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Embedding mapping-class groups of orientable

surfaces with one boundary component

Llúıs Bacardit∗

Abstract

We denote by Sg,b,p an orientable surface of genus g with b boundary
components and p punctures. We construct homomorphisms from the
mapping-class groups of Sg,1,p to the mapping-class groups of Sg′,1,(b−1),
where b ≥ 1. Our main result is that these homomorphisms are injective.
A particular case of these homomorphisms is a well-known embedding of
the braid group on p strands into the mapping-class group of S(p−2)/2,1,1

if p is even, or into the mapping-class group of S(p−1)/2,1,0 if p is odd. We
give a short proof of a theorem of Birman and Hilden [4] for surfaces with
one boundary component.

2000Mathematics Subject Classification. Primary: 20F34; Secondary: 20E05,
20E36, 57M99.
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Ends of groups.

1 Main results

We fix non-negative integers g, p and a positive integer b. We denote by Sg,b,p
an orientable surface of genus g with b boundary components and p punctures.

Our main theorem is the following.

1.1 Theorem. Suppose (g, p) 6= (0, 2). Let κ : Sg′,b,0 → Sg,1,0 be a finite index
regular cover with p branching points in Sg,1,0 which lift to q points in Sg′,b,0.
Suppose every branching point of Sg,1,0 lift to the same number of points in
Sg′,b,0. Let κ′ : Sg′,b,q → Sg,1,p be the corresponding unbranched cover. Let h
be a homeomorphism of Sg,1,p which fixes the boundary component pointwise.

Suppose h lifts to Sg′,b,q. Let ĥ be the lift of h which fixes the b-th boundary

component pointwise. Let f̂ be the extension of ĥ to Sg′,b,0. If the restriction

∗The research was funded by Conseil Régional de Bourgogne and the MIC (Spain) through
Project MTM2008-01550.
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of f̂ to Sg′,1,(b−1) ⊆ Sg′,b,0 is isotopic to the identity relative to the boundary
component of Sg′,1,(b−1), then h is isotopic to the identity relative to the boundary
component of Sg,1,p.

Let Mg,b,p be the mapping-class group of Sg,b,p relative to the bound-
ary components. That is, Mg,b,p is the group of homeomorphisms of Sg,b,p
which fix the boundary components pointwise modulo isotopy relative to the
boundary components of Sg,b,p. Since b ≥ 1, we are restricting ourselves to
orientation-preserving homeomorphims of Sg,b,p.

The following result is immediate from Theorem 1.1.

1.2 Corollary. Suppose (g, p) 6= (0, 2). Let κ : Sg′,b,0 → Sg,1,0 be a finite index
regular cover with p branching points in Sg,1,0 which lift to q points in Sg′,b,0.
Suppose every branching point of Sg,1,0 lift to the same number of points in
Sg′,b,0. Let κ′ : Sg′,b,q → Sg,1,p be the corresponding unbranched cover. If every
homeomorphism of Sg,1,p which fixes the boundary component pointwise lifts to
a homeomorphism of Sg′,b,q, then Mg,1,p embeds in Mg′,1,(b−1).

Suppose p ≥ 3. If p is odd, there exists a well-known index 2 regular
cover κ : S(p−1)/2,1,0 → S0,1,0 with p branching points in S0,1,0 which lift to p
branching points in S(p−1)/2,1,0. Every homeomorphism of S0,1,p which fixes the
boundary component pointwise lifts to a homeomorphism of S(p−1)/2,1,p which
fixes the boundary component pointwise. Corollary 1.2 says that M0,1,p embeds
in M(p−1)/2,1,0. If p is even, there exists a well-known index 2 regular cover
κ : S(p−2)/2,2,0 → S0,1,0 with p branching points in S0,1,0 which lift to p branching
points in S(p−2)/2,2,0. Every homeomorphism of S0,1,p which fixes the boundary
component pointwise lifts to a homeomorphism of S(p−2)/2,2,p which fixes the
second boundary component pointwise. Corollary 1.2 says that M0,1,p embeds
in M(p−2)/2,1,1.

From Theorem 1.1 we can proof the following theorem, which is an analog for
surfaces with one boundary component of a theorem of Birman and Hilden [4,
Theorem 2].

1.3 Theorem. Suppose (g, p) 6= (0, 2). Let κ : Sg′,b,0 → Sg,1,0 be a finite index
regular cover with p branching points in Sg,1,0. Suppose every branching point of

Sg,1,0 lift to the same number of points in Sg′,b,0. Let f̂ be a homeomorphism of
Sg′,b,0 which fixes the b-th boundary component pointwise and preserves the fibers

of κ : Sg′,b,0 → Sg,1,0. Then f̂ induces a homeomorphism f of Sg,1,0 such that

κf̂ = fκ. If f̂ is isotopic to the identity relative to the b-th boundary component,
then f is isotopic to the identity relative to the boundary.

Proof. It is a general fact that if f̂ preserves the fibers of κ : Sg′,b,0 → Sg,1,0,

then f̂ induces a homeomorphism f of Sg,1,0 such that κf̂ = fκ. In particular,
f sends branching points to branching points.
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Let κ′ : Sg′,b,q → Sg,1,p be the corresponding unbranched cover. Since f sends
branching points to branching points, f restricts to a homeomorphism h of Sg,1,p.

Let ĥ be the lift of h which fixes the b-th boundary component of Sg′,b,q pointwise.

Notice ĥ extends to a homeomorphism of Sg′,b,0. This extension of ĥ coincides

with f̂ . If f̂ is isotopic to the identity relative to the b-th boundary component,
then the restriction of f̂ to Sg′,1,(b−1) ⊆ Sg′,b,0 is isotopy to the identity relative to
the boundary component of Sg′,1,(b−1). Then, by Theorem 1.1, h is isotopic to the
identity relative to the boundary component of Sg,1,p. This isopoty extends to an
isopoty relative to the boundary component of Sg,1,0 from f to the identity.

2 The algebraic analog

Instead of dealing with Sg,b,p and homeomorphisms of Sg,b,p which fix the bound-
ary components pointwise, we will deal with the fundamental group of Sg,b,p,
denoted π1(Sg,b,p). Since b ≥ 1, we choose the base point of π1(Sg,b,p) in the b-th
boundary component. In this way, a homeomorphism of Sg,b,p which fixes the
boundary components pointwise induces an automorphism of π1(Sg,b,p).

2.1 Notation. Let G be a group and let g, h be elements of G.
We denote by g the invers of g. We denote by gh the conjugated of g by

h, that is, gh = hgh. We denote by [g] the conjugacy class of G, that is,
[g] = {ga | a ∈ G}. We denote by [g, h] the element ghgh. Let g1, g2, . . . , gk be
elements of G. We denote by Πk

i=1gi the product g1g2 · · · gk.
We denote by Aut(G) the automorphism group of G, and, by Out(G) the

group of extern automorphism of G. Given φ ∈ Aut(G), we denote by gφ the
image of g by φ.

2.2 Notation. Let Σg,b,p be the rank 2g+(b−1)+p free group with generating
set {xi, yi}1≤i≤g ∪ {zl}1≤l≤(b−1) ∪ {tk}1≤k≤p. We view Σg,b,p as a presentation
of π1(Sg,b,p, ∗), the fundamental group of Sg,b,p based at a point ∗ in the b-th
boundary component. In addition, for every 1 ≤ l ≤ (b − 1), zl represents a
loop around the l-th boundary component; for every 1 ≤ k ≤ p, tk represents
a loop around the k-th puncture, and (Πg

i=1[xi, yi]Π
b−1
l=1zlΠ

p
k=1tk)

−1 represents a
loop around the b-th boundary component. Note that, if p = 0, there is no
puncture in Sg,b,p = Sg,b,0, and Πp

k=1tk = 1.

Let f be a homeomorphim of Sg,b,p which fixes the boundary components
pointwise. Then f induces an automorphism f∗ of Σg,b,p which fixes the set of
conjugacy classes of t1, t2, . . . , tp. Since f fixes the boundary components of Sg,b,p
pointwise, we see that f∗ fixes (Πg

i=1[xi, yi]Π
b−1
l=1zlΠ

p
k=1tk)

−1 and the conjugacy
class of zl, for all 1 ≤ l ≤ b− 1. Two isotopic homeomorphisms of Sg,b,p induce
the same automorphism of Σg,b,p. Recall we consider isotopies relative to the
boundary components. Notice the Dehn twist with respect a loop around a
boundary component is isotopic to the identity, but it is not isotopic to the
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identity relative to the boundary. To capture this fact, we associate to f an
automorphism of Σg,b,p ∗ 〈e1, e2, . . . , e(b−1) | 〉 which maps Σg,b,p to itself and
respects the following sets

(2.2.1)

(i) {Πg
i=1[xi, yi]Π

b−1
l=1zlΠ

p
k=1tk},

(ii) {z e11 }, {z e22 }, . . . , {z
e(b−1)

(b−1) },

(iii) {[ tk]}1≤k≤p.

Recall zl represents a loop around the l-th boundary component which is
based at a point in the b-boundary component. For every 1 ≤ l ≤ (b − 1),
we wiew el as an arc from the base point in the b-th boundary component to
a chosen point in the l-th boundary component. We view elzlel = zell as a
loop around the l-boundary component and based at the chosen point in the
l-boundary component. Since the homeomorphism f fixes the l-boundary com-
ponent pointwise, the automorphism f∗ fixes z ell . For example, the Dehn twist
with respect to the loop represented by zell gives the following automorphism of
Σg,b,p ∗ 〈e1, e2, . . . , e(b−1) | 〉

{

el 7→ zlel,
a 7→ a, a ∈ {xi, yi}1≤i≤g ∪ {tk}1≤k≤p ∪ {zl}1≤l≤b ∪ {el′}1≤l′≤b, l′ 6=l.

2.3 Definition. We denote by AMg,b,p the subgroup of
Aut(Σg,b,p ∗ 〈e1, e2, . . . , eb−1 | 〉) consisting of all the automorphisms of Σg,b,p ∗
〈e1, e2, . . . , e(b−1) | 〉 which map Σg,b,p to itself and respect the sets of (2.2.1).

We call AMg,b,p the algebraic mapping-class group of a surface of genus g
with b boundary components and p punctures, Sg,b,p.

The mapping-class group of Sg,b,p, denoted Mg,b,p, is defined as the group of
homeomorphisms of Sg,b,p modulo isotopy relative to the boundary components.
The above discution shows that there exists a map Mg,b,p → AMg,b,p. We sketch
the proof that this map is an isomorphism.

Since Sg,0,p has empty boundary, we cannot suppose that the basepoint of
Π1(Sg,0,p) is fixed by homeomorphisms of Sg,0,p. A discution as above shows
that there exists a map Mg,0,p → Out(Π1(Sg,0,p)). The Dehn-Nielsen-Baer theo-
rem says that this map is an isomorphism onto the subgroup of Out(Π(Sg,0,p))
consisting of classes of automorphisms which respect the set {[tk]}1≤k≤p. See,
for example, [11, Theorem 3.6], [12, Theorem 2.9.A]. In particular, Mg,0,p ≤
Out(Π1(Sg,0,p)).

We say that Sg,b−1,p+1 is obtained from Sg,b,p be converting a boundary com-
ponent into a puncture if Sg,b−1,p+1 ⊂ Sg,b,p and Sg,b,p−Sg,b−1,p+1 is homeomorphic
to a circle. If b ≥ 1, by converting all the boundary components of Sg,b,p into
punctures, from the Dehn-Nielsen-Baer theorem we can deduceMg,b,p ≃ AMg,b,p,
[10, Theorem 9.6]. See [10] for a background on algebraic mapping-class groups,
with some changes of notation.
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For (g, b) = (0, 1) and p ≥ 1, AM0,1,p is isomorphic to the p-string braid
group. We have AM0,1,p = 〈σ1, σ2, . . . , σp−1〉, where for all 1 ≤ i ≤ (p − 1),
σi ∈ Aut(Σ0,1,p) is defined by

(2.3.1) σi :=







ti 7→ ti+1,

ti+1 7→ t
ti+1

i ,
tk 7→ tk, for all 1 ≤ k ≤ p, k 6= i, i+ 1.

Let d ∈ Z, d ≥ 2.

2.4 Notation. Let Nd be the normal closure of t1, t2, . . . , tp in Σg,1,p. We denote
by Σg,1,p(d) the group Σg,1,p/Nd. For every 1 ≤ k ≤ p, we denote by τk the image
of tk by the natural homomorphism Σg,1,p → Σg,1,p(d).

Notice that if p = 0, then Nd = 1 and Σg,1,p(d) = Σg,1,p.

2.5 Definition. Let AMg,1,p(d) denote the group of all automorphisms of Σg,1,p(d)
that respect the sets

{Πg
i=1[xi, yi]Π

p
l=1τl}, {[τ k]}1≤k≤p.

Since the elements of AMg,1,p respect the set {[ tk]}1≤k≤p, the natural homo-
morphism Σg,1,p → Σg,1,p(d) induces a natural homomorphism

ψ : AMg,1,p → AMg,1,p(d).

If p = 0, then Σg,1,p = Σg,1,p(d) and ψ is the identity.

2.6 Theorem. The homomorphism ψ : AMg,1,p → AMg,1,p(d) is injective.

We proof Theorem 2.6 in Section 4.

Let κ : Sg′,b,0 → Sg,1,0 be an index m regular cover with p branching points in
Sg,1,0 which lift to q points in Sg′,b,0. Suppose every branching point of Sg,1,0 lift
to the same number of points in Sg′,b,0. Notice that q = 0 if and only if p = 0.
Let κ′ : Sg′,b,q → Sg,1,p be the corresponding unbranched cover. We identify
Σg′,b,q with κ

′
∗(Σg′,b,q). Hence, Σg′,b,q is a normal subgroup of Σg,1,p of index m.

We set G := Σg,1,p/Σg′,b,q the group of deck transformations.
We put ̺ = Πg

i=1[xi, yi]Π
p
k=1tkΣg′,b,q ∈ G. Let c be the order of ̺ in G.

Since ̺c = 1 in G, we see that (Πg
i=1[xi, yi]Π

p
k=1tk)

c ∈ Σg′,b,q. Notice that
(Πg

i=1[xi, yi]Π
p
k=1tk)

−c represents a loop around the b-th boundary component.
We take a basis {x̂i, ŷi}1≤i≤g′ ∪ {ẑl}1≤l≤(b−1) ∪ {t̂k}1≤k≤q of Σg′,b,q such that

Πg′

i=1[x̂i, ŷi]Π
b−1
l=1 ẑlΠ

q
k=1t̂k = (Πg

i=1[xi, yi]Π
p
k=1tk)

c.

Recall G has cardinality m. The subgroup 〈̺〉 ≤ G has index b = m/c. For
every 1 ≤ l ≤ b− 1, we take wl ∈ Σg,1,p − Σg′,b,q such that

ẑl = wl(Π
g
i=1[xi, yi]Π

p
k=1tk)

−cwl.
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We put ρl = wlΣg′,b,q ∈ G. Then G = 〈̺〉ρ1 ∪ 〈̺〉ρ2 · · · ∪ 〈̺〉ρ(b−1) ∪ 〈̺〉. That
is, the boundary components of Sg′,b,p are image by deck transformations of the
b-th boundary component.

For every 1 ≤ k ≤ p, we put ̺k = tkΣg′,b,q ∈ G. Let dk be the order of ̺k in G.
Since tk corresponds to a branching point, tk /∈ Σg′,b,q and dk ≥ 2. Since ̺dkk = 1
in G, we see that tdkk ∈ Σg′,b,q. Notice that tdkk represents a loop around a lift of
the k-th puncture of Sg,1,p. The subgroup 〈̺k〉 has index m/dk in G. Since all the
branching point of Sg,1,0 lift to the same numer of points in Sg′,b,0, m/d1 = m/dk
for all 2 ≤ k ≤ p. Hence, d1 = dk for all 2 ≤ k ≤ p. Let d = d1. We have
G = 〈̺k〉ρ1,k ∪ 〈̺k〉ρ2,k ∪ · · · ∪ 〈̺k〉ρm/d,k, where ρj,k = uj,kΣg′,b,q ∈ G for all
1 ≤ j ≤ m/d. Notice that (tdk)

u1,k , (tdk)
u2,k , . . . , (tdk)

um/d,k represent loops around
the m/d lifts of the k-th puncture. We choose u1,k, u2,k, . . . , um/d,k ∈ Σg,1,p such
that {(tdk)

u1,k , (tdk)
u2,k , . . . , (tdk)

um/d,k} ⊆ {t̂1, t̂2, . . . , t̂q}. Then

(2.6.1) {t̂1, t̂2, . . . , t̂q} =

p
⋃

k=1

{(tdk)
u1,k , (tdk)

u2,k , . . . , (tdk)
um/d,k}.

Recall Nd is the normal closure of td1, t
d
2, . . . , t

d
p in Σg,1,p.

2.7 Lemma. With the above notation, Nd is equal to the normal closure of
t̂1, t̂2, · · · , t̂q in Σg′,b,q.

Proof. By (2.6.1), the normal closure of t̂1, t̂2, · · · , t̂q in Σg′,b,q is a subgroup of
Nd.

Let 1 ≤ k ≤ p and w ∈ Σg,1,p. By (2.6.1), it is enough to proof (tdk)
w =

(tdk)
uj,kv for some 1 ≤ j ≤ (m/d) and v ∈ Σg′,b,q. Recall G = Σg,1,p/Σg′,b,q, ̺k =

tkΣg′,b,q ∈ G andG = 〈̺k〉ρ1,k∪〈̺k〉ρ2,k∪· · ·∪〈̺k〉ρm/d,k, where ρj,k = uj,kΣg′,b,q ∈
G for all 1 ≤ j ≤ (m/d). Let 1 ≤ j ≤ (m/d) such that wΣg′,b,q ∈ 〈̺k〉ρj,k. Let
1 ≤ r ≤ d such that wΣg′,b,q = ̺rkρj,k = trkuj,kΣg′,b,q. Then w = trkuj,kv, for some
v ∈ Σg′,b,q and (tdk)

w = (tdk)
trkuj,kv = (tdkk )uj,kv.

Recall Σg,1,p/Nd = Σg,1,p(d), and for every 1 ≤ k ≤ p, we denote by τk the
image of tk by the natural homomorphism Σg,1,p → Σg,1,p(d).

2.8 Notation. Let H ≤ Σg,1,p be a normal subgroup of finite index such that
Nd ≤ H . Notice H/Nd ≤ Σg,1,p(d). We set

AMg,1,p(H) = {φ ∈ AMg,1,p | H
φ = H},

and
AMg,1,p(d)(H/Nd) = {φ̃ ∈ AMg,1,p(d) | (H/Nd)

φ̃ = H/Nd}.

2.9 Proposition. Suppose (g, p, d) 6= (0, 2, 2). Let H ≤ Σg,1,p be a normal
subgroup of finite index such that Nd ≤ H. Let φ ∈ AMg,1,p(H). Then ψ(φ) ∈
AMg,1,p(d)(H/Nd). If ψ(φ)|H/Nd

= 1, then φ = 1.
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Proof. Since Nd and H are φ-invariant, we see H/Nd is ψ(φ)-invariant. Since
ψ(φ) ∈ AMg,1,p(d), we have ψ(φ) ∈ AMg,1,p(H/Nd)

Since H has finite index in Σg,1,p, there exists r ∈ Z, r ≥ 1, such that

(Πg
i=1[xi, yi]Π

p
k=1tk)

r ∈ H.

Fix 1 ≤ k ≤ p. Since H is normal in Σg,1,p, we see

tk(Π
g
i=1[xi, yi]Π

p
k′=1tk′)

rtk ∈ H.

If ψ(φ)|H/Nd
= 1, in Σg,1,p(d),

τ k(Π
g
i=1[xi, yi]Π

p
k′=1τk′)

rτk

=(τ k(Π
g
i=1[xi, yi]Π

p
k′=1τk′)

rτk)
ψ(φ)

=τ
ψ(φ)
k (Πg

i=1[xi, yi]Π
p
k′=1τk′)

rτ
ψ(φ)
k .

Then, in Σg,1,p(d), τ
ψ(φ)
k τ k commutes with (Πg

i=1[xi, yi]Π
p
k′=1τk′)

r. Recall
Σg,1,p(d) = Σg,1,p/Nd. Hence, Σg,1,p(d) ≃ Σg,1,0 ∗ 〈τ1, τ2, . . . , τp | τd1 , τ

d
2 , . . . , τ

d
p 〉.

Hence, τ
ψ(φ)
k τk ∈ 〈Πg

i=1[xi, yi]Π
p
k′=1τk′〉, and,

(2.9.1) τ
ψ(φ)
k = (Πg

i=1[xi, yi]Π
p
k′=1τk′)

r′τk,

for some r′ ∈ Z. Recall [τ
ψ(φ)
k ] = [τj ], for some 1 ≤ j ≤ p. If (g, p) 6= (0, 1), and

if (g, p, d) 6= (0, 2, 2), then (2.9.1) implies r′ = 0 and τ
ψ(φ)
k = τk.

Fix a ∈ {xi, yi}1≤i≤g. Since H has finite index in Σg,1,p, there exists s ∈
Z, s ≥ 1, such that as ∈ H . If ψ(φ)|H/Nd

= 1, then (as)ψ(φ) = as, and, aψ(φ) = a.

Since Σg,1,p(d) ≃ Σg,1,0 ∗ 〈τ1, τ2, . . . , τp | τd1 , τ
d
2 , . . . , τ

d
p 〉, a

ψ(φ) = a for all a ∈

{xi, yi}1≤i≤g, and, τ
ψ(φ)
k = τk for all 1 ≤ k ≤ p; we see ψ(φ) = 1. By Theorem 2.6,

φ = 1.

Let φ ∈ AMg,1,p. Suppose Σg′,b,q is φ-invariant. Then φ induces an automor-
phisms of Σg′,b,q by restriction. In Σg,1,p we have

(i) Πg′

i=1[x̂i, ŷi]Π
(b−1)
l=1 ẑlΠ

q
k=1t̂k = (Πg

i=1[xi, yi]Π
p
k=1tk)

c;

(ii) ẑl is conjugate to (Πg
i=1[xi, yi]Π

p
k=1tk)

−c, for all 1 ≤ l ≤ (b− 1);

(iii) t̂k is conjugate to tdj , 1 ≤ j ≤ p, for all 1 ≤ k ≤ q.

If we identify Σg′,b,q with Σg′,1,(b−1)+q by identifying ẑl with t̂l, for all 1 ≤ l ≤
(b − 1), and t̂k with t̂(b−1)+k, for all 1 ≤ k ≤ q; then the restriction of φ to
Σg′,1,(b−1)+q lies inside AMg′,1,(b−1)+q.

Let h be the homeomorphism of Sg,1,p which fixes the boundary component
pointwise and h∗ = φ. Since Σg′,b,q is φ-invariant, h lifts to a homeomorphism
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ĥ of Sg′,b,q which fixes the b-th boundary component pointwise. Since ĥ may

not fix the first (b − 1) boundary components pointwise, ĥ does not represent
an element of Mg′,b,q, but it represents an element of Mg′,1,(b−1)+q, that is, we

have to convert the first (b− 1) boundary components into punctures. If ĥ fixes
the boundary components pointwise, we can conserve the first (b− 1) boundary
components. Algebraically, if we want to have an element of AMg′,b,q, we have to
define the image of ê1, ê2, . . . , ê(b−1). Since Σg′,b,q is φ-invariant, we see φ induces
an automorphism of G = Σg,1,p/Σg′,b,q. If φ induces the identity of G, we can
define an element of AMg′,b,q from φ.

Recall Nd is the normal closure in Σg,1,p of td1, t
d
2, . . . , t

d
p. By Lemma 2.7, Nd

is the normal closure in Σg′,b,q of t̂1, t̂2, · · · , t̂q. Hence, Σg′,b,0 = Σg′,b,q/Nd. We
identify Σg′,b,0 with Σg′,1,(b−1) by identifying ẑl with t̂l for all 1 ≤ l ≤ (b − 1).
Hence, Σg′,1,(b−1) = Σg′,b,q/Nd. Since Σg′,b,q is φ-invariant, by Proposition 2.9,

there exists the restriction ψ(φ)|Σg′,1,(b−1)
: Σg′,1,(b−1) → Σg′,1,(b−1). Recall ĥ is a

homeomorphism of Sg′,b,q. Since h∗ = φ, we have ĥ∗ = φ|Σg′,b,q
. Notice ĥ extends

to a homeomorphism f̂ of Sg′,b,0. Notice f̂ restricts to a homeomorphism of

Sg′,1,(b−1) ⊆ Sg′,b,0. Since ĥ∗ = φ|Σg′,b,q
and Σg′,1,(b−1) = Σg′,b,q/Nd, the restriction

of f̂ to Sg′,1,(b−1) ⊆ Sg′,b,0 induces the automorphism ψ(φ)|Σg′,1,(b−1)
.

We, now, can proof the algebraic analog of Theorem 1.1.

2.10 Theorem. Suppose (g, p) 6= (0, 2). Let κ : Sg′,b,0 → Sg,1,0 be a finite
index regular cover with p branching points in Sg,1,0 which lift to q points in
Sg′,b,0. Suppose every branching point of Sg,1,0 lift to the same number of points
in Sg′,b,0. Let κ′ : Sg′,b,q → Sg,1,p be the corresponding unbranched cover. Let φ
be an element of AMg,1,p. Suppose Σg′,b,q is φ-invariant. If ψ(φ)|Σg′,1,(b−1)

= 1,
then φ = 1.

Proof. Since Σg,1,p(d) = Σg,1,p/Nd, the natural homomorphism Σg,1,p → Σg,1,p(d)
restricts to the natural homomorphism Σg′,b,q → Σg′,1,(b−1).

Since ψ : AMg,1,p → AMg,1,p(d) is given by the natural homomorphism
Σg,1,p → Σg,1,p(d), we see ψ(φ) : Σg,1,p(d) → Σg,1,p(d) completes the following
commutative square

Σg,1,p
φ

−→ Σg,1,p
↓ ↓

Σg,1,p(d)
ψ(φ)
−→ Σg,1,p(d)

where the vertical arrows are the natural homomorphisms. Notice
ψ(φ)|Σg′,1,(b−1)

: Σg′,1,(b−1) → Σg′,1,(b−1) completes the following commutative
square

Σg′,b,q
φ|Σ

g′,b,q
−→ Σg′,b,q

↓ ↓

Σg′,1,(b−1)

ψ(φ)|Σ
g′,1,(b−1)
−→ Σg′,1,(b−1)
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where the vertical arrows are the natural homomorphisms. By Proposition 2.9,
if ψ(φ)|Σg′,1,(b−1)

= 1, then φ = 1.

We state the algebraic analog of Corollary 1.2.

2.11 Corollary. Suppose (g, p) 6= (0, 2). Let κ : Sg′,b,0 → Sg,1,0 be a finite
index regular cover with p branching points in Sg,1,0 which lift to q points in
Sg′,b,0. Suppose every branching point of Sg,1,0 lift to the same number of points
in Sg′,b,0. Let κ

′ : Sg′,b,q → Sg,1,p be the corresponding unbranched cover. If Σg′,b,q
is AMg,1,p-invariant, then Mg,1,p embeds in Mg′,1,(b−1). In fact, the embedding is
given by φ 7→ ψ(φ)|Σg′,1,(b−1)

.

3 Examples

We fix g, p such that (g, p) 6= (0, 2). Let Ŝ be the universal cover of Sg,1,p. The

fundamental group of Sg,1,p, denoted Σg,1,p, acts on Ŝ. Let H be a subgroup of

Σg,1,p of index m. Suppose H is AMg,1,p-invariant. The quotient space Ŝ/H is an
orientable surface, denoted Sg′,b,q. We identify the fundamental group of Sg′,b,q,

denoted Σg′,b,q, with H . The cover Ŝ → Sg,1,p induces a cover Sg′,b,q → Sg,1,p
with group of deck transformation G : = Σg,1,p/Σg′,b,q. If tk /∈ Σg′,b,q for all
1 ≤ k ≤ p, then the corresponding cover Sg′,b,0 → Sg,1,0 has p branching points
in Sg,1,0 which lift to q points in Sg′,b,0. Since H is AMg,1,p-invariant, it can be
seen that every branching point of Sg,1,p lifts to the same number of points in
Sg′,b,0. By Corollary 2.11, we have an embedding AMg,1,p →֒ AMg′,1,(b−1). By
choosing an appropriated basis of H , we can compute elements in the image of
this embedding from elements of AMg,1,p.

The first example is well-known. In the second example, we give a basis of
H and compute elements in the image of the embedding.

Example 1. Let H be the kernel of the homomorphism Σ0,1,p → 〈τ | τ 2〉
such that tk 7→ τ for all 1 ≤ k ≤ p. It is standard to see that H is a free group
of rank 2p− 1 with basis t21, t1t2, t1t3, . . . , t1tp, t1t2, t1t3, . . . , t1tp. It is easy to see
that H is invariant by the generators of AM0,1,p given in (2.3.1). For 1 ≤ k ≤ p,
notice that ̺k = tkH has order 2 in G := Σ0,1,p/H ≃ 〈τ | τ 2〉. Hence, 〈̺k〉 has
index 1 in G and the k-th puncture in Sg,1,p lifts to one puncture in Sg′,b,q. Thus,
q = p.

(a). If p is odd, then Πp
k=1tk /∈ H and ̺ = Πp

k=1tkH has order 2 in G. Hence,
〈̺〉 has index 1 in G and b = 1. Since Σg′,b,q has rank 2g′ + b − 1 + q and
H has rank 2p − 1, we have 2g′ + 1 − 1 + p = 2p − 1 and g′ = (p − 1)/2.
Hence, AM0,1,p →֒ AM(p−1)/2,1,0, if p is odd.

(b). If p is even, then Πp
k=1tk ∈ H and ̺ = Πp

k=1tkH has order 1 in G. Hence,
〈̺〉 has index 2 in G and we have b = 2. Since Σg′,b,q has rank 2g′+ b−1+ q
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and H has rank 2p− 1, we have 2g′+2− 1+ p = 2p− 1 and g′ = (p− 2)/2.
Hence, AM0,1,p →֒ AM(p−2)/2,1,1, if p is even.

Example 2. Let Σ1,1,0 = 〈x, y | 〉. LetH be the kernel of the homomorphism
Σ1,1,0 → 〈τ1 | τ

2
1 〉 × 〈τ2 | τ

2
2 〉 such that x 7→ τ1, y 7→ τ2. It is standard to see that

H is a free group of rank 5. It can be shown thatH is a characteristic subgroup of
Σ1,1,0. Notice that ̺ = [x, y]H has order 1 in G := Σ1,1,0/H ≃ 〈τ1 | τ

2
1 〉×〈τ2 | τ

2
2 〉.

Hence, 〈̺〉 has index 4 in G and b = 4. We have p = 0 and q = 0. Since Σg′,b,q
has rank 2g′ + b − 1 + q and H has rank 5, we have 2g′ + 4 − 1 + 0 = 5 and
g′ = 1. Hence, AM1,1,0 →֒ AM1,1,3. We take the following basis of Σ1,1,3: x̂ =
x2, ŷ = y2, t̂1 = (y xyx)x y

2x2y2 , t̂2 = (y xyx)y, t̂3 = (y xyx)xy. It is well-known
that AM1,1,0 = 〈α, β | αβα = βαβ〉, where

α :=

{

x 7→ yx,
y 7→ y,

β :=

{

x 7→ x,
y 7→ xy.

A straightforward computation shows that the image of α and β in AM1,1,3,

denoted α̂ and β̂, are

α̂ :=



























x̂ 7→ ŷ−1x̂ŷt̂2t̂3t̂
−1
2 ŷ−1,

ŷ 7→ ŷ,

t̂1 7→ t̂
t̂−1
2 ŷ−1x̂−1ŷ−1x̂ŷt̂2 t̂3 t̂

−1
2

3 ,
t̂2 7→ t̂2,

t̂3 7→ t̂ t̂2 t̂31 ,

β :=



























x̂ 7→ x̂,
ŷ 7→ x̂ŷt̂2,

t̂1 7→ t̂
ŷ−1x̂−1ŷt̂−1

2 ŷ−1x̂ŷt̂2
1 ,

t̂2 7→ t̂3,

t̂3 7→ t̂ ŷ
−1x̂ŷt̂2 t̂3

2 .

Example 3. Let F3 := 〈a1, a2, a3 | 〉. Let H be the kernel of the homomor-
phism F3 → 〈τ1 | τ

2
1 〉 × 〈τ2 | τ

2
2 〉 × 〈τ3 | τ

2
3 〉 such that ak 7→ τk for all 1 ≤ k ≤ 3.

It is standard to see that H is a free group of rank 17. It can be shown that H
is a characteristic subgroup of F3.

(a). We identify Σ0,1,3 with F3 by putting tk ↔ ak for all 1 ≤ k ≤ 3. Notice that
̺ = t1t2t3H has order 2 in G := Σ0,1,3/H ≃ 〈τ1 | τ

2
1 〉 × 〈τ2 | τ

2
2 〉 × 〈τ3 | τ

2
3 〉.

Hence, 〈̺〉 has index 4 in G and b = 4. On the other hand, for all 1 ≤ k ≤ 3,
̺k = tkH has order 2 in G. Hence, for all 1 ≤ k ≤ 3, 〈̺k〉 has index 4 in
G and the k-th puncture in S0,1,3 lifts to 4 punctures in Sg′,b,q. Thus,
q = 12. Since Σg′,b,q has rank 2g′ + b − 1 + q and H has rank 17, we have
2g′ + 4− 1 + 12 = 17 and g′ = 1. Hence, AM0,1,3 →֒ AM1,1,3.

(b). We identify Σ1,1,1 with F3 by putting x ↔ a1, y ↔ a2 and t ↔ a3. Notice
that ̺ = [x, y]tH has order 2 in G := Σ1,1,1/H ≃ 〈τ1 | τ

2
1 〉 × 〈τ2 | τ

2
2 〉 × 〈τ3 |

τ 23 〉. Hence, 〈̺〉 has index 4 in G and b = 4. On the other hand, ̺1 = tH has
order 2 in G. Hence, 〈̺1〉 has index 4 in G and the puncture in S1,1,1 lifts
to 4 punctures in Sg′,b,q. Thus, q = 4. Since Σg′,b,q has rank 2g′ + b− 1 + q
and H has rank 17, we have 2g′ + 4 − 1 + 4 = 17 and g′ = 5. Hence,
AM1,1,1 →֒ AM5,1,3.
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4 Proof of Theorem 2.6

4.1 Definition. An element of Σg,1,p is said to be t-squarefree if, in its reduced
expression, no two consecutive terms in {tk, tk}1≤k≤p are equal; for example:
x1x1t2t3 is t-squarefree; x1t2t2y1 is non-t-squarefree.

To proof Theorem 2.6 we need the following theorem.

4.2 Theorem. For every φ ∈ AMg,1,p, the elements of {xφi , y
φ
i }1≤i≤g∪{tφk}1≤k≤p

are t-squarefree.

Proof. (of Theorem 2.6) If p = 0, then ψ is the identity and nothing needs to
be said.

Suppose p ≥ 1. Recall Σg,1,p(d) ≃ Σg,1,0 ∗ 〈τ1, τ2, . . . , τp | τd1 , τ
d
2 , . . . , τ

d
p 〉. Let

a ∈ {xi, yi}1≤i≤g ∪ {tk}1≤k≤p. If φ is an element of the kernel of ψ : AMg,1,p →
AMg,1,p(d), then a

φ and a have the same image in Σg,1,p(d). On the other hand,
by Theorem 4.2, aφ is t-squarefree. Hence, aφ has the same normal form in Σg,1,p
as in Σg,1,p(d). Thus, a

φ = a.

The rest of the paper is dedicated to proof Theorem 4.2. The proof is similar
to [3, 7.6 Corollary]. Notice Theorem 4.2 is trivial if p = 0.

5 McCool’s Groupoid

For the rest of the paper we suppose p ≥ 1.

Let n := 2g + p, and, let Fn be the free group on X , where X is a set with n
elements.

5.1 Notation. Let w ∈ Fn. In this section we will denote by [w] the cyclic word
of w.

5.2 Definitions. Let T be a set of words and cyclic words of Fn. Suppose the
elements of T are reduced and cyclically reduced, respectively. We define the
Whitehead graph of T as the graph with vertex set X ∪X, and, one edge from
a ∈ X ∪X to b ∈ X ∪X for every subword ab which appears in w or [u], where
w and [u] are elemets of T . We say that a is the initial vertex and b is the
terminal vertex of the edges corresponding to the subword ab. Repetitions have
to be considered. For example, since the subword ab appears twice in abab, the
Whitehead graph of {abab} has 2 edges from a to b (and one edge from b to a).
Notice that the cyclic word [a] produces an edge from a to a in the Whitehead
graph.

We say that T is a surface word set if the Whitehead graph of T is an oriented
segment, that is, the Whitehead graph of T is connected with exactly 2n − 1
edges, every vertex but one is the initial vertex of exactly one edge, and, every
vertex but one is the terminal vertex of exactly one edge.
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5.3 Example. Let F4 := 〈a, b, c, d | 〉.

(i). Let T := {adcb, [ db], [ca]}. The Whitehead graph of T is

a→ c→ b→ d→ c→ a→ d→ b.

Hence, T is a surface word set.

(ii). Let T := {adcb, db, [ca]}. The Whitehead graph of T is

a→ c→ b d → c→ a→ d → b.

Hence, T is not a surface word set.

(iii). Let T := {adcb, dc, [ db], [ca]}. The Whitehead graph of T is

a→ c→ b→ d⇉ c→ a→ d→ b.

Hence, T is not a surface word set.

We illustrate the following remarks with examples in F4 = 〈a, b, c, d | 〉.

5.4 Remarks. Let T be a surface word set.

(i) The Whitehead graph of T defines a sequence (ak)1≤k≤2n which lists the
element of X ∪X such that for all 1 ≤ k ≤ (2n−1), the Whitehead graph
of T has exactly one edge with initial vertex ak and terminal vertex ak+1,
equivalently, akak+1 is a subword of exactly one element of T . We say that
(ak)1≤k≤2n is the associated sequence of T .

In Example 5.3(i), the associated sequence of T is (a, c, b, d, c, a, d, b).

(ii) We can recover T from the associated sequence of T . The process to
recover T from its associated sequence is the invers process to construct
the Whitehead graph. We give two examples below. From this process, it
is easy to see that T has exactly one word, and, all other elements of T
are cyclic words.

In F4, from the sequence (a, b, c, d, a, b, c, d) we have the surface word set
{abcd abcd}, and, from the sequence (a, b, c, d, d, c, b, a) we have the surface
word set {a, [ba], [cb ], [dc], [ d ]}.

(iii) Let p be the cardinality of T minus one. We say that T is a (g, p)-surface
word set, where g = (n − p)/2. By induction on n, it can be seen that
n ≥ p and n− p is even. Hence, g is a non-negative integer.
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5.5 Definition. Let φ ∈ Aut(Fn).
We say that φ is a type-1 Nielsen automorphism if φ restricts to a permutation

of X ∪X.
We say that φ is a type-2 Nielsen automorphism if there exists a, b ∈ X ∪X

such that a 6= b, b and

φ :=

{

a 7→ ab,
c 7→ c for all c ∈ X, c 6= a±1.

We denote φ by (a 7→ ab) or (a 7→ ba).

5.6 Definition. Let Gg,p be the groupoid with objects (g, p)-surface word sets,
and, given T1, T2 two (g, p)-surface word sets

Hom(T1, T2) := {φ ∈ Aut(Fn) | T
φ
1 = T2},

where T φ1 := {wφ, [uφ] | w, [u] ∈ T1}. Here, wφ is reduced and [uφ] is cyclically
reduced. Hence, [v] = [uφ] means that v and uφ are conjugated.

We say that (T1, T2, φ) ∈ Hom(T1, T2) is a type-1 Nielsen of Gg,p if φ is a
type-1 Nielsen automorphism. Similarly, for type-2 Nielsen automorphisms. We
say that (T1, T2, φ) ∈ Hom(T1, T2) is a Nielsen if it is either a type-1 Nielsen or
a type-2 Nielsen.

We illustrate the following remarks with examples in F4 = 〈a, b, c, d | 〉.

5.7 Remark. Let (T1, T2, φ) be a Nielsen of Gg,p.

(i) If (T1, T2, φ) is a type-1 Nielsen, then the associated sequence of T2 is
obtained from the associated sequence of T1 by applying the permutation
φ to every element of the sequence.

In F4, let T1 = {ad bc, [ ab], [ cd]}. Notice the associated sequence of T1
is (a, b, c, d, b, a, d, c). If φ : = (a 7→ b, b 7→ c, c 7→ a, d 7→ d), then the
associated sequence of T2 is (b, c, a, d, c, b, d, a).

(ii) Suppose (T1, T2, φ) is a type-2 Nielsen. Then φ = (ai 7→ bai) for some
1 ≤ i ≤ 2n, b ∈ X ∪X such that ai 6= b, b. Since in the Whitehead graph
of T there are exactly 2n−1 edges, there exists w ∈ T1 or [u] ∈ T1 such that
applying φ to w or [u] produces a cancellation. If the cancellation appears
from the subword ai−1ai, then b = ai−1. If the cancellation appears from
the subword aiai+1, then b = ai+1. Hence, either φ = (ai 7→ ai−1ai) for
some 2 ≤ i ≤ 2n, ai 6= ai−1; or φ = (ai 7→ aiai+1) for some 1 ≤ i ≤
(2n − 1), ai 6= ai+1. In the former case the associated sequence of T2 is
obtained from the associated sequence of T1 by moving ai from immediately
after ai−1 to immediately before ai−1. In the later case the associated
sequence of T2 is obtained from the associated sequence of T1 by moving
ai from immediately before ai+1 to immediately after ai+1.
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In F4, let T1 = {abcd abcd}. Notice the associated sequence of T1 is
(a, b, c, d, a, b, c, d). If φ : = (b 7→ ab), then the associated sequence
of T2 is (a, c, d, b, a, b, c, d). In fact (abcd abcd)(b7→ab) = ab acdbcd. If
φ := (a 7→ ab), then the associated sequence of T2 is (b, c, d, a, b, a, c, d).

In fact (abcd abcd)(a 7→ab) = babcd a cd.

5.8 Remark. It is easy to see that {Πg
i=1[xi, yi]Π

p
k=1tk, [ t1], [ t2], . . . , [ tp]} is a

(g, p)-surface word set of Σg,1,p. Its associated sequence is

(x1, y1, x1, y1, x2, y2, x2, y2, . . . , xg, yg, xg, yg, t1, t1, t2, t2, . . . , tp, tp).

We say that {Πg
i=1[xi, yi]Π

p
k=1tk, [ t1], [ t2], . . . , [ tp]} is the standard (g, p)- surface

word set of Σg,1,p.

5.9 Remark. AMg,1,p = Hom(T, T ), where T is the standard (g, p)-surface
word set of Σg,1,p.

5.10 Theorem (McCool [15],[9]). Gg,p is generated by Nielsen elements.

6 Ends of free group

Let n := 2g + p and let Fn be the free group on X , where |X| = n.

6.1 Notation. Let Πk
i=1ai be the normal form for w ∈ Fn. Then we say that w

has length k, denoted |w| = k . The set of elements of Fn whose normal forms
have Πk

i=1ai as an initial subword is denoted (w⋆); and, the set of elements of Fn
whose normal forms have Πk

i=1ai as a terminal subword is denoted (⋆w). The
elements of (w⋆) are said to begin with w, and the elements of (⋆w) are said to
end with w.

6.2 Review. An end of Fn is a sequence (ak)k≥1 in X ∪X such that, for each
k ≥ 1, ak+1 6= ak. We represent (ak)k≥1 as a formal right-infinite reduced
product, Πk≥1ak = a1a2 · · · .

We denote the set of ends of Fn by ∂Fn.
For each w ∈ Fn, we define the shadow of w in ∂Fn to be

(w◭) := {(ak)k≥1 ∈ ∂Fn | Π
|w|
k=1ak = w}.

Thus, for example, (1◭) = ∂Fn.

6.3 Definition. Let T be a surface word set. We now give ∂Fn an ordering,
<T , with respect to T as follows. Let (ak)1≤k≤2n be the associated sequence of
T . Recall (ak)1≤k≤2n is a listing of the elements of X ∪ X . For each w ∈ Fn,
we assign an ordering, <T , to a partition of (w◭) into 2n or 2n − 1 subsets,
depending as w = 1 or w 6= 1, as follows. We set

(a1◭) <T (a2◭) <T (a3◭) <T · · · <T (a2n−1◭) <T (a2n◭).
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If 1 ≤ i ≤ n and w ∈ (⋆ai), then we set

(wai+1◭) <T (wai+2◭) <T (wai+3◭) <T · · ·

· · · <T (wa2n−1◭) <T (wa2n◭) <T (wa1◭) <T (wa2◭) <T (wa3◭) <T · · ·

· · · <T (wai−2◭) <T (wai−1◭).

Hence, for each w ∈ Fn, we have an ordering <T of a partition of (w◭) into 2n
or 2n− 1 subsets.

If (bk)k≥1 and (ck)k≥1 are two different ends, then there exists j ∈ Z, j ≥ 0,
such that (bk)1≤k≤j = (ck)1≤k≤j and bj+1 6= cj+1. Let w = Πj

k=1bk = Πj
k=1ck in

Fn. Then (bk)k≥1 and (ck)k≥1 lie in (w◭), but lie in different elements of the
partition of (w◭) into 2n or 2n− 1 subsets. We then order (bk)k≥1 and (ck)k≥1

using the order of the elements of the partition of (w◭) that they belong to.
This completes the definition of the ordering <T of ∂Fn.

6.4 Remark. Let w be the non-cyclic element of T . In (∂Fn, <T ), the smallest
element is w∞ and the largest element is w∞.

For example, in F4 = 〈a, b, c, d | 〉 we take the surface word set T =
{ad bc, [ab], [cd]}. The associated sequence of T is (a, b, c, d, b, a, d, c). In
(∂F4, <T ), the smallest element is (ad bc)∞, and, the largest element is (cbda)∞.

6.5 Notation. We denote by < the order on ∂Σg,1,p with respect to the standard
(g, p)-surface word set of Σg,1,p.

6.6 Review. Let Ŝ be the universal cover of Sg,1,p. Suppose Sg,1,p has negative

Euler characteristic, that is, 2g + p ≥ 2. Then Ŝ can be identified with a region
of the hyperbolic plane. Let ∂Ŝ be the boundary of Ŝ. It is well-known that ∂Ŝ
can be identified with R∪{∞}. Let ∗ be the point in ∂Ŝ corresponding to ∞ by
this identification. The identification between ∂Ŝ and R ∪ {∞} restricts to an
identification between ∂Ŝ − {∗} and R. By work of Nielsen-Thurston [5], [16],
there is an action of Mg,1,p on ∂Ŝ with a fixed point, which we can suppose to

be ∗ ∈ ∂Ŝ. Hence, there exists an action of Mg,1,p on R. By [16], this action
preserves the usual order of R. Remark 5.9 and Proposition 6.7 give the analog
statement for AMg,1,p and ∂Σg,1,p.

Let φ ∈ Aut(Fn). It is proved in [5] that (Πk≥1ak)
φ = limk→∞(Πk

i=1ai)
φ

defines a map ∂Fn → ∂Fn, which we still denote by φ.

6.7 Proposition. Let T1, T2 be surface word sets of Fn and (T1, T2, φ) ∈
Hom(T1, T2). Then φ : (∂Fn,≤T1) → (∂Fn,≤T2) respects the orderings.

Proof. By Theorem 5.10, we can restrict ourselves to the case where (T1, T2, φ)
is a Nielsen.

By Remark 5.7(i), the result is clear if (T1, T2, φ) is a type-1 Nielsen. Hence,
we suppose (T1, T2, φ) is a type-2 Nielsen.
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Let (ak)1≤k≤2n be the associated sequence of T1. Then either φ = (ai 7→
ai−1ai) for some 2 ≤ i ≤ 2n, ai 6= ai−1; or, φ = (ai 7→ aiai+1) for some 1 ≤ i ≤
(2n− 1), ai 6= ai+1.

Suppose φ = (ai 7→ ai−1ai) for some 2 ≤ i ≤ 2n, ai 6= ai−1.

The following correspondence by the action of (ai 7→ ai−1ai) is clear.

(ai 7→ ai−1ai)

(⋆ aiai−1) −→ (⋆ ai),

(⋆ ai−1)− (⋆ aiai−1) −→ (⋆ ai−1),

(⋆ ai) −→ (⋆ ai),

(⋆ ak) −→ (⋆ ak), ak 6= a±1
i−1, a

±1
i ,

(⋆ ai−1) −→ (⋆ ai−1)− (⋆aiai−1),

(⋆ ai) −→ (⋆ aiai−1).

The following correspondence by the action of (ai 7→ ai−1ai) is clear.

(ai 7→ ai−1ai)

(ai−1 ◭) −→ (ai−1 ◭)− (ai−1ai ◭),

(ai ◭) −→ (ai−1ai ◭),

(ak ◭) −→ (ak ◭), ak 6= a±1
i−1, a

±1
i ,

(ai−1ai ◭) −→ (ai ◭),

(ai−1 ◭)− (ai−1ai ◭) −→ (ai−1 ◭),

(ai ◭) −→ (ai ◭).

From the first row of the first table and the second table we deduce the
following table.

(ai 7→ ai−1ai)

(⋆ aiai−1)(ai−1 ◭) −→ (⋆ ai)[(ai−1 ◭)− (ai−1ai ◭)],

(⋆ aiai−1)(ai ◭) −→ (⋆ ai)(ai−1ai ◭),

(⋆ aiai−1)(ak ◭) −→ (⋆ ai)(ak ◭), ak 6= a±1
i−1, a

±1
i ,

(⋆ aiai−1)(ai ◭) −→ (⋆ ai)(ai ◭).

Notice the cases (⋆aiai−1)(ai−1ai ◭) and (⋆aiai−1)[(ai−1 ◭)− (ai−1ai ◭)] do
not have to be considered since they are not in reduced form.

Let e, f ∈ ∂Fn such that e = (waiai−1)e
′, f = (waiai−1)f

′ and the first letter
of e′ is different from the first letter of f′. Let 1 ≤ j ≤ 2n such that aj = ai−1.
By the third table, e(ai 7→ai−1ai) = (uai)e

′′, f(ai 7→ai−1ai) = (uai)f
′′ in reduced form.

Let (bk)1≤k≤2n be the associated sequence of T2. Recall (bk)1≤k≤2n is obtained
from (ak)1≤k≤2n by moving ai from immediately after ai−1 to immediately before
aj = ai−1. There are two cases according to j < i− 1 or i− 1 < j.
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If j < i− 1, then

(bk)1≤k≤(j−1) = (ak)1≤k≤(j−1),
bj = ai,
(bk)(j+1)≤k≤i = (ak)j≤k≤(i−1),
(bk)(i+1)≤k≤2n = (ak)(i+1)≤k≤2n.

The partition with respect to (ak)1≤k≤2n of (aj ◭) = (ai−1 ◭) is (aj+1 ◭),
(aj+2 ◭), . . . , (ai−1 ◭), (ai ◭), (ai+1 ◭), . . . , (a2n ◭), (a1 ◭), (a2 ◭), . . . ,
(aj−1 ◭). The partition with respect to (bk)1≤k≤2n of (ai ◭) is (aj ◭),
(aj+1 ◭), . . . , (ai−1 ◭), (ai+1 ◭), (ai+2 ◭), . . . , (a2n ◭), (a1 ◭), (a2 ◭), . . . ,
(aj−1 ◭). By the third table,

(ai 7→ ai−1ai)

(waiai−1)(aj+1 ◭) −→ (uai)(aj+1 ◭),

(waiai−1)(aj+2 ◭) −→ (uai)(aj+2 ◭),
...

(waiai−1)(ai−2 ◭) −→ (uai)(ai−2 ◭),

(waiai−1)(ai−1 ◭) −→ (uai)[(ai−1 ◭)− (ai−1ai ◭)],

(waiai−1)(ai ◭) −→ (uai)(ai−1ai ◭),

(waiai−1)(ai+1 ◭) −→ (uai)(ai+1 ◭),
...

(waiai−1)(a2n ◭) −→ (uai)(a2n ◭),

(waiai−1)(a1 ◭) −→ (uai)(a1 ◭),

(waiai−1)(a2 ◭) −→ (uai)(a2 ◭),
...

(waiai−1)(aj−1 ◭) −→ (uai)(aj−1 ◭).

Since aj = ai−1, the first column is ordered with respect to T1. On the other
hand, aj = ai−1 implies that the partition of (uai)(ai−1 ◭) with respect to T2
ends with (uai)(ai−1ai ◭). Then, the second column of this table is ordered with
respect to T2. Hence, if (waiai−1)e

′ <T1 (waiai−1)f
′ then (uai)e

′′ <T2 (uai)f
′′.

If i− 1 < j, then

(bk)1≤k≤(i−1) = (ak)1≤k≤(i−1)

(bk)i≤k≤(j−2) = (ak)(i+1)≤k≤(j−1)

bj−1 = ai
(bk)j≤k≤2n = (ak)j≤k≤2n

The partition with respect to (ak)1≤k≤2n of (aj ◭) = (ai−1 ◭) is (aj+1 ◭),
(aj+2 ◭), . . . , (a2n ◭),(a1 ◭), (a2 ◭), . . . , (ai−1 ◭), (ai ◭), (ai+1 ◭), . . . , (aj−1 ◭).
The partition with respect to (bk)1≤k≤2n of (ai ◭) is (aj ◭), (aj+1 ◭), . . . , (a2n ◭),

17



(a1 ◭), (a2 ◭), . . . , (ai−1 ◭), (ai+1 ◭), (ai+2 ◭), . . . , (aj−1 ◭). By the third table,

(ai 7→ ai−1ai)

(waiai−1)(aj+1 ◭) −→ (uai)(aj+1 ◭),

(waiai−1)(aj+2 ◭) −→ (uai)(aj+2 ◭),
...

(waiai−1)(a2n ◭) −→ (uai)(a2n ◭),

(waiai−1)(a1 ◭) −→ (uai)(a1 ◭),

(waiai−1)(a2 ◭) −→ (uai)(a2 ◭),
...

(waiai−1)(ai−2 ◭) −→ (uai)(ai−2 ◭),

(waiai−1)(ai−1 ◭) −→ (uai)[(ai−1 ◭)− (ai−1ai ◭)],

(waiai−1)(ai ◭) −→ (uai)(ai−1ai ◭),

(waiai−1)(ai+1 ◭) −→ (uai)(ai+1 ◭),
...

(waiai−1)(aj−1 ◭) −→ (uai)(aj−1 ◭).

Since aj = ai−1, the first column is ordered with respect to T1. On the other
hand, aj = ai−1 implies that the partition of (uai)(ai−1 ◭) with respect to T2
ends with (uai)(ai−1ai ◭). Then, the second column of this table is ordered with
respect to T2. Hence, if (waiai−1)e

′ <T1 (waiai−1)f
′ then (uai)e

′′ <T2 (uai)f
′′.

For every row of the first table, there is a case which needs to be considered.
Similarly, in all these cases, it can be shown that if e <T1 f, then e(ai 7→ai−1ai) <T2

f(ai 7→ai−1ai).

The case φ = (ai 7→ aiai+1) for some 1 ≤ i ≤ (2n − 1), ai 6= ai+1, is
similar.

7 t-squarefreeness

Recall 2g + p = n and Σg,1,p is the free group on {xi, yi}1≤i≤g ∪ {tk}1≤k≤p.

The following definition extends Definition 4.1 to Σg,1,p ∪ ∂Σg,1,p.

7.1 Definition. An element of Σg,1,p ∪ ∂Σg,1,p is said to be t-squarefree if, in its
reduced expression, no two consecutive terms in {tk, tk}1≤k≤p are equal.

7.2 Notation. Recall that if G is a group and g1, g2, . . . , gk ∈ G, then Πk
i=1gi =

g1g2 · · · gk. We introduce the notation Πi=k
1 gi = gkgk−1 · · · g1.

In the standard surface word set, we denote

z1 = Πg
i=1[xi, yi]Π

p
k=1tk = [x1, y1][x2, y2] · · · [xg, yg]t1t2 · · · tp,

z1 = Πk=p
1 tkΠ

i=g
1 [yi, xi] = tptp−1 · · · t1[yg, xg][yg−1, xg−1] · · · [y1, x1].
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From Remark 6.4, the smallest element of (∂Σg,1,p, <) is z
∞
1 and the largest el-

ement of (∂Σg,1,p, <) is z
∞
1 . We denote by min(∂Σg,1,p) = z∞

1 and max(∂Σg,1,p) =
z∞1 these facts.

Given two ends e, f ∈ ∂Σg,1,p, we write

[e, f] := {g ∈ ∂Σg,1,p | e ≤ g ≤ f}.

7.3 Lemma. Let 1 ≤ k0 ≤ p, w ∈ Σg,1,p− (⋆tk0)− (⋆tk0) and 1 ≤ i0 ≤ g. Then,
in (∂Σg,1,p,≤), the following hold:

(i). wtk0w(z
∞
1 ) ≤ wtk0((Π

p
k=k0

tkΠ
g
i=1[xi, yi]Π

k0−1
k=1 tk)

∞) = min(wtk0tk0 ◭);

(ii). max(wtk0tk0 ◭) < min(wtk0tk0 ◭);

(iii). max(wtk0tk0 ◭) = wtk0((Π
k=k0
1 tkΠ

i=g
1 [yi, xi]Π

k=p
k0+1tk)

∞) ≤ wtk0w(z
∞
1 );

(iv). (wtk0tk0 ◭) ∪ (wtk0tk0 ◭) ⊆ [wtk0w(z
∞
1 ), wtk0w(z

∞
1 )];

(v). If 2g + p ≥ 3, then one of the following holds:

(a) tp(z
∞
1 ) > wtk0w(z

∞
1 );

(b) tp(z
∞
1 ) < wtk0w(z

∞
1 );

and, hence, tp(z
∞
1 ) /∈ [wtk0w(z

∞
1 ), wtk0w(z

∞
1 )];

(vi). If a ∈ {xi0 , xi0 , yi0, yi0}, then one of the following holds:

(a). a(z∞1 ) > wtk0w(z
∞
1 );

(b). a(z∞1 ) < wtk0w(z
∞
1 );

and, hence, a(z∞1 ) /∈ [wtk0w(z
∞
1 ), wtk0w(z

∞
1 )].

Proof. Recall < is the ordering with respect to sequence the

(x1, y1, x1, y1, x2, y2, x2, y2, · · · , xg, yg, xg, yg, t1, t1, t2, t2, · · · , tp, tp).

(i). It is straightforward to see that

wtk0((Π
p
k=k0

tkΠ
g
i=1[xi, yi]Π

k0−1
k=1 tk)

∞) = min(wtk0tk0 ◭).

Let a ∈ X ∪X be such that w((Πg
i=1[xi, yi]Π

p
k=1tk)

∞) ∈ (a ◭). Note a 6= tk0.
If a 6= tk0 , then (wtk0a ◭) < (wtk0tk0 ◭), and we have

wtk0w(z
∞
1 ) = wtk0w((Π

g
i=1[xi, yi]Π

p
k=1tk)

∞) < min(wtk0tk0).
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If a = tk0, then w is completely canceled in w((Πg
i=1[xi, yi]Π

p
k=1tk)

∞), and, more-
over,

wtk0w(z
∞
1 ) = wtk0w((Π

g
i=1[xi, yi]Π

p
k=1tk)

∞)

= wtk0((Π
p
k=k0

tkΠ
g
i=1[xi, yi]Π

k0−1
k=1 tk)

∞)

= min(wtk0tk0 ◭).

(ii). It is clear.

(iii). It is straightforward to see that

max(wtk0tk0 ◭) = wtk0((Π
k=k0
1 tkΠ

i=g
1 [yi, xi]Π

k=p
k0+1tk)

∞).

Let a ∈ X ∪X be such that w((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞) ∈ (a ◭). Note a 6= tk0 .
If a 6= tk0, then (wtk0tk0 ◭) < (wtk0a ◭), and we have

max(wtk0tk0 ◭) < wtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞) = wtk0w(z
∞
1 ).

If a = tk0, then w is completely canceled in w((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞), and, more-
over,

wtk0w(z
∞
1 ) = wtk0w((Π

k=p
1 tkΠ

i=g
1 [yi, xi])

∞)

= wtk0((Π
k=k0
1 tkΠ

i=g
1 [yi, xi]Π

k=k0+1
p tk)

∞)

= max(wtk0tk0 ◭).

(iv). Follows from (i)-(iii).

(v). By (i)-(iii),

wtk0w((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞) < wtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞).

Case 1. w = 1. Since (tpx1 ◭) ∪ (tpt1 ◭) > (tk0tp ◭), we see

tp(z
∞
1 ) = tp((Π

g
i=1[xi, yi]Π

p
k=1tk)

∞) > tk0((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞) = tk0(z
∞
1 ).

Thus, (a) holds.

Case 2. w /∈ (tp⋆) ∪ {1}. Since (tp ◭) > (wtk0 ◭), we see

tp(z
∞
1 ) = tp((Π

g
i=1[xi, yi]Π

p
k=1tk)

∞)

> wtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞) = wtk0w(z
∞
1 ).

Thus, (a) holds.

Case 3. w ∈ (tptp⋆). Since (tpx1 ◭) ∪ (tpt1 ◭) > (wtk0 ◭), we see

tp(z
∞
1 ) = tp((Π

g
i=1[xi, yi]Π

p
k=1tk)

∞)

> wtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞) = wtk0w(z
∞
1 ).
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Thus, (a) holds.

Case 4. w ∈ (tp⋆)− (tptp⋆).
Here,

wtk0w(z
∞
1 ) = wtk0w((Π

g
i=1[xi, yi]Π

p
k=1tk)

∞) ∈ (wtk0 ◭) ⊂ (tp ◭)− (tptp ◭).

Hence,

tp((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞) = min((tp ◭)− (tptp ◭))

≤ wtk0w((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞).

To prove (b) holds, it remains to show that

tp((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞) 6= wtk0w((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞),

that is, (Πg
i=1[xi, yi]Π

p
k=1tk)

∞ 6= tpwtk0w((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞), that is,
tpwtk0w /∈ 〈Πg

i=1[xi, yi]Π
p
k=1tk〉. We can write w = tpu where u /∈ (tp⋆). Then

tpwtk0w = utk0utp, in normal form. Thus it suffices to show

utk0utp /∈ 〈Πg
i=1[xi, yi]Π

p
k=1tk〉.

If u = 1, then utk0utp /∈ 〈Πg
i=1[xi, yi]Π

p
k=1tk〉, since 2g + p ≥ 3.

If u 6= 1, then utk0utp /∈ 〈Πg
i=1[xi, yi]Π

p
k=1tk〉, since utk0utp does not lie in

the submonoid of Σg,1,p generated by Πg
i=1[xi, yi]Π

p
k=1tk, nor in the submonoid

generated by Πk=p
1 tkΠ

i=g
1 [yi, xi].

In all four cases (v) holds.

(vi). Let a ∈ {xi0 , xi0, yi0, yi0}.

Case 1. w = 1. Since (a ◭) < (tk0 ◭), we see

a(z∞1 ) = a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞) < tk0((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞) = tk0(z
∞
1 ).

Thus, (b) holds.

Case 2. w /∈ (a⋆) ∪ {1}.

If (a ◭) > (w ◭), then (a ◭) > (w ◭) ⊃ (wtk0 ◭) and

a(z∞1 ) = a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞)

> wtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞) = wtk0w(z
∞
1 ).

Thus, (a) holds.

If (a ◭) < (w ◭), then (a ◭) < (w ◭) ⊃ (wtk0 ◭) and

a(z∞1 ) = a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞)

< wtk0w((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞) = wtk0w(z
∞
1 ).
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Thus, (b) holds.

Case 3. w ∈ (atp⋆).

Since a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞) = max(atp ◭), we see

a(z∞1 ) = a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞)

≥ wtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞) = wtk0w(z
∞
1 ).

To prove (a) holds, it remains to show that

a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞) 6= wtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞),

that is, (Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞ 6= awtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞), that is
awtk0w /∈ 〈Πk=p

1 tkΠ
i=g
1 [yi, xi]〉. We can write w = atpu where u /∈ (tp⋆). Then

awtk0w = tputk0utpa, in normal form. Thus it suffices to show that

tputk0utpa /∈ 〈Πk=p
1 tkΠ

i=g
1 [yi, xi]〉,

which is clear since tputk0utpa does not lie in the submonoid of Σg,1,p generated

by Πk=p
1 tkΠ

i=g
1 [yi, xi], nor in the submonoid generated by Πg

i=1[xi, yi]Π
p
k=1tk.

Case 4. w ∈ (a⋆)− (atp⋆), |w| ≥ 2.
If (atp ◭) > (w ◭), then (atp ◭) > (w ◭) ⊃ (wtk0 ◭) and

a(z∞1 ) = a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞)

> wtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞) = wtk0w(z
∞
1 ).

Thus, (a) holds.

If (atp ◭) < (w ◭), then (atp ◭) < (w ◭) ⊃ (wtk0 ◭) and

a(z∞1 ) = a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞)

< wtk0w((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞) = wtk0w(z
∞
1 ).

Thus, (b) holds.

Case 5. w = a.
Since a(z∞1 ) = max(atp ◭), (atp ◭) ⊃ (atpygxg ◭) and (atpygxg ◭) >

(atk0atp ◭), we see

a(z∞1 ) = a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞)

> atk0a((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞) = atk0a(z
∞
1 ).

Thus, (a) holds.

In all five cases (vi) holds.

7.4 Theorem. If 2g + p ≥ 3 then, for each φ ∈ AMg,1,p, the following hold:
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(i). t
φ
p(z

∞
1 ) is a t-squarefree end,

(ii). for every 1 ≤ i0 ≤ g and every a ∈ {xi0 , xi0 , yi0, yi0}, a
φ(z∞1 ) is a t-

squarefree end.

Proof. (i). Recall z1 = Πg
i=1[xi, yi]Π

p
k=1tk and z1 = Πk=p

1 tkΠ
i=g
1 [yi, xi]. By

Lemma 7.3(v), tp(z
∞
1 ) does not lie in

⋃

u∈{[tk]}1≤k≤p

[u(z∞1 ), u(z∞1 )](=

p
⋃

k=1

⋃

w∈Σg,1,p−(⋆tk)−(⋆tk)

[wtkw(z
∞
1 ), wtkw(z

∞
1 )]).

Notice that φ respects each of the following sets:

{[tk]}1≤k≤p; {z∞1 }; {z∞1 }; and
⋃

u∈{[tk]}1≤k≤p

[u(z∞1 ), u(z∞1 )].

Hence, (tp(z
∞
1 ))φ does not lie in

⋃

u∈{[tk ]}1≤k≤p
[u(z∞1 ), u(z∞1 )]. By Lemma

7.3(iv),

⋃

u∈{[tk]}1≤k≤p

[u(z∞1 ), u(z∞1 )] ⊇

p
⋃

k=1

⋃

w∈Σg,1,p−(⋆tk)−(⋆tk)

((wtktk ◭) ∪ (wtktk ◭)).

Hence, (tp(z
∞
1 ))φ does not lie in the right-hand side set either, and, hence,

(tp(z
∞
1 ))φ is a t-squarefree end. Since (tp(z

∞
1 ))φ = t

φ
p(z

∞
1 ), the desired result

holds.

(ii). The same proof as (i) using Lemma 7.3(vi) instead of Lemma 7.3(v).

Proof. (of Theorem 4.2) Recall (2.3.1). AM0,1,2 = 〈σ1〉, and

t
AM0,1,2

2 = {t
σ2m1
2 , t

σ2m+1
1

2 | m ∈ Z} = {t
(t1t2)m

2 , t
(t1t2)m

1 | m ∈ Z}

Thus, every element of t
AM0,1,2

2 is t-squarefree.

Suppose, now, 2g + p ≥ 3. Let 1 ≤ i0 ≤ g and a ∈ {xi0 , yi0}. By The-
orem 7.4(ii), aφ(z∞1 ) = aφ((Πk=p

1 tkΠ
i=g
1 [yi, xi])

∞) is a t-squarefree end. Hence,
either aφ is t-squarefree or aφ = utktkv in normal form, and tkv is canceled in
aφ(z∞1 ) = utktkv(z

∞
1 ); moreover utk, tkv are t-squarefree. By Theorem 7.4(ii),

aφ(z∞1 ) = aφ((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞)

is a t-squarefree end. Hence, aφ 6= vtktku.
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Since φ permutes the set {[tk]}1≤k≤p, we can write t
φ
p = t

wp

pπ , where π is a
permutation of {1, 2, . . . , p} and wp ∈ Σg,1,p − (tpπ⋆)− (tpπ⋆). It is not difficult
to see that

t
φ
p(z

∞
1 ) = wptpπwp((Π

g
i=1[xi, yi]Π

p
k=1tk)

∞) ∈ (wp ◭).

By Theorem 7.4(i), t
φ
p(z

∞
1 ) is a t-squarefree end. Hence, wp is t-squarefree.

Since wp is t-squarefree, t
φ
p = wptpwp is also t-squarefree. Hence, tφp is t-

squarefree.

Suppose, now, 2g + p ≥ 2. Let 1 ≤ k ≤ p. Since tk is in the AMg,1,p-orbit of

tp, we see tφk is t-squarefree for all φ ∈ AMg,1,p.
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