
HAL Id: hal-00490826
https://hal.science/hal-00490826v1

Preprint submitted on 9 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A first-order primal-dual algorithm for convex problems
with applications to imaging

Antonin Chambolle, Thomas Pock

To cite this version:
Antonin Chambolle, Thomas Pock. A first-order primal-dual algorithm for convex problems with
applications to imaging. 2010. �hal-00490826�

https://hal.science/hal-00490826v1
https://hal.archives-ouvertes.fr

A first-order primal-dual algorithm for convex

problems with applications to imaging

Antonin Chambolle∗, and Thomas Pock†

June 9, 2010

Abstract

In this paper we study a first-order primal-dual algorithm for convex
optimization problems with known saddle-point structure. We prove con-
vergence to a saddle-point with rate O(1/N) in finite dimensions, which is
optimal for the complete class of non-smooth problems we are considering
in this paper. We further show accelerations of the proposed algorithm
to yield optimal rates on easier problems. In particular we show that we
can achieve O(1/N2) convergence on problems, where the primal or the
dual objective is uniformly convex, and we can show linear convergence,
i.e. O(1/eN) on problems where both are uniformly convex. The wide ap-
plicability of the proposed algorithm is demonstrated on several imaging
problems such as image denoising, image deconvolution, image inpainting,
motion estimation and image segmentation.

1 Introduction

Variational methods have proven to be particularly useful to solve a number of
ill-posed inverse imaging problems. They can be divided into two fundamentally
different classes: Convex and non-convex problems. The advantage of convex
problems over non-convex problems is that a global optimum can be computed,
in general with a good precision and in a reasonable time, independent of the
initialization. Hence, the quality of the solution solely depends on the accuracy
of the model. On the other hand, non-convex problems have often the ability
to model more precisely the process behind an image acquisition, but have the
drawback that the quality of the solution is more sensitive to the initialization
and the optimization algorithm.

Total variation minimization plays an important role in convex variational
methods for imaging. The major advantage of the total variation is that it

∗CMAP, Ecole Polytechnique, CNRS, 91128, Palaiseau, France.
e-mail: antonin.chambolle@polytechnique.fr

†Institute for Computer Graphics and Vision, Graz University of Technology, 8010 Graz,
Austria.
e-mail pock@icg.tugraz.at

1

allows for sharp discontinuities in the solution. This is of vital interest for
many imaging problems, since edges represent important features, e.g. object
boundaries or motion boundaries. However, it is also well known that variational
methods incorporating total variation regularization are difficult to minimize
due to the non-smoothness of the total variation. The aim of this paper is
therefore to provide a flexible algorithm which is particularly suitable for non-
smooth convex optimization problems in imaging.

In Section 2 we re-visit a primal-dual algorithm proposed by Pock, Bischof,
Cremers and Chambolle in [26] for minimizing a convex relaxation of the Mum-
ford-Shah functional. In subsequent work [11], Esser et al. studied the same
algorithm in a more general framework and established connections to other
known algorithms. In this paper, we prove that the proposed algorithm con-
verges with rate O(1/N) for the primal-dual gap. In [25], Nesterov showed that
this rate of convergence is optimal for the class of convex optimization problems
with known structure. Hence, our primal-dual algorithm is optimal in some
sense. We further show in Section 5 that for certain problems, the theoretical
rate of convergence can be further improved. In particular we show that the
proposed algorithm can be modified to yield a rate of convergence O(1/N2) for
problems which have some regularity in the primal or in the dual objective and
is linearly convergent (O(1/eN)) for smooth problems.

The primal dual algorithm proposed in this paper can be easily adapted to
different problems, is easy to implement and can be effectively accelerated on
parallel hardware such as graphics processing units (GPUs). This is particular
appealing for imaging problems, where real-time applications play an important
role. This is demonstrated in Section 6 on several variational problems such as
deconvolution, zooming, inpainting, motion estimation and segmentation. We
end the paper by a short discussion.

2 The general problem

Let X,Y be two finite-dimensional real vector spaces equipped with an inner

product 〈·, ·〉 and norm ‖ · ‖ = 〈·, ·〉 1
2 . The map K : X → Y is a continuous

linear operator with induced norm

‖K‖ = max {‖Kx‖ : x ∈ X with ‖x‖ ≤ 1} . (1)

The general problem we consider in this paper is the generic saddle-point prob-
lem

min
x∈X

max
y∈Y

〈Kx, y〉 + G(x) − F ∗(y) (2)

where G : X → [0,+∞) and F ∗ : Y → [0,+∞) are proper, convex, lower-
semicontinuous (l.s.c.) functions, F ∗ being itself the convex conjugate of a
convex l.s.c. function F . Let us observe that this saddle-point problem is a
primal-dual formulation of the nonlinear primal problem

min
x∈X

F (Kx) + G(x) , (3)

2

or of the corresponding dual problem

max
y∈Y

− (G∗(−K∗y) + F ∗(y)) . (4)

We refer to [29] for more information. We assume that these problems have at
least a solution (x̂, ŷ) ∈ X × Y , which therefore satisfies

Kx̂ ∈ ∂F ∗(ŷ) ,

−(K∗ŷ) ∈ ∂G(x̂) ,
(5)

where ∂F ∗ and ∂G are the subgradients of the convex functions F ∗ and G. See
again [29] for details. Throughout the paper we will assume that F and G are
“simple”, in the sense that their resolvent operator defined through

x = (I + τ∂F)−1(y) = arg min
x

{‖x− y‖2
2τ

+ F (x)

}

.

has a closed-form representation (or can be efficiently solved up to a high pre-
cision, e.g. using a Newton method in low dimension). This is the case in many
interesting problems in imaging, see Section 6. We recall that it is as easy to
compute (I+τ∂F)−1 as (I+τ∂F ∗)−1, as it is shown by the celebrated Moreau’s
identity:

x = (I + τ∂F)−1(x) + τ

(

I +
1

τ
∂F ∗

)−1
(x

τ

)

, (6)

see for instance [29].

3 The algorithm

The primal-dual algorithm we study in this paper is summarized in Algorithm 1.
Note that the algorithm can also be written with ȳn+1 = yn+1 + θ(yn+1 − yn)
instead of x̄n+1 and by exchanging the updates for yn+1 and xn+1. We will
focus on the special case θ = 1 since in that case, it is relatively easy to get
estimates on the convergence of the algorithm. However, other cases are inter-
esting, and in particular the semi-implicit classical Arrow-Hurwicz algorithm,
which corresponds to θ = 0, has been presented in the recent literature as an
efficient approach for solving some type of imaging problems [34]. We’ll see that
in smoother cases, that approach seems indeed to perform very well, even if we
can actually prove estimates for larger choices of θ. We will also consider later
on (when F or G have some known regularity) some variants where the steps σ
and τ and the parameter θ can be modified at each iteration, see Section 5.

3.1 Convergence analysis for θ = 1.

For practical use, we introduce the partial primal-dual gap

GB1×B2
(x, y) = max

y′∈B2

〈y′,Kx〉−F ∗(y′)+G(x)− min
x′∈B1

〈y,Kx′〉−F ∗(y)+G(x′) .

3

Algorithm 1.

• Initialization: Choose τ, σ > 0, θ ∈ [0, 1], (x0, y0) ∈ X×Y and set x̄0 = x0.

• Iterations (n ≥ 0): Update xn, yn, x̄n as follows:

yn+1 = (I + σ∂F ∗)−1(yn + σKx̄n)

xn+1 = (I + τ∂G)−1(xn − τK∗yn+1)

x̄n+1 = xn+1 + θ(xn+1 − xn)

(7)

Then, as soon as B1×B2 contains a saddle-point (x̂, ŷ), defined by (2), we have

GB1×B2
(x, y) ≥ (〈ŷ, Kx〉 − F ∗(ŷ) +G(x)) − (〈y,Kx̂〉 − F ∗(y) +G(x̂)) ≥ 0

and it vanishes only if (x, y) is itself a saddle-point. In the general case we have
the following convergence result.

Theorem 1. Let L = ‖K‖ and assume problem (2) has a saddle-point (x̂, ŷ).
Choose θ = 1, τσL2 < 1, and let (xn, x̄n, yn) be defined by (7). Then:

(a) For any n,

‖yn − ŷ‖
2σ

2

+
‖xn − x̂‖

2τ

2

≤ C

(

‖y0 − ŷ‖
2σ

2

+
‖x0 − x̂‖

2τ

2
)

(8)

where the constant C ≤ (1− τσL2)−1;

(b) If we let xN = (
∑N

n=1 x
n)/N and yN = (

∑N
n=1 y

n)/N , for any bounded
B1 ×B2 ⊂ X × Y the restricted gap has the following bound:

GB1×B2
(xN , yN) ≤ D(B1, B2)

N
, (9)

where

D(B1, B2) = sup
(x,y)∈B1×B2

‖x− x0‖
2τ

2

+
‖y − y0‖

2σ

2

Moreover, the weak cluster points of (xN , yN) are saddle-points of (2);

(c) If the dimension of the spaces X and Y is finite, then there exists a saddle-
point (x∗, y∗) such that xn → x∗ and yn → y∗.

Proof. Let us first write the iterations (7) in the general form

{

yn+1 = (I + σ∂F ∗)−1(yn + σKx̄)

xn+1 = (I + τ∂G)−1(xn − τK∗ȳ) .
(10)

4

We have

∂F ∗(yn+1) ∋ yn − yn+1

σ
+Kx̄

∂G(xn+1) ∋ xn − xn+1

τ
−K∗ȳ

so that for any (x, y) ∈ X × Y ,

F ∗(y) ≥ F ∗(yn+1) +

〈

yn − yn+1

σ
, y − yn+1

〉

+
〈

Kx̄, y − yn+1
〉

G(x) ≥ G(xn+1) +

〈

xn − xn+1

τ
, x− xn+1

〉

−
〈

K(x− xn+1), ȳ
〉

.
(11)

Summing both inequalities, it follows:

‖y − yn‖
2σ

2

+
‖x− xn‖

2τ

2

≥
[〈

Kxn+1, y
〉

− F ∗(y) +G(xn+1)
]

−
[〈

Kx, yn+1
〉

− F ∗(yn+1) +G(x)
]

+
‖y − yn+1‖

2σ

2

+
‖x− xn+1‖

2τ

2

+
‖yn − yn+1‖

2σ

2

+
‖xn − xn+1‖

2τ

2

+
〈

K(xn+1 − x̄), yn+1 − y
〉

−
〈

K(xn+1 − x), yn+1 − ȳ
〉

(12)

From this inequality it can be seen that the expression in the last line of (12)
plays an important role in proving convergence of the algorithm.

The best choice of course would be to make the scheme fully implicit, i.e. x̄ =
xn+1 and ȳ = yn+1, which however is not feasible, since this choice would require
to solve problems beforehand which are as difficult as the original problem. It
is easy to see that by the natural order of the iterates,the scheme can be easily
made semi implicit by taking x̄ = xn and ȳ = yn+1. This choice, corresponding
to θ = 0 in Algorithm 1, yields the classical Arrow-Hurwicz algorithm [1] and
has been used in [34] for total variation minimization. A proof of convergence
for this choice is given in [11] but with some additional restrictions on the step-
widths (See also Section 3.2 for a more detailed analysis of this scheme.).

Another choice is to compute so-called leading points obtained from taking
an extragradient step based on the current iterates [15, 27, 21].

Here, we consider Algorithm 1 with θ = 1. As in the semi-implicit case,
we choose ȳ = yn+1, while we choose x̄ = 2xn − xn−1 which corresponds to a
simple linear extrapolation based on the current and previous iterates. This can
be seen as an approximate extragradient step. With this choice, the last line

5

of (12) becomes

〈

K(xn+1 − x̄), yn+1 − y
〉

−
〈

K(xn+1 − x), yn+1 − ȳ
〉

=
〈

K((xn+1 − xn)− (xn − xn−1)), yn+1 − y
〉

=
〈

K(xn+1 − xn), yn+1 − y
〉

−
〈

K(xn − xn−1), yn − y
〉

−
〈

K(xn − xn−1), yn+1 − yn
〉

≥
〈

K(xn+1 − xn), yn+1 − y
〉

−
〈

K(xn − xn−1), yn − y
〉

− L‖xn − xn−1‖‖yn+1 − yn‖ . (13)

For any α > 0, we have that (using 2ab ≤ αa2 + b2/α for any a, b)

L‖xn − xn−1‖‖yn+1 − yn‖ ≤ Lατ

2τ
‖xn − xn−1‖2 +

Lσ

2ασ
‖yn+1 − yn‖2

and we choose α =
√

σ/τ , so that Lατ = Lσ/α =
√
στL < 1.

Summing the last inequality together with (12) and (13), we get that for any
x ∈ X and y ∈ Y ,

‖y − yn‖
2σ

2

+
‖x− xn‖

2τ

2

≥
[〈

Kxn+1, y
〉

− F ∗(y) +G(xn+1)
]

−
[〈

Kx, yn+1
〉

− F ∗(yn+1) +G(x)
]

+
‖y − yn+1‖

2σ

2

+
‖x− xn+1‖

2τ

2

+ (1−√
στL)

‖yn − yn+1‖
2σ

2

+
‖xn − xn+1‖

2τ

2

−√
στL

‖xn−1 − xn‖
2τ

2

+
〈

K(xn+1 − xn), yn+1 − y
〉

−
〈

K(xn − xn−1), yn − y
〉

(14)

Let us now sum (14) from n = 0 to N − 1: it follows that for any x and y,

N
∑

n=1

[〈Kxn, y〉 − F ∗(y) +G(xn)]− [〈Kx, yn〉 − F ∗(yn) +G(x)]

+
‖y − yN‖

2σ

2

+
‖x− xN‖

2τ

2

+ (1−√
στL)

N
∑

n=1

‖yn − yn−1‖
2σ

2

+ (1−√
στL)

N−1
∑

n=1

‖xn − xn−1‖
2τ

2

+
‖xN − xN−1‖

2τ

2

≤ ‖y − y0‖
2σ

2

+
‖x− x0‖

2τ

2

+
〈

K(xN − xN−1), yN − y
〉

where we have used x−1 = x0. Now, as before,
〈

K(xN − xN−1), yN − y
〉

≤

6

‖xN − xN−1‖2/(2τ) + (τσL2)‖y − yN‖2/(2σ), and it follows

N
∑

n=1

[〈Kxn, y〉 − F ∗(y) +G(xn)]− [〈Kx, yn〉 − F ∗(yn) +G(x)]

+ (1− στL2)
‖y − yN‖

2σ

2

+
‖x− xN‖

2τ

2

+ (1−√
στL)

N
∑

n=1

‖yn − yn−1‖
2σ

2

+ (1−√
στL)

N−1
∑

n=1

‖xn − xn−1‖
2τ

2

≤ ‖y − y0‖
2σ

2

+
‖x− x0‖

2τ

2

(15)

First we choose (x, y) = (x̂, ŷ) a saddle-point in (15). Then, it follows
from (2) that the first summation in (15) is non-negative, and point (a) in
Theorem 1 follows. We then deduce from (15) and the convexity of G and F ∗

that, letting xN = (
∑N

n=1 x
n)/N and yN = (

∑N
n=1 y

n)/N ,

[〈KxN , y〉 − F ∗(y) +G(xN)]− [〈Kx, yN 〉 − F ∗(yN) +G(x)]

≤ 1

N

(

‖y − y0‖
2σ

2

+
‖x− x0‖

2τ

2
)

(16)

for any (x, y) ∈ X × Y , which yields (9). Consider now a weak cluster point
(x∗, y∗) of (xN , yN) (which is a bounded sequence, hence weakly compact).
Since G and F ∗ are convex and l.s.c. they also are weakly l.s.c., and it follows
from (16) that

[〈Kx∗, y〉 − F ∗(y) +G(x∗)]− [〈Kx, y∗〉 − F ∗(y∗) +G(x)] ≤ 0

for any (x, y) ∈ X × Y : this shows that (x∗, y∗) satisfies (2) and therefore is a
saddle-point. We have shown point (b) in Theorem 1.

It remains to prove the convergence to a saddle-point if X and Y are finite-
dimensional. Point (a) establishes that (xn, yn) is a bounded sequence, so that
some subsequence (xnk , ynk) converges to some limit (x∗, y∗), strongly since
we are in finite dimension. Observe that (15) implies that limn(x

n − xn−1) =
limn(y

n−yn−1) = 0, in particular also xnk−1 and ynk−1 converge respectively to
x∗ and y∗. It follows that the limit (x∗, y∗) is a fixed point of the iterations (7),
hence a saddle-point of our problem.

We can then take (x, y) = (x∗, y∗) in (14), which we sum from n = nk to

7

N − 1, N > nk. We obtain

‖y∗ − yN‖
2σ

2

+
‖x∗ − xN‖

2τ

2

+ (1−√
στL)

N
∑

n=nk+1

‖yn − yn−1‖
2σ

2

− ‖xnk − xnk−1‖
2τ

2

+ (1−√
στL)

N−1
∑

n=nk

‖xn − xn−1‖
2τ

2

+
‖xN − xN−1‖

2τ

2

+
〈

K(xN − xN−1), yN − y∗
〉

−
〈

K(xnk − xnk−1), ynk − y∗
〉

≤ ‖y∗ − ynk‖
2σ

2

+
‖x∗ − xnk‖

2τ

2

from which we easily deduce that xN → x∗ and yN → y∗ as N → ∞.

Remark 1. Note that when using τσL2 = 1 in (15), the control of the estimate
for yN is lost. However, one still has an estimate on xN

‖x− xN‖
2τ

2

≤ ‖y − y0‖
2σ

2

+
‖x− x0‖

2τ

2

An analog estimate can be obtained by writing the algorithm in ȳ.

‖y − yN‖
2σ

2

≤ ‖y − y0‖
2σ

2

+
‖x− x0‖

2τ

2

Remark 2. Let us observe that also the global gap converges with the same
rate O(1/N), under the additional assumption that F and G∗ have full domain.
More precisely, we observe that if F ∗(y)/|y| → ∞ as |y| → ∞, then for any
R > 0, F ∗(y) ≥ R|y| for y large enough which yields that domF ⊃ B(0, R).
Hence F has full domain. Conversely, if F has full domain, one can check that
lim|y|→∞ F ∗(y)/|y| = +∞. It is classical that in this case, F is locally Lipschitz
in Y . One checks, then, that

max
y∈Y

〈y,KxN 〉 − F ∗(y) +G(xN) = F (KxN) +G(xN)

is reached at some y ∈ ∂F (KxN), which is globally bounded thanks to (8). It
follows from (9) that F (KxN) + G(xN) − (F (Kx̄) + G(x̄)) ≤ D/N for some
constant depending on the starting point (x0, y0), F and L. In the same way, if
lim|x|→∞ G(x)/|x| → ∞ (G∗ has full domain), we have F ∗(yN)+G∗(−K∗yN)−
(F ∗(ŷ)+G∗(−K∗ŷ)) ≤ D/N . If both F ∗(y)/|y| and G(x)/|x| diverge as |y| and
|x| go to infinity, then the global gap G(xN , yN) ≤ D/N .

3.2 The Arrow-Hurwicz method (θ = 0)

We have seen that the classical Arrow-Hurwicz method [1] corresponds to the
choice θ = 0 in Algorithm 1, that is, the particular choice ȳ = yn+1 and x̄ = xn

8

in (10). This leads to

{

yn+1 = (I + σ∂F ∗)−1(yn + σKxn)

xn+1 = (I + τ∂G)−1(xn − τK∗yn+1) .
(17)

In [34], Zhu and Chan used this classical Arrow-Hurwicz method to solve the
Rudin Osher and Fatemi (ROF) image denoising problem [30]. See also [11] for
a proof of convergence of the Arrow-Hurwicz method with very small steps. A
characteristic of the ROF problem (and also many others) is that the domain
of F ∗ is bounded, i.e. F ∗(y) < +∞ ⇒ ‖y‖ ≤ D. With this assumption, we can
modify the proof of Theorem 1 to show the convergence of the Arrow-Hurwicz
algorithm within O(1/

√
N). A similar result can be found in [20]. It seems that

the convergence is also ensured without this assumption, but knowing that G is
uniformly convex (which is the case in [34]), see Section 5 and the experiments
in Section 6.

Choosing x̄ = xn, ȳ = yn+1 in (12), we find that for any β ∈ (0, 1]:

〈

K(xn+1 − x̄), yn+1 − y
〉

−
〈

K(xn+1 − x), yn+1 − ȳ
〉

=
〈

K(xn+1 − xn), yn+1 − y
〉

≥ −β
‖xn+1 − xn‖

2τ

2

− τL2 ‖yn+1 − y‖
2β

2

≥ −β
‖xn+1 − xn‖

2τ

2

− τ
L2D2

2β
(18)

where D = diam(domF ∗) and provided F ∗(y) < +∞. Then:

N
∑

n=1

[〈Kxn, y〉 − F ∗(y) +G(xn)]− [〈Kx, yn〉 − F ∗(yn) +G(x)]

+
‖y − yN‖

2σ

2

+
‖x− xN‖

2τ

2

+

N
∑

n=1

‖yn − yn−1‖
2σ

2

+ (1− β)

N
∑

n=1

‖xn − xn−1‖
2τ

2

≤ ‖y − y0‖
2σ

2

+
‖x− x0‖

2τ

2

+Nτ
L2D2

2β
(19)

so that (16) is transformed in

[〈KxN , y〉 − F ∗(y) +G(xN)]− [〈Kx, yN 〉 − F ∗(yN) +G(x)]

≤ 1

N

(

‖y − y0‖
2σ

2

+
‖x− x0‖

2τ

2
)

+ τ
L2D2

2β
. (20)

This estimate differs from our estimate (16) by an additional term, which
shows that O(1/N) convergence can only be guaranteed within a certain error
range. Observe that by choosing τ = 1/

√
N one obtains global O(1/

√
N)

convergence of the gap. This equals the worst case rate of black box oriented

9

subgradient methods [22]. In case of the ROF model, Zhu and Chan [11] showed
that by a clever adaption of the step sizes the Arrow-Hurwicz method achieves
much faster convergence, although a theoretical justification of the acceleration
is still missing. In Section 5, we prove that a similar strategy applied to our
algorithm also drastically improves the convergence, in case one function has
some regularity. We then have checked experimentally that our same rules,
applied to the Arrow-Hurwicz method, apparently yield a similar acceleration,
but a proof is still missing, see Remarks 4 and 5.

4 Connections to existing algorithms

In this section we establish connections to well known methods. We first es-
tablish similarities with two algorithms which are based on extrapolational gra-
dients [15, 27]. We further show that for K being the identity, the proposed
algorithm reduces to the Douglas Rachford splitting algorithm [17]. As observed
in [11], we finally show that it can also be understood as a preconditioned version
of the alternating direction method of multipliers.

4.1 Extrapolational gradient methods

We have already mentioned that the proposed algorithm shares similarities with
two old methods [15, 27]. Let us briefly recall these methods to point out some
connections. In order to describe these methods, it is convenient to define the
primal-dual pair z = (x, y)T the convex l.s.c. function H(z) = G(x) + F ∗(y)
and the linear map K̄ = (−K∗,K) : (Y ×X) → (X × Y).

The modified Arrow-Hurwicz method proposed by Popov in [27] can be
written as

{

zn+1 = (I + τ∂H)−1(zn + τK̄z̄n)

z̄n+1 = (I + τ∂H)−1(zn+1 + τK̄z̄n) ,
(21)

where τ > 0 denotes the step size. This algorithm is known to converge as
long as τ < (3L)−1, L = ‖K̄‖. Observe, that in contrast to the proposed
algorithm (7), Popov’s algorithm requires a sequence {z̄n} of primal and dual
leading points. It therefore has a larger memory footprint and it is less efficient
in cases, where the evaluation of the resolvent operators is complex.

As similar algorithm, the so-called extragradient method, has been proposed
by Korpelevich in [15].

{

zn+1 = (I + τ∂H)−1(zn + τK̄z̄n)

z̄n+1 = (I + τ∂H)−1(zn+1 + τK̄zn+1) ,
(22)

where τ < (
√
2L)−1, L = ‖K̄‖ denotes the step size. The extragradient method

bears a lot of similarities with (21), although it is not completely equivalent. In
contrast to (21), the primal-dual leading point z̄n+1 is now computed by taking
an extragradient step based on the current iterate. In [21], Nemirovski showed
that the extragradient method converges with a rate of O(1/N) for the gap.

10

4.2 The Douglas-Rachford splitting algorithm

Computing the solution of a convex optimization problem is equivalent to the
problem of finding zeros of a maximal monotone operator T associated with the
subgradient of the optimization problem. The proximal point algorithm [28] is
probably the most fundamental algorithm for finding zeroes of T . It is written
as the recursion

wn+1 = (I + τnT)−1(wn) , (23)

where τn > 0 are the steps. Unfortunately, in most interesting cases (I +
τnT)−1 is hard to evaluate and hence the practical interest of the proximal
point algorithm is limited.

If the operator T can be split up into a sum of two maximal monotone
operators A and B such that T = A + B and (I + τA)−1 and (I + τB)−1 are
easier to evaluate than (I + τT)−1, then one can devise algorithms which only
need to evaluate the resolvent operators with respect to A and B. A number
of different algorithms have been proposed. Let us focus here on the Douglas-
Rachford splitting algorithm (DRS) [17], which is known to be a special case of
the proximal point algorithm (23), see [9]. The basic DRS algorithm is defined
through the iterations

{

wn+1 = (I + τA)−1(2xn − wn) + wn − xn

xn+1 = (I + τB)−1(wn+1) .
(24)

Let us now apply the DRS algorithm to the primal problem (3)1. We let A =
K∗∂F (K) and B = ∂G and apply the DRS algorithm to A and B.

wn+1 = arg min
v

F (Kv) +
1

2τ
‖v − (2xn − wn)‖2 + wn − xn

xn+1 = arg min
x

G(x) +
1

2τ

∥

∥x− wn+1
∥

∥

2
. (25)

By duality principles, we find that

wn+1 = xn − τK∗yn+1 , (26)

where y = (Kv)∗ is the dual variable with respect to Kv and

yn+1 = arg min
y

F ∗(y) +
τ

2

∥

∥

∥

∥

K∗y − 2xn − wn

τ

∥

∥

∥

∥

2

. (27)

Similarly, we find that
xn+1 = wn+1 − τzn+1 , (28)

where z = x∗ is the dual variable with respect to x and

zn+1 = arg min
z

G∗(z) +
τ

2

∥

∥

∥

∥

z − wn+1

τ

∥

∥

∥

∥

2

. (29)

1Clearly, the DRS algorithm can also be applied to the dual problem.

11

Finally, by combining (28) with (27), by substituting (26) into (29) and by
substituting (26) into (28) we arrive at

yn+1 = arg min
y

F ∗(y)− 〈K∗y, xn〉+ τ

2
‖K∗y + zn‖2

zn+1 = arg min
z

G∗(z)− 〈z, xn〉+ τ

2

∥

∥K∗yn+1 + z
∥

∥

2

xn+1 = xn − τ(K∗yn+1 + zn+1)

. (30)

This variant of the DRS algorithm is also known as the alternating method of
multipliers (ADMM). Using Moreau’s identity (6), we can further simplify (30),

yn+1 = arg min
y

F ∗(y)− 〈K∗y, xn〉+ τ

2
‖K∗y + zn‖2

xn+1 = (I + τ∂G)−1(xn − τK∗yn+1)

zn+1 = xn − xn+1

τ −K∗yn+1

. (31)

We can now see that for K = I, the above scheme trivially reduces to (7),
meaning that in this case Algorithm 1 is equivalent to the DRS algorithm (24)
as well as to the ADMM (30).

4.3 Preconditioned ADMM

In many practical problems, G(x) and F ∗(y) are relatively easy to invert (e.g.
total variation methods), but the minimization of the first step in (31) is still
hard since it amounts to solve a least squares problem including the linear
operator K. As recently observed in [11], a clever idea is to add an additional
prox term of the form

1

2
〈M(y − yn), y − yn〉 ,

where M is a positive definite matrix, to the first step in (31). Then, by the
particular choice

M =
1

σ
− τKK∗ , 0 < τσ < 1/L2

the update of the first step in (31) reduces to

yn+1 = arg min
y

F ∗(y)− 〈K∗y, xn〉+ τ

2
‖K∗y + zn‖2

+
1

2

〈(

1

σ
− τKK∗

)

(y − yn), y − yn
〉

= arg min
y

F ∗(y)− 〈y,Kxn〉+ τ

2
〈y,KK∗y〉+ τ 〈y,Kzn〉

+
1

2σ
〈y, y〉 − τ

2
〈y,KK∗y〉 −

〈

y,

(

1

σ
− τKK∗

)

yn
〉

= arg min
y

F ∗(y) +
1

2σ
‖y − (yn + σK (xn − τ(K∗yn + zn)))‖2 .(32)

12

This can be further simplified to

yn+1 = (I + σ∂F ∗)−1 (yn + σKx̄n) , (33)

where we have defined

x̄n = xn − τ(K∗yn + zn)

= xn − τ(K∗yn +
xn−1 − xn

τ
−K∗yn)

= 2xn − xn−1 . (34)

By the additional prox term the first step becomes explicit and hence, it can
be understood as a preconditioner. Note that the preconditioned version of the
ADMM is equivalent to the proposed primal-dual algorithm.

5 Acceleration

As mentioned in [25] the O(1/N) is optimal for the general class of problems (2)
we are considering in this paper. However, in case either G or F ∗ is uniformly
convex (such that G∗, or respectively F , has a Lipschitz continuous gradient),
it is shown in [23, 25, 2] that O(1/N2) convergence can be guaranteed. Further-
more, in case both G and F ∗ are uniformly convex (equivalently, both G∗ and F
have Lipschitz continuous gradient), it is shown in [24] that linear convergence
(i.e. O(1/eN)) can be achieved. In this section we show how we can modify
our algorithm in order to accelerate the convergence in these situations, to the
optimal rate.

5.1 The case G or F
∗ uniformly convex

For simplicity we will only treat the case where G is uniformly convex, since by
symmetry, the case where F ∗ is uniformly convex is completely equivalent. Let
us assume the existence of γ > 0 such that for any x ∈ dom ∂G,

G(x′) ≥ G(x) + 〈p, x′ − x〉+ γ

2
‖x− x′‖2 , ∀p ∈ ∂G(x) , x′ ∈ X (35)

In that case one can show that∇G∗ is 1/γ-Lipschitz so that the dual problem (4)
can be solved in O(1/N2) using any of the optimal first order methods of [23,
25, 2]. We explain now that a modification of our approach yields essentially
the same rate of convergence. In Appendix A we analyse a somehow more
straightforward approach to reach a (quasi) optimal rate, which however is less
efficient.

In view of (5), it follows from (35) that for any saddle-point (x̂, ŷ) and any
(x, y) ∈ X × Y .

[〈Kx, ŷ〉 − F ∗(ŷ) +G(x)]− [〈Kx̂, y〉 − F ∗(y) +G(x̂)]

= G(x)−G(x̂) + 〈K∗ŷ, x− x̂〉+ F ∗(y)− F ∗(ŷ)− 〈Kx̂, y − ŷ〉
≥ γ

2
‖x− x̂‖2 . (36)

13

Observe that in case G satisfies (35), the second equation in (11) also becomes

G(x) ≥ G(xn+1) +

〈

xn − xn+1

τ
, x− xn+1

〉

−
〈

K(x− xn+1), ȳ
〉

+
γ

2
‖x− xn+1‖2 .

Then, modifying (12) accordingly, choosing (x, y) = (x̂, ŷ) a saddle-point and
using (36), we deduce

‖ŷ − yn‖
2σ

2

+
‖x̂− xn‖

2τ

2

≥ γ‖x̂− xn+1‖2

+
‖ŷ − yn+1‖

2σ

2

+
‖x̂− xn+1‖

2τ

2

+
‖yn − yn+1‖

2σ

2

+
‖xn − xn+1‖

2τ

2

+
〈

K(xn+1 − x̄), yn+1 − ŷ
〉

−
〈

K(xn+1 − x̂), yn+1 − ȳ
〉

. (37)

Now, we will show that we can gain acceleration of the algorithm, provided
we use variable steps (τn, σn) and variable relaxation parameter θn ∈ [0, 1],
which we will precise later on, in (7). We therefore consider the case where we
choose in (37)

x̄ = xn + θn−1(x
n − xn−1) , ȳ = yn+1 .

We obtain, adapting (13), and introducing the dependence on n also for τ, σ,

‖ŷ − yn‖
2σn

2

+
‖x̂− xn‖

2τn

2

≥ γ‖x̂− xn+1‖2

+
‖ŷ − yn+1‖

2σn

2

+
‖x̂− xn+1‖

2τn

2

+
‖yn − yn+1‖

2σn

2

+
‖xn − xn+1‖

2τn

2

+
〈

K(xn+1 − xn), yn+1 − ŷ
〉

− θn−1

〈

K(xn − xn−1), yn − ŷ
〉

− θn−1L‖xn − xn−1‖‖yn+1 − yn‖.

It follows

‖ŷ − yn‖
σn

2

+
‖x̂− xn‖

τn

2

≥ (1 + 2γτn)
τn+1

τn

‖x̂− xn+1‖
τn+1

2

+
σn+1

σn

‖ŷ − yn+1‖
σn+1

2

+
‖yn − yn+1‖

σn

2

+
‖xn − xn+1‖

τn

2

− ‖yn − yn+1‖
σn

2

− θ2n−1L
2σnτn−1

‖xn − xn−1‖
τn−1

2

+ 2
〈

K(xn+1 − xn), yn+1 − ŷ
〉

− 2θn−1

〈

K(xn − xn−1), yn − ŷ
〉

. (38)

It is clear that we can get something interesting out of (38) provided we can
choose the sequences (τn)n,(σn)n in such a way that

(1 + 2γτn)
τn+1

τn
=

σn+1

σn
> 1 .

14

Algorithm 2.

• Initialization: Choose τ0, σ0 > 0 with τ0σ0L
2 ≤ 1, (x0, y0) ∈ X × Y , and

x̄0 = x0.

• Iterations (n ≥ 0): Update xn, yn, x̄n, θn, τn, σn as follows:

yn+1 = (I + σn∂F
∗)−1(yn + σnKx̄n)

xn+1 = (I + τn∂G)−1(xn − τnK
∗yn+1)

θn = 1/
√

1 + 2γτn, τn+1 = θnτn, σn+1 = σn/θn

x̄n+1 = xn+1 + θn(x
n+1 − xn)

(39)

This motivates Algorithm 2, which is a variant of Algorithm 1. Observe that it
means choosing θn−1 = τn/τn−1 in (38). Now, (1+ 2γτn)τn+1/τn = σn+1/σn =
1/θn = τn/τn+1, so that (38) becomes, denoting for each n ≥ 0

∆n =
‖ŷ − yn‖

σn

2

+
‖x̂− xn‖

τn

2

,

dividing the equation by τn, and using L2σnτn = L2σ0τ0 ≤ 1,

∆n

τn
≥ ∆n+1

τn+1
+

‖xn − xn+1‖
τ2n

2

− ‖xn − xn−1‖
τ2n−1

2

+
2

τn

〈

K(xn+1 − xn), yn+1 − ŷ
〉

− 2

τn−1

〈

K(xn − xn−1), yn − ŷ
〉

. (40)

It remains to sum this equation from n = 0 to n = N −1, N ≥ 1, and we obtain
(using x−1 = x0)

∆0

τ0
≥ ∆N

τN
+

‖xN−1 − xN‖
τ2N−1

2

+
2

τN−1

〈

K(xN − xN−1), yN − ŷ
〉

≥ ∆N

τN
+

‖xN−1 − xN‖
τ2N−1

2

− ‖xN−1 − xN‖
τ2N−1

2

− L2‖yN − ŷ‖2

which eventually gives:

τ2N
1− L2σ0τ0

σ0τ0
‖ŷ−yN‖2 + ‖x̂−xN‖2 ≤ τ2N

(

‖x̂− x0‖
τ20

2

+
‖ŷ − y0‖
σ0τ0

2
)

. (41)

In case one chooses exactly σ0τ0L
2 = 1, it boils down to:

‖x̂− xN‖2 ≤ τ2N

(

‖x̂− x0‖
τ20

2

+ L2‖ŷ − y0‖2
)

. (42)

15

Now, let us show that γτN ∼ N−1 for N (not too large), for any “reasonable”
choice of τ0. Here by “reasonable”, we mean any (large) number which can be
encoded on a standard computer. It will follow that our scheme shows an
O(1/N2) convergence to the optimum for the variable xN , which is an optimal
rate.

Lemma 1. Let λ ∈ (1/2, 1) and assume γτ0 > λ. Then after

N ≥ 1

ln 2
ln

(

ln 2γτ0
ln 2λ

)

(43)

iterations, one has γτN ≤ λ.

Observe that in particular, if we take for instance γτ0 = 1020 and λ = 3/4,
we find that γτN ≤ 3/4 as soon as N ≥ 17 (this estimate is far from optimal,
as in this case we already have γτ7 ≈ 0.546 < 3/4).

Proof. From (39) we see that τ̃N = γτN follows the update rule

τ̃N+1 =
τ̃N√

1 + 2τ̃N
, (44)

in particular, letting for each N ≥ 0 sN = 1/τ̃N , it follows

√
2sN ≤ sN+1 = (sN + 1)

√

1− 1

(sN + 1)2
≤ sN + 1. (45)

From the left-hand side inequality it follows that sN ≥ 2(s0/2)
1/2N . Now,

γτN ≤ λ if and only if sN ≥ 1/λ, which is ensured as soon as (s0/2)
1/2N ≥

1/(2λ), and we deduce (43).

Lemma 2. Let λ > 0, and N ≥ 0 with γτN ≤ λ. Then for any l ≥ 0,

(γτN)−1 +
l

1 + λ
≤ (γτN+l)

−1 ≤ (γτN)−1 + l (46)

Proof. The right-hand side inequality trivially follows from (45). Using
√
1− t ≥

1− t for t ∈ [0, 1], we also deduce that

sN+1 ≥ sN + 1 − 1

sN + 1
= sN +

sN
sN + 1

.

Hence if sN ≥ 1/λ, sN+l ≥ 1/λ for any l ≥ 0 and we deduce easily the left-hand
side of (46).

Corollary 1. One has limN→∞ NγτN = 1.

We have shown the following result:

16

Figure 1: The figure shows the sequence (γτn)n≥1, using γ = 1. Observe that
it goes very fast to 1/n, in a way which is quite insensitive to the initial τ0

Theorem 2. Choose τ0 > 0, σ0 = 1/(τ0L
2), and let (xn, yn)n≥1 be defined by

Algorithm 2. Then for any ε > 0, there exists N0 (depending on ε and γτ0)
such that for any N ≥ N0,

‖x̂− xN‖2 ≤ 1 + ε

N2

(

‖x̂− x0‖
γ2τ20

2

+
L2

γ2
‖ŷ − y0‖2

)

.

Of course, the important point is that the convergence in Corollary 1 is
relatively fast, for instance, if γτ0 = 1020, one can check that γτ100 ≈ 1.077/100.
Hence, the value of N0 in Theorem 2 is never very large, even for large values
of τ0, see Figure 1. If one has some estimate on the initial distance ‖x̂− x0‖, a
good choice is to pick γτ0 ≫ ‖x̂ − x0‖ in which case the convergence estimate
boils down approximately to

‖x̂− xN‖2 .
1

N2

(

η +
L2

γ2
‖ŷ − y0‖2

)

with η ≪ 1, and for N (not too) large enough.

Remark 3. In [23, 25, 2], the O(1/N2) estimate is theoretically better than ours
since it is on the dual energy G∗(−K∗yN) + F ∗(yN) − (G∗(−K∗ŷ) + F ∗(ŷ))
(which can easily be shown to bound ‖xN − x̂‖2, see for instance [12]). In
practice, however, we did not observe that our approach was slower than the
other optimal first-order schemes.

Remark 4. We have observed that replacing the last updating rule in (39) with
x̄n+1 = xn+1, which corresponds to considering the standard Arrow-Hurwicz al-
gorithm with varying steps as in [34], the same rate of convergence is observed

17

(with even smaller constants, in practice) than using Algorithm (2). It seems
that for an appropriate choice of the initial steps, this algorithm has the opti-
mal O(1/N2) rate, however, some instabilities are observed in the convergence,
see Fig. 3. On the other hand, it is relatively easy to show O(1/N) conver-
gence of this approach with the assumption that domF ∗ is bounded, just as in
Section 3.2.

5.2 The case G and F
∗ uniformly convex

In case G and F ∗ are both uniformly convex, it is known that first order algo-
rithms should converge linearly to the (unique) optimal value. We show that it
is indeed a feature of our algorithm.

We assume that G satisfies (35), and that F ∗ satisfies a similar inequality
with a parameter δ > 0 instead of γ. In particular, (36) becomes in this case

[〈Kx, ŷ〉 − F ∗(ŷ) +G(x)]− [〈Kx, y〉 − F ∗(y) +G(x̂)]

≥ γ

2
‖x− x̂‖2 +

δ

2
‖y − ŷ‖2 (47)

where (x̂, ŷ) is the unique saddle-point of our problem. Furthermore, (11) be-
comes

F ∗(y) ≥ F ∗(yn+1) +

〈

yn − yn+1

σ
, y − yn+1

〉

+
〈

Kx̄, y − yn+1
〉

+
δ

2
‖y − yn+1‖2 ,

G(x) ≥ G(xn+1) +

〈

xn − xn+1

τ
, x− xn+1

〉

−
〈

K(x− xn+1), ȳ
〉

+
γ

2
‖x− xn+1‖2 .

In this case, the inequality (12), for x = x̂ and y = ŷ, becomes

‖ŷ − yn‖
2σ

2

+
‖x̂− xn‖

2τ

2

≥
(

2δ +
1

σ

) ‖ŷ − yn+1‖
2

2

+

(

2γ +
1

τ

) ‖x̂− xn+1‖
2

2

+
‖yn − yn+1‖

2σ

2

+
‖xn − xn+1‖

2τ

2

+
〈

K(xn+1 − x̄), yn+1 − ŷ
〉

−
〈

K(xn+1 − x̂), yn+1 − ȳ
〉

(48)

Let us define µ = 2
√
γδ/L, and choose σ, τ with

τ =
µ

2γ
=

1

L

√

δ

γ
, σ =

µ

2δ
=

1

L

√

γ

δ
, (49)

18

In particular we still have στL2 = 1. Let also

∆n := δ‖ŷ − yn‖2 + γ‖x̂− xn‖2 , (50)

and (48) becomes

∆n ≥ (1 + µ)∆n+1 + δ‖yn − yn+1‖2 + γ‖xn − xn+1‖2

+ µ
〈

K(xn+1 − x̄), yn+1 − ŷ
〉

− µ
〈

K(xn+1 − x̂), yn+1 − ȳ
〉

(51)

Let us now choose

x̄ = xn + θ(xn − xn−1) , ȳ = yn+1 , (52)

in (51), for (1+µ)−1 ≤ θ ≤ 1. In case θ = 1 it is the same rule as in Theorem 1,
but as we will see the convergence seems theoretically improved if one chooses
instead θ = 1/(1 + µ). It follows from rule (52) that

〈

K(xn+1 − x̄), yn+1 − ŷ
〉

−
〈

K(xn+1 − x̂), yn+1 − ȳ
〉

=
〈

K(xn+1 − xn), yn+1 − ŷ
〉

− θ
〈

K(xn − xn−1), yn+1 − ŷ
〉

. (53)

We now introduce ω ∈ [(1 + µ)−1, θ], ω < 1, which we will choose later on
(if θ = 1/(1 + µ) we will obviously let ω = θ). We rewrite (53) as

〈

K(xn+1 − xn), yn+1 − ŷ
〉

− ω
〈

K(xn − xn−1), yn − ŷ
〉

− ω
〈

K(xn − xn−1), yn+1 − yn
〉

− (θ − ω)
〈

K(xn − xn−1), yn+1 − ŷ
〉

≥
〈

K(xn+1 − xn), yn+1 − ŷ
〉

− ω
〈

K(xn − xn−1), yn − ŷ
〉

− ωL

(

α
‖xn − xn−1‖

2

2

+
‖yn+1 − yn‖

2α

2
)

− (θ − ω)L

(

α
‖xn − xn−1‖

2

2

+
‖yn+1 − ŷ‖

2α

2
)

, (54)

for any α > 0, and gathering (53) and (54) we obtain

µ
〈

K(xn+1 − x̄), yn+1 − ŷ
〉

− µ
〈

K(xn+1 − x̂), yn+1 − ȳ
〉

≥ µ
(

〈

K(xn+1 − xn), yn+1 − ŷ
〉

− ω
〈

K(xn − xn−1), yn − ŷ
〉

)

− µθLα
‖xn − xn−1‖

2

2

− µωL
‖yn+1 − yn‖

2α

2

− µ(θ − ω)L
‖yn+1 − ŷ‖

2α

2

. (55)

From (51), (55), and choosing α = ω(
√

γ/δ), we find

∆n ≥ 1

ω
∆n+1 + (1 + µ− 1

ω
)∆n+1 + δ‖yn − yn+1‖2 + γ‖xn − xn+1‖2

+ µ
(

〈

K(xn+1 − xn), yn+1 − ŷ
〉

− ω
〈

K(xn − xn−1), yn − ŷ
〉

)

− ωθγ‖xn−1 − xn‖2 − δ‖yn+1 − yn‖2 − θ − ω

ω
δ‖yn+1 − ŷ‖2 . (56)

19

We require that (1 + µ− 1
ω) ≥ (θ − ω)/ω, which is ensured by letting

ω =
1 + θ

2 + µ
=

1 + θ

2
(

1 +
√
γδ
L

) . (57)

Then, (56) becomes

∆n ≥ 1

ω
∆n+1 + γ‖xn − xn+1‖2 − ωθγ‖xn−1 − xn‖2

+ µ
(〈

K(xn+1 − xn), yn+1 − ŷ
〉

− ω
〈

K(xn − xn−1), yn − ŷ
〉)

, (58)

which we sum from n = 0 to N − 1 after multiplying by ω−n, and assuming
that x−1 = x0:

∆0 ≥ ω−N∆N + ω−N+1γ‖xN−xN−1‖2+µω−N+1
〈

K(xN − xN−1), yN − ŷ
〉

≥ ω−N∆N + ω−N+1γ‖xN − xN−1‖2

− µω−N+1L

(

√

γ

δ

‖xN − xN−1‖
2

2

+

√

δ

γ

‖yN − ŷ‖
2

2
)

≥ ω−N∆N − ω−N+1δ‖yN − ŷ‖2.
We deduce the estimate

γ‖xN − x̂‖2 + (1− ω)δ‖yN − ŷ‖2 ≤ ωN
(

γ‖x0 − x̂‖2 + δ‖y0 − ŷ‖2
)

(59)

showing linear convergence of the iterates (xN , yN) to the (unique) saddle-point.
We have shown the convergence of the algorithm summarized in Algorithm 3.

Algorithm 3.

• Initialization: Choose µ ≤ 2
√
γδ/L, τ = µ/(2γ), σ = µ/(2δ), and θ ∈

[1/(1 + µ), 1]. Let (x0, y0) ∈ X × Y , and x̄0 = x0.

• Iterations (n ≥ 0): Update xn, yn, x̄n as follows:

yn+1 = (I + σ∂F ∗)−1(yn + σKx̄n)

xn+1 = (I + τ∂G)−1(xn − τK∗yn+1)

x̄n+1 = xn+1 + θ(xn+1 − xn)

(60)

We conclude with the following theorem.

Theorem 3. Consider the sequence (xn, yn) provided by Algorithm 3 and let
(x̂, ŷ) be the unique solution of (2). Let ω < 1 be given by (57). Then
(xN , yN) → (x̂, ŷ) in O(ωN/2), more precisely, there holds (59).

Observe that if we choose θ = 1, this is an improvement over Theorem 1
(with a particular choice of the steps, given by (49)). It would be interesting
to understand whether the steps can be estimated in Algorithm 1 without the
a priori knowledge of γ and δ.

20

Remark 5. Again, one checks experimentally that taking θ ∈ [0, 1/(1+µ)] in (60)
also yields convergence, and sometimes faster, of Algorithm 3. In particular, the
standard Arrow-Hurwicz method (θ = 0) seems to work very well with these
choices of τ and σ. On the other hand, it is relatively easy to show linear
convergence of this method with an appropriate (different) choice of τ and σ,
however, the theoretical rate is then less good that the one which we find in (57).

6 Comparisons and Applications

In this section we first present comparisons of the proposed algorithms to state-
of-the-art methods. Then we illustrate the wide applicability of the proposed
algorithm on several advanced imaging problems. Let us first introduce the
discrete setting which we will use in the rest of this section.

6.1 Discrete setting

We consider a regular Cartesian grid of size M ×N :

{(ih, jh) : 1 ≤ i ≤ M, 1 ≤ j ≤ N} ,

where h denotes the size of the spacing and (i, j) denote the indices of the
discrete locations (ih, jh) in the image domain. Let X = R

MN be a finite
dimensional vector space equipped with a standard scalar product

〈u, v〉X =
∑

i,j

ui,jvi,j , u, v ∈ X

The gradient ∇u is a vector in the vector space Y = X ×X. For discretization
of ∇ : X → Y , we use standard finite differences with Neumann boundary
conditions

(∇u)i,j =

(

(∇u)1i,j
(∇u)2i,j

)

,

where

(∇u)1i,j =

ui+1,j − ui,j

h
if i < M

0 if i = M
, (∇u)2i,j =

ui,j+1 − ui,j

h
if j < N

0 if j = N
.

We also define a scalar product in Y

〈p, q〉Y =
∑

i,j

p1i,jq
1
i,j + p2i,jq

2
i,j , p = (p1, p2), q = (q1, q2) ∈ Y .

Furthermore we will also need the discrete divergence operator div p : Y → X,
which is choosen to be adjoint to the discrete gradient operator. In particular,
one has −div = ∇∗ which is defined through the identity

〈∇u, p〉Y = −〈u, div p〉X .

21

We also need to compute a bound on the norm of the linear operator ∇. Ac-
cording to (1), one has

L2 = ‖∇‖2 = ‖div ‖2 ≤ 8/h2 .

See again [6] for a proof.

6.2 Total variation based image denoising

In order to evaluate and compare the performance of the proposed primal-dual
agorithm to state-of-the-art methods, we will consider three different convex
image denosing models, each having a different degree of regularity. Throughout
the experiments, we will make use of the following procedure to determine the
performance of each algorithm. We first run a well performing method for a
very long time (∼ 100000 iterations) in order to compute a “ground truth”
solution. Then, we apply each algorithm until the error (based on the solution
or the energy) to the pre-determined ground truth solution is below a certain
threshold ε. We also tried to use the primal-dual gap as a stopping criterion,
but it turned out that this results in prefering the primal-dual methods over
the pure dual or pure primal methods. For each algorithm, the parameters are
optimized to give an optimal performance, but stay constant for all experiments.
All algorithms were implemented in Matlab and executed on a 2.66 GHz CPU,
running a 64 Bit Linux system.

6.2.1 The ROF model

As a prototype for total variation methods in imaging we recall the total varia-
tion based image denoising model proposed by Rudin, Osher and Fatemi in [30].
The ROF model is defined as the variational problem

min
x

∫

Ω

|Du|+ λ

2
‖u− g‖22 , (61)

where Ω ⊂ R
d is the d-dimensional image domain, u ∈ L1(Ω) is the sought solu-

tion and g ∈ L1(Ω) is the noisy input image. The parameter λ is used to define
the tradeoff between regularization and data fitting. The term

∫

Ω
|Du| is the

total variation of the function u, where Du denotes the distributional derivative,
which is, in an integral sense, also well-defined for discontiuous functions. For
sufficiently smooth functions u, e.g. u ∈ W 1,1(Ω) it reduces to

∫

Ω
|∇u|dx. The

main advantage of the total variation and hence of the ROF model is its abil-
ity to preserve sharp edges in the image, which is important for many imaging
problems. Using the discrete setting introduced above (in dimension d = 2), the
discrete ROF model, which we call the primal ROF problem is then given by

h2 min
u∈X

‖∇u‖1 +
λ

2
‖u− g‖22 , (62)

22

(a) Noisy image (σ = 0.05) (b) Noisy image (σ = 0.1)

(c) Denoised image (λ = 16) (d) Denoised image (λ = 8)

Figure 2: Image denoising using the ROF model. The left column shows the
noisy input image of size 256 × 256, with additive zero mean Gaussian noise
(σ = 0.05) and the denoised image using λ = 16. The right column shows the
noisy input image but now with (σ = 0.1) and the denoised image using λ = 8.

where u, g ∈ X are the unknown solution and the given noisy data. The norm
‖u‖22 = 〈u, u〉X denotes the standard squared L2 norm in X and ‖∇u‖1 denotes
the discrete version of the isotropic total variation norm defined as

‖∇u‖1 =
∑

i,j

|(∇u)i,j | , |(∇u)i,j | =
√

((∇u)1i,j)
2 + ((∇u)2i,j)

2

Casting (62) in the form of (3), we see that F (∇u) = ‖∇u‖1 and G(u) =
λ
2 ‖u−g‖22. Note that in what follows, we will always disregard the multiplicative
factor h2 appearing in the discretized energies such as (62), since it causes only
a rescaling of the energy and does not change the solution.

According to (2), the primal-dual formulation of the ROF problem is given

23

by

min
u∈X

max
p∈Y

−〈u, div p〉X +
λ

2
‖u− g‖22 − δP (p) , (63)

where p ∈ Y is the dual variable. The convex set P is given by

P = {p ∈ Y : ‖p‖∞ ≤ 1} , (64)

and ‖p‖∞ denotes the discrete maximum norm defined as

‖p‖∞ = max
i,j

|pi,j | , |pi,j | =
√

(p1i,j)
2 + (p2i,j)

2 .

Note that the set P is the union of pointwise L2 balls. The function δP denotes
the indicator function of the set P which is defined as

δP (p) =

{

0 if p ∈ P ,
+∞ if p /∈ P .

(65)

Furthermore, the primal ROF problem (62) and the primal-dual ROF prob-
lem (63) and are equivalent to the dual ROF problem

max
p∈Y

−
(

1

2λ
‖div p‖22 + 〈g, div p〉X + δP (p)

)

. (66)

In order to apply the proposed algorithms to (63), it remains to detail the
resolvent operators (I + σ∂F ∗)−1 and (I + τ∂G)−1. First, casting (63) in the
form of the general saddle-point problem (2) we see that F ∗(p) = δP (p) and
G(u) = λ

2 ‖u − g‖22. Since F ∗ is the indicator function of a convex set, the
resolvent operator reduces to pointwise Euclidean projectors onto L2 balls

p = (I + σ∂F ∗)−1(p̃) ⇐⇒ pi,j =
p̃i,j

max(1, |p̃i,j |)
.

The resolvent operator with respect to G poses simple pointwise quadratic prob-
lems. The solution is trivially given by

u = (I + τ∂G)−1(ũ) ⇐⇒ ui,j =
ũi,j + τλgi,j

1 + τλ
.

Observe that G(u) is uniformly convex with convexity parameter λ and hence
we can make use of the accelerated O(1/N2) algorithm.

Figure 2 shows the denosing capability of the ROF model using different
noise levels. Note that the ROF model efficiently removes the noise while pre-
serving the discontinuities in the image. For performance evaluation, we use the
following algorithms and parameter settings:

• ALG1: O(1/N) primal-dual algorithm as described in Algorithm 1, with
τ = 0.01, τσL2 = 1, taking the last iterate instead of the average.

• ALG2: O(1/N2) primal-dual algorithm as described in Algorithm 2, with
adaptive steps, τ0 = 1/L, τnσnL

2 = 1, γ = 0.7λ.

24

λ = 16 λ = 8

ε = 10−4 ε = 10−6 ε = 10−4 ε = 10−6

ALG1 214 (3.38s) 19544 (318.35s) 309 (5.20s) 24505 (392.73s)
ALG2 108 (1.95s) 937 (14.55s) 174 (2.76s) 1479 (23.74s)
ALG4 124 (2.07s) 1221 (19.42s) 200 (3.14s) 1890 (29.96s)

AHMOD 64 (0.91s) 498 (6.99s) 122 (1.69s) 805 (10.97s)
AHZC 65 (0.98s) 634 (9.19s) 105 (1.65s) 1001 (14.48s)
FISTA 107 (2.11s) 999 (20.36s) 173 (3.84s) 1540 (29.48s)
NEST 106 (3.32s) 1213 (38.23s) 174 (5.54s) 1963 (58.28s)
ADMM 284 (4.91s) 25584 (421.75s) 414 (7.31s) 33917 (547.35s)
PGD 620 (9.14s) 58804 (919.64s) 1621 (23.25s) –
CFP 1396 (20.65s) – 3658 (54.52s) –

Table 1: Performance evaluation using the images shown in Figure 2. The
entries in the table refer to the number of iterations respectively the CPU times
in seconds the algorithms needed to drop the root mean squared error of the
solution below the error tolerance ε. The “–” entries indicate that the algorithm
failed to drop the error below ε within a maximum number of 100000 iterations.

• ALG4: O(1/N2) primal-dual algorithm as described in Algorithm 4, with
reinitialization, q = 1, N0 = 1, r = 2, γ = λ, taking the last iterate in the
inner loop instead of the averages, see Appendix A.

• AHMOD: Arrow-Hurwicz primal-dual algorithm (17) using the rule de-
scribed in (39), τ0 = 0.02, τnσnL

2/4 = 1, γ = 0.7λ.

• AHZC: Arrow-Hurwicz primal-dual algorithm (17) with adaptive steps
proposed by Zhu and Chan in [34].

• FISTA: O(1/N2) fast iterative shrinkage thresholding algorithm on the
dual ROF problem (66) [23, 2].

• NEST: O(1/N2) algorithm proposed by Nesterov in [25], on the dual ROF
problem (66).

• ADMM: Alternating direction method of multipliers (30), on the dual
ROF problem (66), τ = 20. (See also [17, 14, 10]. Two Jacobi iterations
to approximately solve the linear sub-problem.

• PGD: O(1/N) projected (sub)gradient descend on the dual ROF prob-
lem (66) [7, 2].

• CFP: Chambolle’s fixed-point algorithm proposed in [6], on the dual ROF
problem (66).

Table 1 shows the results of the performance evaluation for the images
showed in Figure 2. On can see that the ROF problem gets harder for stronger
regularization. This is explained by the fact that for stronger regularization

25

Figure 3: Convergence of AHZC and ALG2 for the experiment in the last column
of Table 1

more flat areas appear in the image. Furthermore, one can see that the theo-
retical efficiency rates of the algorithms are well reflected by the experiments.
For the O(1/N) methods, the number of iterations are increased by approxi-
mately a factor of 100 when decreasing the error threshold by a factor of 100.
In contrast, for the O(1/N2) methods, the number of iterations is only increased
by approximately a factor of 10. The Arrow-Hurwicz type methods (AHMOD,
AHZC) appear to be the fastest algorithms. This still remains a mystery, since
we do not have a theoretical explanation yet. Interestingly, by using our accel-
eration rule, AHMOD even outperforms AHZC. The performance of ALG2 is
slightly worse, but still outperforms well established algorithms such as FISTA
and NEST. Figure 3 plots the convergence of AHZC and ALG together with the
theoretical O(1/N2) rate. ALG4 appears to be slightly worse than ALG2, which
is also justified theoretically. ALG1 appears to be the fastest O(1/N) method,
but note that the O(1/N) methods quickly become infeasible when requiring a
higher accuracy. Interestingly, ADMM, which is often considered to be a fast
method for solving L1 related problems, seems to be slow in our experiments.
PGD and CFP are competitive only, when requiring a low accuracy.

26

(a) Clean image (b) Noisy image

(c) ROF (λ = 8) (d) TV-L1 (λ = 1.5)

Figure 4: Image denoising in the case of impulse noise. (a) shows the 500× 375
input image and (b) is a noisy version which has been corrupted by 25% salt
and pepper noise. (c) is the result of the ROF model. (d) is the result of the
TV−L1 model. Note that the TV −L1 model is able to remove the noise while
still preserving some small details.

6.2.2 The TV-L1 model

The TV-L1 model is obtained as a variant of the ROF model (61) by replacing
the squared L2 norm in the data term by the robust L1 norm.

min
u

∫

Ω

|Du|+ λ‖u− g‖1 . (67)

Although only a slight change, the TV-L1 model offers some potential advan-
tages over the ROF model. First, one can check that it is contrast invariant.
Second, it turns out that the TV-L1 model is much more effective in removing
noise containing strong outliers (e.g. salt&pepper noise). The discrete version
of (67) is given by

min
u∈X

‖∇u‖1 + λ‖u− g‖1 . (68)

27

λ = 1.5

ε = 10−4 ε = 10−5

ALG1 187 (15.81s) 421 (36.02s)

ADMM 385 (33.26s) 916 (79.98s)
EGRAD 2462 (371.13s) 8736 (1360.00s)
NEST 2406 (213.41s) 15538 (1386.95s)

Table 2: Performance evaluation using the image shown in Figure 4. The entries
in the table refer to the number of iterations respectively the CPU times in
seconds the algorithms needed to drop the normalized error of the primal energy
below the error tolerance ε.

In analogy to (63), the saddle-point formulation of (68) is given by

min
u∈X

max
p∈Y

−〈u, div p〉X + λ‖u− g‖1 − δP (p) . (69)

Comparing with the ROF problem (63), we see that the only difference is that
the function G(u) is now G(u) = λ‖u− g‖1, and hence we only have to change
the resolvent operator with respect to G. The solution of the resolvent operator
is given by the pointwise shrinkage operations

u = (I + τ∂G)−1(ũ) ⇐⇒ ui,j =

ũi,j − τλ if ũi,j − gi,j > τλ
ũi,j + τλ if ũi,j − gi,j < −τλ

gi,j if |ũi,j − gi,j | ≤ τλ

Observe that in contrats to the ROF model, the TV-L1 model poses a non-
smooth optimization problem. Hence, we have to apply the proposed O(1/N)
primal-dual algorithm.

Figure 4 shows an example of outlier removal using the TV-L1 model. Note
that while the ROF leads to an over-regularized result, the TV-L1 model effi-
ciently removes the outliers while preserving small details. Next, we compare
the performance of different algorithms on the TV-L1 problem. For performance
evaluation, we use the following algorithms and parameters:

• ALG1: O(1/N) primal dual algorithm as described in Algorithm 1, τ =
0.02, τσL2 = 1.

• ADMM: Alternating direction method of multipliers (30), on the dual TV-
L1 problem, τ = 10 (see also [10]). Two Jacobi iterations to approximately
solve the linear subproblem.

• EGRAD: O(1/N) extragradient method (22), step size τ = 1/
√
2L2 (see

also [15, 21]).

• NEST: O(1/N) method proposed by Nesterov in [25], on the primal TV-L1

problem, smoothing parameter µ = ε.

28

Figure 5: Convergence for the TV-L1 model.

Table 2 presents the results of the performance evaluation for the image
shown in Figure 4. Since the solution of the TV-L1 model is in general not
unique, we can not compare the the RMSE of the solution. Instead we use the
normalized error of the primal energy (En−E∗)/E∗ > 0, where En is the primal
energy of the current iterate n and E∗ is the primal energy of the true solution,
as a stopping criterion. ALG1 appears to be the fastest algorithm, followed by
ADMM. Figure 5 plots the convergence of ALG1 and ADMM together with the
theoretical O(1/N) bound. Note that again, the proposed primal-dual algorithm
significantly outperforms the state-of-the-art method ADMM. Paradoxically, it
seems that both ALG1 and ADMM converge like O(1/N2) in the end, but we
do not have any explanation for this yet.

6.2.3 The Huber-ROF model

Total Variation methods applied to image regularization suffer from the so-called
staircasing problem. The effect refers to the formation of artificial flat areas in
the solution (see Figure 6 (b)). A remedy for this unwanted effect is to replace

29

the L1 norm in the total variation term by the Huber-norm

|x|α =

{

|x|2
2α if |x| ≤ α
|x| − α

2 if |x| > α
(70)

where α > 0 is a small parameter defining the tradeoff between quadratic regu-
larization (for small values) and total variation regularization (for larger values).

This change can be easily integrated into the primal-dual ROF model (63)
by replacing the term F ∗(p) = δP (p) by F ∗(p) = δP (p) +

α
2 ‖p‖22. Hence the

primal-dual formulation of the Huber-ROF model is given by

min
u∈X

max
p∈Y

−〈u, div p〉X +
λ

2
‖u− g‖22 − δP (p)−

α

2
‖p‖22 . (71)

Consequently, the resolvent operator with respect to F ∗ is given by the pointwise
operations

p = (I + σ∂F ∗)−1(p̃) ⇐⇒ pi,j =

p̃i,j

1+σα

max(1, | p̃i,j

1+σα |)
.

Note that the Huber-ROF model is uniformly convex in G(u) and F ∗(p), with
convexity parameters λ and α. Therefore, we can make use of the linearly
convergent algorithm.

Figure 6 shows a comparison between the ROF model and the Huber-ROF
model. While the ROF model leads to the development of artificial discontinu-
ities (staircasing-effect), the Huber-ROF model yields a piecewise smooth, and
hence more natural results.

For the performance evaluation, we use the following algorithms and param-
eter settings:

• ALG3: Linearly convergent primal-dual algorithm as described in Algo-
rithm 3, using the convexity parameters γ = λ, δ = α, µ = 2

√
γδ/L,

θ = 1/(1 + µ).

• NEST: Restarted version of Nesterov’s algorithm [24], on the dual Huber-

ROF problem. Algorithm is restarted every k =
⌈

√

8LH/α
⌉

iterations,

where LH = L2/λ + α is the Lipschitz constant of the dual Huber-ROF
model (with our choices, k = 17).

Table 3 shows the result of the performance evaluation. Both ALG3 and
NEST show linear convergence whereas ALG3 has a slightly better performance.
Figure 7 plots the convergence of ALG3, NEST together with the theoretical
O(ωN/2) bound. Note that ALG3 reaches machine precision after approximately
200 iterations.

30

(a) ROF (λ = 8) (b) Huber-ROF (λ = 5, α = 0.05)

Figure 6: Comparison between the ROF model and the Huber-ROF model for
the noisy image shown in Figure 2 (b). While the ROF model exhibits strong
staircasing, the Huber-ROF model leeds to piecewise smooth, and hence more
natural images.

λ = 5, α = 0.05

ε = 10−15

ALG3 187 (3.85s)

NEST 248 (5.52s)

Table 3: Performance evaluation using the image shown in Figure 6. The entries
in the table refer to the number of iterations respectively the CPU times in
seconds the algorithms needed to drop the root mean squared error below the
error tolerance ε.

6.3 Advanced imaging problems

In this section, we illustrate the wide applicability of the proposed primal-dual
algorithms to advanced imaging problems such as image deconvolution, image
inpainting, motion estimation, and image segmentation. We show that the
proposed algorithms can be easily adapted to all these applications and yield
state-of-the-art results.

6.3.1 Image deconvolution and zooming

The standard ROF model (61) can be easily extended for image deconvolution
and digital zooming.

min
u

∫

Ω

|Du|+ λ

2
‖Au− g‖22 , (72)

where A is a linear operator. In the case of image deconvolution, A is the con-
volution with the point spread function (PSF). In the case of image zooming, A

31

Figure 7: Linear convergence of ALG3 and NEST for the Huber-ROF model.
Note that after approximately 200 iterations, ALG3 reaches machine precision.

describes the downsampling procedure, which is often assumed to be a blurring
kernel followed by subsampling operator. In the discrete setting, this problem
can be easily rewritten in terms of a saddle-point problem

min
u∈X

max
p∈Y

−〈u, div p〉X +
λ

2
‖Au− g‖22 − δP (p) . (73)

Now, the question is how to implement the resolvent operator with respect to
G(u) = λ

2 ‖Au−g‖22. In case Au can be written as a convolution, i.e. Au = kA∗u,
where kA is the convolution kernel, FFT based method can be used to compute
the resolvent operator.

u = (I + τ∂G)−1(ũ)

⇐⇒ u = arg min
u

‖u− ũ‖
2τ

+
λ

2
‖kA ∗ u− g‖22

⇐⇒ u = F−1

(

τλF(g)F(kA)
∗ + F(ũ)

τλF(kA)2 + 1

)

,

where F(·) and F−1(·) denote the FFT and inverse FFT, respectively. Ac-
cording to the well-known convolution theorem, the multiplication and division
operators are understood pointwise in the above formula. Note that only one

32

(a) Original image (b) Degraded image

(c) Wiener filter (d) TV-deconvolution

Figure 8: Motion deblurring using total variation regularization. (a) and (b)
show the 400×470 clean image and a degraded version containing motion blur of
approximately 30 pixels and Gaussian noise of standard deviation σ = 0.01. (c)
is the result of standard Wiener filtering. (d) is the result of the total variation
based deconvolution method. Note that the TV-based method yields visually
much more appealing results.

FFT and one inverse FFT are required to evaluate the resolvent operator (all
other quantities can be pre-computed).

If the linear operator can not be implemented efficiently in this way, an
alternative approach consists of additionaly dualizing the functional with respect

33

(a) Original images (b) Bicubic interpolation (c) TV-zooming

Figure 9: Image zooming using total variation regularization. (a) shows the
384× 384 original image and a by a factor of 4 downsampled version. (b) is the
result of zooming by a factor of 4 using bicubic interpolation. (c) is the result
of the total variation based zooming model. One can see that total variation
based zooming yields much sharper image edges.

to G(u), yielding

min
u∈X

max
p∈Y,q∈X

−〈u, div p〉X + 〈Au− g, q〉X − δP (p)−
1

2λ
‖q‖2 , (74)

where q ∈ X is the additional dual variable. In this case, we now have F ∗(p, q) =
δP (p) +

1
2λ‖q‖2. Accordingly, the resolvent operator is given by

(p, q) = (I + σ∂F ∗)−1(p̃, q̃) ⇐⇒ pi,j =
p̃i,j

max(1, |p̃i,j |)
, qi,j =

q̃i,j
1 + σλ

.

Figure 8 shows the application of the energy (72) to motion deblurring. While
the classical Wiener filter is not able to restore the image, the total variation
based approach yields a far better result. Figure 9 shows the application of (72)
to zooming. On can observe that total variation based zooming leads to a super-
resolved image with sharp boundaries whereas standard bicubic interpolation
to a much more blurry result.

6.3.2 Image inpainting

Image inpainting is the process of filling in lost image data. Although the total
variation is useful for a number of applications, it is a rather weak prior for
image inpainting. In the last years a lot of effort has been put into the develop-
ment of more powerful image priors. An interesting class of priors is given by
linear multi-level transformations such as wavelets, curvelets, etc (see for exam-
ple [13]). These transformations come along with the advantage of providing a
compact representation of images while being computational efficient.

A generic model for image restoration can be derived from the classical ROF
model (in the discrete setting), by simply replacing the gradient operator by a

34

more general linear transform.

min
u∈X

‖Φu‖1 +
λ

2
‖u− g‖22 , (75)

where Φ : X → W denotes the linear transform and W = C
K denotes the space

of coefficients, usually some complex- or real-valued finite dimensional vector
space. Here K ∈ N, the dimension of W , may depend on different parameters
such as the image size, the number of levels, orientations, etc.

The aim of model (75) is to find a sparse and hence compact representation
of the image u in the domain of Φ, which has a small squared distance to the
noisy data g. In particular, sparsity in the coefficients is attained by minimizing
its L1 norm. Clearly, minimizing the L0 norm (i.e., the number of non-zero
coefficients) would be better: but this problem is known to be NP-hard.

For the task of image inpainting, we consider a simple modification of (75).
Let D = {(i, j), 1 ≤ i ≤ M, 1 ≤ j ≤ N} denote the set of indices of the image
domain and let I ⊂ D denote the set of indices of the inpainting domain. The
inpainting model can then be defined as

min
u∈X

‖Φu‖1 +
λ

2

∑

i,j∈D\I
(ui,j − gi,j)

2 . (76)

Note that the choice λ ∈ (0,∞) corresponds to joint inpainting and denoising
and the choice λ = +∞ corresponds to pure inpainting.

The saddle-point formulation of (76) that fits into the general class of prob-
lems we are considering in this paper can be derived as

min
u∈X

max
c∈W

〈Φu, c〉+ λ

2

∑

i,j∈D\I
(ui,j − gi,j)

2 − δC(c) , (77)

where C is the convex set defined as

C = {c ∈ W : ‖c‖∞ ≤ 1} , ‖c‖∞ = max
k

|ck| .

Let us identify in (77) G(u) = λ
2

∑

i,j∈D\I(ui,j − gi,j)
2 and F ∗(c) = δC(c)

in (77). Hence, the resolvent operators with respect to these functions can be
easily evaluated.

c = (I + σ∂F ∗)−1(c̃) ⇐⇒ ck =
c̃k

max(1, |c̃k|)
,

and

u = (I + τ∂G)−1(ũ) ⇐⇒ ui,j =

{

ũi,j if (i, j) ∈ I
ũi,j+τλgi,j

1+τλ else

Since (77) is non-smooth we have to choose Algorithm 1 for optimization. Fig-
ure 10 shows the application of the inpainting model (76) to the recovery of

35

(a) Clean image (b) 80% missing lines

(c) TV inpainting (d) Curvelet inpainting

Figure 10: Recovery of lost image information. (a) shows the 384 × 384 clean
image, (b) shows the destroyed image, where 80% of the lines are lost, (c) shows
the result of the inpainting model (76) using a total variation prior and (d)
shows the result when using a curvelet prior.

lost lines (80% randomly chosen) of a color image. Figure 10 (c) shows the
result when using Φ = ∇, i.e. the usual gradient operator. Figure 10 (d) shows
the result but now using Φ to be the fast discrete curvelet transform [5]. One
can see that the curvelet is much more successful in recovering long elongated
structures and the smooth background structures. This example shows that
different linear operators can be easily intergrated in the proposed primal-dual
algorithm.

6.3.3 Motion estimation

Motion estimation (optical flow) is one of the central topics in imaging. The goal
is to compute the apparent motion in image sequences. A typical variational

36

formulation of total variation based motion estimation is given by (see e.g. [33]) 2

min
v

∫

Ω

|Dv|+ λ‖ρ(v)‖1 , (78)

where v = (v1, v2)
T : Ω → R

2 is the motion field, and ρ(v) = It+(∇I)T (v−v0) is
the traditional optical flow constraint (OFC). It is obtained from a linearization
of the assumption that the intensities of the pixels stay constant over time. It
is the time derivative of the image sequence, ∇I is the spatial image gradient,
and v0 is some given motion field. The parameter λ is again used to defined the
tradeoff between data fitting and regularization.

In any practical situation, however, it is very unlikely (due to illumination
changes and shadows), that the image intensities stay constant over time. This
motivates the following slightly improved OFC, which explicitly models the
varying illumination by means of an additive function u.

ρ(u, v) = It + (∇I)T (v − v0) + βu .

The function u : Ω → R is expected to be smooth and hence we also regularize
u by means of the total variation. The parameter β controls the influence of
the illumination term. The improved motion estimation model is then given by

min
u,v

∫

Ω

|Du|+
∫

Ω

|Dv|+ λ‖ρ(u, v)‖1 ,

Note that the OFC is valid only for small motion (v − v0). In order to account
for large motion, the entire approach has to be integrated into a coarse-to-fine
framework in order to re-estimate v0. See again [33] for more details.

After discretization, we obtain the following primal motion model formula-
tion

min
u∈X,v∈Y

‖∇u‖1 + ‖∇v‖1 + λ‖ρ(u, v)‖1 , (79)

where the discrete version of the OFC is now given by

ρ(ui,j , vi,j) = (It)i,j + (∇I)Ti,j(vi,j − v0i,j) + βui,j .

The vectorial gradient ∇v = (∇v1,∇v2) is in the space Z = Y × Y equippped
with a scalar product

〈q, r〉Z =
∑

i,j

q1i,jr
1
i,j + q2i,jr

2
i,j + q3i,jr

3
i,j + q4i,jr

4
i,j ,

q = (q1, q2, q3, q4), r = (r1, r2, r3, r4) ∈ Z ,

2Interestingly, total variation regularization appears in [31] in the context of motion esti-
mation several years before it was popularized by Rudin, Osher and Fatemi in [30] for image
denoising.

37

(a) First frame (b) Ground truth

(c) Illumination (d) Motion

Figure 11: Motion estiation using total variation regularization and explicit
illumination estimation. (a) shows one of two 584 × 388 input images and (b)
shows the color coded ground truth motion field (black pixels indicate unknown
motion vectors). (c) and (d) shows the estimated illumination and the color
coded motion field.

and a norm

‖∇v‖1 =
∑

i,j

|∇vi,j | ,

|∇vi,j | =
√

(

(∇v1)1i,j
)2

+
(

(∇v1)2i,j
)2

+
(

(∇v2)1i,j
)2

+
(

(∇v2)2i,j
)2

.

The saddle-point formulation of the primal motion estimation model (79) is
obtained as

min
u∈X,v∈Y

max
p∈Y,q∈Z

〈∇u, p〉Y + 〈∇v, q〉Z + λ‖ρ(u, v)‖ − δP (p)− δQ(q) , (80)

where the convex set P is defined as in (64) and the convex set Q is defined as

Q = {q ∈ Z : ‖q‖∞ ≤ 1} ,

and ‖q‖∞ is the discrete maximum norm defined in Z as

‖q‖∞ = max
i,j

|qi,j | , |qi,j | =
√

(q1i,j)
2 + (q2i,j)

2 + (q3i,j)
2 + (q4i,j)

2 .

38

Let us observe that (80) is a non-smooth convex problem with G(u, v) =
λ‖ρ(u, v)‖1 and F ∗(p, q) = δP (p) + δQ(q). Hence we will have to rely on the
basic Algorithm 1 to minimize (79).

Let us now describe the resolvent operators needed for the implementation
of the algorithm. The resolvent operator with respect to F ∗(p, q) is again given
by simple pointwise projections onto L2 balls.

(p, q) = (I + σ∂F ∗)−1(p̃, q̃) ⇐⇒ pi,j =
p̃i,j

max(1, |p̃i,j |)
, qi,j =

q̃i,j
max(1, |q̃i,j |)

.

Next, we give the resolvent operator with respect to G(u, v). First, it is conve-
nient to define ai,j = (β, (∇I)i,j) and |a|2i,j = β2 + |∇I|2i,j . The solution of the
resolvent operator is then given by

(u, v) = (I + τ∂G)−1(ũ, ṽ) ⇐⇒ (ui,j , vi,j) = (ũi,j , ṽi,j)

+

τλai,j if ρ(ũi,j , ṽi,j) < −τλ|a|2i,j
−τλai,j if ρ(ũi,j , ṽi,j) > τλ|a|2i,j

−ρ(ũi,j , ṽi,j)ai,j/|a|2i,j if |ρ(ũi,j , ṽi,j)| ≤ τλ|a|2i,j
.

Figure 11 shows the results of applying the motion estimation model with ex-
plicit illumination estimation to the Army sequence from the Middlebury optical
flow benchmark data set (http://vision.middlebury.edu/flow/). We integrated
the algorithm into a standard coarse-to-fine framework in order to re-estimate
v0. The parameters of the model were set to λ = 40 and β = 0.01. One can see
that the estimated motion field is very close to the ground truth motion field.
Furthermore, one can see that illumination changes and shadows are well cap-
tured by the model (see for example the shadow on the left side of the shell). We
have additionally implemented the algorithm on dedicated graphics hardware.
This leads to a real-time preformance of 30 frames per second for 640 × 480
images.

6.3.4 Image segmentation

Finally, we consider the problem of finding a segmentation of an image into k
pairwise disjoint regions, which minimizes the total interface between the sets,
as in the piecewise constant Mumford-Shah problem [19]

min
(Rl)kl=1

,(cl)kl=1

1

2

k
∑

l=1

Per(Rl; Ω) +
λ

2

k
∑

l=1

∫

Rl

|g(x)− cl|2 dx (81)

where g : Ω → R is the input image, cl ∈ R are the optimal mean values
and the regions (Rl)

k
l=1 form a partition of Ω, that is, Rl ∩ Rm = ∅ if l 6= m

and
⋃k

l=1 Rl = Ω. The parameter λ is again used to balance the data fiting
term and the length term. Of course, given the partition (Rl)

k
l=1, the optimal

constant cl =
∫

Rl
g ds/|Rl| is the average value of g on Rl for each l = 1, . . . , k.

On the other hand, finding the minimum of (81) with respect to the partition

39

(a) Input image (b) Relaxation (83) (c) Relaxation (84)

Figure 12: Triple junction experiment with k = 3. (a) shows the 200 × 200
input image with given boundary datum. (b) shows the result using the relax-
ation (83), and (c) shows the result using the relaxation (84).

(Rl)
k
l=1 is a hard task, even for fixed values (cl)

k
l=1. It is known that its discrete

counterpart (the Pott’s model) is NP-hard, so that it is unlikely that (81) has a
simple convex representation, at least without increasing drastically the number
of variables. In the following, we will assume that the optimal mean values cl
are known and fixed.

Let us consider the following generic representation of (81).

min
u=(ul)kl=1

J(u) +
k
∑

l=1

∫

Ω

ulfl dx , ul(x) ≥ 0 ,
k
∑

i=1

ul(x) = 1 , ∀x ∈ Ω , (82)

where u = (ul)
k
l=1 : Ω → R

k is the labeling function and fl = λ|g(x) − cl|2/2
as in (81) or any other weighting function obtained from more sophisticated
data terms (e.g., based on histograms). Different choices have been proposed
for relaxations of the length term J(u). The most straightforward relaxation as
used in [32] is

J1(u) =
1

2

k
∑

i=l

∫

Ω

|Dul| , (83)

which is simply the sum of the total variation of each labeling function ui How-
ever, it can be shown that this relaxation is too small [8]. A better choice is
(see Figure 12)

J2(u) =

∫

Ω

Ψ(Du) ,

Ψ(p) = sup
q

{

k
∑

l=1

〈pl, qm〉 : |pl − qm| ≤ 1, 1 ≤ l < m ≤ k

}

, (84)

where p = (p1, . . . , pk) and q = (q1, . . . , qk). This energy is also a sort of
total variation but now defined on the complete vector-valued function u. This
construction is related to the theory of paired calibrations [16, 4].

40

(a) Input image (b) Segmentation

Figure 13: Piecewise constant Mumford-Shah segmentation of a natural image
with k = 16. (a) shows the 580 × 435 input image and (b) is the minimizer of
energy (82).

Let us now turn to the discrete setting. The primal-dual formulation of the
partitioning problem (82) is obtained as

min
u=(ul)kl=1

max
p=(p)k

l=1

(

k
∑

l=1

〈∇ul, pl〉+ 〈ul, fl〉
)

+ δU (u)− δP (p) , (85)

where f = (fl)
k
l=1 ∈ Xk is the discretized weighting function, u = (ul)

k
l=1 ∈ Xk

is the primal variable, representing the assignment of each pixel to the labels
and p = (pl)

k
l=1 ∈ Y k is the dual variable, which will be constrained to stay in

a set P which we will soon make precise.
In the above formula, we can identifyG(u) = δU (u), which forces the solution

to stay in the unit simplex. The convex set U is defined as

U =

{

u ∈ Xk : (ul)i,j ≤ 0,

k
∑

l=1

(ul)i,j = 1

}

.

Furthermore we can identify F ∗(p) = δP (p), where the convex sets P = P1 or
P2 either realizes the standard relaxation J1(u) or the stronger relaxation J2(u)
of the total interface surface. In particular, the set P1 arises from an application
of the dual formulation of the total variation to each vector ul,

P1 =

{

p ∈ Y k : ‖pl‖∞ ≤ 1

2

}

.

On the other hand, the set P2 is directly obtained from the definition of relax-
ation (84),

P2 =
{

p ∈ Y k : ‖pl − pm‖∞ ≤ 1, 1 ≤ l < m ≤ k
}

,

which is essentially an intersection of unit balls.

41

Next, we detail the resolvent operators. The resolvent operator with respect
to G is an orthogonal projector onto the unit simplex defined by the convex
set U . It is known that this projection can be performed in a finite number of
steps. See for example [18] for an algorithm based on successive projections and
corrections.

The resolvent operator with respect to F ∗ is also an orthogonal projector.
In case of P1 the projection is very easy, since it reduces to pointwise projec-
tions onto unit balls. In case of P2 the projection is more complicated, since
the complete vector pi,j is projected onto an intersection of convex sets. This
can for example be performed by Dykstra’s algorithm [3]. Finally we adhere
that since (85) is non-smooth, we have to use Algorithm 1 to minimize the
segmentation model.

Figure 12 shows the result of different relaxations for the triple-junction
experiment. Here, the task is to complete the segmentation boundary in the
gray area, where the weighting function gl is set to zero. One can see that
the simple relaxation (83) leads to a non-integer (binary, with u ∈ {0, 1}k a.e.)
solution. On the other hand, the stronger relaxation (84) yields an almost binary
solution and hence a globally optimal solution of the segmentation model.

Figure 13 shows the result of piecewise constant Mumford-Shah segmenta-
tion (81) using the relaxation J2(u) We used k = 16 labels and the mean color
values ci have been initialized using k-means clustering. The regularization
parameter was set to λ = 5. Note that again, the result is almost binary.

7 Discussion

In this paper we have proposed a first-order primal-dual algorithm and shown
how it can be useful for solving efficiently a large family of convex problems
arising in imaging. We have shown that it can be adapted to yield an optimal
rate of convergence depending of the regularity of the problem. In particular,
the algorithm converges with O(1/N) for non-smooth problems, with O(1/N2)
for problems where either the primal or dual objective is uniformly convex,
and that it converges linearly, i.e. like O(1/eN), for “smooth” problems (where
both the primal and dual are uniformly convex). Our theoretical results are
supported by the numerical experiments.

Their are still several interesting questions, which need to be adressed in the
future: (a) the case where the linear operator K is unbounded or has a large
(in general unkown) norm, as it is usually the case in infinite dimension or in
finite elements discretization of continuous problems; (b) how to automatically
determine the smoothness parameters or to locally adapt to the regularity of
the objective; (c) understand why does the Arrow-Hurwicz method perform so
well in some situations.

42

A An alternative approach for acceleration

Here we investigate a quite straightforward idea for accelerating the algorithm
in case F ∗ or G are uniformly convex, based on a reinitialization procedure.
However, despite its simplicity, this approach is less efficient than Algorithm 2,
as we can show both practically (see Table 1) and theoretically.

In fact, if G satisfies (35) so that (36) holds, it follows for the averages of
xN that

‖xN − x̂‖2 ≤ 1

γN

(

‖x0 − x̂‖
τ

2

+
‖y0 − ŷ‖

σ

2
)

. (86)

Since F ∗ is not assumed to be uniformly convex, no similar estimate can be
drived for yN . Referring to Remark 1, recall that if τσL2 = 1, one anyway has
for the averages yN that

‖yN − ŷ‖2 ≤ σ

τ
‖x0 − x̂‖2 + ‖y0 − ŷ‖2 . (87)

Let us now consider a reinitialized variant of Algorithm 1 which is summarized
in Algorithm 4.

Algorithm 4.

• Initialization: Choose τ0, σ0 > 0, N0, r ∈ N, (x0, y0) ∈ X × Y .

• Outer Iterations (k ≥ 0):

– Set τk = τ0r
−k, σk = σ0r

k, Nk = N0r
k, (ξ0, η0) = (xk, yk), ξ̄0 = ξ0.

– Inner Iterations (0 ≤ n < Nk): Update ηn, ξn, ξ̄n as follows:

ηn+1 = (I + σk∂F
∗)−1(ηn + σkKξ̄n)

ξn+1 = (I + τk∂G)−1(ξn − τkK
∗ηn+1)

ξ̄n+1 = 2ξn+1 − ξn

– Set
(

xk+1, yk+1
)

= (ξN , ηN) =
(

1
N

∑N
n=1 ξ

n, 1
N

∑N
n=1 η

n
)

Let us now analyze the iterates generated by the above algorithm. First, it is
convenient to define

Ak =
‖xk − x̂‖

τk

2

+
‖yk − ŷ‖

σk

2

.

According to (86) and (87) we have

‖xk+1 − x̂‖2 ≤ Ak

γNk
, ‖yk+1 − ŷ‖2 ≤ σkAk , (88)

43

This gives us the possibility to find an estimate on Ak+1

Ak+1 =
‖xk+1 − x̂‖

τk+1

2

+
‖yk+1 − ŷ‖

σk+1

2

≤
(

1

γNkτk+1
+

σk

σk+1

)

Ak (89)

Observe that provided τkσkL
2 = 1, the right hand side of the above inequality

is minimized by choosing

σk+1 =
1

L

√

γNkσk , τk+1 =

√

τk
γNk

. (90)

With this choice, (89) becomes

Ak+1 ≤ 2L

√

σk

γNk
Ak . (91)

Recall that from Algorithm 4 we are have the rules

τk = τ0r
−k , σk = σ0r

k , Nk = N0r
k . (92)

Then,(90) holds if and only if the initial values for τ0, σ0 satisfy

τ0 =
r2

γN0
, σ0 =

γN0

L2r2
. (93)

Now, (91) becomes

Ak+1 ≤ 2

r
Ak .

From this relation, we see that we need at least r ≥ 2 in order to obtain any
reasonable estimate. It yields

Ak ≤
(

2

r

)k

A0 . (94)

Now we can state the following Theorem which characterizes an improved con-
vergence rate in case G is uniformly convex.

Theorem 4. Assume, G is uniformly convex with convexity parameter γ > 0.
Then, for any k ≥ 0, the iterates generated by Algorithm 4 satisfy

‖xk − x̂‖2 ≤

N
2− log 2

log r

0 ‖x0 − x̂‖2

r
log 2

log r

+
L2r4−

log 2

log r ‖y0 − ŷ‖2

γ2N
log 2

log r

0

1

(Nk(r − 1) +N0)
2− log 2

log r

,
(95)

where Nk is the total number of iterations.

44

Proof. Let us observe that the point xk is obtained after a total number of

Nk = N0

k−1
∑

i=0

ri = N0
rk − 1

r − 1
,

iterations. According to (88) and by using (94) the point xk satisfies

‖xk − x̂‖2 ≤ Ak−1

γNk−1
≤ A0r

γNk

(

2

r

)k−1

=
A0r

γN0rk

(

r(k−1)(log 2

log r
−1)
)

=
A0r

γ

(N0r)
1− log 2

log r

(N0rk)
2− log 2

log r

=
A0r

γ

(N0r)
1− log 2

log r

(Nk(r − 1) +N0)
2− log 2

log r

.

Then, using the initial values (93), we find

A0 =
γN0‖x0 − x̂‖2

r2
+

L2r2‖y0 − ŷ‖2
γN0

,

yielding the final estimate in (95).

Theorem 4 essentially states that by using Algorithm 4 with a reinitialization

strategy the rate of convergence can be improved to O(1/N2− log 2

log r) compared
to the rate of convergence of Algorithm 1 which is O(1/N). For instance, using

r = 4 the rate of convergence becomes O(1/N
3
2), while r = 16 yields O(1/N

7
4)

convergence. Now we show that with the additional assumption that the domain
of F ∗ is bounded, the same strategy yields O(1/N2) convergence, as obtained
with the alternative Algorithm 2.

Let us assume that the domain of F ∗ is bounded, that is ‖y − ŷ‖2 ≤ D2,
where D = diam(domF ∗). In this case (88) becomes

‖xk+1 − x̂‖2 ≤ Ak

γNk
, ‖yk+1 − ŷ‖2 ≤ D2 , (96)

and hence an estimate for Ak+1 is obtained as

Ak+1 =
‖xk+1 − x̂‖

τk+1

2

+
‖yk+1 − ŷ‖

σk+1

2

≤ Ak

γNkτk+1
+

D2

σk+1
.

Using again the rules (92) and the identity, τkσkL
2 = 1, the above inequality

becomes

Ak+1 ≤ rAk

γN0τ0
+

L2D2τ0
rk+1

Letting qr2 = γN0τ0 we find

Ak ≤ Ak−1

qr
+

L2D2τ0
rk

≤ A0

(qr)k
+

L2D2τ0
rk

(

1 +
1

q
+

1

q2
+ . . .+

1

qk−1

)

=
1

rk

(

A0

qk
+ L2D2τ0

q

q − 1

(

1− 1

qk

))

(97)

45

From this inequality we see that q > 1 in order to yield any reasonable estimate.
We can now state the following result

Theorem 5. Assume, G is uniformly convex with convexity parameter γ > 0,
Furthermore, assume that the domain of F ∗ is bounded by D = diam(domF ∗).
Then, for any k ≥ 0, the iterates generated by Algorithm 4 satisfy

‖xk − x̂‖2 ≤
[

A0

qk−1
+ L2D2τ0

q

q − 1

(

1− 1

qk

)]

r2N0

(Nk(r − 1) +N0)
2 . (98)

Proof. Using (96) and (97) we find

‖xk − x̂‖2 ≤ Ak−1

γNk−1
≤ 1

γN0r2(k−1)

(

A0

qk−1
+ L2D2τ0

q

q − 1

(

1− 1

qk

))

=
N0r

2

γ(N0rk)2

(

A0

qk−1
+ L2D2τ0

q

q − 1

(

1− 1

qk

))

.

Finally, by observing that N0r
k = Nk(r − 1) + N0 we obtain the final esti-

mate (98).

We see that with the additional assumption that domain of F ∗ is bounded,
we obtain O(1/N2) convergence of Algorithm 4 (as seen in Section 6, this covers
many interesting cases). Although this convergence rate coincides with the
convergence rates of [23, 25, 2], it seems better to use the acceleration strategy
described in Section 5.1 rather than this method based on reinitialization.

Acknowledgements

Antonin Chambolle is partially supported by the Agence Nationale de la Recher-
che (grant “MICA” ANR-08-BLAN-0082). Thomas Pock is partially supported
by the Austrian Science Fund (FWF) under the doctoral program “Confluence
of Vision and Graphics” W1209. The authors wish to thank Daniel Cremers
and Marc Teboulle for helpful discussion and comments.

References

[1] K. J. Arrow, L. Hurwicz, and H. Uzawa. Studies in linear and non-linear
programming. With contributions by H. B. Chenery, S. M. Johnson, S.
Karlin, T. Marschak, R. M. Solow. Stanford Mathematical Studies in the
Social Sciences, vol. II. Stanford University Press, Stanford, Calif., 1958.

[2] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

[3] J. P. Boyle and R. L. Dykstra. A method for finding projections onto the
intersection of convex sets in Hilbert spaces. In Advances in order restricted
statistical inference (Iowa City, Iowa, 1985), volume 37 of Lecture Notes
in Statist., pages 28–47. Springer, Berlin, 1986.

46

[4] K. A. Brakke. Soap films and covering spaces. J. Geom. Anal., 5(4):445–
514, 1995.

[5] E. Candès, L. Demanet, D. Donoho, and L. Ying. Fast discrete curvelet
transforms. Multiscale Model. Simul., 5(3):861–899 (electronic), 2006.

[6] A. Chambolle. An algorithm for total variation minimization and appli-
cations. J. Math. Imaging Vision, 20(1-2):89–97, 2004. Special issue on
mathematics and image analysis.

[7] A. Chambolle. Total variation minimization and a class of binary MRF
models. In Energy Minimization Methods in Computer Vision and Pattern
Recognition, pages 136–152, 2005.

[8] A. Chambolle, D. Cremers, and T. Pock. A convex approach for computing
minimal partitions. Technical Report 649, CMAP, Ecole Polytechnique,
France, 2008.

[9] J. Eckstein and D. P. Bertsekas. On the Douglas-Rachford splitting method
and the proximal point algorithm for maximal monotone operators. Math.
Programming, 55(3, Ser. A):293–318, 1992.

[10] E. Esser. Applications of lagrangian-based alternating direction methods
and connections to split bregman. CAM Reports 09-31, UCLA, Center for
Applied Math., 2009.

[11] E. Esser, X. Zhang, and T. Chan. A general framework for a class of first
order primal-dual algorithms for tv minimization. CAM Reports 09-67,
UCLA, Center for Applied Math., 2009.

[12] J. Fadili and G. Peyré. Total Variation Projection with First Order
Schemes. http://hal.archives-ouvertes.fr/hal-00380491/en/.

[13] J. Fadili, J.-L. Starck, M. Elad, and D. Donoho. Mcalab: Reproducible
research in signal and image decomposition and inpainting. Computing in
Science and Engineering, 12(1):44–63, 2010.

[14] T. Goldstein and S. Osher. The split bregman algorithm for l1 regularized
problems. CAM Reports 08-29, UCLA, Center for Applied Math., 2008.

[15] G. M. Korpelevič. An extragradient method for finding saddle points and
for other problems. Èkonom. i Mat. Metody, 12(4):747–756, 1976.

[16] G. Lawlor and F. Morgan. Paired calibrations applied to soap films, im-
miscible fluids, and surfaces or networks minimizing other norms. Pacific
J. Math., 166(1):55–83, 1994.

[17] P.-L. Lions and B. Mercier. Splitting algorithms for the sum of two non-
linear operators. SIAM J. Numer. Anal., 16(6):964–979, 1979.

47

[18] C. Michelot. A finite algorithm for finding the projection of a point onto
the canonical simplex of Rn. J. Optim. Theory Appl., 50(1):195–200, 1986.

[19] D. Mumford and J. Shah. Optimal approximation by piecewise smooth
functions and associated variational problems. Comm. Pure Appl. Math.,
42:577–685, 1989.

[20] A. Nedić and A. Ozdaglar. Subgradient methods for saddle-point problems.
Journal of Optimization Theory and Applications, 142(1), 2009.

[21] A. Nemirovski. Prox-method with rate of convergence O(1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth
convex-concave saddle point problems. SIAM J. Optim., 15(1):229–251
(electronic), 2004.

[22] A. Nemirovski and D. Yudin. Problem complexity and method efficiency in
optimization. A Wiley-Interscience Publication. John Wiley & Sons Inc.,
New York, 1983. Translated from the Russian and with a preface by E. R.
Dawson, Wiley-Interscience Series in Discrete Mathematics.

[23] Yu. Nesterov. A method for solving the convex programming problem with
convergence rate O(1/k2). Dokl. Akad. Nauk SSSR, 269(3):543–547, 1983.

[24] Yu. Nesterov. Introductory lectures on convex optimization, volume 87 of
Applied Optimization. Kluwer Academic Publishers, Boston, MA, 2004. A
basic course.

[25] Yu. Nesterov. Smooth minimization of non-smooth functions. Math. Pro-
gram., 103(1, Ser. A):127–152, 2005.

[26] T. Pock, D. Cremers, H. Bischof, and A. Chambolle. An algorithm for
minimizing the Mumford-Shah functional. In ICCV Proceedings, LNCS.
Springer, 2009.

[27] L. D. Popov. A modification of the Arrow-Hurwitz method of search for
saddle points. Mat. Zametki, 28(5):777–784, 803, 1980.

[28] R. T. Rockafellar. Monotone operators and the proximal point algorithm.
SIAM Journal on Control and Optimization, 14(5):877–898, 1976.

[29] R. T. Rockafellar. Convex analysis. Princeton Landmarks in Mathemat-
ics. Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970
original, Princeton Paperbacks.

[30] L. Rudin, S. J. Osher, and E. Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D, 60:259–268, 1992. [also in Exper-
imental Mathematics: Computational Issues in Nonlinear Science (Proc.
Los Alamos Conf. 1991)].

[31] D. Shulman and J.-Y. Hervé. Regularization of discontinuous flow fields.
In Proceedings Workshop on Visual Motion, pages 81–86, 1989.

48

[32] C. Zach, D. Gallup, J. M. Frahm, and M. Niethammer. Fast global labeling
for real-time stereo using multiple plane sweeps. In Vision, Modeling, and
Visualization 2008, pages 243–252. IOS Press, 2008.

[33] C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime
TV-L1 optical flow. In 29th DAGM Symposium on Pattern Recognition,
pages 214–223, Heidelberg, Germany, 2007.

[34] M. Zhu and T. Chan. An efficient primal-dual hybrid gradient algorithm
for total variation image restoration. CAM Reports 08-34, UCLA, Center
for Applied Math., 2008.

49

