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Calculation of an Entropy-Constrained Quantizer
for Exponentially Damped Sinusoids Parameters

Olivier Derrien, Roland Badeau and Gaël Richard

Abstract

The Exponentially Damped Sinusoids (EDS) model can efficiently represent real-world audio signals. In the context of low
bit rate parametric audio coding, the EDS model could bring a significant improvement over classical sinusoidal models. The
inclusion of an additional damping parameter calls for a specific quantization scheme. In this report, we describe a new joint-
scalar quantization scheme for EDS parameters in high resolution hypothesis, which is much easier to implement than a vector
quantization scheme. A performance evaluation of this quantizer in comparison with a 3-dimensional vector quantizer is proposed
in a paper submitted to IEEE Signal Processing Letters named ”Entropy-Constrained Quantization of Exponentially Damped
Sinusoids Parameters”.
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A. INTRODUCTION

For low bit rate music coding applications, parametric coders are an efficient alternative to transform coders. As a con-
sequence, the interest in parametric audio coding has grown during the last years. Sinusoidal modeling is very popular
because most real-world audio signals are dominated by tonal components. In most sinusoidal analysis/synthesis schemes
used for parametric coding, sinusoids have constant amplitude over each analysis/synthesis time segment. Sinusoid parameters
(amplitude, frequency and phase) are quantized and binary coded. However, some studies have proved that an exponentially
damped sinusoidal model (EDS) combined with a variable-length time segmentation is more efficient than a constant-amplitude
model. In this report, we describe a joint-scalar quantization method for amplitude, damping and phase parameters. Optimizing
the quantizer consists of minimizing the mean distortion under a bit rate constraint. As modern communication techniques
commonly use variable-length binary codes, we choose to formulate the bit rate constraint in terms of entropy of quantization
indexes. In high resolution hypothesis, i.e. assuming a large number of quantization cells, quantizers are usually defined by
their quantization cell density (QCD). The calculation of the optimal QCD is divided in tree parts: first, we calculate the
distortion between two exponentially damped sinusoids. Then, assuming dependencies between the quantization of amplitudes,
damping and phases, we calculate the mean distortion generated by the quantization process. Finally, we obtain the QCD that
minimizes the mean distortion under the entropy constraint.

B. THE EDS MODEL AND THE MEAN SQUARE ERROR DISTORTION MEASURE

The EDS modeling of a signal x(t), t ∈ [0, T ] can be written as

x(t) =

K−1∑
k=0

sk(t) + ε(t)

where K is the model order, ε(t) is a white noise and sk is an exponentially damped sinusoid defined as

sk(t) = ak e
δk( tT −1)+i(ωkt+φk), δk ≥ 0

sk(t) = ak e
δk

t
T +i(ωkt+φk), δk < 0.

Each EDS is characterized by a set of 4 parameters: amplitude ak, damping δk, pulsation ωk and phase φk. Note that damping
can be positive (increasing envelope) or negative (decreasing envelope). Using different expressions for positive and negative
damping avoids numerical errors while estimating amplitudes for high dampings.

We define zk = e
δk
T +iωk , named poles. If δk ≥ 0, we define αk = ak e

−δk+iφk and if δk < 0, we define αk = ak e
iφk ,

named complex amplitudes. In both cases, the EDS can be written as

sk(t) = αk z
t
k.
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In this study, we consider only the joint-quantization of amplitude, damping and phase. We assume that the pulsation is
not quantized. Practically, the pulsation would be quantized in an independent way. We define pk = {ak, δk, φk} as the set
of parameters to be quantized and p̂k = {âk, δ̂k, φ̂k} as the set of reconstructed parameters. We note P and P̂ the random
variables associated with pk and p̂k.

Using the time-continuous signal model, the Mean Square Error distortion measure between an EDS sk(t) and the recon-
structed EDS ŝk(t) is defined as

d(pk, p̂k) =
1

T

∫ T

0

|sk(t)− ŝk(t)|2 dt.

This equation can be rewritten as

d(pk, p̂k) = |αk|2
e2δk − 1

2δk
+ |α̂k|2

e2δ̂k − 1

2δ̂k
− 2<

(
αkα̂k

e(δk+δ̂k)+iT (ωk−ω̂k) − 1

(δk + δ̂k) + iT (ωk − ω̂k)

)
where x is the complex conjugate of x and <(x) the real part of x.

Since the pulsation is not quantized, we assume ωk = ω̂k. If δk and δ̂k have the same sign (a sufficient condition is that the
damping quantizer is symmetric around zero), we finally obtain

d(pk, p̂k) = a2
kh(2δk) + â2

kh(2δ̂k)− 2akâk cos(φk − φ̂k)h(δk + δ̂k)

where h is the real-valued function defined as

h(x) =
1− exp(−|x|)

|x|
, h(0) = 1.

C. COMPUTATION OF THE MEAN DISTORTION

We note D = {p̂n}, n ∈ {0 . . . N − 1} the reconstruction dictionary. Cn is the quantization cell associated with the
reconstruction value p̂n. The mean distortion over Cn can be written as

dCn(p̂n) =

∫
Cn ρP (p)d(p, p̂n)dp∫

Cn ρP (p)dp

where ρP (p) is the probability density function (PDF) of EDS parameters.
The overall mean distortion is

D =
∑
n

ρn dCn(p̂n) (1)

where ρn = proba{P ∈ Cn} =
∫
Cn ρP (p)dp.

The first step in the computation of D consists in finding an analytic expression for dCn(p̂n).
We assume that amplitude, damping and phase are quantized with scalar quantizers. Thus, the 3-dimensional quantization

cell can be seen as the product of 3 scalar quantization cells:

C = {[za, za + ∆a[, [zδ, zδ + ∆δ[, [zφ, zφ + ∆φ[}

where ∆a, ∆δ and ∆φ denote the widths of scalar quantization cells respectively for amplitude, damping and phase. As we
consider only one quantization cell, note that we omit the cell index n.

In high resolution hypothesis, it is reasonable to assume that ρP (p) is constant over the quantization cell. Thus, we get

dC(â, δ̂, φ̂) ≈ 1

∆a∆δ∆φ

∫ za+∆a

za

∫ zδ+∆δ

zδ

∫ zφ+∆φ

zφ

(
a2h(2δ) + â2h(2δ̂)− 2aâ cos(φ− φ̂)h(δ + δ̂)

)
da dδ dφ. (2)

1) Optimal reconstruction values: In order to find the reconstruction values â, δ̂ and φ̂ which minimize the distortion over
each quantization cell, we solve the following system:

∂dC
∂â

(â, δ̂, φ̂) = 0 ⇔ â ≈
(
za +

∆a

2

)
cos

(
zφ +

∆φ

2
− φ̂

) sin
(

∆φ

2

)
∆φ

2

[
h̃(zδ + ∆δ + δ̂)− h̃(zδ + δ̂)

∆δ h(2δ̂)

]
(3)

∂dC

∂δ̂
(â, δ̂, φ̂) = 0 ⇔ â ≈

(
za +

∆a

2

)
cos

(
zφ +

∆φ

2
− φ̂

) sin
(

∆φ

2

)
∆φ

2

[
h(zδ + ∆δ + δ̂)− h(zδ + δ̂)

∆δ h′(2δ̂)

]
(4)

∂dC

∂φ̂
(â, δ̂, φ̂) = 0 ⇔ sin

(
zφ +

∆φ

2
− φ̂

)[
h̃(zδ + ∆δ + δ̂)− h̃(zδ + δ̂)

]
≈ 0 (5)
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where h̃(x) is a primitive of h(x) and h′(x) is the first order derivative of h(x).
In high resolution, the quantization cells are assumed to be small, so ∆a ≈ 0, ∆δ ≈ 0 and ∆φ ≈ 0. Taylor series expansions

give
sin
(

∆φ

2

)
∆φ

2

≈ 1

h̃(zδ + ∆δ + δ̂)− h̃(zδ + δ̂)

∆δ
≈ h

(
zδ +

∆δ

2
+ δ̂

)
h(zδ + ∆δ + δ̂)− h(zδ + δ̂)

∆δ
≈ h′

(
zδ +

∆δ

2
+ δ̂

)
.

Thus, equations (3)-(5) can be simplified as

â ≈
(
za +

∆a

2

)
cos

(
zφ +

∆φ

2
− φ̂

) h
(
zδ + ∆δ

2 + δ̂
)

h(2δ̂)

sin

(
zφ +

∆φ

2
− φ̂

)
h

(
zδ +

∆δ

2
+ δ̂

)
≈ 0

â ≈
(
za +

∆a

2

)
cos

(
zφ +

∆φ

2
− φ̂

) h′
(
zδ + ∆δ

2 + δ̂
)

h′(2δ̂)
.

The only solution is:

â ≈ za +
∆a

2
, δ̂ ≈ zδ +

∆δ

2
, φ̂ ≈ zφ +

∆φ

2
(6)

which means that, in high resolution, reconstruction values are approximately in the middle of quantization cells.
2) Mean distortion for one cell: Using the results of equation (6), we calculate the integral defined by equation (2):

dC(â, δ̂, φ̂) ≈
(

∆2
a

12
+ â2

)[
h̃(2δ̂ + ∆δ)− h̃(2δ̂ −∆δ)

2∆δ

]
+ â2h(2δ̂)− 2â2

sin
(

∆φ

2

)
∆φ

2

 h̃
(

2δ̂ + ∆δ

2

)
− h̃

(
2δ̂ − ∆δ

2

)
∆δ

 . (7)

Taylor series expansions give
sin
(

∆φ

2

)
∆φ

2

= 1−
∆2
φ

24
+O(∆4

φ)

h̃(2δ̂ + ∆δ)− h̃(2δ̂ −∆δ)

2∆δ
= h(2δ̂) +

∆2
δ

6
h”(2δ̂) +O(∆4

δ)

h̃
(

2δ̂ + ∆δ

2

)
− h̃

(
2δ̂ − ∆δ

2

)
∆δ

= h(2δ̂) +
∆2
δ

24
h”(2δ̂) +O(∆4

δ)

where h”(x) is the second order derivative of h(x). Thus, keeping only terms in O(∆2
a), O(∆2

δ) and O(∆2
φ), equation (7) can

be simplified as

dC(â, δ̂, φ̂) ≈ 1

12

[
h(2δ̂)∆2

a + â2h”(2δ̂)∆2
δ + â2h(2δ̂)∆2

φ

]
. (8)

3) Overall mean distortion: We assume that the amplitude quantizer depends on damping, that the damping quantizer
depends on amplitude, and that the phase quantizer depends both on amplitude and damping. As amplitude, damping and
phase are quantized with scalar quantizers, the 3-dimensional QCD can be split in 3 scalar functions: gA(a, δ), g∆(a, δ) and
gΦ(a, δ, φ) are respectively the QCD on amplitude, damping and phase. The scalar QCDs at reconstruction points are defined
as follows:

gA(â, δ̂) =
1

∆a
, g∆(â, δ̂) =

1

∆δ
, gΦ(â, δ̂, φ̂) =

1

∆φ
.

Thus, using the result of equation (8), the mean distortion defined by equation (1) can be written as

D ≈ 1

12

∑
n

ρn

[
h(2δ̂n)

g2
A(ân, δ̂n)

+
â2h”(2δ̂n)

g2
∆(ân, δ̂n)

+
â2h(2δ̂n)

g2
Φ(ân, δ̂n, φ̂n)

]
.
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Assuming that the PDF of EDS parameters ρP (p) is constant over each quantization cell leads to the following approximation:

ρn ≈ ρP (p̂n) ∆n (9)

where ∆n is the volume of quantization cell Cn, yielding

D ≈ 1

12

∑
n

ρP

(
ân, δ̂n, φ̂n

)[ h(2δ̂n)

g2
A(ân, δ̂n)

+
â2h”(2δ̂n)

g2
∆(ân, δ̂n)

+
â2h(2δ̂n)

g2
Φ(ân, δ̂n, φ̂n)

]
∆n.

The sum can be approximated by an integral:

D ≈ 1

12

∫ ∫ ∫
ρP (a, δ, φ)

[
h(2δ)

g2
A(a, δ)

+
a2h”(2δ)

g2
∆(a, δ)

+
a2h(2δ)

g2
Φ(a, δ, φ)

]
da dδ dφ. (10)

D. COMPUTATION OF THE OPTIMAL QUANTIZATION CELL DENSITY

The optimal quantizer minimizes the overall mean distortion under a bit rate constraint. We write the constraint as a condition
on the entropy of quantization indexes. Thus, the optimal quantizer minimizes D = E[d(P, P̂ )] under the constraint H(I) ≤ R,
where H(I) denotes the entropy of quantization indexes and R the average number of coding bits.

We denote in the quantization index associated with the quantization cell Cn. We get

proba{I = in} = proba{P ∈ Cn} = ρn.

Thus, the entropy of quantization indexes can be written as

H(I) = −
∑
n

ρn log2(ρn).

According to equation (9), we get
H(I) ≈ −

∑
n

ρP (p̂n) ∆n log2 (ρP (p̂n) ∆n) .

∆n is related to the QCD at reconstruction points:

gP (p̂n) =
1

∆n
.

The expression of the entropy is then

H(I) ≈ −
∑
n

ρP (p̂n) log2 (ρP (p̂n)) ∆n +
∑
n

ρP (p̂n) log2 (gP (p̂n)) ∆n.

Sums can be approximated by integrals, yielding

H(I) ≈ −
∫
ρP (p) log2 (ρP (p)) dp+

∫
ρP (p) log2 (gP (p)) dp.

The first integral is the differential entropy of EDS parameters named H(P ). The 3-dimensional QCD gP (p) can be written
as the product of 3 scalar QCD on amplitude, damping and phase. Finally, the entropy constraint can be written as

H(I) ≈ H(P ) +

∫ ∫ ∫
ρP (a, δ, φ) log2 (gA(a, δ) g∆(a, δ) gΦ(a, δ, φ)) da dδ dφ ≤ R. (11)

Thus, we look for the expressions of gA, g∆ and gΦ which minimize the distortion defined by equation (10) under the entropy
constraint defined by equation (11).

Assuming that the rate-distortion function of any quantizer (i.e. D as a function of H(I)) is decreasing, the optimal solution
(i.e. the minimum value for D) is reached when H(I) = R. This constrained optimization problem can be conveniently solved
with a Lagrange optimization technique. The Lagrangian functional is defined as

L = D + µ [H(I)−R]

where µ is the real-valued Lagrange multiplier. The Euler-Lagrange equations give the optimal expressions of gA, g∆ and gΦ

as functions of µ:
∂L
∂gA

= 0 ⇔ gA(a, δ) ≈
(

ln(2)h(2δ)

6µ

) 1
2

∂L
∂g∆

= 0 ⇔ g∆(a, δ) ≈ a
(

ln(2)h”(2δ)

6µ

) 1
2
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∂L
∂gΦ

= 0 ⇔ gΦ(a, δ, φ) ≈ a
(

ln(2)h(2δ)

6µ

) 1
2

.

The optimal value for µ can be obtained from the constraint. Equation (11) can be rewritten as

R ≈ H(P ) +

∫ ∫ ∫
ρP (a, δ, φ) log2

(
a2 ln(2)

3
2h(2δ)h”(2δ)

1
2

(6µ)
3
2

)
da dδ dφ.

Defining the following constant:

σ = H(P ) +

∫
ρ∆(δ) log2(h(2δ)h”(2δ)

1
2 )dδ + 2

∫
ρA(a) log2(a)da

where ρA(a) and ρ∆(δ) are respectively the marginal PDFs of amplitude and damping, the optimal value for µ is

µ ≈ ln(2)

6
2

2
3 (σ−R)

and the optimal QCDs are finally
gA(δ) ≈ h(2δ)

1
2 2

1
3 (R−σ)

g∆(a, δ) ≈ a h”(2δ)
1
2 2

1
3 (R−σ)

gΦ(a, δ) ≈ a h(2δ)
1
2 2

1
3 (R−σ).

E. CONCLUSION

One can observe that amplitude and phase quantizers are uniform, since the QCDs gA and gΦ do not depend respectively
on a and φ. In contrast, damping quantization is not uniform: Quantization is more precise for small damping values.

This work can be considered as an extension of the Entropy-Constrained Polar Quantizer proposed by R.Vafin et al, since
for δ = 0, the resulting QCDs gA and gΦ are identical to the ones described by R.Vafin et al.

For practical implementation, integrating each QCD with respect to the quantized variable leads to a compression/expansion
function that can be combined with a unitary and uniform scalar quantizer.

A performance evaluation of this quantizer in comparison with a 3-dimensional vector quantizer is proposed in a paper
submitted to IEEE Signal Processing Letters named ”Entropy-Constrained Quantization of Exponentially Damped Sinusoids
Parameters”.


