
128

sin
5ϕ

2

)]

with homogeneous Neumann boundary conditions on the crack face. Because the problem is axi-
symmetric we construct a two-dimensional axi-symmetric finite element (FE) model and solve the Laplace
equation over the axi-symmetric cross section using a high-order FE analysis. In Figure 4 left the finite
element solution ( τFE ) at polynomial level p = 8 is shown whereas in Figure 4 right the difference
between the analytical and FE solution is shown τ − τFE . As may be noticed τ − τFE is three and a
half orders of magnitude smaller compared to τ , indicating on the correctness of the derived analytical
solution. If only terms up to (ρ/R)2 are applied on the boundary of the domain, then the error τ − τFE

increases by one order of magnitude as expected.

2.1.2. A specific example problem - penny-shaped crack with axisymmetric loading and homogeneous
Dirichlet BCs. Similarly to subsection 2.1.1 we present here the first terms in the asymptotic series
solution for a penny-shaped crack, ϕ1 = −π , ω = 2π in an axisymmetric domain with homogeneous
Dirichlet BCs (8). Now the eigen-pairs are given by

k αk φk,0

1 1
2 cos ϕ

2
2 1 sinϕ

3 3
2 cos 3ϕ

2

TABLE 2. First three eigen-pairs for a crack with homogeneous Dirichlet BCs.



8 ZOHAR YOSIBASH, SAMUEL SHANNON, MONIQUE DAUGE AND MARTIN COSTABEL

FIGURE 4. Solution (left) and error (right) for the axi-symmetric Laplacian with homo-
geneous Neumann BCs with ρout = 1/2 , ρ/R = 1/4 and A1 = 1 - Series up to
(ρ/R)3 . The axis of symmetry is right to the shown domain with the crack from the
center of the circle to the right.

We obtain the following expression for the first terms in the asymptotic series solution:

τ = A1ρ
1
2

[
cos

ϕ

2
−

( ρ

R

) 1
4

cos
ϕ

2
+

( ρ

R

)2
(

1
12

cos
ϕ

2
+

3
32

cos
3ϕ

2

)
+

( ρ

R

)3
(
− 1

16
cos

ϕ

2
− 1

30
cos

3ϕ

2
− 5

128
cos

5ϕ

2

)
+ · · ·

]
+ A2ρ sinϕ

+ A3ρ
3
2

[
cos

3ϕ

2
−

( ρ

R

) 1
4

cos
ϕ

2
+

( ρ

R

)2
(

3
32

cos
ϕ

2
+

1
10

cos
3ϕ

2

)
+

( ρ

R

)3
(
− 3

40
cos

ϕ

2
− 5

128
cos

3ϕ

2
− 3

70
cos

5ϕ

2

)
+ · · ·

]
+ · · ·

Here we still enforce the orthogonality conditions (20) in order to have uniqueness.
The first terms in the asymptotic solution for the same specific problem are provided in [10, p. 293],

where the angular coordinate is measured from the crack face, denoted by ϕ̃ ∈ (0, 2π) , and R = 1 :

τ̃ = c1ρ
1
2

[
sin

ϕ̃

2
− ρ

4
sin

ϕ̃

2
− ρ2

32
sin

3ϕ̃

2
+ · · ·

]
. (21)

If we replace ϕ̃ by ϕ + π and c1 by −A1 , one obtains:

τ̃ = A1ρ
1
2

[
cos

ϕ

2
− ρ

4
cos

ϕ

2
+

ρ2

32
cos

3ϕ

2
+ · · ·

]
(22)

whereas our formula (46) is (with R = 1 )

τ = A1ρ
1
2

[
cos

ϕ

2
− ρ

4
cos

ϕ

2
+ ρ2

( 1
12

cos
ϕ

2
+

3
32

cos
3ϕ

2

)
+ · · ·

]
(23)

So we note a discrepancy between (22) and (23) at the level of the third term in the asymptotics. The
source of this error in [10] is a typo in Proposition 1 where instead of 3

32 the term 1
32 appears. In
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the proof of this proposition, the right expression is given in equation (32) in [10], however again in
the example at the end of that paper the term 1

12 sin ϕ
2 was forgotten. To verify numerically these

formulas, we considered a circular crack in the same torus as in example problem in subsection 2.1.1
with R = 1, ρout = 1/2 and constructed an axisymmetric FE model. Taking A1 = 1 and Ai = 0 ,
i = 2, 3, · · · , we prescribed on the outer domain boundary condition either according to (22) or (23) with
one term (up to ρ

1
2 ), two terms (up two ρ3/2 ) or three terms (up two ρ5/2 ). We then computed the

discrete L2 norm of the relative difference between the FE solution and the anticipated “exact solution”.
Of course that both (22) and (23) provide the same results if up to two terms in the expansion are
considered (which are the same), and the relative difference with three terms is different.

The relative difference is defined as:

||e||2L2 =
[
2π

∫ π

−π

∫ ρout

0
|τ − τFE |2 × ρ(R + ρ cos ϕ) dρdϕ

] /
||τ ||2L2

with
||τ ||2L2 = 2π

∫ π

−π

∫ ρout

0
|τ |2 × ρ(R + ρ cos ϕ) dρdϕ

The FE solution converged to an estimated 0.2% relative error in energy norm, the and integration
was performed numerically using 90 Gauss point. The obtained relative errors are shown in Table 3.

number of terms ||e||2L2 ||τ ||2L2 || ẽ ||2L2 || τ̃ ||2L2

1 1.2× 10−3 1.554× 10−1 1.2× 10−3 1.554× 10−1

2 9.5× 10−5 1.274× 10−1 9.5× 10−5 1.274× 10−1

3 1.77× 10−5 1.317× 10−1 7.74× 10−5 1.277× 10−1

TABLE 3. L2 relative error - verification of our solution compared to [10].

Inspecting the values in Table 3 one may notice that the relative error of our solution decreases by a
factor of ≈ 4 when adding the third term, compared to a factor of less than 1.2 for the solution in [10],
indicating that (23) is the right solution.

2.1.3. A specific example problem - circumferential crack with axisymmetric loading and homogeneous
Neumann BCs. Similarly to subsection 2.1.1 we present herein the first terms in the asymptotic series
solution for a circumferential crack, (see Figure 2 (d)) ϕ1 = −π

2 , ω = 2π in an axisymmetric domain
with homogeneous Neumann BCs (9), still taking the orthogonality condition (20) into account.

τ = A0 + A1ρ
1
2

[(
sin

ϕ

2
− cos

ϕ

2

)
+

( ρ

R

) (
1
4

(
sin

ϕ

2
+ cos

ϕ

2

)
+

1
12

(
sin

3ϕ

2
− cos

3ϕ

2

))
+ · · ·

]
(24)

Note that using the modified angular variable ϕ̃ := ϕ− π
2 ∈ (−π, π) we obtain the expression

τ = A0 + A1ρ
1
2

[
sin

ϕ̃

2
+

( ρ

R

) (
1
4

cos
ϕ̃

2
+

1
12

cos
3ϕ̃

2

)
+ · · ·

]
(25)

which can be compared with (19).
More generally, if ω = 2π , using the angular variable ϕ̃ := ϕ− ϕ1 − π ∈ (−π, π) we obtain

τ = A0 + A1ρ
1
2

[
sin

ϕ̃

2

−
( ρ

R

) (
1
4

cos ϕ1 sin
ϕ̃

2
+

1
4

sinϕ1 cos
ϕ̃

2
+

1
12

sinϕ1 cos
3ϕ̃

2

)
+ · · ·

]
(26)
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As particular cases ( ϕ1 = −π and ϕ1 = 0 ) we find the penny-shaped and the outer circular crack, for
which formula (26) coincides with the formula given in [1]:

K1(s)ρ
1
2

(
sin

ϕ̃

2
+

1
4
κ(s)ρ sin

ϕ̃

2
+ · · ·

)
(27)

since in the first case κ(s) = 1
R and in the second case κ(s) = − 1

R .

2.2. General case. If no axi-symmetric assumption is imposed on the data (only the edge is circular)
then the full Laplace operator 43D in (3) has to be considered. Like for (5)-(6), we find that solutions
τ of (1) are equivalently the solutions of ( r

R)2ρ243Dτ = 0 , i.e.

(1 +
ρ

R
cos ϕ)2

[
(ρ∂ρ)2 + ∂ϕϕ

]
τ

+
ρ

R
(1 +

ρ

R
cos ϕ)

[
cos ϕ(ρ∂ρ)− sinϕ∂ϕ

]
τ +

( ρ

R

)2
∂θθτ = 0. (28)

To condense formulas, let us introduce the operators

m0(ρ∂ρ; ∂ϕ) = (ρ∂ρ)2 + ∂ϕϕ, m01(ρ∂ρ; ∂ϕ) = cos ϕ(ρ∂ρ)− sinϕ∂ϕ. (29)

Then equation (28) is equivalent to

m0τ +
ρ

R

[
2 cos ϕ m0 + m01

]
τ +

( ρ

R

)2 [
cos2ϕ m0 + cos ϕ m01 + ∂θθ

]
τ = 0. (30)

In the general case for a circular edge the following form of expansion series is appropriate:

τ =
∑

`=0,2,4,...

∑
k=0

∂`
θAk(θ) ραk

( ρ

R

)`
∞∑
i=0

( ρ

R

)i
φ`,k,i(ϕ) (31)

Remark 5. Notice that φ0,k,i = φk,i (associated with the curvature for an axisymmetric case), so these
are known for the axi-symmetric analysis.

Comparing this asymptotic expansion to the case of a straight edge [3], one notices one extra sum,
implying that for each primal eigen-function there are two levels of shadow-functions - one set is asso-
ciated with the derivatives of Ak (the index ` ), and the other set associated with the “curvature terms”,
i.e. the powers ρ/R (index i ).

The splitting in (30) provides an elegant and convenient way to the formulation of the series expansion
of the solution. Introducing the definition for a general term in the expansion (31):

Φ`,k,i
def= ραk

( ρ

R

)`+i
φ`,k,i(ϕ) (32)

we observe that

m0(ρ∂ρ; ∂ϕ)Φ`,k,i(ρ, ϕ) = ραk

( ρ

R

)`+i
m0(αk + ` + i; ∂ϕ)φ`,k,i(ϕ), (33)

m01(ρ∂ρ; ∂ϕ)Φ`,k,i(ρ, ϕ) = ραk

( ρ

R

)`+i
m01(αk + ` + i; ∂ϕ)φ`,k,i(ϕ),
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Substituting (31) into (30) one deduces:

0 = Ak(θ)×
{

m0(αk)φ0,k,0 (34)

+
( ρ

R

) [
m0(αk + 1)φ0,k,1 +

(
2 cos ϕ m0(αk) + m01(αk)

)
φ0,k,0

]
+

( ρ

R

)2 [
m0(αk + 2)φ0,k,2 +

(
2 cos ϕ m0(αk + 1) + m01(αk + 1)

)
φ0,k,1

+
(
cos2ϕ m0(αk) + cos ϕ m01(αk)

)
φ0,k,0

]
+ · · ·

}
+ A′′k(θ)×

{ ( ρ

R

)2 [
m0(αk + 2)φ2,k,0 + φ0,k,0

]
+

( ρ

R

)3 [
m0(αk + 3)φ2,k,1 +

(
2 cos ϕ m0(αk + 2) + m01(αk + 2)

)
φ2,k,0 + φ0,k,1

]
+

( ρ

R

)4 [
m0(αk + 4)φ2,k,2 +

(
2 cos ϕ m0(αk + 3) + m01(αk + 3)

)
φ2,k,1

+
(
cos2ϕ m0(αk + 2) + cos ϕ m01(αk + 2)

)
φ2,k,0 + φ0,k,2

]
+ · · ·

}
Equation (34) has to hold true for any (ρ/R)i , and for any ∂`

θAk , resulting in the following recursive
set of ordinary differential equations for the determination of the eigen-functions and shadows φ`,k,i(ϕ) :

m0(αk + ` + i)φ`,k,i = (35)

−
(
2 cos ϕ m0(αk + ` + i− 1) + m01(αk + ` + i− 1)

)
φ`,k,i−1

−
(
cos2ϕ m0(αk + ` + i− 2) + cos ϕ m01(αk + ` + i− 2)

)
φ`,k,i−2

−φ`−2,k,i, for ` = 0, 2, 4, 6, · · · , and i ≥ 0.

Here, by convention, φ ’s with negative indices are zero.
Equations (35) for ` = 0 are equivalent to equations (15-17) associated with the axi-symmetric case,

and for ` = 2, 4, 6, · · · results in (36) associated with the non-axi-symmetric case.

` = 0
Equations (15)-(17) for the axi-symmetric case hold.

` = 2, 4, 6 · · · , i ≥ 0 (36)
(αk + i + `)2φ`,k,i + φ′′`,k,i = −(` + i + αk − 1) [2(` + i + αk)− 1] cos ϕ φ`,k,(i−1)

+sinϕ φ′`,k,(i−1) − 2 cos ϕ φ′′`,k,(i−1)

−(` + αk + i− 2)(` + αk + i− 1) cos2ϕ φ`,k,(i−2)

+cos ϕ sinϕ φ′`,k,(i−2) − cos2ϕ φ′′`,k,(i−2) − φ(`−2),k,i

Equations (36) are complemented by the homogeneous Dirichlet or Neumann boundary conditions:

φ`,k,i(ϕ) = 0, (ϕ = ϕ1, ϕ1 + ω) in case of Drichlet BCs (37)

(φ`,k,i)′(ϕ) = 0, (ϕ = ϕ1, ϕ1 + ω) in case of Neumann BCs (38)

2.2.1. A specific example problem - penny-shaped crack for a non-axisymmetric loading and homoge-
neous Neumann BCs. Again we consider as an example problem a penny-shaped crack ϕ1 = −π ,
ω = 2π , however, the loading may by non-axisymmetric, as well as the outer boundary of the 3-D do-
main of interest. The eigen-functions and a part of the shadow-functions, φ0,k,i(ϕ) have been provided
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by (19).As an example, the solution of φ2,1,0(ϕ) (` = 2, k = 1, i = 0) may be obtained from (36), for
k = 1 α1 = 1/2 and i = 0, ` = 2 . All φ s with negative indices in the RHS vanish except one:(

1
2

+ 0 + 2
)2

φ2,1,0 + φ′′2,1,0 = −φ0,1,0, (39)

and the homogeneous Neumann BCs read:

φ′2,1,0(ϕ = ±π) = 0.

From (19), φ0,1,0 = sin ϕ
2 , thus the solution of (39) can be taken as the particular solution alone:

φ2,1,0 = −1
6

sin
ϕ

2
(40)

Once φ2,1,0 is available one may proceed to the computation of φ2,1,1(ϕ) (` = 2, k = 1, i = 1)
obtained from (36), for k = 1 α1 = 1/2 and i = 1, ` = 2 :(

1
2

+ 1 + 2
)2

φ2,1,1 + φ′′2,1,1 = −
(

2 + 1 +
1
2
− 1

) [
2

(
2 + 1 +

1
2

)
− 1

]
cos ϕφ2,1,0

+sinϕφ′2,1,0 − 2 cos ϕφ′′0,1,0 − φ0,1,1 (41)

Substituting φ2,1,0 from (40) and φ0,1,1 = 1
4 sin ϕ

2 from (19), the particular solution to (41) that satisfies
the homogeneous Neumann BCs is:

φ2,1,1 = −1
8

sin
ϕ

2
+

7
60

sin
3ϕ

2
(42)

This procedure may be continued, to finally obtain the terms in the series expansion:

τ = A0(θ) (43)

+ A′′0(θ)
( ρ

R

)2
[
−1

4
+

( ρ

R

) 5
16

cos ϕ−
( ρ

R

)2
(

19
128

+
11
64

cos 2ϕ

)
+ · · ·

]
+ · · ·

+ A1(θ)ρ
1
2

[
sin

ϕ

2
+

( ρ

R

) 1
4

sin
ϕ

2
+

( ρ

R

)2
(

1
12

sin
ϕ

2
− 3

32
sin

3ϕ

2

)
+

+
( ρ

R

)3
(

1
16

sin
ϕ

2
− 1

30
sin

3ϕ

2
+

5
128

sin
5ϕ

2

)
+ · · ·

]
+ A′′1(θ)ρ

1
2

( ρ

R

)2
[
−1

6
sin

ϕ

2
+

(
−1

8
sin

ϕ

2
+

7
60

sin
3ϕ

2

) ( ρ

R

)
+ · · ·

]
+ · · ·

Again, the factors corresponding to A0 (and all terms of even order) and their derivatives are polyno-
mial in (z1, z2) .

Remark 6. In the vicinity of a crack with a straight edge along the axis z3 the solution admits the
expansion:

τ = A0(z3) + A′′0(z3)r2

(
−1

4

)
+ · · · (44)

+A1(z3)r
1
2 sin

ϕ

2
+ A′′1(z3)r

5
2

(
−1

6
sin

ϕ

2

)
+ · · ·

One may notice that (44) is composed of the same leading terms associated with i = 0 as in the
expansion (43), as expected.

To assess the correctness of the solution (43) we consider a torus with an inner radius r1 = 9 and
an outer radius r2 = 11 having a circular crack with the tip at R = 10 shown in Figure 3. This time
we apply non-axisymmetric boundary conditions, so a fully 3-D FE model is constructed as presented
in Figure 5. Taking A1 = 10 cos θ and Ak = 0 , k 6= 1 , (notice that ρ/R = 1/10 in the considered
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FIGURE 5. The 3-D FE for the torus with a circular crack.

example) we prescribed on the outer surface of the torus Dirichlet boundary conditions according to (43):

τ = 10 cos θ

√
1
10

[
sin

(ϕ

2

)
+

1
4

sin
ϕ

2

(
1
10

)
+

(
1
12

sin
ϕ

2
− 3

32
sin

3ϕ

2

) (
1
10

)2

+ (45)

(
1
16

sin
ϕ

2
− 1

30
sin

3ϕ

2
+

5
128

sin
5ϕ

2

) (
1
10

)3
]

−10 cos θ

√
1
10

[
−1

6
sin

ϕ

2

(
1
10

)2

+
(
−1

8
sin

ϕ

2
+

7
60

sin
3ϕ

2

) (
1
10

)3
]

with homogeneous Neumann boundary conditions on the crack face. In Figure 6 left the finite element
solution ( τFE ) at polynomial level p = 8 is shown whereas in the right the difference between the
analytical and FE solution is shown. As may be noticed τ − τFE is three orders of magnitude smaller
compared to τ , assuring the correctness of the derived analytical solution.

2.2.2. A specific example problem - penny-shaped crack for a non-axisymmetric loading and homoge-
neous Dirichlet BCs. As an example problem the first terms of the asymptotic solution for a penny-
shaped crack ϕ1 = −π , ω = 2π with homogeneous Dirichlet boundary conditions is provided:

τ = A1(θ)ρ
1
2

[
cos

ϕ

2
− 1

4
cos

ϕ

2

( ρ

R

)
+

(
1
12

cos
ϕ

2
+

3
32

cos
3ϕ

2

) ( ρ

R

)2
+ (46)(

− 1
16

cos
ϕ

2
− 1

30
cos

3ϕ

2
− 5

128
cos

5ϕ

2

) ( ρ

R

)3
+ · · ·

]
+ A′′1(θ)ρ

1
2

( ρ

R

)2
[
−1

6
cos

ϕ

2
+

(
1
8

cos
ϕ

2
+

7
60

cos
3ϕ

2

) ( ρ

R

)
+ · · ·

]
+ · · ·

2.2.3. A specific example problem - hollow cylinder with non-axisymmetric loading and homogeneous
Neumann BCs. Consider the circular edge having a solid angle of 3π/2 as the upper corner in Figure 2
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FIGURE 6. The solution τFE on a typical cross-section ( θ = 0 ) of the 3-D torus (Left)
and the difference between the analytical and FE solution on same cross-section (Right).
The axis of symmetry is right to the shown domain with the crack from the center of the
circle to the right.

(a) with homogeneous Neumann BCs. In this case ϕ ∈ (−π
2 , π) , α0 = 0 and α1 = 2/3 , α4 = α5 =

α6 = 1 · · · , and the first few terms in the asymptotic solution are given by:

τ = A0 + A′′0

( ρ

R

)2
(
−1

4

)
(47)

+A1ρ
2/3

[
sin

2ϕ

3
− 1√

3
cos

2ϕ

3

+
( ρ

R

) 1
60

(
5
√

3 cos
ϕ

3
−
√

3 cos
5ϕ

3
+ 15 sin

ϕ

3
+ 3 sin

5ϕ

3

)
+

( ρ

R

)2 1
160

(
12 sin

2ϕ

3
− 4

√
3 cos

2ϕ

3
− 15 sin

4ϕ

3
− 5

√
3 cos

4ϕ

3

)]
+

+A′′1ρ
2/3

( ρ

R

)2
[

1
20

(√
3 cos

2ϕ

3
− 3 sin

2ϕ

3

)]
+ · · ·

2.2.4. A specific example problem - exterior circular crack with non-axisymmetric loading and homo-
geneous Neumann BCs. Consider the circular external crack as in Figure 2 (b) with homogeneous Neu-
mann BCs. In this case ϕ ∈ (0, 2π) and the first few terms in the asymptotic solution are given by:

τ = A0 + A′′0

( ρ

R

)2
(
−1

4

)
(48)

+A1ρ
1/2

[
cos

ϕ

2
−

( ρ

R

) 1
4

cos
ϕ

2
+

( ρ

R

)2
(

1
12

cos
ϕ

2
+

3
32

cos
3ϕ

2

)]
+A′′1ρ

1/2
( ρ

R

)2
[
−1

6
cos

ϕ

2

]
+ · · ·
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3. ASYMPTOTIC SOLUTION FOR THE ELASTICITY SYSTEM

The point of departure for the elasticity system is the three equilibrium equations given in a Cartesian
system by:

3∑
i=1

∂σij

∂xi
+ Fj = 0, j = 1, 2, 3,

where σij are the components of the Cartesian stress tensor, and Fj are the body forces. For vanishing
body forces in the vicinity of the singular edge, i.e. F1 = F2 = F3 = 0 we reformulate the equilibrium
equations to be expressed in the coordinate system ρ, ϕ, θ shown in Figure 1:

x1 = (R + ρ cos ϕ) cos θ, x2 = (R + ρ cos ϕ) sin θ, x3 = ρ sinϕ (49)

The Cartesian components of the displacements (u1, u2, u3)> are connected to the local coordinate
system displacements (uρ, uϕ, uθ)> by:

u1 = (uρ cos ϕ− uϕ sinϕ) cos θ − uθ sin θ (50)
u2 = (uρ cos ϕ− uϕ sinϕ) sin θ + uθ cos θ

u3 = uρ sinϕ + uϕ cos ϕ

The kinematic connection between displacements and strains in the coordinate system ρ, ϕ, θ can be
derived using the metric tensor [11]:

ερρ =
∂uρ

∂ρ
(51)

εϕϕ =
1
ρ

∂uϕ

∂ϕ
+

uρ

ρ

εθθ =
1
r

(
∂uθ

∂θ
+ uρ cos ϕ− uϕ sinϕ

)
ερϕ =

1
2

[
1
ρ

∂uρ

∂ϕ
+

uϕ

ρ
− uϕ

ρ

]
εϕθ =

1
2

[
1
r

∂uϕ

∂θ
+

1
ρ

∂uθ

ϕ
+

1
r
uθ sinϕ

]
ερθ =

1
2

[
1
r

∂uρ

∂θ
+

∂uθ

ρ
− 1

r
uθ cos ϕ

]
These connections are identical to [7, Eq. (3)]. In the new curvilinear coordinate system the equilibrium
equations in ρ, ϕ, θ directions read [11]:

0 =
∂σρρ

∂ρ
+

1
ρ

∂σρϕ

∂ϕ
+

σρρ − σϕϕ

ρ
+

1
r

(
∂σρθ

∂θ
+ (σρρ − σθθ) cos ϕ− σρϕ sinϕ

)
(52)

0 =
1
ρ

∂σϕϕ

∂ϕ
+

∂σρϕ

∂ρ
+

2
ρ
σρϕ +

1
r

(
∂σϕθ

∂θ
+ (σθθ − σϕϕ) sinϕ + σρϕ cos ϕ

)
(53)

0 =
∂σρθ

∂ρ
+

1
ρ
σρθ +

1
ρ

∂σϕθ

∂ϕ
+

1
r

(
∂σθθ

∂θ
+ 2σρθ cos ϕ− 2σϕθ sinϕ

)
. (54)

We consider an isotropic elastic homogeneous material with Lamé constants λ and µ (kinematic
equations and Hooke’s law given by:

σij = λδij

3∑
k=1

εkk + 2µεij , i, j = ρ, ϕ, θ (55)
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The stresses in terms of displacements are given by:


σρρ

σθθ

σϕϕ

σρθ

σρϕ

σθϕ

 =



λ1
ρ + (λ + 2µ)∂ρ λ1

ρ∂ϕ 0

λ
(

1
ρ + ∂ρ) λ1

ρ∂ϕ 0
(λ + 2µ)1

ρ + λ∂ρ (λ + 2µ)1
ρ∂ϕ 0

0 0 µ∂ρ

µ1
ρ∂ϕ µ

(
−1

ρ + ∂ρ

)
0

0 0 µ1
ρ∂ϕ


 uρ

uϕ

uθ



+
1
r


λ cos ϕ −λ sinϕ 0

(λ + 2µ) cos ϕ −(λ + 2µ) sinϕ 0
λ cos ϕ −λ sinϕ 0

0 0 −µ cos ϕ
0 0 0
0 0 µ sinϕ


 uρ

uϕ

uθ

 +
1
r


0 0 λ
0 0 λ + 2µ
0 0 λ
µ 0 0
0 0 0
0 µ 0

 ∂θ

 uρ

uϕ

uθ


(56)

Inserting (56) into (52)-(54) and multiplying by r2(ρ/R)2 = ρ2
(
1 + ρ

R cos ϕ
)2 one obtains the Navier-

Lamé system:

0 =
(
1 +

ρ

R
cos ϕ

)2 {
(λ + 2µ)

[
(ρ∂ρ)2 − 1

]
uρ + µ∂ϕϕuρ − (λ + 3µ)∂ϕuϕ + (λ + µ)∂ρϕuϕ

}
(57)

+
(
1 +

ρ

R
cos ϕ

) ρ

R
[(λ + 2µ) cos ϕ ρ ∂ρuρ − (λ + µ) sinϕ ρ ∂ρuϕ + µ sinϕ (uϕ − ∂ϕuρ) + (λ + µ)ρ ∂ρθuθ]

+
( ρ

R

)2
[(λ + 2µ) cos ϕ(uϕ sinϕ− uρ cos ϕ) + µ∂θθuρ − (λ + 3µ) cos ϕ ∂θuθ]

0 =
(
1 +

ρ

R
cos ϕ

)2 {
µ

[
(ρ∂ρ)2 − 1

]
uϕ + (λ + 2µ)∂ϕϕuϕ + (λ + 3µ)∂ϕuρ + (λ + µ)ρ ∂ρϕuρ

}
(58)

+
(
1 +

ρ

R
cos ϕ

) ρ

R
[(λ + µ) cos ϕ (∂ϕuρ − uϕ) + µ cos ϕ ρ∂ρuϕ − (λ + 2µ) sinϕ (∂ϕuϕ + uρ) + (λ + µ)∂ϕθuθ]

+
( ρ

R

)2
[(λ + 2µ) sinϕ(uρ cos ϕ− uϕ sinϕ) + µ∂θθuϕ + (λ + 3µ) sinϕ∂θuθ]

0 =
(
1 +

ρ

R
cos ϕ

)2
µ

[
(ρ∂ρ)2 + ∂ϕϕ

]
uθ (59)

+
(
1 +

ρ

R
cos ϕ

) ρ

R
[µ (cos ϕ ρ∂ρuθ − sinϕ ∂ϕuθ) + (λ + µ) (∂θuρ + ∂ϕθuϕ + ρ∂ρθuρ)]

+
( ρ

R

)2
[−µuθ + (λ + 2µ)∂θθuθ + (λ + 3µ) (cos ϕ ∂θuρ − sinϕ ∂θuϕ)]

The Navier-Lamé equations are complemented by homogeneous boundary conditions on the faces
intersecting at the singular edge:

uρ = uϕ = uθ = 0 on Γ1 ∪ Γ2 Clamped BCs (60)
tϕ = tρ = tθ = 0 on Γ1 ∪ Γ2 Traction Free BCs, (61)

where t is the traction vector on the boundary. On the boundaries Γ1,Γ2 , i.e. for ϕ = ϕ1, ϕ2 , the
traction free BCs (61) are expressed in terms of the stresses using Cauchy’s law:

σϕϕ = σρϕ = σθϕ = 0, ϕ = ϕ1, ϕ2
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Denoting the displacement vector by u = (uρ, uϕ, uθ)
> , the Navier-Lamé (57-59) system is split

as follows: [(
1 +

ρ

R
cos ϕ

)2
[M0] +

(
1 +

ρ

R
cos ϕ

) ( ρ

R

)
[M01] +

( ρ

R

)2
[M02] (62)

+
(
1 +

ρ

R
cos ϕ

) ( ρ

R

)
[M10]∂θ +

( ρ

R

)2
[M11]∂θ +

( ρ

R

)2
[M2]∂θθ

]
u = 0,

with

[M0] =

(λ + 2µ)
(
(ρ∂ρ)2 − 1

)
+ µ∂ϕϕ −(λ + 3µ)∂ϕ + (λ + µ)ρ∂ρϕ 0

(λ + µ)ρ∂ρϕ + (λ + 3µ)∂ϕ (λ + 2µ)∂ϕϕ + µ
(
(ρ∂ρ)2 − 1

)
0

0 0 µ
(
(ρ∂ρ)2 + ∂ϕϕ

)
 ,

(63)

[M01] =

 (λ + 2µ) cos ϕ ρ∂ρ − µ sinϕ∂ϕ sinϕ [−(λ + µ)ρ∂ρ + µ] 0
(λ + µ) cos ϕ ∂ϕ − (λ + 2µ) sinϕ cos ϕ [−(λ + µ) + µρ∂ρ]− (λ + 2µ) sinϕ∂ϕ 0

0 0 µ (cos ϕ ρ∂ρ − sinϕ∂ϕ)

 ,

(64)

[M02] =

 −(λ + 2µ) cos2 ϕ (λ + 2µ) sinϕ cos ϕ 0
(λ + 2µ) sinϕ cos ϕ −(λ + 2µ) sin2 ϕ 0

0 0 −µ

 , (65)

[M10] =

 0 0 (λ + µ)ρ∂ρ

0 0 (λ + µ)∂ϕ

(λ + µ) (ρ∂ρ + 1) (λ + µ)∂ϕ 0

 , (66)

[M11] =

 0 0 −(λ + 3µ) cos ϕ
0 0 (λ + 3µ) sinϕ

(λ + 3µ) cos ϕ −(λ + 3µ) sinϕ 0

 , (67)

[M2] =

µ 0 0
0 µ 0
0 0 (λ + 2µ)

 . (68)

Following same asymptotic series expansion shown to be appropriate for the Laplace operator, we
assume herein an expansion for the displacements of the form:

u =
∑
`=0

∑
k=0

∂`
θAk(θ) ραk

∞∑
i=0

( ρ

R

)i+`

φρ(ϕ)
φϕ(ϕ)
φθ(ϕ)


`,k,i

=
∑
`=0

∑
k=0

∂`
θAk(θ) ραk

∞∑
i=0

( ρ

R

)i+`
φ`,k,i (69)

Comparing this asymptotic expansion to the case of a straight edge, one notices one extra sum, implying
that for each primal eigen-function there are two sets of shadow-functions - one set is associated with the
derivatives of Ak , and the other set associated with the “curvature terms”, i.e. the powers ρ/R .

Inserting (69) in (62) so to gather terms of same order of derivatives of Ak , and same order of powers
ρ/R , we obtain the following recursive formula for the computation of the primal and shadow functions:

[m0]φ`,k,i = − (2 cos ϕ[m0] + [m01])φ`,k,i−1 −
(
cos2 ϕ[m0] + cos ϕ[m01] + [m02]

)
φ`,k,i−2

−[m10]φ`−1,k,i − (cos ϕ[m10] + [m11])φ`−1,k,i−1 − [m2]φ`−2,k,i, ` ≥ 0, i ≥ 0 (70)
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where φ ’s with negative indices are set to zero, and

[m0]φ`,k,i =

 (λ + 2µ)
(
β2 − 1

)
+ µ∂ϕϕ ((λ + µ)β − (λ + 3µ)) ∂ϕ 0

((λ + µ)β + (λ + 3µ)) ∂ϕ µ
(
β2 − 1

)
+ (λ + 2µ)∂ϕϕ 0

0 0 µ
(
β2 + ∂ϕϕ

)
 φ`,k,i

(71)

[m01]φ`,k,i =

 (λ + 2µ) cos ϕβ − µ sinϕ∂ϕ sinϕ (µ− (λ + µ)β) 0
−(λ + 2µ) sinϕ + (λ + µ) cos ϕ∂ϕ cos ϕ (µ (β − 1)− λ)− (λ + 2µ) sinϕ∂ϕ 0

0 0 µ (β cos ϕ− sinϕ∂ϕ)

 φ`,k,i

(72)

[m02]φ`,k,i =

 −(λ + 2µ) cos2 ϕ (λ + 2µ) cos ϕ sinϕ 0
(λ + 2µ) sinϕ cos ϕ −(λ + 2µ) sin2 ϕ 0

0 0 −µ

 φ`,k,i (73)

[m10]φ`,k,i =

 0 0 (λ + µ)β
0 0 (λ + µ)∂ϕ

(λ + µ)β (λ + µ)∂ϕ 0

 φ`,k,i (74)

[m11]φ`,k,i =

 0 0 −(λ + 3µ) cos ϕ
0 0 (λ + 3µ) sinϕ

(λ + 3µ) cos ϕ −(λ + 3µ) sinϕ 0

 φ`,k,i (75)

[m2]φ`,k,i =

 µ 0 0
0 µ 0
0 0 (λ + 2µ)

 φ`,k,i (76)

where
β = (αk + ` + i).

3.1. Homogeneous boundary conditions. The system of ODEs (70) is complemented by either clamped
(homogenous Dirichlet) boundary conditions or traction free (homogeneous Neumann) boundary condi-
tions on ϕ = ϕ1 and ϕ = ϕ2 = ϕ1 + ω . The clamped boundary conditions u(ϕ1) = 0 , u(ϕ2) = 0
imply:

φ`,k,i(ϕ1) = φ`,k,i(ϕ2) = 0, ∀`, αk, i (77)

The traction free boundary conditions imply:

(σϕϕ, σρϕ, σθϕ)> = 0, ϕ = ϕ1, ϕ2 (78)

Multiplying (78) by r ρ
R yields:[(

1 +
ρ

R
cos ϕ

)
[T0] +

ρ

R
[T01] +

ρ

R
[T1]∂θ

]
u = 0, ϕ = ϕ1, ϕ2 (79)

where,

[T0] =

(λ + 2µ) + λρ∂ρ (λ + 2µ)∂ϕ 0
µ∂ϕ −µ(1− ρ∂ρ) 0
0 0 µ∂ϕ

 , (80)

[T01] =

λ cos ϕ −λ sinϕ 0
0 0 0
0 0 µ sinϕ

 , [T1] =

0 0 λ
0 0 0
0 µ 0

 (81)

Inserting (69) in (79) we obtain the following boundary conditions on the primal and shadow functions
∀`, αk, i :
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[t0]φ`,k,i = − (cos ϕ[t0] + [t01])φ`,k,i−1 − [t1]φ`−1,k,i, ϕ = ϕ1, ϕ2 (82)

again φ ’s with negative indices are set to zero, and

[t0]φ`,k,i =

2µ + λ (β + 1) (λ + 2µ)∂ϕ 0
µ∂ϕ µ (β − 1) 0
0 0 µ∂ϕ

 φ`,k,i (83)

[t01]φ`,k,i =

λ cos ϕ −λ sinϕ 0
0 0 0
0 0 µ sinϕ

 φ`,k,i, [t1]φ`,k,i =

0 0 λ
0 0 0
0 µ 0

 φ`,k,i (84)

3.2. Axi-symmetric case. For an axi-symmetric domain and boundary conditions all derivatives with
respect to θ vanish so (62) is simplified to:[(

1 +
ρ

R
cos ϕ

)2
[M0] +

(
1 +

ρ

R
cos ϕ

) ( ρ

R

)
[M01] +

( ρ

R

)2
[M02]

]
u = 0,

Notice that third equation in the set (85) is in terms of uθ alone and decoupled from the first two
equations, thus the solution to the displacement uθ is decoupled from uρ and uϕ for the axi-symmetric
case.

Remark 7. The equation for determining uθ is very similar (but not identical) to the Laplace equation
(compare to (4)). The difference is the last term 1

r2 uθ . This term results in a slightly different solution
of uθ compared to the Laplace solution only when inspecting higher shadows ( i ≥ 2 ).

The asymptotic series expansion in case of an axi-symmetric solution is obtained by taking ` = 0 in
(69):

u =
∞∑

k=0

Akρ
αk

∞∑
i=0

( ρ

R

)i

φρ(ϕ)
φϕ(ϕ)
φθ(ϕ)


0,k,i

(85)

In the axi-symmetric case, ` ≡ 0 , therefore the recursive formulas (70) and (82) are simplified to:

[m0]φ0,k,i = − (2 cos ϕ[m0] + [m01])φ0,k,i−1

−
(
cos2 ϕ[m0] + cos ϕ[m01] + [m02]

)
φ0,k,i−2 i ≥ 0 (86)

and

[t0]φ0,k,i = − (cos ϕ[t0] + [t01])φ0,k,i−1, ϕ = ϕ1, ϕ2 (87)

3.2.1. A specific example problem - penny-shaped crack with axisymmetric loading and traction free
BCs. In the case of a penny shaped crack ω = 2π , α1 = α2 = α3 = 0 and α4 = α5 = α6 = 1

2 , the
expressions for the traction free boundary condition (87) are further simplified:

[t0]Φ`,k,i =

2µ + λ (αk + ` + i + 1) (λ + 2µ)∂ϕ 0
µ∂ϕ µ (αk + ` + i− 1) 0
0 0 µ∂ϕ

 φ`,k,i, (88)

[t01]Φ`,k,i =

−λ 0 0
0 0 0
0 0 0

 φ`,k,i, [t1]Φ`,k,i =

0 0 λ
0 0 0
0 µ 0

 φ`,k,i (89)
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The solution to the system (86) with traction free BCs (87) for a penny shaped crack ( ω = 2π ) is:uρ

uϕ

uθ

 = A1

 cos ϕ
− sinϕ

0

 [
1−

( ρ

R

)
cos ϕ +

( ρ

R

)2
cos2 ϕ + · · ·

]
+ A2

 sinϕ
cos ϕ

0

 + A3

 0
0
1

 [
1 +

( ρ

R

)
cos ϕ

]

+ A4ρ
1
2


 −λ+5µ

λ+µ cos ϕ
2 + cos 3ϕ

2
3λ+7µ
λ+µ sin ϕ

2 − sin 3ϕ
2

0

 +
( ρ

R

) 
3λ2+22λµ−13µ2

12(λ+µ)2
cos ϕ

2 +
(

3
4 −

λ
λ+µ

)
cos 3ϕ

2

9λ2−14λµ−55µ2

12(λ+µ)2
sin ϕ

2 +
(
−5

4 + λ
λ+µ

)
sin 3ϕ

2

0


+

( ρ

R

)2

 −3λ2+134λµ+67µ2

96(λ+µ)2
cos ϕ

2 −
45λ3+255λ2µ+199λµ2+53µ3

180(λ+µ)3
cos 3ϕ

2 + 3(3λ−µ)
32(λ+µ) cos 5ϕ

2
69λ2+170λµ+37µ2

96(λ+µ)2
sin ϕ

2 + −15λ3+155λ2µ+371λµ2+137µ3

180(λ+µ)3
sin 3ϕ

2 − 3(λ−3µ)
32(λ+µ) sin 5ϕ

2

0

 + · · ·



+ A5ρ
1
2


 − λ+5µ

3(λ+µ) sin ϕ
2 + sin 3ϕ

2

− 3λ+7µ
3(λ+µ) cos ϕ

2 + cos 3ϕ
2

0

 +
( ρ

R

)  −123λ2+262λµ+107µ2

180(λ+µ)2
sin ϕ

2 −
λ−3µ

12(λ+µ) sin 3ϕ
2

−15λ2+62λµ+79µ2

180(λ+µ)2
cos ϕ

2 + (λ+5µ)
12(λ+µ) cos 3ϕ

2

0



+
( ρ

R

)2 1
1440

 −483λ2+1350λµ+803µ2

(λ+µ)2
sin ϕ

2 + 162625λ3+8779λ2µ+9251λµ2+3161µ3

35(λ+µ)3
sin 3ϕ

2 + 45 3λ−µ
(λ+µ) sin 5ϕ

2

−16357λ2+1002λµ+581µ2

(λ+µ)2
cos ϕ

2 + 1365λ3+5271λ2µ+6719λµ2+2749µ3

35(λ+µ)3
cos 3ϕ

2 + 45 λ−3µ
(λ+µ) cos 5ϕ

2

0


+ · · · ]

+ A6ρ
1
2

 0
0

sin ϕ
2

 +
( ρ

R

)  0
0

1
4 sin ϕ

2

 +
( ρ

R

)2

 0
0

1
4 sin ϕ

2 −
3
32 sin 3ϕ

2

 + · · ·


+ · · ·

One may notice that the solutions of φρ and φϕ are decoupled from the solution of φθ . The eigen-
functions φθ are not identical to the ones obtained by the Laplace equation - if one observes the last line
in (90) in comparison with (19), then the coefficient of the term ρ1/2

( ρ
R

)2 sin ϕ
2 is 1

4 instead of 1
12 in

(19). More differences would appear if inspecting terms of higher orders of ρ
R .

Remark 8. The second and third terms corresponding to zero eigen-values are associated with rigid body
motions: The term A2(sinϕ, cos ϕ, 0)> expressed in Cartesian components becomes (u1, u2, u3)>2 =
A2(0, 0, 1)> , which is clearly a translation along z3 . Likewise, the factor term of A3 becomes
(u1, u2, u3)>3 = A3

r
R(− sin θ, cos θ, 0)> , which is proportional to the rotation (−x2, x1, 0)> around

the axis of symmetry. Note finally that for ρ/R � 1

1
1 + ρ

R cos ϕ
=

[
1− ρ

R
cos ϕ +

( ρ

R
cos ϕ

)2
−

( ρ

R
cos ϕ

)3
+ · · ·

]
therefore the factor of A1 is not linear in Cartesian coordinates: (u1, u2, u3)>1 = A1R(x1

r2 , x2
r2 , 0)> .

Details on the derivation of the series solution associated with A1, A2, A3 are provided in Appendix A.

Remark 9. The solution for the circular singular crack with traction free boundary condition was pre-
sented also by Leung and Su in [7], and is almost identical to (90). One difference is the factor 1/1440
in the term associated with A2ρ

1
2

( ρ
R

)2 whereas in [7] the factor is 1/1400 . The solution herein is the
correct one because it satisfies (86), whereas Leung and Su’s solution does not. The second difference is
in the shadow terms associated with α1 = 0 and α3 = 0 for A1 and A3 which are missing in Leung
and Su’s solution.
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Defining:

K1
def= A1µ,

(
−1
4

)
KI√
2π

def= A4µ,

(
3
4

)
KII√

2π

def= A5µ, 2
KIII√

2π

def= A6µ (90)

with KI ,KII ,KIII the renown stress intensity factors in fracture mechanics, and using (51)-(55), the
stress tensor associated with an axisymmetric traction free problem is:



σρρ

σθθ

σϕϕ

σρθ

σρϕ

σθϕ


= K1


−1− cos 2ϕ

2
−1 + cos 2ϕ

0
sin 2ϕ

0


( ρ

R

) [
1− 2 cos ϕ

( ρ

R

)
+ 3 cos2 ϕ

( ρ

R

)2
− 4 cos3 ϕ

( ρ

R

)3
+ · · ·

]
(91)

+
−1
4

KI√
2πρ





−5 cos ϕ
2 + cos 3ϕ

2
− 4λ

λ+µ cos ϕ
2

−3 cos ϕ
2 − cos 3ϕ

2
0

− sin ϕ
2 − sin 3ϕ

2
0

 +
( ρ

R

)


−5λ+13µ
4(λ+µ) cos ϕ

2 + λ+9µ
4(λ+µ) cos 3ϕ

2

−2(2λ+µ)(λ+5µ)
(λ+µ)2

cos ϕ
2 + 3λ+2µ

λ+µ cos 3ϕ
2

−3(λ+9µ)
4(λ+µ) cos ϕ

2 −
λ+9µ

4(λ+µ) cos 3ϕ
2

0
λ−7µ

4(λ+µ) sin ϕ
2 + λ−7µ

4(λ+µ) sin 3ϕ
2

0


+ · · ·



+
3
4

KII√
2πρ





−5
3 sin ϕ

2 + sin 3ϕ
2

− 4λ
3(λ+µ) sin ϕ

2

− sin ϕ
2 − sin 3ϕ

2
0

1
3

(
cos ϕ

2 + 3 cos 3ϕ
2

)
0


+

( ρ

R

)


−51λ+107µ
60(λ+µ) sin ϕ

2 + λ+9µ
12(λ+µ) sin 3ϕ

2
2(34λ2+83λµ+45µ2)

15(λ+µ)2
sin ϕ

2 + 3λ+2µ
3(λ+µ) sin 3ϕ

2

− λ+9µ
12(λ+µ) sin ϕ

2 −
λ+9µ

12(λ+µ) sin 3ϕ
2

0
−23λ+31µ

60(λ+µ) cosϕ
2 + −λ+7µ

12(λ+µ) cos 3ϕ
2

0


+ · · ·



+ 2
KIII√
2πρ




0
0
0

1
2 sin ϕ

2
0

1
2 cos ϕ

2

 +
( ρ

R

)


0
0
0

7
8 sin ϕ

2 −
1
2 sin 3ϕ

2
0

5
8 cos ϕ

2 −
1
2 cos 3ϕ

2

 + · · ·


Remark 10. For R → ∞ the stresses state should tend to a plane-strain state. Indeed, by computing
ν(σρρ + σϕϕ) from (91), one obtains ν

[
2 KI√

2πρ
cos ϕ

2 − 2 KII√
2πρ

sin ϕ
2

]
that equals σθθ . This is exactly

the connection: σ33 = ν(σ11 + σ22) according to a plane-strain situation.

Remark 11. The primal eigen-stresses σρρ and σϕϕ do not depend on the material properties for traction
free boundary conditions on crack faces. However, their shadows do depend on the material properties.

3.2.2. A specific example problem - penny-shaped crack with axisymmetric loading and clamped BCs.
For the clamped BCs (Dirichlet BCs) and a penny shaped crack ( ω = 2π ) the series expansion of the
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solution is:uρ

uϕ

uθ

 = A1ρ
1
2


 λ+5µ

3λ+7µ cos ϕ
2 + cos 3ϕ

2

− sin ϕ
2 − sin 3ϕ

2
0

 +
( ρ

R

) −
41λ2+154λµ+129µ2

4(3λ+7µ)(5λ+9µ) cos ϕ
2 + λ−3µ

4(3λ+7µ) cos 3ϕ
2

λ+5µ
4(3λ+7µ) sin ϕ

2 + λ+5µ
4(3λ+7µ) sin 3ϕ

2

0

 (92)

+
( ρ

R

)2


(7λ+11µ)(23λ+67µ)
32(3λ+7µ)(5λ+9µ) cos ϕ

2 + 25λ2+98λµ+89µ2

4(3λ+7µ)(5λ+9µ) cos 3ϕ
2 + 3(−3λ+µ)

32(3λ+7µ) cos 5ϕ
2

− (7λ+11µ)(17λ+37µ)
32(3λ+7µ)(5λ+9µ) sin ϕ

2 −
13λ2+58λµ+61µ2

4(3λ+7µ)(5λ+9µ) sin 3ϕ
2 + 3(λ−3µ)

32(3λ+7µ) sin 5ϕ
2

0

 + · · ·


+ A2ρ

1
2


 sin ϕ

2 + sin 3ϕ
2

3λ+7µ
λ+5µ cos ϕ

2 + cos 3ϕ
2

0

 +
( ρ

R

) 
λ−3µ

4(λ+5µ) sin ϕ
2 + λ−3µ

4(λ+5µ) sin 3ϕ
2

− 3λ+7µ
4(λ+5µ) cos ϕ

2 −
1
4 cos 3ϕ

2

0


+

( ρ

R

)2


3λ−µ

96(λ+5µ) sin ϕ
2 + −3λ+µ

12(λ+5µ) sin 3ϕ
2 + 3(−3λ+µ)

32(λ+5µ) sin 5ϕ
2

69λ+137µ
96(λ+5µ) cos ϕ

2 + 1
12 cos 3ϕ

2 +− 3(λ−3µ)
32(λ+5µ) cos 5ϕ

2

0

 + · · ·


+ A3ρ

1
2

 0
0

cos ϕ
2

 +
( ρ

R

)  0
0

−1
4 cos ϕ

2

 +
( ρ

R

)2

 0
0

1
4 cos ϕ

2 + 3
32 cos 3ϕ

2

 + · · ·


Here we define:

A1
def=

3λ + 7µ

−4µ

KI√
2π

, A2
def=

λ + 5µ

4µ

KII√
2π

, A3
def= 2

KIII√
2π

(93)

then the corresponding stress tensor is:



σρρ

σθθ

σϕϕ

σρθ

σρϕ

σθϕ


=

3λ + 7µ

−4µ

KI√
2πρ





5(λ+µ)
3λ+7µ cos ϕ

2 + cos 3ϕ
2

4λ
3λ+7µ cos ϕ

2
3(λ+µ)
3λ+7µ cos ϕ

2 − cos 3ϕ
2

0
λ+µ

3λ+7µ sin ϕ
2 − sin 3ϕ

2

0


+

( ρ

R

)


−3(17λ2+98λµ+129µ2)
4(3λ+7µ)(5λ+9µ) cos ϕ

2 −
λ+9µ

4(3λ+7µ) cos 3ϕ
2

2(34λ2+131λµ+117µ2)
(3λ+7µ)(5λ+9µ) cos ϕ

2 −
3λ+2µ
3λ+7µ cos 3ϕ

2

−(5λ2+106λµ+213µ2)
4(15λ2+62λµ+63µ2)

cos ϕ
2 + λ+9µ

4(3λ+7µ) cos 3ϕ
2

0
5λ2+106λµ+213µ2

4(3λ+7µ)(5λ+9µ) sin ϕ
2 −

λ−7µ
4(3λ+7µ) sin 3ϕ

2

0


+ · · ·



+
λ + 5µ

4µ

KII√
2πρ





5(λ+µ)
λ+5µ sin ϕ

2 + sin 3ϕ
2

4λ
λ+5µ sin ϕ

2
3(λ+µ)
λ+5µ sin ϕ

2 − sin 3ϕ
2

0
− λ+µ

λ+5µ cos ϕ
2 + cos 3ϕ

2

0


+

( ρ

R

)


− 5λ+9µ
4(λ+5µ) sin ϕ

2 −
λ+9µ

4(λ+5µ) sin 3ϕ
2

−2(2λ+µ)
λ+5µ sin ϕ

2 −
3λ+2µ
λ+5µ sin 3ϕ

2
−3λ+µ
4(λ+5µ) sin ϕ

2 + λ+9µ
4(λ+5µ) sin 3ϕ

2

0
− λ+5µ

4(λ+5µ) cos ϕ
2 + λ−7µ

4(λ+5µ) cos 3ϕ
2

0


+ · · ·



+ 2
KIII√
2πρ




0
0
0

1
2 cos ϕ

2
0

−1
2 sin ϕ

2

 +
( ρ

R

)


0
0
0

−7
8 cos ϕ

2 −
1
2 cos 3ϕ

2
0

5
8 sin ϕ

2 + 1
2 sin 3ϕ

2

 + · · ·

 (94)
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3.3. Non axi-symmetric case. The set of equations corresponding to ` = 0 is exactly the axisymmer-
tric set of equations presented in section 3.2. Herein we present the entire solution including the terms
for ` ≥ 1 for a non axi-symmetric case.

3.3.1. A specific example problem - penny-shaped crack with non-axisymmetric loading and traction
free BCs. For the traction free BCs (82) and a penny shaped crack ( ω = 2π ) we solved the system (70),
obtaining:uρ

uϕ

uθ

 = A1(θ)

 cos ϕ
− sinϕ

0

 [
1−

( ρ

R

)
cos ϕ +

( ρ

R

)2
cos2 ϕ + · · ·

]
+ A′1(θ)

( ρ

R

) ( ρ

R

)  0
0

− cos2 ϕ

 + · · ·


+ A′′1(θ)

( ρ

R

)2

 − λ+2µ
12(λ+µ) cos ϕ
3λ+2µ

12(λ+µ) sinϕ

0

 + · · ·

+ A2(θ)

 sinϕ
cos ϕ

0

 + A′2(θ)
( ρ

R

)  0
0

− sinϕ

 +
( ρ

R

)  0
0

1
2 sin 2ϕ

 + · · ·


+ A′′2(θ)

( ρ

R

)2


λ

4(λ+µ) sinϕ

− λ
4(λ+µ) cos ϕ

0

 + · · ·

+ A3(θ)

 0
0
1

 [
1 +

( ρ

R

)
cos ϕ

]
+ A′3(θ)

( ρ

R

) 
 − λ

2(λ+µ)

0
0

 +
( ρ

R

) 
9λ2+16λµ+8µ2

24(λ+µ)2
cos ϕ

−15λ2+24λµ+8µ2

24(λ+µ)2
sinϕ

0

 · · ·


+ A′′3(θ)

( ρ

R

)2

 0
0
−1

2

 + · · ·

+ A4(θ)ρ
1
2


 −λ+5µ

λ+µ cos ϕ
2 + cos 3ϕ

2
3λ+7µ
λ+µ sin ϕ

2 − sin 3ϕ
2

0

 +
( ρ

R

) 
3λ2+22λµ−13µ2

12(λ+µ)2
cos ϕ

2 +
(

3
4 −

λ
λ+µ

)
cos 3ϕ

2

9λ2−14λµ−55µ2

12(λ+µ)2
sin ϕ

2 +
(
−5

4 + λ
λ+µ

)
sin 3ϕ

2

0


+

( ρ

R

)2

 −3λ2+134λµ+67µ2

96(λ+µ)2
cos ϕ

2 −
45λ3+255λ2µ+199λµ2+53µ3

180(λ+µ)3
cos 3ϕ

2 + 3(3λ−µ)
32(λ+µ) cos 5ϕ

2
69λ2+170λµ+37µ2

96(λ+µ)2
sin ϕ

2 + −15λ3+155λ2µ+371λµ2+137µ3

180(λ+µ)3
sin 3ϕ

2 − 3(λ−3µ)
32(λ+µ) sin 5ϕ

2

0

 + · · ·


+ A′4(θ)ρ

1
2

( ρ

R

)  0
0

2 cos ϕ
2 −

2(3λ+7µ)
3(λ+µ) cos 3ϕ

2


+

( ρ

R

)  0
0

3λ+23µ
6(λ+µ) cos ϕ

2 −
3
2 cos 3ϕ

2 + 15λ2+34λµ+3µ2

15(λ+µ)2
cos 5ϕ

2

 + · · ·



+ A′′4(θ)ρ
1
2

( ρ

R

)2

 − 3λ−µ
6(λ+µ) cos ϕ

2 + 45λ2+138λµ+61µ2

90(λ+µ)2
cos 3ϕ

2

− 3λ+7µ
6(λ+µ) sin ϕ

2 + 15λ2−2λµ−49µ2

90(λ+µ)2
sin 3ϕ

2

0

 + · · · / · · · (95)
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· · · + A5(θ)ρ
1
2


 − λ+5µ

3(λ+µ) sin ϕ
2 + sin 3ϕ

2

− 3λ+7µ
3(λ+µ) cos ϕ

2 + cos 3ϕ
2

0

 +
( ρ

R

)  −123λ2+262λµ+107µ2

180(λ+µ)2
sin ϕ

2 −
λ−3µ

12(λ+µ) sin 3ϕ
2

−15λ2+62λµ+79µ2

180(λ+µ)2
cos ϕ

2 + (λ+5µ)
12(λ+µ) cos 3ϕ

2

0



+
( ρ

R

)2

 −483λ2+1350λµ+803µ2

1440(λ+µ)2
sin ϕ

2 + 2625λ3+8779λ2µ+9251λµ2+3161µ3

6300(λ+µ)3
sin 3ϕ

2 + 3λ−µ
32(λ+µ) sin 5ϕ

2

−357λ2+1002λµ+581µ2

1440(λ+µ)2
cos ϕ

2 + 1365λ3+5271λ2µ+6719λµ2+2749µ3

6300(λ+µ)3
cos 3ϕ

2 + λ−3µ
32(λ+µ) cos 5ϕ

2

0

 + · · ·


+ A′5(θ)ρ

1
2

( ρ

R

)  0
0

2
3 sin ϕ

2

 +
( ρ

R

)  0
0

−8(λ+2µ)
15(λ+µ) sin ϕ

2 −
1
2 sin 3ϕ

2

 + · · ·



+ A′′5(θ)ρ
1
2

( ρ

R

)2


(

1
18 −

2λ
9(λ+µ)

)
sin ϕ

2 −
45λ2+90λµ+77µ2

630(λ+µ)2
sin 3ϕ

2(
7
18 −

2λ
9(λ+µ)

)
cos ϕ

2 + −105λ2−130λµ+7µ2

630(λ+µ)2
cos 3ϕ

2

0

 + · · ·

+ A6(θ)ρ
1
2

 0
0

sin ϕ
2

 +
( ρ

R

)  0
0

1
4 sin ϕ

2

 +
( ρ

R

)2

 0
0

1
4 sin ϕ

2 −
3
32 sin 3ϕ

2

 + · · ·



+ A′6(θ)ρ
1
2

( ρ

R

) 
 −2(3λ+µ)

15(λ+µ) sin ϕ
2

− 4µ
15(λ+µ) cos ϕ

2

0

 +
( ρ

R

) 
(
− 7

30 −
λ

15(λ+µ)

)
sin ϕ

2 +
2(75λ2+124λµ+53µ2)

525(λ+µ)2
sin 3ϕ

2

− 3λ+2µ
15(λ+µ) cos ϕ

2 + 105λ2+242λµ+129µ2

525(λ+µ)2
cos 3ϕ

2

0

 + · · ·


+ A′′6(θ)ρ

1
2

( ρ

R

)2

 0
0

− 3
10 sin ϕ

2

 + · · ·

+ · · ·



CIRCULAR EDGE SINGULARITIES FOR THE LAPLACE EQUATION AND THE ELASTICITY SYSTEM IN 3-D DOMAINS 25

The stresses in this case with the definition of SIFs as in (90) are:

σρρ

σθθ

σϕϕ

σρθ

σρϕ

σθϕ


= K1(θ)


−1− cos 2ϕ

2
−1 + cos 2ϕ

0
sin 2ϕ

0


( ρ

R

)
+ K ′

1(θ)
( ρ

R

)


0
0
0

cos ϕ
0

− sinϕ

 + · · · (96)

+K ′
2(θ)

( ρ

R

)2


0
0
0

sin 2ϕ
0

−2 sin2 ϕ

 + K ′
3(θ)

( ρ

R

)


0
3λ+2µ
λ+µ

0
0
0
0

 + · · ·

+
(
−1
4

)
KI(θ)√

2πρ





−5 cos ϕ
2 + cos 3ϕ

2

− 4λ
λ+µ cos ϕ

2

−3 cos ϕ
2 − cos 3ϕ

2
0

− sin ϕ
2 − sin 3ϕ

2
0

 +
( ρ

R

)


− 5λ+13µ
4(λ+µ) cos ϕ

2 + λ+9µ
4(λ+µ) cos 3ϕ

2

− 2(2λ+µ)(λ+5µ)
(λ+µ)2 cos ϕ

2 + 3λ+2µ
λ+µ cos 3ϕ

2

− 3(λ+9µ)
4(λ+µ) cos ϕ

2 −
λ+9µ

4(λ+µ) cos 3ϕ
2

0
λ−7µ

4(λ+µ) sin ϕ
2 + λ−7µ

4(λ+µ) sin 3ϕ
2

0


+ · · ·



+
(
−1
4

)
K ′

I(θ)√
2πρ

( ρ

R

)


0
0
0

2(λ−µ)
λ+µ cos ϕ

2 −
2(λ+3µ)

λ+µ cos 3ϕ
2

0
2(λ+3µ)

λ+µ sin ϕ
2 + 2(λ+3µ)

λ+µ sin 3ϕ
2


+ · · ·

+
3
4

KII(θ)√
2πρ





− 5
3 sin ϕ

2 + sin 3ϕ
2

− 4λ
3(λ+µ) sin ϕ

2

− sin ϕ
2 − sin 3ϕ

2
0

1
3

(
cos ϕ

2 + 3 cos 3ϕ
2

)
0

 +
( ρ

R

)


− 51λ+107µ
60(λ+µ) sin ϕ

2 + λ+9µ
12(λ+µ) sin 3ϕ

2
2(34λ2+83λµ+45µ2)

15(λ+µ)2 sin ϕ
2 + 3λ+2µ

3(λ+µ) sin 3ϕ
2

− λ+9µ
12(λ+µ) sin ϕ

2 −
λ+9µ

12(λ+µ) sin 3ϕ
2

0
− 23λ+31µ

60(λ+µ) cosϕ
2 + −λ+7µ

12(λ+µ) cos 3ϕ
2

0


+ · · ·



+
3
4

K ′
II(θ)√
2πρ

( ρ

R

)


0
0
0

2(λ−µ)
3(λ+µ) sin ϕ

2 + sin 3ϕ
2

0
− 2(λ+3µ)

3(λ+µ) cos ϕ
2 + cos 3ϕ

2


+ · · ·

+ 2
KIII(θ)√

2πρ




0
0
0

1
2 sin ϕ

2
0

1
2 cos ϕ

2

 +
( ρ

R

)


0
0
0

7
8 sin ϕ

2 −
1
2 sin 3ϕ

2
0

5
8 cos ϕ

2 −
1
2 cos 3ϕ

2

 + · · ·

 + 2
K ′

III(θ)√
2πρ

( ρ

R

)


− 2
5 sin ϕ

2
2
5

7λ+5µ
λ+µ sin ϕ

2

0
0

− 1
5 cos ϕ

2
0

 + · · ·

Remark 12. Comparing the terms associated with the first derivatives of the SIFs ( K ′
I(θ),K

′
II(θ),K

′
III(θ) )

in [6] with (96), one notices that these are identical for K ′
I(θ) and K ′

III(θ) . The term that multiplies
K ′

II(θ) in [6] appears in (96), but in our expression there are another two expressions proportional to
cos 3ϕ

2 and sin 3ϕ
2 that are absent in [6].
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4. SUMMARY AND CONCLUSIONS

We have formulated the set of recursive ODEs required for the representation of the asymptotic solu-
tion in the vicinity of a circular V-notch for the Laplace equation and the elasticity system in a 3-D setting.
The asymptotic solution is constructed from 2-D eigen-pairs (a V-notch in a 2-D domain) complemented
by two families of shadow functions. Both homogeneous Dirichlet (clamped) or homogeneous Neumann
(traction free) boundary conditions were reformulated in terms of eigen-pairs and their shadows, and ex-
plicit representation of the series was computed for a penny shaped crack, a circumferential crack and an
external crack as well as a 3π/2 reentrant corner.

Having the eigen-pairs and their shadows available, one may construct bench-mark problems for the
verification of various numerical schemes. In a future publication the quasidual-singular-function method
[3] for the computation of the Edge-Flux/Stress-Intensity-Functions Ak(θ) will be extended to circular
singular edges using the series expansion presented herein.

Acknowledgements: The authors gratefully acknowledge an anonymous referee for valuable and
constructive comments, leading to improvements in the presentation and context. The first two authors
gratefully acknowledge the support of this work by the Israel Science Foundation (grant No. 750/07).
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APPENDIX A. DERIVATION OF THE SHADOW TERMS ASSOCIATED WITH α = 0 FOR THE
TRACTION FREE, AXI-SYMMETRIC PENNY-SHAPED CRACK

The series expansion (shadows) in (90) for the first three terms associated with α1 = α2 = α3 = 0
is explicitly derived herein.

For α1 = 0 :

φ0,1,0 =

 cos ϕ
− sinϕ

0

 , φ0,1,1 = − cos ϕ

 cos ϕ
− sinϕ

0

 , φ0,1,2 = cos2 ϕ

 cos ϕ
− sinϕ

0

 , · · ·

For α2 = 0 :

φ0,2,0 =

 sinϕ
cos ϕ

0

 , φ0,2,i = 0, i ≥ 1

[m0]φ0,2,0 = 0, (97)

[t0]φ0,2,0 = 0. (98)

Furthermore (2 cos ϕ[m0] + [m01])φ0,2,0 = 0 and (cos ϕ[t0] + [t01])φ0,2,0 = 0 .
Therefore φ0,2,1 = 0 is an admissible solution. Finally, since

(
cos2 ϕ[m0] + cos ϕ[m01] + [m02]

)
φ0,2,0 =

0 , the next term φ0,2,2 can be chosen as zero. Hence we have a solution without any shadow similar to
the case of the Laplace operator.

For α3 = 0 :

φ0,3,0 =

 0
0
1

 , φ0,3,1 = cos ϕ

 0
0
1

 , φ0,3,i = 0, i ≥ 2.

We have

[m0]φ0,3,0 = 0, (99)

[t0]φ0,3,0 = 0. (100)

Next, notice the disturbing fact is that

(2 cos ϕ[m0] + [m01])φ0,3,0 = 0 and (cos ϕ[t0] + [t01])φ0,3,0 = 0,

letting the possibility of choosing φ0,3,1 = 0 . But, with such a choice, since(
cos2 ϕ[m0] + cos ϕ[m01] + [m02]

)
φ0,3,0 6= 0

we would be obliged to calculate a non-zero φ0,3,2 . Most presumably resulting in an infinite series of
shadows.

The special circumstance is that there exists a particular solution with one shadow only if, instead of
choosing φ0,3,1 = 0 , we take

φ0,3,1 = cos ϕ

 0
0
1


We have

[m0]φ0,3,1 = − (2 cos ϕ[m0] + [m01])φ0,3,0 = 0 (101)

[t0]φ0,3,1 = − (cos ϕ[t0] + [t01])φ0,3,0 = 0, (102)
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and the new fact is that

− (2 cos ϕ[m0] + [m01])φ0,3,1 −
(
cos2 ϕ[m0] + cos ϕ[m01] + [m02]

)
φ0,3,0 = 0

allowing the possibility to choose φ0,3,2 = 0 . Since

−
(
cos2 ϕ[m0] + cos ϕ[m01] + [m02]

)
φ0,3,1 = 0

we see that the series of shadows can be stopped there. In this way we find a global rigid body motion as
specified in Remark 8.
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