

Design of InGaAs/InP 1.55µm vertical cavity surface emitting lasers (VCSEL)

J.-M. Lamy, *S. Boyer-Richard*, C. Levallois, C. Paranthoën, H. Folliot, N. Chevalier, A. Le Corre, S. Loualiche UMR FOTON 6082 CNRS, INSA de Rennes, France Soline.richard@insa-rennes.fr

> 8th International Conference on Numerical Simulation of Optoelectronic Devices, Nottingham, 4th September 2008

I- Introduction and context

II- Optical design of the VCSELs

Electric field calculation

Bragg mirrors

III- Thermal analysis

IV- Buried Tunnel Junction

V- Conclusion

Se Electrically pumped VCSEL

> CW 1.55 µm optically pumped VCSELs lattice-matched to InP with dielectric Bragg mirrors already demonstrated (J.M. Lamy *et al.*, IPRM'08)

➢ Electrically pumped VCSEL designed and fabricated at FOTON laboratory, within a collaborative ANR project named lambda-access

I- Introduction and context

II- Optical design of the VCSELs Electric field calculation

Bragg mirrors

III- Thermal analysis

IV- Buried Tunnel Junction

V- Conclusion

Optical simulation Optical simulation algorithm : 2 parts

Optical properties thickness, index, absorption

> Propagation matrices

➢ Electric field

≻Reflectivity spectrum

Active zone characterization

✓ QW energy levels

✓ Oscillator strength \rightarrow Gain

✓ Absorption✓ Spontaneous emission

Electric field repartition in the structure

Monomode VCSEL structure around 1.55 μm Soline Boyer-Richard, NUSOD'08, Nottingham, 4th September 2008

Bragg mirrors

Simulation based on propagation matrices

Same reflectivity (99.6 %) @ 1.55 μ m in good agreement with FTIR results Total reflectivity of the VCSEL cavity : Free Spectral Range > 50 nm \rightarrow monomode VCSEL

I- Introduction and context

II- Optical design of the VCSELs

Electric field calculation

Bragg mirrors

III- Thermal analysis

IV- Buried Tunnel Junction

V- Conclusion

Thermal simulation

 \succ VCSELs : Small active region \rightarrow DBR \rightarrow problem of heat dissipation

➢ optical and electrical VCSEL thermal 2D finite element simulation

• thermal resistance evaluation compared to experiment

Wavelenght shift as a function of pump power for optical VCSELs with standard or hybrid DBR.

I- Introduction and context

II- Optical design of the VCSELs

Electric field calculation

Bragg mirrors

III- Thermal analysis

IV- Buried Tunnel Junction

V- Conclusion

<u>Objectives :</u>

- Iocalized current injection : electrical carrier confinement
- ➤ n-type contact, easier to realize and less resistive
- small threshold voltage and small serial resistance to limit self-heating

Theoretical operation : I(V) characteristics

Soline Boyer-Richard, NUSOD'08, Nottingham, 4th September 2008

25 nm

Objectives :

- Iocalized current injection : electrical carrier confinement
- n-type contact, easier to realize and less resistive
- > small threshold voltage and small serial resistance to limit self-heating

<u>Theoretical operation</u> : I(V) characteristics

Objectives :

- Iocalized current injection : electrical carrier confinement
- n-type contact, easier to realize and less resistive
- > small threshold voltage and small serial resistance to limit self-heating

Theoretical operation : I(V) characteristics

Objectives :

- Iocalized current injection : electrical carrier confinement
- n-type contact, easier to realize and less resistive

> small threshold voltage and small serial resistance to limit self-heating

Theoretical operation : I(V) characteristics

 $V_{d} = 0.5 V$ Direct : $V_d > V_{thres}$ Ι Classical diode Inverse : negative resistance : $V_d > V_{thres_diode}$ tunnel J_{tunnel} when V_d Direct classical current diode Soline Boyer-Richard, NUSOD'08, Nottingham, 4th September 2008

1D Schrödinger-Poisson simulation useful to :

- ➤ verify the tunnel effect in the reverse BTJ
- > avoid current leakage in the reverse InP junction outside the BTJ

Conclusion

- 3 steps of simulation to design electrically pumped VCSELs :
- \succ Optical simulation \rightarrow epilayer structure and DBR reflectivity
- \succ Thermal analysis \rightarrow thermal resistance and contact design
- > Schrödinger Poisson 1D \rightarrow avoid leakage current around the BTJ

... towards an integrated model ?

First electrical VCSEL sample from FOTON laboratory

measurement in progress...

