
HAL Id: hal-00490811
https://hal.science/hal-00490811

Submitted on 24 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AD for optimization in electromagnetism applied to
semi analytical models combining composed functions

Petre Enciu, Frédéric Wurtz, Laurent Gerbaud, Benoît Delinchant

To cite this version:
Petre Enciu, Frédéric Wurtz, Laurent Gerbaud, Benoît Delinchant. AD for optimization in electro-
magnetism applied to semi analytical models combining composed functions. COMPEL: The Inter-
national Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2009, 5
(28), pp.1313-1326. �hal-00490811�

https://hal.science/hal-00490811
https://hal.archives-ouvertes.fr

AD for Optimization in Electromagnetism Applied to Semi-

Analytical Models Combining Composed Functions

P. Enciu*, F. Wurtz*, L. Gerbaud*, B. Delinchant*

(*) Laboratoire de Génie Electrique de Grenoble (G2ELab)

UMR5269, CNRS/UJF/INPG

ENSE3, Domaine Universitaire, BP 46,

F-38402 Saint Martin d’Hères Cedex, FRANCE

E-mail: Petre.ENCIU@g2elab.grenoble-inp.fr

Purpose:

This paper deals with Automatic Differentiation, for the device sizing in electromagnetism by

using gradient constrained optimization. CADES framework (Component Architecture for

the Design of Engineering Systems), previously described, is presented here with extended

features.

Design/Methodology/Approach

The paper is subject to further usage for optimization of Automatic Differentiation (also

named Algorithmic Differentiation) which is a powerful technique that computes derivatives

of functions described as computer programs in a programming language like C/C++,

FORTRAN.

Findings

Indeed, analytical modeling is well suited regarding optimization procedure, but the modeling

of complex devices needs sometimes numerical formulations. This paper then reviews the

“External Functions” and the so called “External Function of Function” modeling concepts

implemented in CADES which aim to manage the interactions of analytical and numerical

modeling inside of gradient based optimization procedure. Finally, the paper shows that

Automatic Differentiation has no limit for the input program complexity, or gradients

accuracy, in the context of constrained optimization of an electromagnetic actuator.

Originality/value

Automatic Differentiated is employed for a large and complex numerical code computing

multidimensional integrals of functions. Thus, the paper intends to prove the Automatic

Differentiation capabilities in the context of electromagnetic device sizing by means of

gradient optimization. The code complexity as also as the implications of Automatic

Differentiation usage may stand as a good reference for the researchers in this field area.

Keywords: Automatic Differentiation, Gradient Constrained Optimization, Software

Environment for Optimization, Semi-analytical models.

mailto:Petre.ENCIU@g2elab.grenoble-inp.fr

I. INTRODUCTION

In electromagnetism, the device sizing has often to be carried out by using optimization

procedures. The models are very constrained, with numerous parameters, so, the gradient

based optimization algorithms are considered e.g. the Sequential Quadratic Programming

(SQP) (Gloud and Robinson, 2009). Such algorithms need accurately valued gradients.

Basically, the designer may use explicit analytical formulas to describe sizing

mathematical models. In large-scale computational models, the objective functions may not

be available in analytical form, but given by a computer program or by routines

implementing numerical algorithms. These algorithms can implement numerical methods like

integration of functions, solvers of non-linear implicit systems of equations, etc… The

analytical parts of models interacting with the numerical modules, yields a semi-analytical

model. A real difficulty may happen to calculate those partial derivatives of the constrained

output variables with respect to optimizable inputs when they are linked by a numerical

algorithm or computer program. For example, computing the exact derivatives of an objective

function computed by a computer program with thousands of code lines simulating the

electromagnetic field in a 3D given geometry may be the origin of serious problems.

Several large scale differentiation techniques may be used to accomplish the

differentiation task.

The traditional way in electromagnetism to compute derivatives is the Finite Differences

method such as:

(1)

This method seems simple, however a suitably chosen step is far to be simple, playing a

crucial role for derivatives accuracy. Some studies (Delinchant et al., 2004) show that if the

derivatives are not accurately valued, the efficiency of gradient based algorithms decreases

considerably.

The symbolic differentiation can be used (Mathematica (Wolfram, 1999), Macsyma

(Petti, 1997), Maple (Kofler, 1997)). Whereas accurate, this approach is limited by the fact

that the representation of the differentiated expression grows fast with the number of input

variables. Furthermore, this approach is limited to symbolic expressions and cannot

differentiate algorithms.

Contrary to the previously presented methods, the Automatic Differentiation (AD)

(Griewank, 2000; Bucker and Hovland, 2000) is accurate up to machine precision, minimal in

terms of human computation effort, efficient in terms of running time and applicable for large

algorithms. The purpose of this work is to use AD in the context of electromagnetic devices

sizing like in (Fischer et al., 2005), which is a study of automatic differentiation application

for optimization of electrical devices where only explicit defined mathematical equations are

treated. The present paper deals with the further application of AD, especially to differentiate

algorithms. Firstly, a brief presentation of the existing AD techniques will be made.

Secondly, a special architecture implemented in a software for optimization, called CADES

(Delinchant et al., 2007), is presented. It combines both analytical and numerical parts of a

sizing model. Finally, a gradient constrained optimization application of a semi-analytical

electromagnetic model is presented.

II. INTRODUCTION TO AUTOMATIC DIFFERENTIATION

The Automatic Differentiation (AD), is a term applied to a collection of techniques for

automatically producing derivative codes of functions implemented in a high-level computer

language, such C/C++ or FORTRAN. AD analyses the program functions and the operators

and systematically applies the differentiation rules, notably the chain rule, to value error free

derivatives.

An automatic differentiator could be a pre-compiler that analyzes the source code and

generates a new program that computes both output and derivative values for any user

defined set of inputs. Such a technique namely Automatic Differentiation by Source-to-

Source (see Fig. 1) is implemented in packages such TAPENADE (Hascoet and Pascual,

2004), ADIC (Bischof et al., 1997), ADIFOR (Bischof et al., 1996)…

P
0x

)x(F 0

P’
0x

)x(F 0

)x(
x

F
0

x

AD
pre-compiler

Fig. 1. Source-to-source AD technique.

An automatic differentiator could instrument the routines of an initial code in order to be

differentiated. Such tools demand some minor modifications of the initial source. Generally

these tools implement this strategy by using the operator overloading capacities of certain

high-level programming languages such C++, FORTRAN 90. The overloaded operators and

operands of each arithmetic operation and elementary function are recorded on a “tape”

(Fig. 2). Tapes are subsequently interpreted to provide the required derivatives. The most

straightforward AD technique is perhaps based on operator overloading. Such representative

tools are CppAD (CppAD 2008), FADBAD/TADIFF (Bendtsen and Stauning, 1996),

ADOL-C (Walter and Griewank, 2008) used in the paper…

AD
tool

0x

instrumented

P

)x(F 0

)x(
x

F
0

Ptape buffer

0x x

Fig. 2. Tape storage AD technique

Almost all the AD tools existing in the literature implement two modes of differentiation,

i.e. the forward mode and the reverse mode. In the following sub-sections, only the forward

mode is explained using ADOL-C.

A. Automatic Differentiation –Forward Mode.

Assume the sample program in Fig. 3.a, representing a function

 containing a

loop, a conditional branch and an intermediate variable, . Before computing the derivatives,

the initial program needs to be instrumented with ADOL-C, resulting in Fig. 3.b. Here all the

variables, including the temporary ones, are of adouble data type. The active code is bounded

by calling functions “trace_on() and trace_off()”. These functions are used to build the

differentiation tape. Inside the tape, the vectors and are defined independent and

respectively dependent variables by using operators :<<= and >>=.

function f(double x[]):

return double y[]

begin function f:

double a, y[2];

int i;

if(x[1]>2)

a = x[1] + x[2];

else

a = x[1]*x[2];

for(i = 1; i<=2; i++)

a = a * x[i];

y[1] = a/x[2];

y[2] = sin(x[2]);

end function f;

X[1] y[1]
y[2]X[2]

f

temporary variable : a

a.

function f(adouble x[],double x0[]):

return double y0[]

begin function f:

adouble a, y[2];

int i;

trace_on(0);//starting tape buffer

x[1]<<=x0[1]; x[2]<<=x0[2];//independents

if(x[1]>2)

a = x[1] + x[2];

else

a = x[1]*x[2];

for(i = 1; i<=2; i++)

a = a * x[i];

y[1] = a/x[2];

y[2] = sin(x[2]);

y[1]<<=y0[1]; y[2]<<=y0[2];//dependents

trace_off();//end tape buffer

end function f;

b.

Fig. 3. Example code for AD. a.: Initial Code b.: The instrumented code with ADOL-C

The tape is the computer representation of the calling graph (see Fig. 4.a.). Since the tape

construction is made at run time, it contains no branch and all loops are unrolled. The forward

mode of differentiation means that both function and derivatives valuation are made in the

same direction (from bottom to the top of the function graph).

]1[x]2[x

*

*

\

sin

]2[x]1[xa

]2[x]1[x

])2[x],1[x(a

a*]1[xa

a*]1[x]1[x*a

)a],1[x(*a

a*]2[xa

a*]2[x]2[x*a

)a],2[x(*a

]2[x/a]1[y

]2[x*])2[x*]2[x(\a

a*]2[x\1

])2[x,a(\]1[y

])2[xsin(]2[y

]2[x*])2[xcos(

])2[xsin(]2[y

)0,1(]1[x)1,0(]2[x

3]1[x]1[0x

2]2[x]2[0x

0:tape

a.

fov_forward(int traceNb,
int nbDeps, int nbIndeps, int
keep, double *x0, double **X,
double *y0, double **J)
•traceNb = 0;
•nbDeps = 2;//number of
dependent variables
•nbIndeps = 2;//number of
independent variables
•int keep = 0;//only for reverse
mode
•x0 = (3,2);//user defined set of
inputs;
•double **X = ()=(1,0)(0,1);
//the directions for
differentiation
•double *y0=y; //the output
values;
•double **J = ();//the jacobain
matrix;

b.

Fig. 4. The AD tape. a.: The tape containing the overloaded operators for the forward mode. b.:

Procedure used to reuse the tape in order to value derivatives

The trace building is slow (Gay, 2006), but once it is constructed, it may be reused further

with different sets of inputs. In ADOL-C this may be done by calling special functions, e.g.,

fov_forward, Fig. 4.b (for First Order Vectorial differentiation in forward mode) that

succeeds only if all logical operations of the initial code yield the same result (e.g.: the tape in

Fig. 4.a changes if). Otherwise, the retaping is imposed by recalling the routine

presented in Fig. 3.b. So, special care must be taken for piecewise differentiable functions.

ADOL-C implements the so called mechanism of branch switching detection. Thanks to it,

the necessity of retaping the active program is known.

This discussion shows that the principles underlying AD are not complicated for the

computation of first order derivatives, but they can also be easily generalized to the

computation of univariate Taylor series or Hessians and multivariate high-order derivatives.

III. ARCHITECTURE STRATEGY FOR SEMI-ANALYTICAL MODELS

In paper (Delinchant et al., 2007), the authors describe CADES framework (Component

Architecture for Design of Engineering Systems), a software environment designed to size

and optimize engineering devices and systems. Its design pattern (Fig. 5) that formalizes the

entire design process is made of: a mathematical model description in the language sml (for

System Modelling Language) (Delinchant et al., 2007),, a model analysis by Generators that

create software Calculation Components (models) and the use of these components in

services (e.g. optimisation, calculation…).

The sml language syntax is based on the analytical model description made of algebraic

equations and explicitly defined functions. However, this simple description may be limited

in electromagnetics. Models using numerical methods, or kind of various numerical

algorithms can be seen as a further model completion. The paper names them semi-analytical

models.

This section focuses on the features of numerically computed external functions and external

functions of functions that interact with the analytical model.

Also, one may need a model capable to interact or to drive simulation environments like

FLUX, P-SPICE, MATLAB/SIMULINK or to read and use some measure data bases.

The analytical model of an electrical resistor which resistance depends on temperature is

presented to introduce the semi-analytical model syntax in CADES (see Fig. 5)

R0 = rho*L/S; //Resistance at 0 C

R(x) = R0*(1+A*x+B*pow(x,2)); //Res. vs. temperature

U = R(T)*I; //Ohm law;

01.
02.
03.

I
T

rho

L
S

R0

U

Analytical model (White box)
Model Component

(Black box)
Component
Generator

Component
Optimizer

Fig. 5. The chain generation of an analytical model.

The description of analytical models is carried out in the sml language, with the following

instructions:

 scalar constants and variables of double precision (R0, rho, L, S, etc…).

 basic arithmetic operators (+, -, *, /);

 basic mathematical functions (trigonometric, logarithmic, etc… functions);

 user defined internal functions (like R(x));

Model components which are required to carry out the model computation, are automatically

produced with respect to a set of rules according to ICAr norm (Delinchant et al., 2007).

A. Semi-analytical modeling using external functions

From the previous example, the resistance dependence on temperature can be defined

with a numerical algorithm that interpolates some measurement values.

import "./Interpolate.jar "; //import external code

R0 = rho*L/S; //Resistance at 0 C

R(x) = R0*Interpolate(x); //numeric Res. vs. temperature

U = R(T)*I; //Ohm law;

01.
02.
03.
04

Component
Generator

I
T

rho

L
S

R0

U

Model Component
(Black box)

Interpolate.jar

Analytical model calling external numerical code (Grey box)

x
Interpolate(x)
∂Interpolate/∂x

Measurement
results

using AD, or,
symbolic differentiation), or,
hand coding differentiation Interpolate.jar

possible
differentiation

modes

Fig. 6. Semi-analytical model calling external code

As shown in Fig. 6, an external function is a function numerically computed outside the

analytical model (e.g. in C or Java language). Note that for further optimization with gradient

optimization algorithms like SQP, the jacobian of such an external numerical code is needed

and several approaches might be used as shown in Fig. 6.

B. Semi-analytical modeling using the external functions of

functions.

Another semi-analytical form lays on external functions of functions (extension of the

previous formalism). On the example of Fig. 5, suppose that the conductor surface changes

like in Fig. 7.a.

S(x)= 1+x.cos²(x)

x

L

S(x)

1+a*x*cos²(x)

S(x)

x

a.

import "./Cuhre.jar "; //import external code

invS(a,x) = 1/(1+a*x*cos(x)*cos(x));//inverse of section fct

R0 = rho*integral(invS(a,_),0,L);//fct. of fct. usage

R(x) = = R0*(1+A*x+B*pow(x,2)); //Res. vs. temperature

U = R(T)*I; //Ohm law;

01.
02.
03.
04.
05.

Analytical model calling external function of functions (Grey box)

0, L

L
Integral(x)
∂Integral/∂bounds

Integral
Library

0

invS(x,y)

Integral.jar

using AD, or,
symbolic differentiation), or,
hand coding differentiation

numerical value

object

call back

b.

Fig. 7. The external functions of functions. a.: Conductor shape; application to integral. b.: Semi-

analytical model calling external function of functions.

The external numerical code computes the integral functional in (2).

(2)

Such a function of functions is translated into sml language as (3):

 (3)

Note that this syntax approach is formalized and the concerned elements are :

 integral - the name of the function of functions; this function is implementing a

numerical algorithm.

 invS – the argument function defined into the analytical model (arrow 1 in

Fig. 8.a). In the integral case, this function represents the integrand.

Argument
function

Analytical model
(white box)

2

1

Function of functions

3

a.

ScalarFunction (Java)
Methods:

+compute(double[] args):double

+derive(double[] args):double[]

+partialDerive(double[] args, int

index):double

b.

Fig. 8. Argument function: a.: strategy b.: architecture

This special argument function is represented by an instance of a class

implementing the interface of Fig. 8.b. The methods such “compute()”(like in

(4)):

(4)

or “derive()” (like in (5)):

(5)

permit to calculate this function values and partial derivatives respectively at

different points (e.g.: in (4) and (5) at the integration bounds, 0 and “L”) required

by the numerical routine (here “integral”). Thus, a connection is established back

(here from “integral”) with the analytical model (here “invS”, arrow 2 in Fig. 8.a)

and thus the function of functions strategy is based on the call back functions

formalism.

 “_” – is used, in the sml language, to notify the variable argument position

among other arguments of argument function (in Fig. 9 the second argument of

“invS”).

L

0

)L,0_),,a(invS(egralintdx)x,a(invS

Fig. 9. Variables mapping in the integral case

 “a, 0, L” – global variables (). To explicit these variables, consider the

formulation in (4) as F:

 (6)

Thus, the variables underlying within this equation are global variables of the

complete sizing model. So, the derivatives of F in (6) may be needed, if

constraints are considered further in optimization.

The jacobian of any function of function Fof is:

(7)

C. The integral differentiation reference

The numerical integration algorithms used in this paper are Cuhre (for n>1 dimensions)

and Sympson (for n=1 dimensions), both implemented in Cuba library (Hahn, 2009). This

subsection aims to define exact formulations for the partial derivatives of such integrals in

order to achieve a strong reference.

Let consider the general k-dimension integral in (8), where represents

the integral result, being a functional depending on the integration bounds and on the non-

integrable parameters, :

(8)

Translated into sml language as:

Here, the paper focuses on computing the partial derivatives of the integral with respect to

its bounds and to the non-integrable parameters, like in (9) and (10).

(9)

(10)

Resuming the Cuhre algorithm, it consists in several integrand valuations at discrete

points between the lower and the upper bounds. Thanks to functions of functions formalism,

the value of the integrand is:

On the other hand, the integrand in (10), at the lower bound, is:

A special attention was carried out for the case when the bounds are functions of non-

integrable parameters. A new formulation of the relation in (10) yields in this case, to:

IV. THE DESIGN OF AN ELECTROMAGNTIC DEVICE

Here, an electromagnetic actuator applied for a deformable mirror for astronomy adaptive

optic (Delinchant et al., 2008; Cugat et al., 2001) is proposed for being sized by gradient

constrained optimization. Its model is semi-analytical with numerical integrals, using the

Cuba library. Two approaches are considered for differentiation.

First, the analytical part of the sizing model is symbolically differentiated, using the

differentiation engine implemented in CADES. The numerical integration algorithm is

differentiated by hand (see subsection C above). This approach is considered the reference for

the optimization final solutions.

Second, the entire semi-analytical model is differentiated using an AD tool (i.e. ADOL-

C).

The same SQP optimization algorithm (i.e. VF13 (Gloud, 2009)) is used for optimization.

So, the approaches differ only for differentiation.

A. Micro-actuator for deformable mirror

Here, a deformable mirror reflector actuated by a matrix of several identical micro-

actuators is considered. Each actuator, separately controlled, is supposed to avoid image

deformations. This device represents a specific application for adaptive optic (Cugat, 2001).

Magnets Ø 2mm Deformable relfector

Ø 50mm

Coils Ø 4mm

Gap

Mag_H

Mag_W

Coil

Coil_H

Coil_W Coil_R

MagnetMag_R

Gap

Mag_H

Mag_W

Coil

Coil_H

Coil_W Coil_R

MagnetMag_R

Z

Fig. 10. Deformable mirror system and micro-actuator.

The semi-analytical modeling of each electromagnetic micro-actuator is based on integral

formulations for the force acting on the magnet in the electromagnetic field produced by the

coil. For the coil shape (see Fig. 10), the Biot-Savard law calculates the magnetic field. We

are particularly interested by the field component in the z-axis:

(11)

where represents a functional related to coil shape.

The force acting on the magnet, produced by the field in (11) is calculated by applying

the equivalent surface charges method (De Medeiros, 1998), like electrostatic devices, as in

(12):

(12)

Only the z-component of this force will be used in the modeling approach.

Note the influence of the coil field on the magnet is completely ignored. So the magnet

magnetization is considered homogenous and constant, making this formulation deficient in

terms of accuracy.

B. The optimization goal

The aim of the optimization of the electromagnetic device in Fig. 10, is to reach a fixed

actuating force at air Gap=0.5mm of 30mN, in order to limit the mirror deformability, with a

minimal magnet volume. The variation range of geometrical parameters is restricted to the

device validity domain. Without such safety measures, the optimization may go out of scope.

The initial values, as also the specifications, are reported in the table below.

TABLE I THE OPTIMIZATION SPECIFICATIONS

Parameter Description Unit Value Type

Coil_W Coil Width mm 1 fixed

Coil_H Coil High mm 1 fixed

Coil_R Coil Radius mm 1 fixed

J Current Density A/mm 100 fixed

Mz Magnetization T 1 fixed

Gap Air gap mm 0.5 fixed

Mag_R Magnet Radius mm 0.5 Constrained [0.001,1]

Mag_W Magnet Width mm 0.5 Constrained [0.1, 3]

Mag_FF Magnet Form Factor - 0.25 Constrained [0.01, 1]

prec Integration accuracy - 1e-5 fixed

Mag_force The force on magnet mN 30 fixed

C. Automatic Differentiation strategy of the integration algorithm

The integration algorithms – the Cuhre and Sympson routines of the Cuba integration

library, are instrumented with ADOL-C tool package, in order to be differentiated in the

sense of calculating the partial derivatives in (9) and (10). The major changes made to the

initial algorithm for differentiation, are listed below:

 Convert to C++. Certain header files (originally written in C) were converted

to a form acceptable by C++.

 Changes to derivative type. All the variable types was changed from

(float/double) to ADOL-C derivative type, adouble.

 Declaring the independent variables. The variables defining the integration

bounds () were declared as active independent variables.

 Taping the active section. The integration algorithm was called between the

special functions “trace_on()” and “trace_off()“.

 Declaring the dependent variables. The variables defining the integration

result were defined as active dependent variables.

Regarding the complexity of the integration algorithm used in this paper (Hahn, 2009),

we tend to consider it enough to demonstrate the actual capacities of AD. Many imbricated

loops, conditional branches, integrands called thousands of times since the desired

convergence is achieved, represent a short review that could measure this algorithm

complexity.

D. Optimization results

In this subsection, a comparative study is done between the two differentiation strategies

applied for the integrals in (11) and (12) that define the constrained force acting on the

magnet. This formulation consists in calculating a two dimension integral of an integrand

function valuating another one dimension integral.

Fig. 11. Partial derivatives and errors obtained in the both considered approaches

For a set of model parameters arbitrary chosen in Fig. 11, it is obvious that AD yields the

same partial derivatives, as the considered reference approach. The maximum relative error

for plotted partial derivatives in Fig. 11, is 0.18%. Such error is acceptable for a gradient

based optimization algorithm, its global convergence being not affected.

In Fig. 12, the initial and the final configuration obtained for the studied device are

indicated. The objective value is obtained with a precision of . The optimization

converges in the both approaches with the same iterations number to almost the same value

of the objective function.

Mag_H

Mag_W

Coil

Coil_H

Coil_W Coil_R

Gap

MagnetMag_R 0.75 mm

0.75

mm

0.31 mm

Before optimization
(Fz=0.026 N, Volumic Force=0.01 N/mm3)

After optimization
(Fz=0.03 N, Volumic Force=0.012 N/mm3)

Mag_H

Mag_W

Coil

Coil_H

Coil_W Coil_R

Gap

MagnetMag_R 0.75 mm

0.75

mm

0.31 mm

Before optimization
(Fz=0.026 N, Volumic Force=0.01 N/mm3)

After optimization
(Fz=0.03 N, Volumic Force=0.012 N/mm3)

Fig. 12. The actuator structure before and after the optimization

In order to check the robustness of the Automatic Differentiation capabilities, successive

optimizations were applied for the same structure with the same specifications varying the

coil radius in the range 0…0.9 mm. Outside this range, no solution was found for the both

differentiation approaches since the validity domain of the device is no longer respected. In

Fig. 13 are reported the optimization results by differentiating the integrals in (12) and (13)

using AD and the reference approach. There are no major errors between the optimization

solutions.

a.

b.

Fig. 13. Optimization results for the robustness test: a.: The variation of volumic force and objective

function when varying the magnet radius. b.: The error obtained for the objective function (magnet

voulume) within the both differentiation approaches.

V. CONCLUSION

This paper has illustrated AD as a new technology for accurate gradient valuation applied

for gradient based optimization of electromagnetic devices. Contrary to symbolic

differentiation, AD makes possible to differentiate more than explicitly defined analytical

formulas. It might deal with differentiation of numerical codes that are ubiquitous when

defining a sizing model in electromagnetism. AD saves work contrarily to hand coding of

derivatives and avoids troubles caused by the inaccurate finite differentiation method. In the

paper, it is shown that a minimal human computational effort is required when differentiating

a numerical code. More, no user knowledge is required for the algorithm in cause. The

gradient accuracy obtained with AD is validated within the optimization of an

electromagnetic actuator. In comparison with a reference approach, the values of the

derivatives computed in double precision by AD agree to at least four digits. Such accuracy is

acceptable for an SQP optimization algorithm since the solution as also as the iterations

number is quite identical.

However, the running of the derivative code implemented with ADOL-C tends to be slower

than the reference approach case.

A special architecture is proposed in this paper to handle the interaction between the

analytical part describing a sizing model and the numerical codes within a software

environment designed for sizing. Situations when such functions of functions are useful

might be when the external function is supposed to compute an integral, or an implicit solver

(Enciu et al., 2008), minimizations/maximizations of functions…

VI. REFERENCE

Gloud, N. I. M. and Robinson, D. P. (2009), “A second derivative SQP method: local convergence”, available at

http://www.numerical.rl.ac.uk/reports/reports.shtml, (accessed 08 March 2009).

Delinchant, B., Wurtz, F. and Atienza, E. (2004), “Reducing Sensitivity Analysis Time-Cost of the Compound

Model”, IEEE Transactions on Magnetics, vol. 40, No. 2, pp. 1216-1219.

Wolfram, S. (1999) The Mathematica Book, Cambridge University Press, 4th Edition.

Petti, R. J. (1997) Introduction to Macsyma, Publishers, Inc.

Kofler, M. (1997) Maple: An Introduction and Reference, Addison Wesley.

Griewank, A. (2000) Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation,

Frontiers in Applied Mathematics no. 19, SIAM, Philadephia.

Bücker, M. and Hovland, P. (2000) “Automatic Diffrentiation”, available at www.autodiff.org, (accessed 08

March 2009)

Fischer, V., Gerbaud, L., Wurtz, F., Leconte, V. and Dorschner, F. (2005), “Using Automatic Code

Differentiation for Optimization”, IEEE Transactions on Magnetics, vol. 41, No. 5, pp. 1812 – 1815.

Delinchant, B., Duret, D., Estrabaut, L., Gerbaud, L., Nguyen, H. H., Du Peloux, B., Rakotoarison, H.L.,

Verdiere, F. and Wurtz, F. (2007) “An optimizer using the software component paradigm for the

optimization of engineering systems”, COMPEL, Vol. 26, Issue 2, Page: 368 - 379.

 Hascoet, L. and Pascual, V. (2004), working paper, “TAPENADE 2.1 user’s guide”, Institut National de

Recherche en Informatique et en Automatique, No. 0300, France, Sept.

Bischof, C., Roh, L. and Mauer, A. (1997), working paper, “ADIC: An Extensible Automatic Differentiation

Tool for ANSI-C”, Center of Research on Parallel Computation, Rice University, January.

Bischof, C. H., Carle, A., Khademi, P. and Mauer, A. (1996), “ADIFOR 2.0: Automatic Differentiation of

FORTRAN 77 Programs”, IEEE Computational Science & Engineering, 3(3): 18-32.

CppAD (2008), available at, http://www.coin-or.org/CppAD/ (accessed at 08 March 2009).

Bendtsen, C. and Stauning, Ole (1996), working paper, “FADBAD, a Flexible C++ Package for Automatic

Differentiation, Department of Mathematical Modelling”, Technical University of Denmark.

Walter, A. and Griewank, A. (2008), working paper, ADOL-C: A Package for the Automatic Differentiation of

Algorithms Written in C/C++, Institute of Scientific Computing, Technical University Dresden, D-

01062, December.

Gay, D. M. (2006), “Semiautomatic Differentiation for Efficient Gradient Computations”, Automatic

Differentiation: Applications, Theory and Implementations, Springer.

Hahn, T. (2009), working paper, “Cuba: a library for multidimensional numerical integration”, Max-Planck-

Institut fur Physik, Munich, Germany.

Enciu, P., Gerbaud, L. and Wurtz, F. (2008), “Automatic Differentiation for Sensitivity Calculation in

Electromagnetism: Application to Algorithms”, in IEEE Conference on Electromagnetic Field

Computation proceedings of International conference, Athens, Greece, May.

Delinchant, B., Gruosso, G. and Wurtz, F. (2008), “Two-levels modelling for the optimization of

electromagnetic actuators”, IEEE Transactions on Magnetics (to be published).

Cugat, O., Basrour, S., Divoux, C., Mounaix, P. and Reyne, G. (2001), “Deformable magnetic mirror for

adaptive optics: technological aspects”, Sensors and Actuators A: Physical, Volume 89, Issues 1-2, 20,

pp. 1-9.

De Medeiros, L. H., Reyne, G. and Meunier, G. (1998), "Comparison of Global Force Calculations on

Permanent Magnets", IEEE Transactions on Magnetics, VOL.34, NO. 5.

http://www.numerical.rl.ac.uk/reports/reports.shtml
http://www.autodiff.org/
http://www.coin-or.org/CppAD/
http://www.autodiff.org/?module=Publications&submenu=list%20publications&id=bendtsen1996faf
http://www.autodiff.org/?module=Publications&submenu=list%20publications&id=bendtsen1996faf

