P Enciu

F Wurtz

L Gerbaud

B Delinchant

AD for Optimization in Electromagnetism Applied to Semi-Analytical Models Combining Composed Functions

Keywords: Automatic Differentiation, Gradient Constrained Optimization, Software Environment for Optimization, Semi-analytical models

This paper deals with Automatic Differentiation, for the device sizing in electromagnetism by using gradient constrained optimization. CADES framework (Component Architecture for the Design of Engineering Systems), previously described, is presented here with extended features.

Design/Methodology/Approach

The paper is subject to further usage for optimization of Automatic Differentiation (also named Algorithmic Differentiation) which is a powerful technique that computes derivatives of functions described as computer programs in a programming language like C/C++, FORTRAN.

Findings

Indeed, analytical modeling is well suited regarding optimization procedure, but the modeling of complex devices needs sometimes numerical formulations. This paper then reviews the "External Functions" and the so called "External Function of Function" modeling concepts implemented in CADES which aim to manage the interactions of analytical and numerical modeling inside of gradient based optimization procedure. Finally, the paper shows that Automatic Differentiation has no limit for the input program complexity, or gradients accuracy, in the context of constrained optimization of an electromagnetic actuator.

Originality/value

Automatic Differentiated is employed for a large and complex numerical code computing multidimensional integrals of functions. Thus, the paper intends to prove the Automatic Differentiation capabilities in the context of electromagnetic device sizing by means of gradient optimization. The code complexity as also as the implications of Automatic Differentiation usage may stand as a good reference for the researchers in this field area.

I. INTRODUCTION

In electromagnetism, the device sizing has often to be carried out by using optimization procedures. The models are very constrained, with numerous parameters, so, the gradient based optimization algorithms are considered e.g. the Sequential Quadratic Programming (SQP) [START_REF] Gloud | A second derivative SQP method: local convergence[END_REF]. Such algorithms need accurately valued gradients.

Basically, the designer may use explicit analytical formulas to describe sizing mathematical models. In large-scale computational models, the objective functions may not be available in analytical form, but given by a computer program or by routines implementing numerical algorithms. These algorithms can implement numerical methods like integration of functions, solvers of non-linear implicit systems of equations, etc… The analytical parts of models interacting with the numerical modules, yields a semi-analytical model. A real difficulty may happen to calculate those partial derivatives of the constrained output variables with respect to optimizable inputs when they are linked by a numerical algorithm or computer program. For example, computing the exact derivatives of an objective function computed by a computer program with thousands of code lines simulating the electromagnetic field in a 3D given geometry may be the origin of serious problems.

Several large scale differentiation techniques may be used to accomplish the differentiation task.

The traditional way in electromagnetism to compute derivatives is the Finite Differences method such as:

(1) This method seems simple, however a suitably chosen step is far to be simple, playing a crucial role for derivatives accuracy. Some studies [START_REF] Delinchant | Reducing Sensitivity Analysis Time-Cost of the Compound Model[END_REF] show that if the derivatives are not accurately valued, the efficiency of gradient based algorithms decreases considerably.

The symbolic differentiation can be used (Mathematica [START_REF] Wolfram | The Mathematica Book[END_REF], Macsyma [START_REF] Petti | Introduction to Macsyma[END_REF], Maple [START_REF] Kofler | Maple: An Introduction and Reference[END_REF]). Whereas accurate, this approach is limited by the fact that the representation of the differentiated expression grows fast with the number of input variables. Furthermore, this approach is limited to symbolic expressions and cannot differentiate algorithms.

Contrary to the previously presented methods, the Automatic Differentiation (AD) [START_REF] Griewank | Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation[END_REF]Bucker and Hovland, 2000) is accurate up to machine precision, minimal in terms of human computation effort, efficient in terms of running time and applicable for large algorithms. The purpose of this work is to use AD in the context of electromagnetic devices sizing like in [START_REF] Fischer | Using Automatic Code Differentiation for Optimization[END_REF], which is a study of automatic differentiation application for optimization of electrical devices where only explicit defined mathematical equations are treated. The present paper deals with the further application of AD, especially to differentiate algorithms. Firstly, a brief presentation of the existing AD techniques will be made.

Secondly, a special architecture implemented in a software for optimization, called CADES [START_REF] Delinchant | An optimizer using the software component paradigm for the optimization of engineering systems[END_REF], is presented. It combines both analytical and numerical parts of a sizing model. Finally, a gradient constrained optimization application of a semi-analytical electromagnetic model is presented.

II. INTRODUCTION TO AUTOMATIC DIFFERENTIATION

The Automatic Differentiation (AD), is a term applied to a collection of techniques for automatically producing derivative codes of functions implemented in a high-level computer language, such C/C++ or FORTRAN. AD analyses the program functions and the operators and systematically applies the differentiation rules, notably the chain rule, to value error free derivatives.

An automatic differentiator could be a pre-compiler that analyzes the source code and generates a new program that computes both output and derivative values for any user defined set of inputs. Such a technique namely Automatic Differentiation by Source-to-Source (see Fig. 1) is implemented in packages such TAPENADE [START_REF] Hascoet | TAPENADE 2.1 user's guide[END_REF], ADIC [START_REF] Bischof | ADIC: An Extensible Automatic Differentiation Tool for ANSI-C[END_REF], ADIFOR [START_REF] Bischof | ADIFOR 2.0: Automatic Differentiation of FORTRAN 77 Programs[END_REF] An automatic differentiator could instrument the routines of an initial code in order to be differentiated. Such tools demand some minor modifications of the initial source. Generally these tools implement this strategy by using the operator overloading capacities of certain high-level programming languages such C++, FORTRAN 90. The overloaded operators and operands of each arithmetic operation and elementary function are recorded on a "tape" (Fig. 2). Tapes are subsequently interpreted to provide the required derivatives. The most straightforward AD technique is perhaps based on operator overloading. Such representative tools are CppAD (CppAD 2008), FADBAD/TADIFF [START_REF] Bendtsen | FADBAD, a Flexible C++ Package for Automatic Differentiation[END_REF], ADOL-C [START_REF] Walter | working paper, ADOL-C: A Package for the Automatic Differentiation of Algorithms Written in C/C++[END_REF]

… P 0 x) x (F 0 P' 0 x) x (F 0) x (x F 0   x  AD pre-compiler
int i; if(x[1]>2) a = x[1] + x[2]; else a = x[1]*x[2]
;

for(i = 1; i<=2; i++) a = a * x[i]; y[1] = a/x[2]; y[2] = sin(x[2]); end function f; X[1] y[1] y[2] X[2]
f temporary variable : a a. The trace building is slow [START_REF] Gay | Semiautomatic Differentiation for Efficient Gradient Computations[END_REF], but once it is constructed, it may be reused further with different sets of inputs. In ADOL-C this may be done by calling special functions, e.g., fov_forward, Fig. 4.b (for First Order Vectorial differentiation in forward mode) that succeeds only if all logical operations of the initial code yield the same result (e.g.: the tape in This discussion shows that the principles underlying AD are not complicated for the computation of first order derivatives, but they can also be easily generalized to the computation of univariate Taylor series or Hessians and multivariate high-order derivatives.

[1]<<=x0[1]; x[2]<<=x0[2];//independents if(x[1]>2) a = x[1] + x[2]; else a = x[1]*x[2]; for(i = 1; i<=2; i++) a = a * x[i]; y[1] = a/x[2]; y[2] = sin(x[2]); y[1]<<=y0[1]; y[2]<<=y0[2];//
1 [x] 2 [x *  * \ sin] 2 [x] 1 [x a  ] 2 [x] 1 [x]) 2 [x], 1 [x (a         a *] 1 [x a  a *] 1 [x] 1 [x * a) a], 1 [x (* a        a *] 2 [x a  a *] 2 [x] 2 [x * a) a], 2 [x (* a       ] 2 [x / a] 1 [y ] 2 [x *]) 2 [x *] 2 [x (\ a a *] 2 [x \ 1]) 2 [x , a (\] 1 [y        ]) 2 [x sin(] 2 [y ] 2 [x *]) 2 [x cos(]) 2 [x sin(] 2 [y     ) 0 , 1 (] 1 [x  ) 1 , 0 (] 2 [x   3] 1 [x] 1 [0 x   2] 2 [x] 2 [0 x   0 : tape a.

III. ARCHITECTURE STRATEGY FOR SEMI-ANALYTICAL MODELS

In paper [START_REF] Delinchant | An optimizer using the software component paradigm for the optimization of engineering systems[END_REF], the authors describe CADES framework (Component Architecture for Design of Engineering Systems), a software environment designed to size and optimize engineering devices and systems. Its design pattern (Fig. 5) that formalizes the entire design process is made of: a mathematical model description in the language sml (for System Modelling Language) [START_REF] Delinchant | An optimizer using the software component paradigm for the optimization of engineering systems[END_REF],, a model analysis by Generators that create software Calculation Components (models) and the use of these components in services (e.g. optimisation, calculation…).

The sml language syntax is based on the analytical model description made of algebraic equations and explicitly defined functions. However, this simple description may be limited in electromagnetics. Models using numerical methods, or kind of various numerical algorithms can be seen as a further model completion. The paper names them semi-analytical models.

This section focuses on the features of numerically computed external functions and external functions of functions that interact with the analytical model. The description of analytical models is carried out in the sml language, with the following instructions:

 scalar constants and variables of double precision (R0, rho, L, S, etc…).

 basic arithmetic operators (+, -, *, /);  basic mathematical functions (trigonometric, logarithmic, etc… functions);

 user defined internal functions (like R(x));

Model components which are required to carry out the model computation, are automatically produced with respect to a set of rules according to ICAr norm [START_REF] Delinchant | An optimizer using the software component paradigm for the optimization of engineering systems[END_REF].

From the previous example, the resistance dependence on temperature can be defined with a numerical algorithm that interpolates some measurement values. As shown in Fig. 6, an external function is a function numerically computed outside the analytical model (e.g. in C or Java language). Note that for further optimization with gradient optimization algorithms like SQP, the jacobian of such an external numerical code is needed and several approaches might be used as shown in Fig. 6.

B. Semi-analytical modeling using the external functions of functions.

Another semi-analytical form lays on external functions of functions (extension of the previous formalism). On the example of Fig. 5, suppose that the conductor surface changes like in Fig. 7.a. The external numerical code computes the integral functional in (2).

(2) Such a function of functions is translated into sml language as (3):

(3)

Note that this syntax approach is formalized and the concerned elements are :

 integral -the name of the function of functions; this function is implementing a numerical algorithm. (4)

or "derive()" (like in (5)):

(5) permit to calculate this function values and partial derivatives respectively at different points (e.g.: in (4) and (5) at the integration bounds, 0 and "L") required by the numerical routine (here "integral"). Thus, a connection is established back (here from "integral") with the analytical model (here "invS", arrow 2 in Fig. 8.a)

and thus the function of functions strategy is based on the call back functions formalism.

 "_"is used, in the sml language, to notify the variable argument position among other arguments of argument function (in Fig. 9 the second argument of

"invS").   L 0) L , 0 _), , a (invS (egral int dx) x , a (invS

C. The integral differentiation reference

The numerical integration algorithms used in this paper are Cuhre (for n>1 dimensions) and Sympson (for n=1 dimensions), both implemented in Cuba library [START_REF] Hahn | Cuba: a library for multidimensional numerical integration[END_REF]. This subsection aims to define exact formulations for the partial derivatives of such integrals in order to achieve a strong reference.

Let consider the general k-dimension integral in (8), where represents the integral result, being a functional depending on the integration bounds and on the nonintegrable parameters, :

Translated into sml language as:

Here, the paper focuses on computing the partial derivatives of the integral with respect to its bounds and to the non-integrable parameters, like in (9) and (10).

(9) (10)

Resuming the Cuhre algorithm, it consists in several integrand valuations at discrete points between the lower and the upper bounds. Thanks to functions of functions formalism, the value of the integrand is:

On the other hand, the integrand in (10), at the lower bound, is:

A special attention was carried out for the case when the bounds are functions of nonintegrable parameters. A new formulation of the relation in (10) yields in this case, to:

IV. THE DESIGN OF AN ELECTROMAGNTIC DEVICE

Here, an electromagnetic actuator applied for a deformable mirror for astronomy adaptive optic [START_REF] Delinchant | Two-levels modelling for the optimization of electromagnetic actuators[END_REF][START_REF] Cugat | Deformable magnetic mirror for adaptive optics: technological aspects[END_REF] is proposed for being sized by gradient constrained optimization. Its model is semi-analytical with numerical integrals, using the Cuba library. Two approaches are considered for differentiation.

First, the analytical part of the sizing model is symbolically differentiated, using the differentiation engine implemented in CADES. The numerical integration algorithm is differentiated by hand (see subsection C above). This approach is considered the reference for the optimization final solutions.

Second, the entire semi-analytical model is differentiated using an AD tool (i.e. ADOL-C).

The same SQP optimization algorithm (i.e. VF13 [START_REF] Gloud | A second derivative SQP method: local convergence[END_REF]) is used for optimization.

So, the approaches differ only for differentiation.

A. Micro-actuator for deformable mirror

Here, a deformable mirror reflector actuated by a matrix of several identical microactuators is considered. Each actuator, separately controlled, is supposed to avoid image deformations. This device represents a specific application for adaptive optic [START_REF] Cugat | Deformable magnetic mirror for adaptive optics: technological aspects[END_REF]. The semi-analytical modeling of each electromagnetic micro-actuator is based on integral formulations for the force acting on the magnet in the electromagnetic field produced by the coil. For the coil shape (see Fig. 10), the Biot-Savard law calculates the magnetic field. We are particularly interested by the field component in the z-axis:

(11)
where represents a functional related to coil shape.

The force acting on the magnet, produced by the field in (11) is calculated by applying the equivalent surface charges method [START_REF] De Medeiros | Comparison of Global Force Calculations on Permanent Magnets[END_REF], like electrostatic devices, as in (12):

(12)
Only the z-component of this force will be used in the modeling approach.

Note the influence of the coil field on the magnet is completely ignored. So the magnet magnetization is considered homogenous and constant, making this formulation deficient in terms of accuracy.

B. The optimization goal

The aim of the optimization of the electromagnetic device in Fig. 10, is to reach a fixed actuating force at air Gap=0.5mm of 30mN, in order to limit the mirror deformability, with a minimal magnet volume. The variation range of geometrical parameters is restricted to the device validity domain. Without such safety measures, the optimization may go out of scope.

The initial values, as also the specifications, are reported in the table below.

C. Automatic Differentiation strategy of the integration algorithm

The integration algorithmsthe Cuhre and Sympson routines of the Cuba integration library, are instrumented with ADOL-C tool package, in order to be differentiated in the sense of calculating the partial derivatives in (9) and (10). The major changes made to the initial algorithm for differentiation, are listed below:

 Convert to C++. Certain header files (originally written in C) were converted to a form acceptable by C++.

 Changes to derivative type. All the variable types was changed from (float/double) to ADOL-C derivative type, adouble.

 Declaring the independent variables. The variables defining the integration bounds () were declared as active independent variables.

 Taping the active section. The integration algorithm was called between the special functions "trace_on()" and "trace_off()".

 Declaring the dependent variables. The variables defining the integration result were defined as active dependent variables.

Regarding the complexity of the integration algorithm used in this paper [START_REF] Hahn | Cuba: a library for multidimensional numerical integration[END_REF],

we tend to consider it enough to demonstrate the actual capacities of AD. Many imbricated loops, conditional branches, integrands called thousands of times since the desired convergence is achieved, represent a short review that could measure this algorithm complexity.

D. Optimization results

In this subsection, a comparative study is done between the two differentiation strategies applied for the integrals in (11) and (12) that define the constrained force acting on the magnet. This formulation consists in calculating a two dimension integral of an integrand function valuating another one dimension integral. In order to check the robustness of the Automatic Differentiation capabilities, successive optimizations were applied for the same structure with the same specifications varying the coil radius in the range 0…0.9 mm. Outside this range, no solution was found for the both differentiation approaches since the validity domain of the device is no longer respected. In Fig. 13 are reported the optimization results by differentiating the integrals in (12) and (13) using AD and the reference approach. There are no major errors between the optimization solutions.

a.

b. In the paper, it is shown that a minimal human computational effort is required when differentiating a numerical code. More, no user knowledge is required for the algorithm in cause. The gradient accuracy obtained with AD is validated within the optimization of an electromagnetic actuator. In comparison with a reference approach, the values of the derivatives computed in double precision by AD agree to at least four digits. Such accuracy is acceptable for an SQP optimization algorithm since the solution as also as the iterations number is quite identical.

However, the running of the derivative code implemented with ADOL-C tends to be slower than the reference approach case.

A special architecture is proposed in this paper to handle the interaction between the analytical part describing a sizing model and the numerical codes within a software environment designed for sizing. Situations when such functions of functions are useful might be when the external function is supposed to compute an integral, or an implicit solver [START_REF] Enciu | Automatic Differentiation for Sensitivity Calculation in Electromagnetism: Application to Algorithms[END_REF], minimizations/maximizations of functions…

Fig. 1 .

 1 Fig. 1. Source-to-source AD technique.

Fig. 2 .

 2 Fig. 2. Tape storage AD techniqueAlmost all the AD tools existing in the literature implement two modes of differentiation, i.e. the forward mode and the reverse mode. In the following sub-sections, only the forward mode is explained using ADOL-C.

 dependents trace_off();//end tape buffer end function f; b.

Fig. 3 .

 3 Fig. 3. Example code for AD. a.: Initial Code b.: The instrumented code with ADOL-C The tape is the computer representation of the calling graph (see Fig. 4.a.). Since the tape construction is made at run time, it contains no branch and all loops are unrolled. The forward mode of differentiation means that both function and derivatives valuation are made in the same direction (from bottom to the top of the function graph).

]

Fig. 4 .

 4 Fig. 4. The AD tape. a.: The tape containing the overloaded operators for the forward mode. b.: Procedure used to reuse the tape in order to value derivatives

 Fig. 4.a changes if). Otherwise, the retaping is imposed by recalling the routine

Fig. 5 .

 5 Fig. 5. The chain generation of an analytical model.

 Cuhre.jar "; //import external code invS(a,x) = 1/(1+a*x*cos(x)*cos(x));//inverse of section fct R0 = rho*integral(invS(a,_),0,L);//fct. of fct. usage R(x) = = R0*(1+A*x+B*pow(x,2)); //Res. vs. temperature U = R(T)*I; //Ohm law;

Fig. 7 .

 7 Fig. 7. The external functions of functions. a.: Conductor shape; application to integral. b.: Semianalytical model calling external function of functions.



 Fig. 8.a). In the integral case, this function represents the integrand.

Fig. 8 .

 8 Fig. 8. Argument function: a.: strategy b.: architecture This special argument function is represented by an instance of a class implementing the interface of Fig. 8.b. The methods such "compute()"(like in (4)):

Fig. 9 .

 9 Fig. 9. Variables mapping in the integral case

 Fig. 10. Deformable mirror system and micro-actuator.

Fig. 11 .

 11 Fig. 11. Partial derivatives and errors obtained in the both considered approachesFor a set of model parameters arbitrary chosen in Fig.11, it is obvious that AD yields the same partial derivatives, as the considered reference approach. The maximum relative error for plotted partial derivatives in Fig.11, is 0.18%. Such error is acceptable for a gradient based optimization algorithm, its global convergence being not affected.In Fig.12, the initial and the final configuration obtained for the studied device are indicated. The objective value is obtained with a precision of . The optimization

Fig. 13 .

 13 Fig. 13. Optimization results for the robustness test: a.: The variation of volumic force and objective function when varying the magnet radius. b.: The error obtained for the objective function (magnet voulume) within the both differentiation approaches.

trace_on(0);//starting tape buffer x

	function f(adouble x[],double x0[]):
	return double y0[]
	begin function f:
	adouble a, y[2];
	int i;

TABLE I

 I

		THE OPTIMIZATION SPECIFICATIONS
	Parameter	Description	Unit	Value	Type
	Coil_W	Coil Width	mm	1	fixed
	Coil_H	Coil High	mm	1	fixed
	Coil_R	Coil Radius	mm	1	fixed
	J	Current Density	A/mm	100	fixed
	Mz	Magnetization	T	1	fixed
	Gap	Air gap	mm	0.5	fixed
	Mag_R	Magnet Radius	mm	0.5	Constrained [0.001,1]
	Mag_W	Magnet Width	mm	0.5	Constrained [0.1, 3]
	Mag_FF	Magnet Form Factor	-	0.25	Constrained [0.01, 1]
	prec	Integration accuracy	-	1e-5	fixed
	Mag_force The force on magnet	mN	30	fixed