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Potential maps and Hardy spaces on special Lipschitz

domains

Martin Costabel Alan McIntosh Robert J. Taggart

28 May, 2010

Abstract

Suppose that Ω is the open region in R
n above a Lipschitz graph and let d denote the exterior

derivative on R
n . We construct a convolution operator T which preserves support in Ω , is

smoothing of order 1 on the homogeneous function spaces, and is a potential map in the sense

that dT is the identity on spaces of exact forms with support in Ω . Thus if f is exact and

supported in Ω , then there is a potential u , given by u = Tf , of optimal regularity and

supported in Ω , such that du = f . This has implications for the regularity in homogeneous

function spaces of the de Rham complex on Ω with or without boundary conditions. The

operator T is used to obtain an atomic characterisation of Hardy spaces Hp of exact forms

with support in Ω whenever n/(n+ 1) < p ≤ 1 .
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1 Introduction

The study of potential maps on domains Ω of R
n has a rich history. Consider, for a moment, the

following question. Suppose that a function f belongs to a Sobolev space Hm
0 (Ω) where m ≥ 0

and Ω is a bounded strongly Lipschitz domain, and suppose that
∫
f = 0 . Is there a vector field

u in (Hm+1
0 (Ω))n which satisfies div u = f ? The answer is yes, as was essentially proved by

J. Nečas. Indeed, this follows by duality from [13, Chapter 3, Lemma 7.1]. An alternative proof

was provided by M. E. Bogovskiı̆ [1, 2], who, in particular, constructed an integral operator T
which maps boundedly from the Sobolev space Wm,p

0 (Ω) into (Wm+1,p
0 (Ω))n in the case when

m ≥ 0 , 1 < p < ∞ , and Ω is starlike with respect to a ball. The potential u that solves the

equation div u = f is then given by u = Tf , provided that
∫
f = 0 . Since T gives the potential

u which solves the equation and preserves support, we say that T is a ‘potential map’ for the

domain Ω . Such a potential map is an important tool in the theory of equations of hydrodynamics.

See the monograph [7] of G. P. Galdi and the papers mentioned below for further references to the

extensive literature.

Subsequently M. Mitrea [12] and D. Mitrea, M. Mitrea and S. Monniaux [11] adapted Bogov-

skiı̆’s operator to construct potential maps Tℓ to solve the equation du = f , where d denotes the

exterior derivative operator and where f is an exact ℓ-form with support in Ω and coefficients

in a suitable function space. Using Tℓ , they have thereby deduced sharp regularity estimates for

important operators in the theory of hydrodynamics. As with Bogovskiı̆’s operator, the mapping
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properties of Tℓ ensure that there is no loss of regularity, and that support in Ω is preserved. In

the case when n = 3 , the equation du = f is equivalent to solving one of the equations

gradu = f, curlu = f or div u = f,

where f is interpreted either as a scalar or vector field depending on the value of ℓ .

More recently, M. Costabel and A. McIntosh [6] showed that the operators Tℓ are pseudod-

ifferential operators of order −1 and are therefore bounded in all the spaces of ℓ-forms with

coefficients in one of the Besov or Triebel–Lizorkin classes. For a domain starlike with respect to

a ball, the special support properties of the operators imply regularity for the de Rham complex

with full Dirichlet boundary conditions. Similar results hold for complexes without boundary con-

ditions (using dual Poincaré-type operators). For bounded strongly Lipschitz domains, the same

regularity results hold, and in addition the cohomology spaces can always be represented by C∞

functions.

In the present paper, we turn our attention to unbounded special Lipschitz domains, that is, to

domains in R
n that lie above the graph of a Lipschitz function, and consider the spaces Ḣs(Rn,Λ)

of forms with coefficients in the homogeneous Sobolev space of order s , where s ∈ R . We con-

struct an operator T with the following properties. First, T boundedly lifts forms in Ḣs(Rn,Λ)
to forms in Ḣs+1(Rn,Λ) . Second, T preserves support in Ω . Third, if df = 0 then a solution

u of the equation du = f is given by u = Tf . Hence the equation du = f is solved on Ω
with optimal regularity, because if f ∈ Ḣs(Rn,Λℓ) , df = 0 , and the support of f is in Ω , then

u ∈ Ḣs+1(Rn,Λℓ−1) , du = f , and the support of u is in Ω .

Our potential map T is a convolution integral operator constructed using a reproducing for-

mula of D. Chang, S. Krantz and E. Stein [3] involving kernels which are supported in a cone of

R
n lying above its base at the origin. This support property is ideally suited for boundary problems

on a given special Lipschitz domains Ω , since such a cone (with appropriately chosen aperture) is

contained within Ω when translated by points from Ω , and thus T preserves support in Ω . The

bounded lifting property of T is valid not only when T acts on Ḣs(Rn,Λ) , but also when T acts

on the space of forms whose coefficients belong to any homogeneous Besov or Triebel–Lizorkin

function space. These properties of T have immediate ramifications for the regularity of the de

Rham complex in such spaces on Ω .

The second half of this paper uses the reproducing formula and operator T to show that Hardy

spaces Hp
d (Rn,Λ) of exact forms can be characterised by exact atoms whenever n/(n + 1) <

p ≤ 1 . Using the same method, we also show that the Hardy space Hp
z,d(Ω,Λ) of exact forms

with support in the closure Ω of a special Lipschitz domain can be characterised using exact atoms

supported in Ω . These results generalise the classical theorems of R. Coifman [4] and R. Latter

[8] for R
n , and the result of Chang, Krantz and Stein [3] for special Lipschitz domains, and have

already been proved by Z. Lou and A. McIntosh [10, 9] for exact forms in the case when p = 1 .

In the three latter papers, the authors follow the method of R. Coifman, Y. Meyer and E. Stein

[5] to show that each element u of the Hardy space can be written as a sum of atoms by first

mapping u into a ‘tent space’ via an operator Q , then decomposing the image Qu as a sum of

tent space atoms, before finally mapping the decomposition back into the Hardy space. In the case

that u is supported in Ω , [3] and [9] then use reflection maps to express u as a sum of atoms

whose supports lie in Ω . Our method of proof differs from both of these papers, in that we use the

full power of the reproducing formula to obtain a tent space atomic decomposition of Qu whose

atoms have good support properties with respect to Ω , thus removing the need for reflection maps.
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The paper is organised as follows. In Section 2 we introduce notation and define the various

spaces that we use. At the beginning of Section 3, the potential map T is defined, its properties are

stated (see Theorem 3.3) and its utility for solving potential equations with boundary conditions

on special Lipschitz domains is illustrated. The rest of this section is devoted to the proof of

Theorem 3.3. Section 4 contains applications for potential maps on spaces without boundary

conditions, by considering operators induced from T via quotient maps. In the final section, we

state and prove our atomic characterisation of Hardy spaces of exact forms on R
n and Ω .
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2 Notation and definitions

Suppose that σ > 0 and x is a point of R
n , where n ≥ 1 , x = (x′, xn) , x′ = (x1, x2, . . . , xn−1) ∈

R
n−1 and xn ∈ R . Denote by Γσ(x) and Γ̃σ(x) the cones of aperture σ and vertex x given by

Γσ(x) = {y ∈ R
n : σ(yn − xn) > |y′ − x′|}

and

Γ̃σ(x) = {y ∈ R
n : σ(xn − yn) > |y′ − x′|}.

The cone Γσ(x) lies above its vertex while Γ̃σ(x) lies beneath.

A subset Ω of R
n is said to be a special Lipschitz domain if

Ω = {x ∈ R
n : xn > λ(x′)},

where the function λ : R
n−1 → R satisfies the Lipschitz condition

|λ(x′) − λ(y′)| ≤ A|x′ − y′| ∀x′, y′ ∈ R
n−1

for some positive number A . The region that lies strictly beneath the graph of λ is denoted

by Ω− . Thus Ω− = R
n \ Ω . It follows immediately from the Lipschitz condition that when

0 < σ ≤ A−1 , the cone Γσ(x) is contained entirely in Ω whenever x ∈ Ω , while Γ̃σ(x) lies

entirely in Ω− whenever x ∈ Ω− .

Given a ball B of R
n , let r(B) denote its radius and |B| its volume. Whenever c > 0 , let

cB denote the ball with the same centre as B and with radius cr(B) . If r > 0 and z ∈ R
n then

Br(z) denotes the ball B of radius r and centre z .

Throughout, let C∞
0 (Rn) denote the space of smooth functions with compact support in R

n .

The Schwartz class of rapidly decreasing C∞ functions on R
n is denoted by S(Rn) . Given f
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in S(Rn) , denote by f̂ its Fourier transform and by f̌ its inverse transform. Let Z(Rn) denote

the set of functions ϕ in S(Rn) possessing the property that (∂αϕ̂)(0) = 0 for every multi-index

α . Consider Z(Rn) as a topological subspace of S(Rn) and let Z ′(Rn) denote the topological

dual of Z(Rn) . It is well-known (see, for example, [15, Section 5.1.2]) that Z ′(Rn) can be

identified with the quotient space S ′(Rn)/P(Rn) , where S ′(Rn) denotes the class of tempered

distributions on R
n and P(Rn) denotes the collection of all polynomials in R

n . In this paper

we use only the weak topology on Z ′(Rn) . Hence we say that a sequence (un)∞n=1 ⊂ Z ′(Rn)
converges in Z ′(Rn) to an element u of Z ′(Rn) if for each ϕ in Z(Rn) , |un(ϕ) − u(ϕ)| → 0
as n→ ∞ . The space Z ′(Rn) is complete with respect to this topology.

Many of the terms and definitions related to the space S ′(Rn) of tempered distributions have

analogous formulations in Z ′(Rn) . The Dirac delta distribution δ is defined as an element of

Z ′(Rn) by the formula δ(ϕ) = ϕ(0) whenever ϕ ∈ Z(Rn) . Suppose that u ∈ Z ′(Rn) . If Ω
is an open set of R

n then we say that the support of u is contained in Ω , or suppu ⊂ Ω , if

u(ϕ) = 0 for all φ in Z(Rn) with support in (Ω)c . If k ∈ S(Rn) then the convolution k ∗ u is

defined by

(k ∗ u)(ϕ) = u(k̃ ∗ ϕ) ∀ϕ ∈ Z(Rn),

where k̃(x) = k(−x) whenever x ∈ R . It is straightforward to show that k̃ ∗ ϕ ∈ Z(Rn) and

supp(k ∗ u) ⊂ supp k + suppu = {x+ y ∈ R
n : x ∈ supp k, y ∈ suppu} . (2.1)

The homogeneous Besov spaces Ḃs
p,q(R

n) and homogeneous Triebel–Lizorkin spaces Ḟ s
p,q(R

n)
are subspaces of Z ′(Rn) defined in the following way. Fix a standard Littlewood–Paley dyadic

system (θj)j∈Z of C∞ functions on R
n with support in dyadic annuli centred at the origin (see

[15, Section 5.1.3] for details). Given u in Z ′(Rn) , define ∆ju by ∆ju(ϕ) = u( (θjϕ̌)̂ ) for all

ϕ in Z(Rn) . If s ∈ R , p > 0 and q > 0 then Ḃs
p,q(R

n) and Ḟ s
p,q(R

n) are defined to be the

spaces of all u in Z ′(Rn) with finite norms given by

‖u‖Ḃs
p,q(Rn) =

(∑

j∈Z

2jsq ‖∆ju‖q
Lp(Rn)

)1/q

and

‖u‖Ḟ s
p,q(Rn) =

∥∥∥
(∑

j∈Z

2jsq|∆ju( · )|q
)1/q∥∥∥

Lp(Rn)
.

By suitable modification, one may also define homogeneous spaces when p = ∞ or q = ∞ .

Both these classes include the homogeneous Sobolev spaces Ḣs(Rn) as a special case, namely

Ḣs(Rn) = Ḃs
2,2(R

n) = Ḟ s
2,2(R

n) whenever s ∈ R . Moreover the Hardy spaces Hp(Rn) ,

which are defined as subspaces of S ′(Rn) , can be characterised by such norms because the natural

projection from S ′(Rn) to Z ′(Rn) induces an isomorphism from Hp(Rn) to Ḟ 0
p,2(R

n) when

0 < p <∞ (see [15, Section 5.2.4]).

To simplify notation, given any real number s , let ˙A s(Rn) denote any one of the spaces

Ḃs
p,q(R

n) (for fixed p and q satisfying 0 < p ≤ ∞ , 0 < q ≤ ∞) or Ḟ s
p,q(R

n) (for fixed p and

q satisfying 0 < p < ∞ , 0 < q ≤ ∞). Given a special Lipschitz domain Ω of R
n , the spaces

˙A s
Ω
(Rn) and ˙A s(Ω) are defined by

˙A s
Ω
(Rn) = {u ∈ ˙A s(Rn) : suppu ⊂ Ω}
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and

˙A s(Ω) = ˙A s(Rn)/ ˙A s
Ω−

(Rn).

The quotient space ˙A s(Ω) can be interpreted both as a space of ‘distributions’ on R
n restricted

to Ω , and as a space of ‘distributions’ on Ω . The subspace ˙A s
Ω
(Rn) is a space of ‘distributions’

on R
n .

If f ∈ S(Rn) and t > 0 then ft is given by the formula

ft(x) = t−nf(x/t) ∀x ∈ R
n.

It is easy to verify that the following formulae hold whenever t > 0 , 1 ≤ j ≤ n , and f and g
belong to S(Rn) :

(∂jf)t = t∂j(ft), (f ∗ g)t = ft ∗ gt, and (ft)̂ (ξ) = f̂(tξ).

Denote the full exterior algebra on R
n by Λ , the exterior product by ∧ and the interior prod-

uct (or contraction) by y . The space of differential forms with coefficients in ˙A s(Rn) is denoted

by ˙A s(Rn,Λ) , and similarly for forms whose coefficients lie in any of the test classes, func-

tional classes, subspaces or quotient spaces mentioned above. The space of differential forms in
˙A s(Rn,Λ) of order ℓ is denoted by ˙A s(Rn,Λℓ) . The topologies of these spaces are inherited

in the obvious way. Throughout this paper we follow the convention that v y f = 0 whenever

f is a 0-form and v is a 1-form. The exterior derivative d for forms acting on R
n is defined by

du = Σn
j=1ej ∧ ∂ju , where (ej)

n
j=1 denotes the standard basis for R

n . It has the property that

d2 = 0 . By convention, du = 0 whenever u is an n-form. Note that d maps Z(Rn,Λ) into

itself and hence is a well-defined map on Z ′(Rn,Λ) . It also maps boundedly from ˙A s(Rn,Λ)
into ˙A s−1(Rn,Λ) .

3 The potential map for special Lipschitz domains

Suppose that Ω is a special Lipschitz domain of R
n with associated Lipschitz constant A . In

this section we define a potential map T for Ω as a limit of convolution operators on the space

Z ′(Rn,Λ) . The kernels used to define T make use of a C∞
0 (Rn) function Φ given by the

following result of Chang, Krantz and Stein [3, Lemma 3.4, Lemma 3.5].

Proposition 3.1 Given a bounded open set J of R
n whose closure J is contained in ΓA−1(0) ,

there exists a C∞ function Φ : R
n → R with the following properties:

(i) suppΦ ⊂ J ,

(ii)

∫

Rn

Φ(x) dx = 1 ,

(iii)

∫

Rn

Φ(x)xj dx = 0 whenever 1 ≤ j ≤ n , and

(iv) if δ denotes the Dirac distribution in Z ′(Rn) , then

δ =

n∑

j=1

lim
a→0+

lim
b→∞

∫ b

a
(∂jΦ)t ∗ (Ψj)t

dt

t
, (3.1)

where Ψj(x) = 2Φ(x)xj and the limits are taken in Z ′(Rn) .
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For the remainder of the paper, we fix constants A and σ such that A ≥ 0 , σ > 0 and

σA < 1 . Henceforth, we also fix a function Φ satisfying (ii), (iii) and (iv) of the above proposition

such that

suppΦ ⊂ {y ∈ Γσ(0) : 1/2 ≤ yn, |y| ≤ 1}. (3.2)

Let Ψ and ∂Φ denote the vector-valued functions on R
n , both with integral zero, defined by

Ψ(x) = 2Φ(x)x =

n∑

j=1

2Φ(x)xjej and ∂Φ =

n∑

j=1

(∂jΦ)ej .

We now define the potential map T . Whenever 0 < a < b , define the R
n -valued kernel Ka,b

on R
n by

Ka,b(x) =

∫ b

a
(Φ ∗ Φ)t(x)x

dt

t
∀x ∈ R

n. (3.3)

For each u in Z ′(Rn,Λ) , define Tu by the formula

Tu = lim
a→0+

lim
b→∞

Ka,b ∗ yu, (3.4)

where both limits are taken in Z ′(Rn) . If u is a 0-form then Tu = 0 . Note that T can be

expressed by the formula

Tu(x) = lim
a→0+

lim
b→∞

∫ b

a

∫

Rn

(Φ ∗ Φ)t(x− y) (x− y) y u(y) dy
dt

t

whenever u belongs to the subspace Z(Rn,Λ) and where both limits are taken in Z ′(Rn) .

We remark that in the case when n = 1 , the domain Ω is a semi-open interval, A = 0 and

Γσ = (0,∞) . In this case, Φ is a C∞ function with support in [12 , 1] such that
∫

Φ(x) dx = 1
and

∫
Φ(x)x dx = 0 . We then obtain that

Tu(x) =

∫ x

−∞
e1 y u(y) dy

whenever u ∈ Z(R,Λ) and x ∈ R .

Proposition 3.2 The kernels Ka,b and the operator T have the alternative representations

Ka,b(x) =

∫ b

a
(Φt ∗ Ψt)(x) dt ∀x ∈ R

n (3.5)

and

Tu = lim
a→0+

lim
b→∞

∫ b

a
Φt ∗ Ψt ∗ yu dt .

Proof: What needs to be shown is that (Φ ∗ Ψ)(x) = (Φ ∗ Φ)(x)x . Indeed,

(Φ ∗ Ψ)(x) =

∫
Φ(x− y)2Φ(y)y dy

=

∫
Φ(x− y)Φ(y)y dy +

∫
Φ(y)Φ(x− y)(x− y) dy

= (Φ ∗ Φ)(x)x,



7

thus proving the proposition. �

The following theorem, which is the main result of this section, asserts, among other things,

that T is well-defined.

Theorem 3.3 Suppose that Ω is a special Lipschitz domain of R
n and that s ∈ R . Then the

operator T defined above has the following properties:

(i) the operator T maps from Z ′(Rn,Λ) to Z ′(Rn,Λ);

(ii) the operator T maps ˙A s(Rn,Λ) to ˙A s+1(Rn,Λ) , and there is a constant c such that

‖Tu‖ ˙A s+1(Rn,Λ) ≤ c ‖u‖ ˙A s(Rn,Λ) ∀u ∈ ˙A s(Rn,Λ);

(iii) dTu+ Tdu = u whenever u ∈ Z ′(Rn,Λ);

(iv) if u ∈ Z ′(Rn,Λ) and supp(u) ⊂ Ω then supp(Tu) ⊂ Ω; and

(v) the operator T maps ˙A s
Ω
(Rn,Λ) to ˙A s+1

Ω
(Rn,Λ) , and for the same constant c of part (ii),

‖Tu‖ ˙A s+1

Ω
(Rn,Λ) ≤ c ‖u‖ ˙A s

Ω
(Rn,Λ) ∀u ∈ ˙A s

Ω
(Rn,Λ) .

Note that part (v) is an immediate consequence of parts (ii) and (iv) and the definition of
˙A s
Ω
(Rn,Λ) . Before turning to the proof of the rest of the theorem, we give an immediate applica-

tion to the regularity of the exterior derivative on special Lipschitz domains.

Corollary 3.4 Suppose that s ∈ R and that Ω is a special Lipschitz domain of R
n . If u ∈

˙A s
Ω
(Rn,Λ) and du = 0 then there exists v in ˙A s+1

Ω
(Rn,Λ) such that dv = u . Moreover, there

is a constant c independent of u such that

‖v‖ ˙A s+1

Ω
(Rn,Λ) ≤ c ‖u‖ ˙A s

Ω
(Rn,Λ) .

Consequently, the de Rham complex

0 → ˙A s
Ω
(Rn,Λ0)

d→ ˙A s−1
Ω

(Rn,Λ1)
d→ ˙A s−2

Ω
(Rn,Λ2)

d→ · · · d→ ˙A s−n
Ω

(Rn,Λn) → 0

is exact, and each space ˙A s
Ω
(Rn,Λk) has a direct sum decomposition

˙A s
Ω
(Rn,Λk) = d ˙A s+1

Ω
(Rn,Λk−1) ⊕ Td ˙A s

Ω
(Rn,Λk)

with bounded projections dT and Td .

Proof: If du = 0 then the anti-commutation relation in part (iii) of the theorem becomes

dTu = u . So set v = Tu . It is straightforward to check that dT and Td are bounded projections

and that dT ˙A s
Ω
(Rn,Λk) = d ˙A s+1

Ω
(Rn,Λk−1) . �

The important observation is that the projections are the same for all choices of the homoge-

neous Besov and Triebel–Lizorkin spaces ˙A s
Ω
(Rn,Λk) , and consequently the spaces d ˙A s

Ω
(Rn,Λk)

of exact forms have the same interpolation properties as do the spaces ˙A s
Ω
(Rn,Λk) .
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We remark that the operator T as well as the constants in the estimates, depend on A and the

choice of σ and Φ , but not on the precise domain Ω .

The rest of this section is devoted to proving Theorem 3.3. In Subsection 3.1 we prove some el-

ementary results about operators defined on Z ′(Rn) via homogeneous Fourier multipliers. These

results are used in Subsection 3.2 to prove parts (i) and (ii) of Theorem 3.3. Parts (iii) and (iv) are

then proved in Subsections 3.3 and 3.4.

3.1 Operators defined by homogeneous Fourier multipliers

In this section we state and prove some rudimentary results about operators defined by homoge-

neous Fourier multipliers. These will be used later in the proof of Theorem 3.3.

Definition 3.5 Suppose that k ∈ R . We say that a function m on R
n is homogeneous of order k

if

m(τξ) = τkm(ξ) ∀ξ ∈ R
n (3.6)

whenever τ > 0 .

Proposition 3.6 Suppose that a function m on R
n is homogeneous of order k and has partial

derivatives of all orders on R
n \ {0} .

(i) If α is a multi-index then there is a constant c , given by c = sup{|∂αm(ω)| : |ω| = 1} ,

such that

|∂αm(ξ)| ≤ c|ξ|−|α|+k ∀ξ ∈ R
n \ {0}. (3.7)

(ii) The operator S , given by

Su(ϕ) = u
(
(mϕ̌)̂

)
∀u ∈ Z ′(Rn) ∀ϕ ∈ Z(Rn),

is well-defined on Z ′(Rn) .

(iii) There exists a constant c such that

‖Su‖ ˙A s−k(Rn) ≤ c ‖u‖ ˙A s(Rn) ∀u ∈ ˙A s(Rn).

Proof: Assume the hypotheses of the proposition. It is obvious that ∂αm is homogeneous of

order k − |α| and hence estimate (3.7) follows.

To show (ii), it suffices to verify that (mϕ̌)ˆ ∈ Z(Rn) whenever ϕ ∈ Z(Rn) . Since m has at

most polynomial growth at infinity, one need only show that ∂α(mϕ̌)(0) = 0 for every multi-

index α . But this follows from (3.7) and that fact that ϕ̌(ξ) is O(|ξ|N ) for every positive integer

N .

To show (iii), consider the Fourier multiplier θ given by θ(ξ) = |ξ|−km(ξ) . Clearly θ has

derivatives of all orders away from 0 and is homogeneous of degree 0 . So the operator Q , defined

by

Qu(ϕ) = u
(
(θϕ̌)̂

)
∀u ∈ Z ′(Rn) ∀ϕ ∈ Z(Rn)

is well-defined on Z ′(Rn) . Since

sup
{
|ξ||α||∂αθ(ξ)| : ξ ∈ R

n \ {0}, |α| ≤ N
}
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is bounded for each positive integer N , the operator Q is bounded on ˙A s(Rn) by standard

Fourier multiplier theory (see, for example, [15, Theorem 5.2.2]). Now S = İkQ , where the

lifting operator İk , given by

İku(ϕ) = u
(
(|ι|kϕ̌)̂

)
∀u ∈ Z ′(Rn) ∀ϕ ∈ Z(Rn),

maps ˙A s(Rn) isomorphically onto ˙A s−k(Rn) . Here ι denotes the R
n -valued function on R

n

given by ι(ξ) = ξ . This completes the proof of part (iii) of the proposition. �

3.2 Mapping properties of T

Our aim in this subsection is twofold: first, to show that the operator T defined by the limit (3.4)

is well-defined; and second, to prove parts (i) and (ii) of Theorem 3.3.

In fact, we prove these results within a more general setting. Given a function ψ in C∞
0 (Rn) ,

define the truncated kernel ka,b by

ka,b(x) =

∫ b

a
ψt(x) dt ∀x ∈ R

n

whenever 0 < a < b . Since ka,b ∈ C∞
0 (Rn) , the operator Sa,b , given by

Sa,bu = ka,b ∗ u ∀u ∈ Z ′(Rn)

is well-defined on Z ′(Rn) . Denote k̂a,b by ma,b .

Note that each component of Ka,b ∗ yu , where Ka,b is the kernel used to define T , is of the

form Sa,buI , where ψ(x) = (Φ∗Φ)(x)xj and uI is a component of u corresponding to an index

set I including j .

The first lemma of this subsection will be used to show that the limit

lim
a→0+

lim
b→∞

Sa,bu,

taken in the topology of Z ′(Rn) , is well-defined whenever u ∈ Z ′(Rn) .

Lemma 3.7 Suppose that (ma,b)0<a<b is the net of Schwartz functions defined above. Then the

function m , given by m(0) = 0 and

m(ξ) = lim
a→0+

lim
b→∞

ma,b(ξ) ∀ξ ∈ R
n \ {0}, (3.8)

is well-defined. Moreover, m ∈ C∞(Rn \ {0}) and for any multi-index α ,

∂αm(ξ) = lim
a→0+

lim
b→∞

∂αma,b(ξ) ∀ξ ∈ R
n \ {0}, (3.9)

where the convergence is uniform on annuli centred at the origin. Finally, m is homogeneous of

order −1 on R
n .

Proof: Fix a multi-index α . To show that m is well-defined and its derivatives are given by

(3.9), it suffices to show that the net (∂αma,b)a,b is uniformly Cauchy on the annulus {ξ ∈ R
n :
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r ≤ |ξ| ≤ R} for some fixed numbers r and R satisfying 0 < r < R <∞ . Henceforth, suppose

that r ≤ |ξ| ≤ R .

To begin, note that

ma,b(ξ) =

∫ b

a
ψ̂(tξ) dt

whenever 0 < a < b . Therefore

∣∣∣(∂αma,b)(ξ)
∣∣∣ =

∣∣∣∣
∫ b

a
t|α|(∂αψ̂)(tξ) dt

∣∣∣∣

≤ |ξ|−|α|

∫ b

a
|tξ||α||(∂αψ̂)(tξ)| dt

≤ cα|ξ|−|α|

∫ b

a
min

{
1, |tξ|−2

}
dt

for some constant cα , since ψ̂ ∈ S(Rn) . Now

∣∣∣(∂αmb,b0)(ξ)
∣∣∣ ≤ cα|ξ|−|α|−2

(
1

b
− 1

b0

)
<

cα

r|α|+2b

whenever b0 > b , while

|(∂αma0,a)(ξ)| ≤ cα|ξ|−|α|(a− a0) < cαr
−|α|a

whenever a0 < a . So if 0 < a0 < a < b < b0 then
∣∣∣(∂αma0,b0)(ξ) − (∂αma,b)(ξ)

∣∣∣ < cα

(
r−|α|−2b−1 + r−|α|a

)
,

which can be made as small as we like by taking b sufficiently large and a sufficiently close to 0 .

The fact that m is homogeneous of order −1 follows easily from the homogeneity of each ma,b

and the definition of m . This completes the proof. �

Using Proposition 3.6 and Lemma 3.7, we now define the operator S on Z ′(Rn) by

Su(ϕ) = u
(
(mϕ̌)̂

)
∀u ∈ Z ′(Rn) ∀ϕ ∈ Z(Rn),

where m is the function given by (3.8).

Lemma 3.8 If u ∈ Z ′(Rn) then Sa,bu converges to Su in Z ′(Rn) as a→ 0+ and as b→ ∞ .

Proof: Suppose that ϕ ∈ Z(Rn) and u ∈ Z ′(Rn) . Since

Sa,bu(ϕ) = u
(
(ma,bϕ̌)̂

)
∀u ∈ Z ′(Rn) ∀ϕ ∈ Z(Rn),

it suffices to show that ma,bϕ̌ → mϕ̌ in S(Rn) as a → 0+ and b → ∞ . For then (ma,bϕ̌)̂ →
(mϕ̌)̂ in S(Rn) and hence in Z(Rn) . It follows that

(Sa,bu− Su)(ϕ) = u
((

(ma,b −m)ϕ̌
)̂ )

→ 0

as a→ 0+ and b→ ∞ , which establishes the lemma.
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Suppose that α and β are two multi-indices and ǫ > 0 . We need to show that there exist positive

numbers a0 and b0 such that

sup
ξ∈Rn

∣∣∣ξα∂β
(
(m−ma,b)ϕ̌

)
(ξ)
∣∣∣ < ǫ

whenever 0 < a < a0 < b0 < b . By expanding the left-hand side using the multidimensional

version of Leibniz’ rule, it suffices to show that there are positive numbers a0 and b0 such that

sup
ξ∈Rn

sup
|γ|≤|β|

|ξ||α|
∣∣∂γ(m−ma,b)(ξ)

∣∣ ∣∣∂β−γϕ̌(ξ)
∣∣ < ǫ

cβ
(3.10)

whenever 0 < a < a0 < b0 < b , where the constant cβ is the largest coefficient appearing the

formula for Leibniz’ rule.

By Lemma 3.7, there exist a1 and b1 such that

sup
{
|∂γ(m−ma,b)(ω)| : |γ| ≤ |β|, |ω| = 1

}
≤ 1 (3.11)

whenever 0 < a < a1 < b1 < b . Since m and each ma,b are homogeneous of order −1 ,

m−ma,b is also homogeneous of order −1 and consequently (3.7) and (3.11) give the estimate

|∂γ(m−ma,b)(ξ)| ≤ |ξ|−|γ|−1 ∀ξ ∈ R
n \ {0} (3.12)

whenever 0 < a < a′1 < b1 < b and |γ| ≤ |β| . Now choose R in (0,∞) so large that

sup
|ξ|>R

sup
|γ|≤|β|

|ξ||α|−|γ|−1|∂β−γϕ̌(ξ)| < ǫ

3cβ
. (3.13)

This is possible since ∂β−γϕ̌ is rapidly decreasing at infinity. Now choose r in (0,∞) so small

that

sup
0<|ξ|<r

sup
|γ|≤|β|

ξ||α|−|γ|−1|∂β−γϕ̌(ξ)| < ǫ

3cβ
. (3.14)

This is possible since ϕ̌ and all its partial derivatives are 0 at the origin. By Lemma 3.7, there are

positive numbers a2 and b2 such that

sup
r≤|ξ|≤R

sup
|γ|≤|β|

∣∣∣ξα
(
∂γ(m−ma,b)

)
(ξ)
(
∂β−γϕ̌

)
(ξ)
∣∣∣ < ǫ

3cβ
(3.15)

whenever 0 < a < a2 < b2 < b . By combining estimates (3.12), (3.13), (3.14) and (3.15), it is

easy to see that (3.10) holds whenever 0 < a < min(a0, a1) < max(b0, b1) < b . This shows that

ma,bϕ̌→ mϕ̌ in S(Rn) and completes the proof. �

We observe now that we have proved parts (i) and (ii) of Theorem 3.3. Each component

of T is a limit in Z ′(Rn) of convolution operators of the form Sa,b and therefore has the same

properties as S . In particular, Proposition 3.6 shows that T maps from Z ′(Rn,Λ) into Z ′(Rn,Λ)
and boundedly lifts ‘functions’ of order s in the homogeneous Besov and Triebel–Lizorkin spaces

to ‘functions’ of order s+ 1 .

3.3 Anticommutation relations

We now turn to the proof of Theorem 3.3 (iii). Suppose that 0 < a < b . Define the operator

T a,b on Z ′(Rn,Λ) by T a,bu = Ka,b ∗ yu whenever u ∈ Z ′(Rn,Λ) , where Ka,b denotes the



3.3 ANTICOMMUTATION RELATIONS 12

R
n -valued kernel given by (3.5). Let δa,b denote the function in Z(Rn) given by

δa,b =

n∑

j=1

∫ b

a
(∂jΦ)t ∗ (Ψj)t

dt

t
.

Fix u in Z ′(Rn,Λ) . If we can show that

dT a,bu+ T a,bdu = δa,b ∗ u, (3.16)

then, by taking limits as a→ 0+ and b→ ∞ in Z ′(Rn) and using the reproducing formula (3.1),

part (iii) of Theorem 3.3 will be proved.

To show (3.16), we use the identity

x y (y ∧ z) + y ∧ (x y z) = (x · y)z ∀x, y ∈ Λ1 and z ∈ Λ . (3.17)

Now

T a,bu =

∫ b

a
Φt ∗ Ψt ∗ yu dt ,

so

dT a,bu =

n∑

j=1

ej ∧ ∂j

∫ b

a
Φt ∗ Ψt ∗ yu dt

=

n∑

j=1

∫ b

a
(∂jΦt) ∗ ej ∧ (Ψt ∗ yu)

dt

t

and

T a,bdu =

∫ b

a
Φt ∗ Ψt ∗ y du dt

=

n∑

j=1

∫ b

a
(∂jΦt) ∗ Ψt ∗ y (ej ∧ u)

dt

t
.

Therefore, using (3.17) we obtain

dT a,bu+ T a,bdu =

n∑

j=1

∫ b

a
(∂jΦt) ∗ (Ψt · ej) ∗ u

dt

t

=

n∑

j=1

∫ b

a
(∂jΦt) ∗ (Ψj)t ∗ u

dt

t

= δa,b ∗ u

as required.

Hence we have shown equation (3.16). This completes the proof of Theorem 3.3 (iii).
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3.4 Support properties of T

To complete the proof of Theorem 3.3, it remains to show part (iv). By (2.1) and (3.2),

supp(Φt ∗ Ψt ∗ yu) ⊂ suppΦt + (supp Ψt + suppu)

⊂ Γσ(0) + (Γσ(0) + Ω)

⊂ Γσ(0) + Ω

⊂ Ω

whenever t ∈ (0,∞) . Hence suppT a,bu ⊂ Ω whenever 0 < a < b . By taking limits in Z ′(Rn)
as a→ 0+ and b→ ∞ , one concludes that supp(Tu) ⊂ Ω .

This completes the proof of Theorem 3.3. �

4 Analogous results for complementary domains and restriction spaces

Suppose that Ω is a special Lipschitz domain of R
n , and recall that Ω− denotes the region strictly

below the corresponding Lipschitz graph. Define an operator T̃ by the formula

T̃ u = lim
a→0+

lim
b→∞

K̃a,b ∗ y u, ∀u ∈ Z ′(Rn,Λ),

where both limits are taken in Z ′(Rn) and K̃a,b(x) = Ka,b(−x) for all x in R
n . Here Ka,b is

the truncated kernel given by (3.3). The analytic properties of T̃ are clearly the same as those of

T . However, if suppu ⊂ Ω− then supp(T̃ u) ⊂ Ω− . Hence, in Theorem 3.3, one may replace

T by T̃ throughout, and Ω by Ω− in parts (iv) and (v), to obtain an analogous result for the

complementary Lipschitz domain Ω− .

We now draw some conclusions for the restriction space ˙A s(Ω,Λ) . Given u in ˙A s(Rn,Λ) ,

let [u] denote the equivalence class with representative u associated to the equivalence relation

v ∼ w ⇐⇒ v − w ∈ ˙A s
Ω−

(Rn,Λ).

By definition, [u] belongs to ˙A s(Ω,Λ) and conversely every element of ˙A s(Ω,Λ) is of this

form. Define an operator R by

R[u] = [T̃ u] ∀ [u] ∈ ˙A s(Ω,Λ).

Since T̃ maps boundedly from ˙A s(Rn,Λ) to ˙A s+1(Rn,Λ) and from ˙A s
Ω−

(Rn,Λ) to ˙A s+1

Ω−
(Rn,Λ) ,

the operator R is well-defined and maps boundedly from ˙A s(Ω,Λ) to ˙A s+1(Ω,Λ) .

Similarly, the exterior derivative d is defined as an operator on ˙A s(Ω,Λ) by

d[u] = [du] ∀ [u] ∈ ˙A s(Ω,Λ),

and maps boundedly from ˙A s(Ω,Λ) into ˙A s−1(Ω,Λ) . We thus obtain another variant of Theo-

rem 3.3.

Proposition 4.1 Suppose that Ω is a special Lipschitz domain of R
n and that s ∈ R . Then the

operator R defined above has the following properties:
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(i) the operator R maps ˙A s(Ω,Λ) to ˙A s+1(Ω,Λ) , and there is a constant c such that

‖R[u]‖ ˙A s+1(Ω,Λ) ≤ c ‖[u]‖ ˙A s(Ω,Λ) ∀[u] ∈ ˙A s(Ω,Λ);

(ii) dR[u] +Rd[u] = [u] whenever [u] ∈ ˙A s(Ω,Λ) .

One immediately obtains a regularity result for the exterior derivative on ˙A s(Ω,Λ) .

Corollary 4.2 Suppose that s ∈ R and Ω is a special Lipschitz domain. If [u] ∈ ˙A s(Ω,Λ)
and d[u] = 0 then there exists [v] in ˙A s+1(Ω,Λ) and a constant c independent of [u] such that

d[v] = [u] and

‖[v]‖ ˙A s+1(Ω,Λ) ≤ c ‖[u]‖ ˙A s(Ω,Λ) .

Consequently, the de Rham complex

0 → ˙A s(Ω,Λ0)
d→ ˙A s−1(Ω,Λ1)

d→ ˙A s−2(Ω,Λ2)
d→ · · · d→ ˙A s−n(Ω,Λn) → 0

is exact, and each space ˙A s(Ω,Λk) has a direct sum decomposition

˙A s(Ω,Λk) = d ˙A s+1(Ω,Λk−1) ⊕Rd ˙A s(Ω,Λk)

with bounded projections dR and Rd .

5 Atomic decomposition of Hardy spaces of exact forms on special

Lipschitz domains

In this section we use the operator T of Theorem 3.3 and the reproducing formula of Proposi-

tion 3.1 to show that Hardy spaces of exact forms on special Lipschitz domains can be charac-

terised by atomic decompositions. In the following definitions of these spaces and their corre-

sponding atoms, we at first allow Ω to be an arbitrary domain in R
n , where n ≥ 1 .

Definition 5.1 Suppose that 1 ≤ ℓ ≤ n and n/(n + 1) < p ≤ 1 . Let Hp
d (Rn,Λℓ) denote the

Hardy space space of all ℓ-forms u in Hp(Rn,Λ) such that u = dv for some (ℓ− 1)-form v in

S ′(Rn,Λℓ−1) . Given a domain Ω in R
n , we say that u is in Hp

z,d(Ω,Λ
ℓ) if u ∈ Hp

d (Rn,Λℓ) and

there exists v in S ′(Rn,Λℓ−1) such that u = dv and supp v ⊂ Ω .

Remark 5.2 Definition 5.1 was first introduced in the papers [10] and [9] of Lou and McIntosh

for the case when p = 1 . When n/(n+ 1) < p ≤ 1 , the space Hp
d (Rn,Λn) is isomorphic to the

classical Hardy space Hp(Rn) , while Hp
z,d(Ω,Λ

n) is isomorphic to the Hardy space Hp
z (Ω) of

[3].

Following [10] and [9], we introduce atoms of Hardy spaces of exact forms.

Definition 5.3 Suppose that 1 ≤ ℓ ≤ n and n/(n+1) < p ≤ 1 . We say that a is an Hp
d (Rn,Λℓ)-

atom if for some ball B in R
n ,

(a) there exists b in L2(Rn,Λℓ−1) such that supp b ⊂ B and a = db , and
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(b) ‖a‖L2(Rn,Λ) ≤ |B|1/2−1/p .

Note that if n/(n+ 1) < p ≤ 1 and a is an Hp
d (Rn,Λℓ)-atom, then each component of a is

a classical Hp(Rn)-atom.

Definition 5.4 Suppose that Ω is a domain of R
n , 1 ≤ ℓ ≤ n and n/(n + 1) < p ≤ 1 . We say

that a is an Hp
z,d(Ω,Λ

ℓ)-atom if for some ball B in R
n ,

(a) there exists b in L2(Rn,Λℓ−1) such that supp b ⊂ B and a = db ,

(b) ‖a‖L2(Rn,Λ) ≤ |B|1/2−1/p , and

(c) 4B ⊂ Ω .

Note that, following [9], the supports of Hp
z,d(Ω,Λ

ℓ)-atoms are away from the boundary of

Ω , which is stronger than the classical definition of [3].

The following lemma gives an L2 estimate for the function b of Definitions 5.3 and 5.4.

Lemma 5.5 Suppose that 1 ≤ ℓ ≤ n , n/(n + 1) < p ≤ 1 and a is an Hp
d (Rn,Λℓ)-atom

(respectively an Hp
z,d(Ω,Λ

ℓ)-atom). Then the L2(Rn,Λℓ−1) form b of Definition 5.3 (respectively

Definition 5.4) can be chosen such that

‖b‖L2(Rn,Λ) ≤ cnr(B)|B|1/2−1/p,

where the constant cn depends only on n .

Proof: Let B denote the collection of all balls in R
n and let L2

B
(Rn,Λk) denote the space

of k -forms with components in L2(Rn) and support in the closure of a ball B . By applying the

result of [12] or [6, Section 3] to a unit ball and then scaling, one obtains the following. There

exists a constant cn and a family of operators {TB
ℓ : 1 ≤ ℓ ≤ n,B ∈ B} with the following

properties:

(i) if B ∈ B and 1 ≤ ℓ ≤ n then TB
ℓ maps from L2

B
(Rn,Λℓ) to L2

B
(Rn,Λℓ−1) and

∥∥TB
ℓ u
∥∥

L2(Rn,Λ)
≤ cnr(B) ‖u‖L2(Rn,Λ) ∀u ∈ L2

B
(Rn,Λℓ);

(ii) if B ∈ B and 1 ≤ ℓ < n then dTB
ℓ u+ TB

ℓ+1du = u for every u ∈ L2
B

(Rn,Λℓ) ; and

(iii) if B ∈ B then there exists an n-form ϑB of C∞
0 (Rn,Λn) supported in 1

2 B such that

dTB
n u = u− (

∫
u)ϑB for every u ∈ L2

B
(Rn,Λn) .

We return now to the proof of the lemma. Suppose that a is an Hp
d (Rn,Λℓ)-atom, where 1 ≤ ℓ ≤

n− 1 . Then there is a ball B and a form b′ in L2(Rn,Λℓ−1) such that supp b′ ⊂ B , a = db′ and

‖a‖2 ≤ |B|1/p−1/2 . Set b = TB
ℓ a , noting that supp b ⊂ B . Moreover,

a = dTB
ℓ a+ TB

ℓ+1da = db+ TB
ℓ+1d

2b′ = db

and

‖b‖L2(Rn,Λ) =
∥∥TB

ℓ a
∥∥

L2(Rn,Λ)
≤ cnr(B) ‖a‖L2(Rn,Λ) ≤ cnr(B)|B|1/2−1/p.
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This proves the lemma when 1 ≤ ℓ ≤ n− 1 . The case when ℓ = n may be proved similarly. �

Henceforth we suppose that Ω is a special Lipschitz domain with Lipschitz constant A . Recall

that Hp(Rn) ⊂ S ′(Rn) , Ḟ 0
p,2(R

n) ⊂ Z ′(Rn) and that the natural projection J from S ′(Rn)

to Z ′(Rn) induces an isomorphism from Hp(Rn) to Ḟ 0
p,2(R

n) . In this way, the theory already

developed in this paper can be applied, because, when 0 < p ≤ 1 ,

JHp(Rn,Λ) = Ḟ 0
p,2(R

n,Λ);

JHp
d (Rn,Λ) = dḞ 1

p,2(R
n,Λ); and

JHp
z,d(Ω,Λ) = dḞ 1

p,2,Ω
(Rn,Λ)

with equivalence of norms. The second and third identities follow from Theorem 3.3 and Corollary

3.4. In particular, it is a consequence of Corollary 3.4 that dT , correctly interpreted, is the identity

on Hp
z,d(Ω,Λ) , thus providing a Calderón-type reproducing formula on this space, namely

J u = dTJ u =

∫ ∞

0
(∂Φ)t ∗ ∧Ψt ∗ y J u

dt

t
. (5.1)

We remark that this formula actually holds on the whole space Hp
d (Rn,Λ) .

The next two theorems, which characterise the spaces Hp
d (Rn,Λ) and Hp

z,d(Ω,Λ) in terms of

atoms, are the two main results of this section.

Theorem 5.6 Suppose that 1 ≤ ℓ ≤ n and n/(n+ 1) < p ≤ 1 . There exist constants cp and c′p
with the following properties.

(i) If (ak)
∞
k=0 is a sequence of Hp

d (Rn,Λℓ)-atoms and (λk)
∞
k=0 belongs to ℓp(C) then the

series
∞∑

k=0

λkak

converges in Hp(Rn,Λ) to a form u in Hp
d (Rn,Λℓ) , and

‖u‖p
Hp(Rn,Λ) ≤ cp

∞∑

k=0

|λk|p. (5.2)

(ii) Conversely, if u ∈ Hp
d (Rn,Λℓ) then there is a sequence (ak)

∞
k=0 of Hp

d (Rn,Λℓ)-atoms and

a sequence (λk)
∞
k=0 in ℓp(C) such that

u =

∞∑

k=0

λkak,

where the sum converges in Hp(Rn,Λ) , and

∞∑

k=0

|λk|p ≤ c′p ‖u‖p
Hp(Rn,Λ) . (5.3)

Theorem 5.7 Suppose that 1 ≤ ℓ ≤ n , n/(n+ 1) < p ≤ 1 and Ω is a special Lipschitz domain.

There exist constants cp and c′p with the following properties.
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(i) If (ak)
∞
k=0 is a sequence of Hp

z,d(Ω,Λ
ℓ)-atoms and (λk)

∞
k=0 belongs to ℓp(C) then the

series
∞∑

k=0

λkak

converges in Hp(Rn,Λ) to a form u in Hp
z,d(Ω,Λ

ℓ) , and

‖u‖p
Hp(Rn,Λ) ≤ cp

∞∑

k=0

|λk|p.

(ii) Conversely, if u ∈ Hp
z,d(Ω,Λ

ℓ) then there is a sequence (ak)
∞
k=0 of Hp

z,d(Ω,Λ
ℓ)-atoms and

a sequence (λk)
∞
k=0 in ℓp(C) such that

u =

∞∑

k=0

λkak,

where the sum converges in Hp(Rn,Λ) , and

∞∑

k=0

|λk|p ≤ c′p ‖u‖p
Hp(Rn,Λ) .

The results of the preceding theorems are generalisations to exact forms of the classical atomic

decompositions of [5] for R
n and [3] for special Lipschitz domains. The generalisation to exact

forms first appeared in [10] and [9] for the special case when p = 1 . Apart from expanding

the range of p , our contribution is a new proof using the reproducing formula (5.1), which is

especially suited for application to special Lipschitz domains due to the support properties of Φ .

Consequently, our proof of Theorem 5.7 is shorter and more direct than the one given in [9],

since we avoid using reflection maps and obtain more efficiently the desired support properties for

Hp
z,d(Ω,Λ

ℓ)-atoms. As a by-product of our proof, we also obtain a special atomic decomposition

for tent space functions supported in tents over Ω (see Theorem 5.11).

Before we can prove these characterisations, it is necessary to present a sequence of definitions

and lemmata related to ‘tents’ over open sets, ‘tent spaces’ and tent space atoms. To help the reader

contextualise what follows, we first offer a brief outline of the proof of part (ii) of each of the above

theorems. Suppose that u ∈ Hp
d (Rn,Λℓ) . We define an operator Q by

(Qu)(x, t) = Ψt ∗ yu(x) ∀ (x, t) ∈ R
n × (0,∞) ,

and show that Qu belongs to the tent space T p(Rn,Λℓ−1) . Using the classical atomic decomposi-

tion for tent space functions, one may write Qu =
∑

k λkAk , where each Ak is a T p(Rn,Λℓ−1)-

atom and the sequence (λk) belongs to ℓp . One then constructs a map π by

πU =

∫ ∞

0
(∂Φ)t ∗ ∧U(·, t) dt

t

so that, by the reproducing formula (5.1),

u = dTu = πQu =
∑

k

λkπAk
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where each πAk is an Hp
d (Rn,Λℓ)-atom, thus obtaining the atomic decomposition for u .

The atomic decomposition for elements of Hp
z,d(Ω,Λ

ℓ) is proved along the same lines with

the following variations. If u ∈ Hp
z,d(Ω,Λ

ℓ) then Qu is in fact supported in a ‘tent’ over Ω . So

the tent space decomposition for Qu gives tent space atoms Ak with good support properties with

respect to the domain Ω . It follows that u = πQu =
∑

k λπAk , where each πAk can be written

as a finite sum of Hp
z,d(Ω,Λ

ℓ)-atoms.

We turn now to the relevant definitions. If β > 0 and x ∈ R
n , let Γ′

β(x) denote the cone in

R
n × (0,∞) with aperture β and vertex at x , namely

Γ′
β(x) = {(y, t) ∈ R

n × (0,∞) : |y − x| < βt}.
If O is an open subset of R

n , then the tent Tβ(O) over O with aperture β is defined by

Tβ(O) = {(y, t) ∈ R
n × (0,∞) : d(y,Oc) ≥ βt}.

We follow the convention of writing Γ′(x) for Γ′
1(x) and T (O) for T1(O) . Given any measurable

function U on R
n × (0,∞) , we define the Lusin area integral SU of U by the formula

(SU)(x) =

(∫∫

Γ′(x)
|U(y, t)|2dy dt

tn+1

)1/2

.

Definition 5.8 Suppose that p > 0 . The tent space T p(Rn) is defined to be the set of all measur-

able functions U on R
n × (0,∞) such that ‖U‖T p(Rn) is finite, where

‖U‖T p(Rn) = ‖SU‖Lp(Rn) .

The tent spaces were first introduced in the article [5] of Coifman, Meyer and Stein, and owe

their name to the fact that, when 0 < p ≤ 1 , their functions can be decomposed as a sum of atoms

supported in tents over balls.

Definition 5.9 Suppose that p > 0 . A measurable function A on R
n × (0,∞) is said to be a

T p(Rn)-atom if there exists a ball B in R
n such that suppA ⊂ T (B) and

∫∫

Rn×(0,∞)
|A(y, t)|2 dy dt

t
≤ |B|1−2/p.

If 0 < p ≤ 1 then it is relatively straightforward to show that every T p(Rn)-atom A belongs

to T p(Rn) and that ‖A‖T p(Rn) ≤ 1 . Consequently, if (λk)k∈N ∈ ℓp(C) and (Ak)k∈N is a

sequence of T p(Rn)-atoms then
∑

k∈N
λkAk belongs to T p(Rn) . That the following converse

is true is a deeper result due to Coifman, Meyer and Stein [5].

Theorem 5.10 Suppose that 0 < p ≤ 1 . There exists a constant C (depending only on n and p)

with the following property: for all U in T p(Rn) , there exists a sequence (λk)k∈N in ℓp(C) and

a sequence (Ak)k∈N of T p(Rn)-atoms such that

U =
∑

k∈N

λkAk

and ∑

k∈N

|λk|p ≤ C ‖U‖p
T p(Rn) .
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We introduce the following variant of the above theorem, where the tent space atoms are

supported in Carleson boxes with good support properties with respect to an underlying domain

Ω .

Theorem 5.11 Suppose that 0 < p ≤ 1 and β > 0 . There exist positive constants C ′ (depending

only on n , p and β ) and cβ (depending only on β ), where 0 < cβ < 1 , satisfying the following

property. If U ∈ T p(Rn) and suppU ⊂ Tβ(Ω) for some proper open subset Ω of R
n , then

there exists a sequence (λk)k∈N in ℓp(C) and a sequence (Ak)k∈N of T p(Rn)-atoms, supported

in corresponding tents (T (Bk))k∈N , such that

(i) U =
∑

k∈N

λkAk ,

(ii)
∑

k∈N

|λk|p ≤ C ′ ‖U‖p
T p(Rn) ,

(iii) suppAk ⊂ cβBk × (0, 6β−1cβ r(Bk)) and 5cβBk ⊂ Ω whenever k ∈ N .

Proof: The proof is an adaptation of the proof of [16, Theorem 1.1], which in turn is based on

the original ideas presented in [5]. Fix any number ν in the interval (0, 1) . For any k in Z , let

Ok denote the open subset of R
n given by

Ok = {x ∈ R
n : SU(x) > 2k}.

It can be shown that

suppU ⊂
⋃

k∈Z

Tν(O
∗
k), (5.4)

where each open set O∗
k is constructed using a corresponding set of global γ -density (see [16,

pp. 128–130] for details). For each integer k , the Whitney lemma (see, e.g., [16, Lemma 2.2])

applied to the open set O∗
k ∩ Ω gives a denumerable index set Ik , a sequence of balls (Bk

j )j∈Ik

having radii (rk
j )j∈Ik and centres (xk

j )j∈Ik , and a sequence (ϕk
j )j∈Ik of nonnegative functions

on R
n with the following properties:

O∗
k ∩ Ω =

⋃

j∈Ik

Bk
j , d(xk

j , (O
∗
k ∩ Ω)c) = 10rk

j , suppϕk
j ⊂ 2Bk

j ,
∑

j∈Ik

ϕk
j = 1O∗

k
∩Ω ,

and
1
4B

k
i ∩ 1

4B
k
j = ∅ if i 6= j. (5.5)

It can be shown that O∗
k+1 ⊂ O∗

k for all k (see [16, pp. 128, 130]). Therefore, for each (x, t) in

R
n × (0,∞) ,

(
1Tν(O∗

k
) − 1Tν(O∗

k+1
)

)
(x, t)1Ω(x) =

∑

j∈Ik

ϕk
j (x)

(
1Tν(O∗

k
) − 1Tν(O∗

k+1
)

)
(x, t)1Ω(x)

and hence

U(x, t) =
∑

k∈Z

∑

j∈Ik

U(x, t)ϕk
j (x)

(
1Tν(O∗

k
) − 1Tν(O∗

k+1
)

)
(x, t)
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by (5.4). Define, for all integers k and all j in Ik ,

µk
j =

∫ ∞

0

∫

Rn

|U(y, t)|2ϕk
j (y)

2
(
1Tν(O∗

k
) − 1Tν(O∗

k+1
)

)
(y, t) dy

dt

t
,

Ak
j (y, t) = U(y, t)ϕk

j (y)
(
1Tν(O∗

k
) − 1Tν(O∗

k+1
)

)
(y, t)|Bk

j |1/2−1/p(µk
j )

−1/2

(unless µk
j = 0 , in which case we define Ak

j = 0) and

λk
j = |Bk

j |1/p−1/2(µk
j )

1/2 .

Then

U =
∑

k∈Z

∑

j∈Ik

λk
jA

k
j .

We claim that, up to a multiplicative constant, each Ak
j is a T p(Rn)-atom with the desired prop-

erties.

First we show that suppAk
j ⊂ T (B̃k

j ) , where B̃k
j = CBk

j and C = 2+12/max{β, ν} . Suppose

that (y, t) ∈ Tν(O
∗
k) ∩ Tβ(Ω) and y ∈ suppϕk

j ; that is,

d(y, (O∗
k)

c) ≥ νt, d(y,Ωc) ≥ βt and |y − xk
j | < 2rk

j .

We aim to show that d(y, (CBk
j )c) ≥ t for then suppAk

j ⊂ T (B̃k
j ) . Suppose that z ∈ (CBk

j )c .

Then

|y − z| ≥ |z − xk
j | − |y − xk

j | ≥ (C − 2)rk
j =

12rk
j

max{β, ν} . (5.6)

Also, d(xk
j , (O

∗
k ∩ Ω)c) = 10rk

j . Suppose that ε > 0 . There exists u in (O∗
k ∩ Ω)c such that

|xk
j − u| < 10rk

j + ε . So

max{β, ν}t ≤ |y − u| ≤ |y − xk
j | + |xk

j − u| < 12rk
j + ε.

Since this is true for every positive ε , it follows that max{β, ν}t ≤ 12rk
j . Combining this with

(5.6) gives |y − z| ≥ t , and hence d(y, (CBk
j )c) ≥ t as required.

Second, the definition of Ak
j implies that

∫∫
|Ak

j (y, t)|2 dy
dt

t
= |Bk

j |1−2/p = Cn(2/p−1)|B̃k
j |1−2/p,

and so up to the multiplicative constant Cn(2/p−1) , each Ak
j is a T p(Rn)-atom.

Third, we prove part (iii) of the theorem. Now each Ak
j is supported in Tβ(Ω)∩ (2Bk

j × (0,∞)) ,

where 5(2Bk
j ) ⊂ Ω . So if (y, t) ∈ Tβ(Ω) ∩ (2Bk

j × (0,∞)) then

βt ≤ d(y,Ωc) ≤ d(y, xk
j ) + d(xk

j ,Ω
c) < 2rk

j + 10rk
j

and hence 0 < t < 12β−1rk
j . This shows that suppAk

j ⊂ 2Bk
j × (0, 12β−1rk

j ) . Defining the

constant cβ by cβ = 2/C , it is now easy to see that

suppAk
j ⊂ T (B̃k

j ), suppAk ⊂ cβB̃
k
j × (0, 6β−1cβ r(B̃

k
j )) and 5cβB̃

k
j ⊂ Ω .
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This proves part (iii) of the theorem.

Finally, it remains to show that there exists a constant C ′ , independent of Ω and U , such that

∑

k∈Z

∑

j∈Ik

|λk
j |p ≤ C ′ ‖U‖T p(Rn) .

The proof, which uses (5.5), proceeds exactly as in [16, pp. 132–133] and will not be reproduced

here. This completes the proof of the theorem. �

Remark 5.12 A comparison of this proof with the proof of [16, Theorem 1.1] shows that Theo-

rem 5.11 also holds when the underlying space R
n is replaced by any space X of homogeneous

type that satisfies the assumptions of [14, §1.1.3].

Recall that A and σ are fixed positive numbers such that σA < 1 . In order to apply the

previous theorem, we need the following.

Lemma 5.13 Suppose that a > 0 , Ω is a special Lipschitz domain with Lipschitz constant A and

that ψ is a C∞(Rn) function supported in {y ∈ Γσ(0) : yn ≥ a} . Suppose also that u ∈ S ′(Rn)
and suppu ⊂ Ω . Define Qu by

Qu(x, t) = (ψt ∗ u)(x) ∀(x, t) ∈ R
n × (0,∞).

Then Qu is supported in Tβ(Ω) where

β =
a(1 − σA)√

1 +A2
. (5.7)

Proof: What needs to be shown is that, under the stated hypotheses, dist(supp(ψt∗u),Ωc) ≥ βt .
By (2.1), supp(ψt ∗ u) ⊂ Ω + {y ∈ Γσ(0) : yn ≥ at} , so we need to show that if x ∈ Ω ,

y ∈ Γσ(0) , yn ≥ at and z ∈ Ωc , then |x + y − z| ≥ βt . Let w = z − x , and note that by the

assumption on Ω , wn ≤ A|w′| .
So the result is proved once we show that |y−w| ≥ βt whenever −∞ < wn ≤ A|w′| , |y′| ≤ σyn

and yn ≥ at . We split into two cases.

Case (i): wn ≤ σAyn . Then

|y − w| ≥ yn − wn ≥ (1 − σA)yn ≥ (1 − σA)at > βt

by (5.7).

Case (ii): wn > σAyn . Then |w′| ≥ 1
Awn > σyn ≥ |y′| . So

|y − w|2 = (yn − wn)2 + |y′ − w′|2

> (yn − wn)2 + (|w′| − |y′|)2

> (yn − wn)2 + ( 1
Awn − σyn)2

= 1+A2

A2 w2
n − 2(σ+A)

A ynwn + (1 + σ2)y2
n

≥
(

β
a

)2
y2

n

≥ β2t2 ,



22

where we have minimised over wn in the usual way for quadratic expressions. �

We are now in a position to prove Theorems 5.6 and 5.7.

Proof: Suppose throughout that n/(n+ 1) < p ≤ 1 .

First we prove part (i) of Theorem 5.6. Suppose that (ak)
∞
k=0 is a sequence of Hp

d (Rn,Λ)-atoms,

(λk)
∞
k=0 belongs to ℓp(C) and ak = dbk . Since each component of ak is a classical Hp(Rn)-

atom, the classical theory implies that there exist a constant cp and u in Hp(Rn,Λ) such that

(5.2) holds and

u =

∞∑

k=0

λkak =

∞∑

k=0

λkdbk, (5.8)

where the sum converges in Hp(Rn,Λ) .

Recall that J denotes the natural projection from S ′(Rn) to Z ′(Rn) . By (5.8),

M∑

k=0

λkJ ak = d
( M∑

k=0

λkJ bk

)
→ J u in Ḟ 0

p,2(R
n,Λ) as M → ∞ ,

and it follows from the continuity of d and Theorem 3.3 that J u ∈ dḞ 1
p,2(R

n,Λ) = JHp
d (Rn,Λ) .

Hence u ∈ Hp
d (Rn,Λ) . This completes the proof of Theorem 5.6 (i).

Part (i) of Theorem 5.7 is proved along the same lines, noting that dḞ 1
p,2,Ω

(Rn,Λ) = JHp
d (Ω,Λ) .

We now prove the converse statements in each of Theorems 5.6 and 5.7. Let Φ denote the

C∞
0 (Rn) function of Proposition 3.1, and recall that Ψ(x) = Φ(x)x , ∂Φ = Σn

j=1∂jΦej ,

∫

Rn

(∂Φ)(x) dx = 0 and

∫

Rn

Ψ(x) dx = 0 . (5.9)

Given u in S ′(Rn,Λ) , define Qu by

(Qu)(x, t) = Ψt ∗ y u(x)

whenever (x, t) ∈ R
n × (0,∞) . By the moment condition (5.9), it is well-known (see, for

example, [3, p. 308]) that Q is bounded from Hp(Rn,Λ) to T p(Rn,Λ) . Given U in T 2(Rn,Λ)
with compact support in R

n × (0,∞) , define πU by the formula

πU =

∫ ∞

0
(∂Φ)t ∗ ∧U(·, t) dt

t
.

Again, by the moment condition (5.9), it is well known (see [5, Theorem 6]) that the operator

π extends to a bounded linear operator from T 2(Rn,Λ) to L2(Rn,Λ) and from T p(Rn,Λ) to

Hp(Rn,Λ) .

We focus now on the proof of Theorem 5.6 (ii). Suppose that u ∈ Hp
d (Rn,Λℓ) , where 1 ≤ ℓ ≤ n

and n ≥ 1 . Then Qu belongs to the tent space T p(Rn,Λℓ−1) and by Theorem 5.10, Qu has the

atomic decomposition

Qu =
∑

k∈Z

λkAk,

where each Ak is a T p(Rn,Λℓ−1)-atom supported in a tent T (Bk) , the sum converges in T p(Rn,Λ)
and ∑

k

|λk|p < c′′p ‖Qu‖p
T p(Rn,Λ) ≤ c′p‖u‖Hp(Rn,Λ) .
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Define ak by ak = πAk , so that

ak(x) =

∫ ∞

0

∫

Rn

(∂Φ)t(x− y) ∧Ak(y, t) dy
dt

t

= d

∫ ∞

0

∫

Rn

Φt(x− y)Ak(y, t) dy dt

= dbk(x),

where

bk =

∫ ∞

0
Φt ∗Ak( · , t) dt.

We claim that each ak is an Hp
d (Rn,Λℓ)-atom, up to a multiplicative constant independent of k .

First,

‖ak‖L2(Rn,Λ) = ‖πAk‖L2(Rn,Λ) ≤ C ‖Ak‖T 2(Rn,Λ) ≤ C|Bk|1/2−1/p,

where the constant C is independent of k . Second, we show that bk ∈ L2(Rn,Λ) . Suppose that

Bk = Brk
(zk) . Successive applications of the triangle, Cauchy–Schwarz and Young’s inequalities

yield

‖bk‖2
L2(Rn,Λ) ≤ rk

∫ rk

0
‖Φt ∗Ak( · , t)‖2

L2(Rn,Λ) dt

≤ rk

∫ rk

0
‖Φt‖2

L1(Rn) ‖Ak( · , t)‖2
L2(Rn,Λ) dt

= C2
1rk

∫ rk

0
t

∫

Rn

|Ak(y, t)|2 dy
dt

t

≤ C2
1r

2
k |Bk|1−2/p,

where C1 = ‖Φ‖1 , and the final estimate follows from the fact that Ak is a T p(Rn,Λℓ)-atom.

Third, we note that supp ak ⊂ Bk . Indeed, by (2.1) and (3.2),

supp ak = supp(πAk) ⊂
⋃

0≤t≤rk

{
suppΦt +

(
1 − t

rk

)
Bk

}

⊂
⋃

0≤t≤rk

{tB1(0) + (rk − t)B1(zk)}

= Brk
(zk)

= Bk .

Hence, up to a multiplicative constant, each ak is an Hp
d (Rn,Λℓ)-atom as claimed.

It remains to be shown that u =
∑

k λkak , where the sum converges in the topology of Hp(Rn,Λ) .

Since
∑

k λkAk converges in T p(Rn,Λ) and π is bounded from T p(Rn,Λ) to Hp(Rn,Λ) , it

follows that πQu =
∑

k λkak , where the sum converges in the topology of Hp(Rn,Λ) . But note

by the definitions of Q and π that J πQu = dTJ u , where T is the operator of Theorem 3.3.

Recall from (5.1) that dT is the identity on dḞ 1
p,2(R

n,Λ) . Since J u ∈ dḞ 1
p,2(R

n,Λ) , we have

that

J u = dTJ u = J πQu = J
∑

k

λkak
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and hence that u =
∑

k λkak as required. This, together with the bound already proved on∑ |λk|p , completes the proof of Theorem 5.6 (ii).

We turn now to prove Theorem 5.7 (ii). Suppose that u ∈ Hp
z,d(Ω,Λ

ℓ) . Using the same argument

as above, u = πQu =
∑

k λkπAk where the sum converges in Hp , πAk = dbk , suppAk ⊂
T (Bk) and {λk} ∈ ℓp . In this case, each πAk is not (even up to a multiplicative constant)

necessarily an H1
d,Ω

(Rn,Λℓ)-atom because it may not satisfy the required support properties. We

will instead show that each πAk can be written as a finite sum of Hp
z,d(Ω,Λ

ℓ)-atoms.

Since suppu ⊂ Ω , we conclude by Lemma 5.13 that suppQu ⊂ Tβ(Ω) , where β is given by

(5.7) with a = 1/2 . Theorem 5.11 gives additional information, namely that Ak can be chosen

so that supp(Ak) ⊂ cBk × (0, 6β−1crk) , and 5cBk ⊂ Ω , where c is independent of k . Hence

dist(cBk,Ω
c) ≥ 4crk . By (2.1) and (3.2),

supp ak = supp(πAk)

⊂
⋃

0<t≤6β−1crk

(
supp(∂Φ)t + cBk

)

⊂ cBk + {y ∈ Γσ(0) : yn ≤ 6β−1crk} =: Gk .

Note that Gk is a compact subset of Ω and that dist(Gk,Ω
c) ≥ 4crk . This is because, if x ∈ cBk ,

y ∈ Γσ(0) and w ∈ Ωc , then w − y ∈ Ωc , so |(x + y) − w| = |x − (w − y)| ≥ 4crk . So

we may cover Gk with finitely many balls {1
2B

j
k}M

j=1 of radius crk/2 and centres zj
k , where

zj
k ∈ Gk and where (by scale and translation invariance) the integer M is independent of k . Let

{ηj
k}M

j=1 denote a smooth subordinate partition of unity with the properties that 0 ≤ ηj
k ≤ 1 ,

supp ηj
k ⊂ Bj

k ,
M∑

j=1

ηj
k(x) = 1 ∀x ∈ Gk

and ‖∇ηj
k‖L∞(Rn) ≤ c′r−1

k for some constant c′ independent of j and k . For each k and j ,

define the function aj
k and scalar µj

k by

aj
k = (µj

k)
−1d(ηj

kbk) and µj
k = |Bj

k|1/p−1/2‖d(ηj
kbk)‖L2(Rn,Λ)

Now each aj
k is an Hp

z,d(Ω,Λ
ℓ)-atom because ηj

kbk ∈ L2(Rn,Λℓ−1) , supp aj
k ⊂ Bj

k where

4Bj
k ⊂ Ω , and ‖aj

k‖L2(Rn,Λ) ≤ |Bj
k|1/2−1/p .

Note now that

u =

∞∑

k=0

λkπAk =

∞∑

k=0

M∑

j=1

λkµ
j
ka

j
k,

where the sum converges in Hp and
∑

k |λk|p < ∞ . To complete the proof of the theorem, it

suffices to show that supk,j µ
j
k ≤ C ′ for some constant C ′ . This bound follows readily from the



REFERENCES 25

estimate

‖d(ηj
kbk)‖L2(Rn,Λ) =

∥∥∥(dηj
k) ∧ bk + ηj

k dbk

∥∥∥
L2(Rn,Λ)

≤ ‖∇ηj
k‖L∞(Rn) ‖bk‖L2(Rn,Λ) + ‖ηj

k‖L∞(Rn) ‖πAk‖L2(Rn,Λ)

≤ c′r−1
k rk|Bk|1/2−1/p + C|Bk|1/2−1/p

≤ (c′ + C)|Bk|1/2−1/p.

Thus we have completed the proof of Theorem 5.7. �
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