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Calibration and Internal no-Regret

with Partial Monitoring

Perchet Vianney∗

June 9, 2010

Abstract

Calibrated strategies can be obtained by performing strategies that
have no internal regret in some auxiliary game. Such strategies can be
constructed explicitly with the use of Blackwell’s approachability theo-
rem, in an other auxiliary game. We establish the converse: a strategy
that approaches a convex B-set can be derived from the construction
of a calibrated strategy.

We develop these tools in the framework of a game with partial
monitoring, where players do not observe the actions of their opponents
but receive random signals, to define a notion of internal regret and
construct strategies that have no such regret.

Key Words: Repeated Games; Partial Monitoring; Regret; Cali-
bration; Blackwell’s approachability

Introduction

Calibration, approachability and regret are three notions widely used both
in game theory and machine learning. There are, at first glance, no obvious
links between them. Indeed, calibration has been introduced by Dawid [8]
for repeated games of predictions: at each stage, Nature chooses an outcome
s in a finite set S and Predictor forecasts it by announcing, stage by stage,
a probability over S. A strategy is calibrated if the empirical distribution
of outcomes on the set of stages where Predictor made a specific forecast
is close to it. Foster and Vohra [9] proved the existence of such strategies.
Approachability has been introduced by Blackwell [3] in two-person repeated
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games, where at each stage the payoff is a vector in R
d: a player can approach

a given set E ⊂ R
d, if he can ensure that, after some stage and with a

great probability, the average payoff will always remain close to E. This is
possible, see Blackwell [3], as soon as E satisfies some geometrical condition
(it is then called a B-set) and this gives a full characterization for the special
case of convex sets. No-regret has been introduced by Hannan [12] for two-
person repeated games with payoffs in R: a player has no external regret
if his average payoff could not have been asymptotically better by knowing
in advance the empirical distribution of moves of the other player. The
existence of such strategies was also proved by Hannan [12].

Blackwell [4] (see also Luce and Raifa [18], A.8.6 and Mertens, Sorin
and Zamir [21], Exercice 7 p. 107) was the first to notice that the existence
of externally consistent strategies (strategies that have no external regret)
can be proved using his approachability theorem. As shown by Hart and
Mas-Colell [13], the use of Blackwell’s theorem actually gives not only the
existence of externally consistent strategies but also a construction of strate-
gies that fulfill a stronger property, called internal consistency: a player has
asymptotically no internal regret, if for each of his actions, he has no exter-
nal regret on the set of stages where he played it (as long as this set has a
positive density). This more precise definition of regret has been introduced
by Foster and Vohra [10] (see also Fudenberg and Levine [11]).

Foster and Vohra [9] (see also Sorin [28] for a shorter proof) constructed
a calibrated strategy by computing, in an auxiliary game, a strategy with
no internal regret. These results are recalled in section 1 and we also re-
fer to Cesa-Bianchi and Lugosi [5] for more complete survey on sequential
prediction and regret.

We provide in section 1.5 a kind of converse result by constructing an
explicit ε-approachability strategy for a convex B-set through the use of
a calibrated strategy, in some auxiliary game. This last statement proves
that the construction of an approachability strategy of a convex set can be
deduced from the construction of a calibrated strategy, which is deduced
from the construction of an internally consistent strategy, itself deduced
from the construction of an approachability strategy. So calibration, regret
and approachability are, in some sense, equivalent.

In section 2, we consider repeated games with partial monitoring, i.e.
where players do not observe the action of their opponents, but receive ran-
dom signals. The idea behind the proof that, in the full monitoring case,
approachability follows from calibration can be extended to this new frame-
work to construct consistent strategies in the following sense. A player has
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asymptotically no external regret if his average payoff could not have been
better by knowing in advance the empirical distribution of signals (see Rusti-
chini [25]). The existence of strategies with no external regret was proved by
Rustichini [25] while Lugosi, Mannor and Stoltz [19] constructed explicitly
such strategies. The notion of internal regret was introduced by Lehrer and
Solan [17] and they proved the existence of consistent strategies. Our main
result is the construction of such strategies even when the signal depends
on the action played. We show in section 3 that our algorithm also works
when the opponent is not restricted to a finite number of actions, discuss
our assumption on the regularity of the payoff function (see Assumption 1)
and extend our framework to more general cases.

1 Full monitoring case: from approachability to

calibration

We recall the main results about calibration of Foster and Vohra [9], ap-
proachability of Blackwell [3] and regret of Hart and Mas-Colell [13]. We
will prove some of these results in detail, since they give the main ideas
about the construction of strategies in the partial monitoring framework,
given in section 2.

1.1 Calibration

We consider a two-person repeated game where, at stage n ∈ N, Nature
(Player 2) chooses an outcome sn in a finite set S and Predictor (Player 1)
forecasts it by choosing µn in ∆(S), the set of probabilities over S. We
assume furthermore that µn belongs to a finite set M = {µ(l), l ∈ L}. The
prediction at stage n is then the choice of an element ln ∈ L, called the type
of that stage. The choices of ln and sn depend on the past observations
hn−1 = (l1, s1, . . . , ln−1, sn−1) and may be random. Explicitly, the set of
finite histories is denoted by H =

⋃
n∈N (L× S)n, with (L× S)0 = ∅ and a

behavioral strategy σ of Player 1 is a mapping from H to ∆(L). Given a
finite history hn ∈ (L× S)n, σ(hn) is the law of ln+1. A strategy τ of Nature
is defined similarly as a mapping from H to ∆(S). A couple of strategies
(σ, τ) generates a probability, denoted by Pσ,τ , over H = (L× S)N, the set
of plays endowed with the cylinder σ-field.

We will use the following notations. For any families a = {am ∈ R
d}m∈N

and l = {lm ∈ L}m∈N and any integer n ∈ N, Nn(l) = {1 ≤ m ≤ n, lm = l}
is the set of stages of type l (before the n-th), an(l) =

1
Nn(l)

∑
m∈Nn(l)

am is
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the average of a on this set and an = 1
n

∑n
m=1 am is the average of a over

the n first stages.

Definition 1.1 (Dawid [8]) A strategy σ of Player 1 is calibrated with
respect to M if for every l ∈ L and every strategy τ of Player 2:

lim sup
n→+∞

|Nn(l)|
n

(
‖sn(l)− µ(l)‖22 − ‖sn(l)− µ(k)‖22

)
≤ 0, ∀k ∈ L,Pσ,τ -as,

(1)
where ∆(S) is seen as a subset of R|S|.

In words, a strategy of Player 1 is calibrated with respect to M if sn(l),
the empirical distribution of outcomes when µ(l) was predicted, is asymp-
totically closer to µ(l) than to any other µ(k) (or conversely, that µ(l) is
the closest possible prediction to sn(l)), as long as |Nn(l)|/n, the frequency
of l, does not go to 0. Foster and Vohra [9] proved the existence of such
strategies with an algorithm based on the Expected Brier Score.

An alternative (and more general) way of defining calibration is the
following. Player 1 is not restricted to make prediction in a finite set M and,
at each stage, he can choose any probability in ∆(S). Consider any finite
partition P = {P (k), k ∈ K} of ∆(S) with a diameter small enough (we
recall that the diameter of a partition is defined as maxk∈K maxx,y∈P (k) ‖x−
y‖). A strategy is ε-calibrated if the empirical distribution of outcomes
(denoted by sn(k)) when the prediction is in P (k) is asymptotically ε-close
to P (k) (as long as the frequency of k ∈ K does not go to zero). Formally:

Definition 1.2 A strategy σ of Player 1 is ε-calibrated if there exists η > 0
such that for every finite partition P = {P (k), k ∈ K} of ∆(S) with diameter
smaller than η and every strategy τ of Player 2:

lim sup
n→+∞

|Nn(k)|
n

(
d2
(
sn(k), P (k)

)
− ε2

)
≤ 0, ∀k ∈ k,Pσ,τ -as, (2)

where for every set E ⊂ R
d and z ∈ R

d, d(z,E) = infe∈E ‖z − e‖2.

The following Lemma 1.3 states a calibrated strategy with respect to a grid
(as in Definition 1.1) is ε-calibrated (as in Definition 1.2), therefore we will
only use the first formulation.

Lemma 1.3 For every ε > 0, there exists a finite set M = {µ(l), l ∈ L}
such that any calibrated strategy with respect to M is ε-calibrated.

4



Proof: Let M = {µ(l), l ∈ L} be a finite ε-grid of ∆(S): for every
probability µ ∈ ∆(S), there exists µ(l) ∈ M such that ‖µ− µ(l)‖ ≤ ε.
In particular, for every l ∈ L and n ∈ N, there exists l′ ∈ L such that
‖sn(l)− µ(l′)‖ ≤ ε. Equation (1) implies then that

lim sup
n→∞

|Nn(l)|
n

(
d2(sn(l), µ(l)) − ε2

)
≤ 0,Pσ,τ -as.

Let 2η be the smallest distance between any two different µ(l) and µ(l′). In
any finite partition P = {P (k), k ∈ K} of ∆(S) of diameter smaller η, µ(l)
belongs to at most one P (k). Hence σ is obviously ε-calibrated. �

Remark 1.4 Lemma 1.3 implies that one can construct an ε-calibrated
strategy as soon as he can construct a calibrated strategy with respect to
a finite ε-grid of ∆(S). The size of this grid is in the order of ε−|S| (expo-
nential in ε) and it is not known yet if there exists an efficient algorithm
(polynomial in ε) to compute ε-calibration. The results holds with condition
(2) replaced by

lim sup
n→+∞

|Nn(k)|
n

(
d
(
sn(k), P (k)

)
− ε

)
≤ 0, ∀k ∈ k,Pσ,τ -as

however Lemma 1.3 is trivially true with the square terms d2(sn(k), P (k))
and ε2.

1.2 Approachability

We will prove in section 1.3 that calibration follows from no-regret and that
no-regret follows from approachability (proofs originally due to, respectively,
Foster and Vohra [9] and Hart and Mas-Colell [13]). We present here the
notion of approachability introduced by Blackwell [3].

Consider a two-person game repeated in discrete time with vector pay-
offs, where at stage n ∈ N, Player 1 (resp. Player 2) chooses the action
in ∈ I (resp. jn ∈ J), where both I and J are finite. The corresponding
vector payoff is ρn = ρ(in, jn) where ρ is a mapping from I × J into R

d. As
usual, a behavioral strategy σ (resp. τ) of Player 1 (resp. Player 2) is a
mapping from the set of finite histories H =

⋃
n∈N (I × J)n to ∆(I) (resp.

∆(J)).

For a closed set E ⊂ R
d and δ ≥ 0, we denote by Eδ = {z ∈ R

d, d(z,E) ≤
δ} the δ-neighborhood of E and by ΠE(z) = {e ∈ E, d(z,E) = ‖z − e‖} the
set of closest points to z in E.
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Definition 1.5 i) A closed set E ⊂ R
d is approachable by Player 1 if

for every ε > 0, there exist a strategy σ of Player 1 and N ∈ N, such
that for every strategy τ of Player 2 and every n ≥ N :

Eσ,τ [d(ρn, E)] ≤ ε and P

(
sup
n≥N

d(ρn, E) ≥ ε

)
≤ ε.

Such a strategy σ, independent of ε, is called an approachability strat-
egy of E.

ii) A set E is excludable by Player 2, if there exists δ > 0 such that the
complement of Eδ is approachable by Player 2.

In words, a set E ⊂ R
d is approachable by Player 1, if he has a strategy

such that the average payoff converges almost surely to E, uniformly with
respect to the strategies of Player 2.

Blackwell [3] noticed that a closed set E that fulfills a purely geometrical
condition (see Definition 1.6) is approachable by Player 1. Before stating
it, let us denote by P 1(x) = {ρ(x, y), y ∈ ∆(J)}, the set of expected payoffs
compatible with x ∈ ∆(I) and we define similarly P 2(y).

Definition 1.6 A closed subset E of Rd is a B-set, if for every z ∈ R
d,

there exist p ∈ ΠE(z) and x (= x(z, p)) ∈ ∆(I) such that the hyperplane
through p and perpendicular to z − p separates z from P 1(x), or formally:

∀z ∈ R
d,∃p ∈ ΠE(z),∃x ∈ ∆(I), 〈ρ(x, y) − p, z − p〉 ≤ 0, ∀y ∈ ∆(J). (3)

Informally, from any point z outside E there is a closest point p and
a probability x ∈ ∆(I) such that, no matter the choice of Player 2, the
expected payoff and z are on different sides of the hyperplane through p
and perpendicular to z− p. To be precise, this definition (and the following
theorem) does not require that J is finite: one can assume that Player 2
chooses an outcome vector U ∈ [−1, 1]|I| so that the expected payoff is
ρ(x,U) = 〈x,U〉.

Theorem 1.7 (Blackwell [3]) If E is a B-set, then E is approachable by
Player 1. Moreover, the strategy σ of Player 1 defined by σ(hn) = x(ρn) is
such that, for every strategy τ of Player 2:

Eσ,τ [d
2
E(ρn)] ≤

4B

n
and Pσ,τ

(
sup
n≥N

d(ρn, E) ≥ η

)
≤ 8B

η2N
, (4)

with B = supi,j ‖ρ(i, j)‖2.
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In the case of a convex set C, a complete characterization is available:

Corollary 1.8 (Blackwell [3]) A closed convex set C ⊂ R
d is approach-

able by Player 1 if and only if:

P 2(y) ∩ C 6= ∅, ∀y ∈ ∆(J). (5)

In particular, a closed convex set C is either approachable by Player 1, or
excludable by Player 2.

Remark 1.9 Corollary 1.8 implies that there are (at least) two different
ways to prove that a convex set is approachable. The first one, called direct
proof, consists in proving that C is a B-set while the second one, called
undirect proof, consists in proving that C is not excludable by Player 2, which
reduces to find, for every y ∈ ∆(J), some x ∈ ∆(I) such that ρ(x, y) ∈ C.

Consider a two-person repeated game in discrete time where, at stage n ∈ N,
Player 1 chooses in ∈ I as above and Player 2 chooses a vector Un ∈ [−1, 1]c

(with c = |I|). The associated payoff is U in
n , the in-th coordinate of Un. The

internal regret of the stage is the matrix Rn = R(in, Un), where R is the
mapping from I × [−1, 1]c to R

c2 defined by:

R(i, U)(i
′,j) =

{
0 if i′ 6= i

U j − U i otherwise.

With this definition, the average internal regret Rn is defined by:

Rn =



∑

m∈Nn(i)

(
U j
m − U i

m

)

n



i,j∈I

=

[ |Nn(i)|
n

(
Un(i)

j − Un(i)
i
)
j∈I

]

i∈I

.

Definition 1.10 (Foster and Vohra [10]) A strategy σ of Player 1 is in-
ternally consistent if for any strategy τ of Player 2:

lim sup
n→∞

Rn ≤ 0, Pσ,τ -as.

In words, a strategy is internally consistent if for every i ∈ I (with
a positive frequency), Player 1 could not have increased his payoff if he
had known, before the beginning of the game, the empirical distribution of
Player 2’s actions on Nn(i). Stated differently, when Player 1 played action
i, it was his best (stationary) strategy. The existence of such strategies have
been first proved by Foster and Vohra [10] and Fudenberg and Levine [11].
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Theorem 1.11 There exist internally consistent strategies.

Hart and Mas-Colell [13] noted that an internally consistent strategy
can be obtained by constructing a strategy that approaches the negative
orthant Ω = R

c2
− in the auxiliary game where the vector payoff at stage n is

Rn. Such a strategy, derived from approachability theory, is stronger than
just internally consistent since the regret converges to the negative orthant
uniformly with respect to Player 2’s strategy (which was not required in
Definition 1.10).

The proof of the fact that Ω is a B-set relies on the two followings
lemmas: Lemma 1.12 gives a geometrical property of Ω and Lemma 1.13
gives a property of the function R.

1.3 From approachability to internal no-regret

Lemma 1.12 Let ΠΩ(·) be the projection onto Ω. Then, for every A ∈ R
c2:

〈ΠΩ(A), A−ΠΩ(A)〉 = 0. (6)

Proof: Note that since Ω = R
c2
− then A+ = A − ΠΩ(A) where A+

ij =

max (Aij , 0) and similarly A− = ΠΩ(A). The result is just a rewriting of
〈A−, A+〉 = 0. �

For every (c × c)-matrix A = (aij)i,j∈I with non-negative coefficients,
λ ∈ ∆(I) is an invariant probability of A if for every i ∈ I:

∑

j∈I

λ(j)aji = λ(i)
∑

j∈I

aij .

The existence of an invariant probability follows from the similar result for
Markov chains, implied by Perron-Frobenius Theorem (see e.g. Seneta [27]).

Lemma 1.13 Let A = (aij)i,j∈I be a non-negative matrix. Then for every
λ, invariant probability of A, and every U ∈ R

c:

〈A,Eλ [R(·, U)]〉 = 0. (7)

Proof: The (i, j)-th coordinate of Eλ [R(·, U)] is λ(i)
(
U j − U i

)
, there-

fore:
〈A,Eλ [R(·, U)]〉 =

∑

i,j∈I

aijλ(i)
(
U j − U i

)

and the coefficient of each U i is
∑

j∈I aijλ(i)−
∑

j∈I ajiλ(j) = 0, because λ
is an invariant measure of A. Therefore 〈A,Eλ [R(·, U)]〉 = 0. �
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Proof of Theorem 1.11: Summing equations (6) (with A = Rn) and

(7) (with A =
(
Rn

)+
) gives:

〈
Eλn

[R(·, U)] −ΠΩ(Rn), Rn −ΠΩ(Rn)
〉
= 0,

for every λn invariant probability of R
+
n and every U ∈ [−1, 1]I .

Define the strategy σ of Player 1 by σ(hn) = λn. The expected payoff
at stage n+1 (given hn and Un+1 = U) is Eλn

[R(·, U)], so Ω is a B-set and
is approachable by Player 1. �

Remark 1.14 The construction of the strategy is based on approachability
properties therefore the convergence is uniform with respect to the strategies
of Player 2. Theorem 1.7 implies that for every η > 0, and for every strategy
τ of Player 2:

Pσ,τ

(
∃n ≥ N,∃i, j ∈ i,

|Nn(i)|
n

(
Un(i)

j − Un(i)
i
)
> η

)
= O

(
1

η2N

)

and Eσ,τ

[
sup
i∈I

|Nn(l)|
n

(
Un(i)

j − Un(i)
i
)+
]
= O

(
1√
n

)
.

Although they are not required by definition 1.10, those bounds will be useful
to prove that calibration implies approachability.

1.4 From internal regret to calibration

The construction of calibrated strategies can be reduced to the construction
of internally consistent strategies. The proof of Sorin [28] simplifies the one
originally due to Foster and Vohra [10] by using the following lemma:

Lemma 1.15 Let (am)m∈N be a sequence in R
d and α, β two points in R

d.
Then for every n ∈ N

∗:

∑n
m=1 ‖am − β‖22 − ‖am − α‖22

n
= ‖an − β‖22 − ‖an − α‖22 , (8)

with ‖ · ‖2 the Euclidian norm of Rd.

Proof: Develop the sums in equation (8) to get the result. �

Now, we can prove the following:

Theorem 1.16 (Foster and Vohra [10]) Let M be a finite grid of ∆(S).
There exist calibrated strategies of Player 1 with respect to M. In particular,
for every ε > 0 there exist ε-calibrated strategies.
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Proof: We start with the framework described in section 1.1. Consider the
auxiliary two-person game with vector payoff defined as follows. At stage
n ∈ N, Player 1 (resp. Player 2) chooses the action ln ∈ L (resp. sn ∈ S)
which generates the vector payoff Rn = R(ln, Un) ∈ R

d, where R is as in
1.3, with:

Un =
(
−‖sn − µ(l)‖22

)
l∈L

∈ R
c.

By definition of R and using Lemma 1.15, for every n ∈ N
∗:

R
lk
n =

|Nn(l)|
n

(∑
m∈Nn(l)

‖sm − µ(l)‖22 − ‖sm − µ(k)‖22
|Nn(l)|

)

=
|Nn(l)|

n

(
‖sn(l)− µ(l)‖22 − ‖sn(l)− µ(k)‖22

)
.

Let σ be an internally consistent strategy in this auxiliary game, then
for every l ∈ L and k ∈ L:

lim sup
n→∞

|Nn(l)|
n

(
‖sn(l)− µ(l)‖22 − ‖sn(k)− µ(k)‖22

)
≤ 0, Pσ,τ -as.

Therefore σ is calibrated, with respect to M; if it is an ε-grid of ∆(S), then
σ is ε-calibrated. �

Remark 1.17 We have proved that σ is such that, for every l ∈ L, sn(l) is
closer to µ(l) than to any other µ(k), as soon as |Nn(l)|/n is not too small.

The facts that sn belongs to a finite set S and {µ(l)} are probabilities over
S are irrelevant: one can show that for any finite set {a(l) ∈ R

d, l ∈ L},
Player 1 has a strategy σ such that for any bounded sequence (am)m∈N in
R
d and for every l and k :

lim sup
n→∞

|Nn(l)|
n

(
‖an(l)− a(l)‖2 − ‖an(l)− a(k)‖2

)
≤ 0.

1.5 From calibration to approachability

The proof of Theorem 1.16 shows that the construction of a calibrated strat-
egy can be obtained through an approachability strategy of an orthant in
an auxiliary game.

Conversely, we will show that the approachability of a convex B-set can
be reduced to the existence of a calibrated strategy in an auxiliary game,
and so give a new proof of Corollary 1.8 (and mainly construct explicit
strategies).
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Alternative proof of Corollary 1.8: The idea of the proof is very
natural: assume that condition (5) is satisfied and rephrased as:

∀y ∈ ∆(J),∃x(= xy) ∈ ∆(I), ρ(xy , y) ∈ C. (9)

If Player 1 knew in advance yn then he would just have to play accordingly
to xyn at stage n so that the expected payoff Eσ,τ [ρn] would be in C. Since
C is convex, the average payoff would also be in C. Obviously Player 1 does
not know yn but, using calibration, he can make good predictions about it.

Since ρ is multilinear and therefore continuous on ∆(I)×∆(J), for every
ε > 0, there exists δ > 0 such that:

∀y, y′ ∈ ∆(J),
∥∥y − y′

∥∥
2
≤ 2δ ⇒ ρ(xy, y

′) ∈ Cε.

We introduce the auxiliary game Γ where Player 2 chooses an action (or
outcome) j ∈ J and Player 1 forecasts it by using {y(l), l ∈ L}, a finite
δ-grid of ∆(J). Let σ be a calibrated strategy for Player 1, so that n(l),
the empirical distribution of actions of Player 2 on Nn(l), is asymptotically
δ-close to y(l).

Define the strategy of Player 1 in the initial game by performing σ and
if ln = l by playing accordingly to x(l) := xy(l) ∈ ∆(I), as depicted in (9).
Since the choices of actions of the two players are independent, ρn(l) will be
close to ρ (x(l), n(l)), hence close to ρ(x(l), y(l)) (because σ is calibrated)
and finally close to Cε, as soon as |Nn(l)| is not too small.

Indeed, by construction of σ, for every η > 0 there exists N1 ∈ N such
that, for every strategy τ of Player 2:

Pσ,τ

(
∀l ∈ L,∀n ≥ N1,

|Nn(l)|
n

(
‖n(l)− y(l)‖22 − δ2

)
≤ η

)
≥ 1− η.

This implies that with probability greater than 1 − η, for every l ∈ L and
n ≥ N1, either ‖n(l) − y(l)‖ ≤ 2δ or Nn(l)/n ≤ η/3δ2, therefore with
Pσ,τ -probability at least 1− η:

∀l ∈ L,∀n ≥ N1,
|Nn(l)|

n
d (ρ(x(l), n(l)), C) ≤ ε

|Nn(l)|
n

+
η

3δ2
. (10)

Hoeffding-Azuma [2, 14] inequality for sums of bounded martingale dif-
ferences implies that for any η > 0, n ∈ N, σ and τ :

Pσ,τ

(
|ρn(l)− ρ(x(l), n(l))| ≥ η

∣∣|Nn(l)|
)
≤ 2 exp

(
−|Nn(l)|η2

2

)
,
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therefore:

Pσ,τ

( |Nn(l)|
n

|ρn(l)− ρ(x(l), n(l))| ≥ η

)
≤ 2 exp

(
−nη2

2

)

and summing over n ∈ {N, . . . , } and l ∈ L gives that with Pσ,τ -probability

at most 4L
η2

exp
(
−Nη2

2

)

sup
n≥N

sup
l∈L

{ |Nn(l)|
n

|ρn(l)− ρ(x(l), n(l))|
}

≥ η. (11)

So for every η > 0, there exists N2 ∈ N such that for every n ≥ N2:

Pσ,τ

(
∀m ≥ n,∀l ∈ L,

|Nn(l)|
n

|ρn(l)− ρ(x(l), n(l))| ≤ η

)
≥ 1− η.

Since C is a convex set, d(·, C) is convex and with probability at least
1− 2η, for every n ≥ max(N1, N2):

d (ρn, C) =d

(
∑

l∈L

|Nn(l)|
n

ρn(l), C

)
≤
∑

l∈L

|Nn(l)|
n

d (ρn(l), C)

≤
∑

l∈L

|Nn(l)|
n

[
d (ρ(x(l), n(l)), C) + |ρn(l)− ρ(x(l), n(l))|

]

≤ε+ Lη

(
1

3δ2
+ 1

)
.

And C is approachable by Player 1.

On the other hand, if there exists y such that P 2(y) ∩ C = ∅, then
Player 2 can approach P 2(y), by playing at every stage accordingly to y.
Therefore C is not approachable by Player 1. �

Remark 1.18 To deduce that ρn is in Cε from the fact that ρn(l) is in Cε

for every l ∈ L, it is necessary that C (or d(·, C)) is convex. So this proof
does not work if C is not convex.

1.6 Remarks on the algorithm

a) Blackwell proved Corollary 1.8 using Von Neumann’s minmax the-
orem, the latter allowing to show that a convex set C that fulfills
condition (9) is a B-set. Indeed, let z be a point outside C. Recall
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that for every y ∈ ∆(J) there exists xy ∈ ∆(I) such that ρ(xy, y) ∈ C.
Since C is convex, if we denote by ΠC(z) the projection of z onto it,
then for every c ∈ C 〈c−ΠC(z), z −ΠC(z)〉 ≤ 0, . Therefore,

∀y ∈ ∆(J),∃x ∈ ∆(J), 〈Ex,y[ρ(i, j)] −ΠC(z), z −ΠC(z)〉 ≤ 0

and if we define g(x, y) = 〈Ex,y[ρ(i, j)] − ΠC(z), z − ΠC(z)〉 then g is
linear in both of its variable so

min
x∈∆(I)

max
y∈∆(J)

g(x, y) = max
y∈∆(J)

min
x∈∆(J)

g(x, y) ≤ 0,

which implies that C is a B-set.

The strategy σ defined by σ(hn) = xn where xn is any minimizer
of maxy∈∆(J)G(x, y) is an approachability strategy, said to be implicit
since there are no easy way to construct it. Indeed computing σ would
require to find, stage by stage, an optimal action in a zero-sum game
or equivalently to solve a Linear Program. There exist polynomial
algorithms (see Khachiyan [15]) however their rates of convergence
are bigger than the one of Gaussian elimination and their constants
can be too huge for any practical use. Nonetheless, it is possible to
find ε-optimal solution by repeating an polynomial number of time the
exponential weight algorithm (see Cesa-Bianchi and Lugosi [5], Section
7.2 and Mannor and Stoltz [20]).

For a fixed ε > 0, the strategy (that approaches Cε) we described
computes at each stage an invariant measure of a matrix with non-
negative coefficients. This obviously reduces to solve a system of linear
equations which is guaranteed to have a solution. And this is solved
polynomially (in |L|) by, for example and as proposed by Foster and
Vohra [10], a Gaussian elimination. If payoffs are bounded by 1, then
one can take for {y(l), l ∈ L} any arbitrarily ε/2-grid of ∆(J), so |L|
is bounded by (2/ε)|J |. Moreover, the strategy aims to approach Cε,
so it is not compulsory to determine exactly x(l), one can choose them
in any ε/2-grid of ∆(I).

In conclusion, Blackwell’s implicit algorithm constructs a strategy that
approaches (exactly) a convex C by solving, stage by stage, a Linear
Program without any initialization phase. For every ε > 0, our explicit
algorithm constructs a strategy that approaches Cε by solving, stage
by stage, a system of linear equations with an initialization phase (the
matchings between x(l) and y(l)) requiring at most (2/ε)I+J steps.
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b) Blackwell’s Theorem states that if for every move y ∈ ∆(J) of Player 2,
Player 1 has an action x ∈ ∆(I) such that ρ(x, y) ∈ C then C is
approachable by Player 1. In other words, assume that in the one-
stage (expected) game where Player 2 plays first and Player 1 plays
second, Player 1 has a strategy such that the payoff is in a convex C.
Then he also has a strategy such that the average payoff converges to
C, in the repeated (expected) game where Player 2 plays second and
Player 1 plays first.

The use of calibration transforms this implicit statement into an ex-
plicit one: while performing a calibrated strategy (in an auxiliary game
where J plays the role of the set of outcomes), Player 1 can enforce
the property that, for every l ∈ L, the average move of Player 2 is
almost y(l) on Nn(l). So he just has to play xy(l) on these stage and
he could not do better.

c) We stress out the fact that the construction of an approachability strat-
egy of Cε reduces to the construction of a calibrated strategy in an
auxiliary game, hence to the construction of an internally-consistent
strategy in a second auxiliary game, therefore to the construction of
an approachability strategy of a negative orthant in a third auxiliary
game. In conclusion, the approachability of an arbitrary convex set re-
duces to the approachability of an orthant. Along with equations (10)
and (11), this implies that Eσ,τ [d (ρn, C)− ε] ≤ O

(
n−1/2

)
. However,

as said before, the constant depends on ε|J |.

d) The reduction of the approachability of a convex set C ⊂ R
d in a game

Γ to the approachability of an orthant in an auxiliary game Γ′ can also
be done via the following scheme: for every ε > 0, find a finite set of
half-spaces {H(l), l ∈ L} such that C ⊂ ∩l∈LH(l) ⊂ Cε. For every
l ∈ L, define c(l) ∈ R

d and b(l) ∈ R such that:

H(l) =
{
ω ∈ R

d, 〈ω, c(l)〉 ≤ b(l)
}

and the auxiliary game Γ′ with payoffs defined by

ρ̂(i, j) = (〈ρ(i, j), c(l)〉 − b(l))l∈L ∈ R
L.

Obviously, a strategy that approaches the negative orthant in Γ′ will
approach, in the game Γ, the set

⋂
H(l) and therefore Cε. However,

such a strategy might not be based on regret and might not be explicit.
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2 Internal regret in the partial monitoring frame-

work

Consider a two person game repeated in discrete time. At stage n ∈ N,
Player 1 (resp. Player 2) chooses in ∈ I (resp. jn ∈ J), which generates the
payoff ρn = ρ(in, jn) where ρ is a mapping from I × J to R. Player 1 does
not observe this payoff, he receives a signal sn ∈ S whose law is s(in, jn)
where s is a mapping from I × J to ∆(S). The three sets I, J and S
are finite and the two functions ρ and s are extended to ∆(I) × ∆(J) by
ρ(x, y) = Ex,y[ρ(i, j)] ∈ R and s(x, y) = Ex,y[s(i, j)] ∈ ∆(S).

We define the mapping s from ∆(J) to ∆(S)I by s(y) = (s(i, y))i∈I
and we call such a vector of probability a flag. Player 1 cannot distinguish
between two different probabilities y and y′ in ∆(J) that induces the same
flag µ ∈ ∆(S)I , i.e. such that µ = s(y) = s(y′). Thus we say that µ =
s(y), although unobserved, is the relevant or maximal information available
to Player 1 about the choice of Player 2. We stress out that a flag µ is
not observed since given x ∈ ∆(I) and y ∈ ∆(J), Player 1 has just an
information about µi which is only one component of µ (the i-th one, where
i is the realization of x). Moreover, this component is the law of a random
variable whose realization (i.e. the signal s ∈ S) is the only observation of
Player 1.

Example 2.1 (Label efficient prediction) Consider the following game
(Example 6.4 in Cesa-Bianchi and Lugosi [5]). Nature chooses an outcome
G or B and Player 1 can either observe the actual outcome (action o) or
choose to not observe it and to pick a label g or b. If he chooses the right
label, his payoff is 1 and otherwise 0. Payoffs and laws of signals received
by Player 1 can be resumed by the following matrices (where a, b and c are
three different probabilities over a finite set S).

G B G B
o 0 0 o a b

Payoffs: g 0 1 and Signals: g c c
b 1 0 b c c

Action G, whose best response is g, generates the flag (a, c, c) and action B,
whose best response is b, generates the flag (b, c, c). In order to distinguish
between those two actions, Player 1 needs to know the entire flag and there-
fore to know s(o, y) although action o is never a best response (but is said
to be purely informative).
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As usual, a behavioral strategy σ of Player 1 (resp. τ of Player 2) is a
function from the set of finite histories for Player 1, H1 =

⋃
n∈N (I × S)n,

to ∆(I) (resp. from H2 =
⋃

n∈N (I × S × J)n to ∆(J)). A couple (σ, τ)

generates a probability Pσ,τ over H = (I × S × J)N.

2.1 External regret

Rustichini [25] defined external consistency in the partial monitoring frame-
work as follows: a strategy σ of Player 1 has no external regret if Pσ,τ -as:

lim sup
n→+∞

max
x∈∆(I)

min






y ∈ ∆(J),
s(y) = s(n)

ρ(x, y)− ρn ≤ 0.

where s(n) ∈ ∆(S)I is the average flag. In words, the average payoff of
Player 1 could not have been uniformly better if he had known the average
distribution of flags before the beginning of the game.

Given a flag µ ∈ ∆(S)I , the function miny∈s−1(µ) ρ(·, y) may not be
linear. So the best response of Player 1 might not be a pure action in I, but
a mixed action x ∈ ∆(I) and any pure action in the support of x may be
a bad response. This explains why, in Rustichini’s definition, the maximum
is taken over ∆(I) and not just over I as in the usual definition of external
regret.

Example 2.2 (Matching Penny in the dark) Player 1 chooses either
Tail or Heads and flips a coin. Simultaneously, Nature chooses on which
face the coin will land. If Player 1 guessed correctly his payoff equals 1,
otherwise -1. We assume that Player 1 does not observe the coin.

Payoffs and signals are resumed in the following matrices:

T H T H
Payoffs: T 1 -1 and Signals: T c c

H -1 1 H c c

Every choice of Nature generates the same flag (c, c). So miny∈∆(J) ρ(x, y)
is always non-positive and equals zero only if x = (1/2, 1/2). Therefore the
only best response of Player 1 is (1/2, 1/2), while both T or H give the worst
payoff of -1.
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2.2 Internal regret

We consider here a generalization of the previous’s framework: at stage
n ∈ N, Player 2 chooses a flag µn ∈ ∆(S)I while Player 1 chooses an action
in and receives a signal sn whose law is the in-th coordinate of µn. Given
a flag µ and x ∈ ∆(I), Player 1 evaluates the payoff through an evaluation
function G from ∆(I)×∆(S)I to R, which is not necessarily linear.

Recall that with full monitoring, a strategy has no internal regret if each
action i ∈ I is the best response to the average empirical observation on
the set of stages where i was actually played. With partial monitoring, best
responses are elements of ∆(I) and not elements of I, so if we want to define
internal regret in this framework, we have to distinguish the stage not as
a function of the action actually played (i.e. in ∈ I) but as a function of
its law (i.e. xn ∈ ∆(I)). We assume that the strategy of Player 1 can be
described by a finite family {x(l) ∈ ∆(I), l ∈ L} such that, at stage n ∈ N,
Player 1 chooses a type ln and, given this choice, in is drawn accordingly
to x(ln). We assume that L is finite since otherwise Player 1 have trivial
strategies that guarantee that the frequency of every l converges to zero.
Note that since the choices of ln can be random, any behavioral strategy
can be described in such a way.

Definition 2.3 (Lehrer-Solan [17]) For every n ∈ N and every l ∈ L,
the average internal regret of type l at stage n is

Rn(l) = sup
x∈∆(I)

[G(x, µn(l))−G(ın(l), µn(l))] .

A strategy σ of Player 1 is (L, ε)-internally consistent if for every strategy
τ of Player 2:

lim sup
n→+∞

|Nn(l)|
n

(
Rn(l)− ε

)
≤ 0, ∀l ∈ L, Pσ,τ -as.

Remark 2.4 Note that this definition, unlike in the full monitoring case, is
not intrinsic. It depends on the choice (which can be assumed to be made by
Player 1) of {x(l), l ∈ L}, and is based uniquely on the potential observations
(i.e. the sequences of flags (µn)n∈N) of Player 1.

Remark 2.5 The average flag µn belongs to ∆(S)I and is defined by µi
n[s] =

∑n
m=1

µi
m[s]

n for every s ∈ S.

In order to construct (L, ε)-internally consistent strategies, some regu-
larity over G is required:
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Assumption 1 For every ε > 0, there exist
{
µ(l) ∈ ∆(S)I , x(l) ∈ ∆(I), l ∈

L
}
two finite families and η, δ > 0 such that:

1. ∆(S)I ⊂ ⋃l∈LB(µ(l), δ);

2. For every l ∈ L, if ‖x− x(l)‖ ≤ 2η and ‖µ− µ(l)‖ ≤ 2δ, then x ∈
BRε(µ),

where BRε(µ) =
{
x ∈ ∆(I) : G(x, µ) ≥ supz∈∆(I)G(z, µ) − ε

}
is the set of

ε-best response to µ ∈ ∆(S)I and B(µ, δ) =
{
µ′ ∈ ∆(S)I , ‖µ′ − µ‖ ≤ δ

}
.

In words, Assumption 1 implies that G is regular with respect to µ and
with respect to x: given ε, the set of flags can be covered by a finite number
of balls centered in {µ(l), l ∈ L}, such that x(l) is an ε-best response to any
µ in this ball. And if x is close enough to x(l), then x is also an ε-best
response to any µ close to µ(l). Without loss of generality, we can assume
that x(l) is different from x(l′) for any l 6= l′.

Theorem 2.6 Under Assumption 1, there exist (L, ε)-internally consistent
strategies.

Some parts of the proof are quite technical, however the insight is very
simple, so we give firstly the main ideas. Assume for the moment that
Player 1 fully observes the flag at each stage. If, in the one stage game,
Player 2 plays first and his choice generates a flag µ ∈ ∆(S)I , then Player 1
has an action x ∈ ∆(I) such that x belongs to BRǫ(µ). Using a minmax
argument (like Blackwell did for the proof of Theorem 1.8, recall Remark 1.6
b) one could prove that Player 1 has an (L, ε)-internally consistent strategy
(as did Lehrer and Solan [17]).

The idea is to use calibration to transform this implicit proof into a
constructive one, as in the alternative proof of Corollary 1.8. Fix ε > 0 and
consider the game where Player 1 predicts the sequence (µn)n∈N using the
δ-grid {µ(l), l ∈ L} given by Assumption 1. A calibrated strategy of Player 1
chooses a sequences (ln)n∈N in such a way that µn(l) is asymptotically δ-close
to µ(l). Hence Player 1 just has to play accordingly to x(l) ∈ BRε(µ(l)) on
these stages.

Indeed, since the choices of action are independent, ın(l) will be asymp-
totically η-close to x(l) and the regularity of G will imply then that ın(l) ∈
BRε(µn(l)) and so the strategy will be (L, ε)-internally consistent.

The only issue is that in the current framework the signal depends on the
action of Player 1 since the law of sn is the in component of µn, which is not

18



observed. Signals (that belong to S) and predictions (that belong to ∆(S)I)
are in two different spaces, so the existence of calibrated strategies is not
straightforward. However, it is well known that, up to a slight perturbation
of x(l), the information available to Player 1 after a long time is close to
µn(l) (as in the multi-armed bandit problem, some calibration and no-regret
frameworks, see e.g. Cesa-Bianchi and Lugosi [5] chapter 6 for a survey on
these techniques).

For every x ∈ ∆(I), define xη ∈ ∆(I), the η-perturbation of x by xη =
(1 − η)x+ ηu with u the uniform probability over I and for every n define
ŝn by:

ŝn =

(
1{sn = s}1{in = i}

xη(ln)[in]

)
∈ R

SI ,

with xη(ln)[in] ≥ η > 0 the weight put by xη(ln) on in. We denote by s̃n(l),
instead of ŝn(l), their average on Nn(l).

Lemma 2.7 For every θ > 0, there exists N ∈ N such that, for every l ∈ L:

Pσ,τ (∀m ≥ n, ‖s̃n(l)− µn(l)‖ ≤ θ|Nn(l) ≥ N) ≥ 1− θ.

Proof: Since for every n ∈ N, the choices of in and µn are independent:

Eσ,τ [ ŝn|hn−1, ln, µn] =
∑

i∈I

∑

s∈S

µi
n[s]xη(ln)[i]

(
0, . . . ,

s

xη(ln)[i]
, . . . , 0

)

=
∑

i∈I

∑

s∈S

µi
n[s] (0, . . . , s, . . . , 0)

=
∑

i∈I

(
0, . . . , µi

n, . . . , 0
)

=
(
µ1
n, . . . , µ

I
n

)
= µn,

where µn is seen as an element of R
SI . Therefore s̃n(l) is an unbiased

estimator of µn(l) and Hoeffding-Azuma’s inequality (actually its multi-
dimensionnal version by Chen and White [7] together with the fact that
supn∈N ‖ŝn‖ ≤ η−1 < ∞) implies that for every θ > 0 there exists N ∈ N

such that, for every l ∈ L:

Pσ,τ (∀m ≥ n, ‖s̃n(l)− µn(l)‖ ≤ θ| |Nn(l)| ≥ N) ≥ 1− θ.

�

Assume now that Player 1 uses a calibrated strategy to predict the se-
quences of ŝn (this is game is in full monitoring), then he knows that asymp-
totically s̃n(l) is closer to µ(l) than to any µ(k) (as soon as the frequency
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of l is big enough), therefore it is δ-close to µ(l). Lemma 2.7 implies that
µn(l) is asymptotically close to s̃n(l) and therefore 2δ-close to µ(l).

Proof of Theorem 2.6: Let the families {x(l) ∈ ∆(I), µ(l) ∈ ∆(S)I , l ∈
L} and η, δ > 0 be given by Assumption 1 for a fixed ε > 0.

Let Γ′ be the auxiliary repeated game where, at stage n, Player 1 (resp.
Player 2) chooses ln ∈ L (resp. µn ∈ ∆(S)I). Given these choices, in (resp.
sn) is drawn accordingly to xη(ln) (resp. µin

n ). By Lemma 2.7, for every
θ > 0, there exists N1 ∈ N such that for every l ∈ L:

Pσ,τ (∀m ≥ n, ‖s̃n(l)− µn(l)‖ ≤ θ| |Nn(l)| ≥ N1) ≥ 1− θ. (12)

Let σ be a calibrated strategy associated to (s̃n)n∈N in Γ′. For every θ > 0,
there exists N2 ∈ N such that with Pσ,τ -probability greater than 1− θ:

∀n ≥ N2,∀l, k ∈ L,
|Nn(l)|

n

(
‖s̃n(l)− µ(l)‖2 − ‖s̃n(l)− µ(k)‖2

)
≤ θ. (13)

Since {µ(k), k ∈ L} is a δ-grid of ∆(S)I , for every n ∈ N and l ∈ L, there
exists k ∈ L such that ‖s̃n(l)− µ(k)‖ ≤ δ. Therefore, combining equation
(12) and (13), for every θ > 0 there exists N3 ∈ N such that:

Pσ,τ

(
∀n ≥ N3,∀l ∈ L,

|Nn(l)|
n

(
‖µn(l)− µ(l)‖2 − δ2

)
≤ θ,

)
≥ 1−θ. (14)

For every stage of type l ∈ L, in is drawn accordingly to xη(l) and
by definition ‖xη(l)− x(l)‖ ≤ η. Therefore Hoeffding-Azuma’s inequality
implies that, for every θ > 0 there exists N4 ∈ N such that:

Pσ,τ

(
∀n ≥ N4,∀l ∈ L,

|Nn(l)|
n

(
‖ın(l)− x(l)‖ − η

)
≤ θ,

)
≥ 1− θ. (15)

Combining equation (14), (15) and using Assumption 1, for every θ > 0,
there exists N ∈ N such that for every strategy τ of Player 2:

Pσ,τ

(
∀n ≥ N,∀l ∈ L,

|Nn(l)|
n

(
Rn(l)− ε

)
≤ θ,

)
≥ 1− θ, (16)

and σ is (L, ε)-internally consistent. �

Remark 2.8 Lugosi, Mannor and Stoltz [19] provided an algorithm that
constructs, by block of size m ∈ N, a strategy that has no external regret. We
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can describe it as follows. Play at every stage of the k-th block Bk according
to the same probability xk ∈ ∆(I). Then compute (using Lemma 2.7) an
estimator of the average flag on this bloc and denote it by µ̃k. Knowing
this flag, compute the average regret accumulated on this specific block and
aggregate it to the previous regret in order to estimate the average regret from
the beginning of the game. Decide next what action is going to be played
on the following block according to a classical exponential weight algorithm.
With a fine tuning of m ∈ N (and η > 0), the external regret of this strategy
converges to zero at the rate O

(
n−1/5

)
(the optimal rate is known to be

n−1/3).

Instead of trying to compute (or at least approximate) the sequence of
payoffs from the sequence of signals, our algorithm consider an abstract aux-
iliary game defined on the signal space (i.e. on the relevant information, the
observations). We define payoffs in this abstract game in order to transform
it into a game with full monitoring: the action set of Player 2 are flags, that
are (almost) observed by Player 1.

The strategy constructed is based on δ-calibration and Hoeffding-Azuma’s
inequality, therefore one can show that:

Eσ,τ

[
sup
l∈L

|Nn(l)|
n

(
Rn(l)− ε

)]
≤ O

(
1√
n

)
.

So given ε > 0, one can construct a strategy such that the internal regret
converges quickly to ε, but maybe very slowly to zero (because the constants
depend, once again, drastically on εJ).

Remark 2.9 Since s̃n converges to µn, the regret can be defined in terms
of observed empirical flags instead of unobserved average flag. For the same
reason, x(l) can be used to define regret.

2.3 On the strategy space

One might object that behavioral strategies of Players 1 are defined as map-
pings from the set of past histories H1 =

⋃
n∈N (I × S)n into ∆(I) while

in Definition 2.3 (and Theorem 2.6) strategies considered are defined as
mappings from

⋃
n∈N (I × S × L)n into ∆(L), with the specification that

given ln ∈ L, the law of in is x(ln) — for a fixed family {x(l), l ∈ L}. Hence,
they can be defined as mappings from

⋃
n∈N (X × I × S)n into ∆(X) (where

X = ∆(I) and ∆(X) is embedded with the star-weak topology) and thus
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are behavioral strategies in the game where Player 1’s action set is X and
he receives at each stage a signal in I × S.

Therefore, they are equivalent to (i.e., following Mertens Sorin and Za-
mir [21], Theorem 1.8 p. 55, generate the same probability on the set
of plays as) mixed strategies, which are mixtures of pure strategies, i.e.
mappings from

⋃
n∈N (X × I × S)n into X. These latter are equivalent

to applications from
⋃

n∈N (I × S)n into X. Indeed, consider for example
σ :

⋃
n∈N (X × T )n → X and define σ̃ :

⋃
n∈N T n → X recursively by

σ̃(∅) = σ(∅) and
σ̃ (t1, . . . , tn) = σ (σ̃(∅), t0, . . . , σ̃(t0, . . . , tn−1), tn) .

Finally, they are, in the game where Player 1’s action set is I and he
receives at each stage a signal in S, mixtures of behavioral strategies — also
called general strategies — so are equivalent to behavioral strategies.

In conclusion, given a strategy defined as in Definition 2.3, there exists a
behaviorial strategy that generates the same probability on the set of plays
(for every strategy τ of Player 2).

In these general strategies, Player 1 uses two types of signals: the signals
generated by the game, i.e. the sequence (in, sn)n∈N and some private signals
generated by his own strategy, i.e. the sequences of ln. We can compute
internal regret in Theorem 2.6 not only because the choices of µn and ln are
independent given the past, but mainly because the choices of µn and in are
independent, even when ln is known.

3 Back on payoff space

In the section we give simple condition on G that ensures it fulfills Assump-
tion 1. We also extend the framework to the so-called compact case. Finally,
we prove that an internally consistent strategy (in a sense to be specified)
is also externally consistent.

3.1 The worst case fulfills Assumption 1

Proposition 3.1 Let G : ∆(I) ×∆(S)I be such that for every µ ∈ ∆(S)I ,
G(·, µ) is continuous and the family {G(x, ·), x ∈ ∆(I)} is equicontinuous.

Then G fulfills Assumption 1.

Proof: Since {G(x, ·), x ∈ ∆(I)} is equicontinuous and ∆(S)I compact,
for every ε > 0, there exists δ > 0 such that:

∀x ∈ ∆(I),∀µ, µ′ ∈ ∆(S)I , ‖µ − µ′‖ ≤ 2δ ⇒
∣∣G(x, µ)−G(x, µ′)

∣∣ ≤ ε

2
.
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Let {µ(l), l ∈ L} be a finite δ-grid of ∆(S)I and for every l ∈ L, x(l) ∈
BR(µ(l)) so that G(x(l), µ(l)) = maxz∈∆(I)G(z, µ(l)). Since G(x(l), ·) is
continuous, there exists η(l) > 0 such that:

‖x− x(l)‖ ≤ η(l) ⇒ |G(x, µ(l)) −G(x(l), µ(l))| ≤ ε/2.

Define η = minl∈L η(l) and let x ∈ ∆(I), µ ∈ ∆(S)I and l ∈ L such that
‖x− x(l)‖ ≤ η and ‖µ− µ(l)‖ ≤ δ, then:

G(x, µ) ≥ G(x, µ(l)) − ε

2
≥ G(x(l), µ(l)) − ε = max

z∈∆(I)
G(z, µ(l)) − ε,

and x ∈ BRε(µ). �

This proposition implies that the evaluation function used by Rustichini
fulfills Assumption 1 (see also Lugosi, Mannor and Stoltz [19], Lemma 3.1
and Proposition A.1). Before proving that, we introduce S, the range of s,
which is a closed convex subset of ∆(S)I , and ΠS(·) the projection onto it.

Corollary 3.2 Define W : ∆(I)×∆(S)I → R by:

W (x, µ) =

{
infy∈s−1(µ) ρ(x, y) if µ ∈ S
W (x,ΠS(µ)) otherwise.

Then W fulfills Assumption 1.

Proof: We extend s linearly to R
J by s(y) =

∑
j∈J y(j)s(j) where y =

(y(j))j∈J . Therefore (Aubin and Frankowska [1], Theorem 2.2.1, p. 57)
the multivalued application s−1 : S ⇉ ∆(J)I is λ-Lipschitz, and since ΠS

is 1-Lipschitz (because S is convex), W (x, ·) is also λ-Lipschitz, for every
x ∈ ∆(I). Therefore, {G(x, ·), x ∈ ∆(I)} is equicontinuous. For every
µ ∈ ∆(S)I , W (·, µ) is r-Lipschitz (where r = ‖ρ‖, see e.g. Lugosi, Mannor
and Stoltz [19]), therefore continuous. Hence, by Proposition 3.1, W fulfills
Assumption 1. �

3.2 Compact case

Assumption 1 does not require that Player 1 faces only one opponent, nor
that his opponents have only a finite set of actions. As long as G is regular
then Player 1 has a (L, ε)-internally consistent strategy, for every ε > 0. We
consider in this section a particular framework, referred as the compact case
(as mentioned in section 1).
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Player 1’s action set is still denoted by I, but we now assume that the
action set of Player 2 is [−1, 1]I . The payoff mapping ρ from ∆(I)× [−1, 1]I

to R is simply defined by ρ(x,U) = 〈x,U〉. Let s be a multivalued application
from [−1, 1]I to ∆(S)I . Given the choices of i and U , Player 1 does not
observe U but receives a signal s ∈ S, whose law is the i-th component of µ
which belongs to s(U). If s(U) is not a singleton then we can assume either
that µ is chosen by Nature (a third player) or by Player 2.

A multivalued application s is closed-convex if λs(x) + (1 − λ)s(z) ⊂
s(λx+(1−λ)z) and its graph is closed and its inverse is defined by s−1(µ) =
{U ∈ [−1, 1]I , µ ∈ s(U)}. It is clear that if s is closed-convex then s−1 is
also closed-convex.

Proposition 3.3 Define the worst case mapping as in Corollary 3.2. If s is
closed-convex and its range is a polytope (the convex hull of a finite number
of points), then W fulfills Assumption 1.

Proof: We follow Aubin et Frankowska [1]: let µ0 be in S the range of s,
U0 be in s−1(µ0) and g be the mapping defined by:

g : S 7→ R

µ → g(µ) = inf
U∈s−1(µ)

‖U − U0‖ = d
(
U0, s

−1(µ)
)
.

Since s is convex, so is s−1 (in the multivalued sense) and g (in the univalued
sense). The sections {µ|g(µ) ≤ λ} are closed (see Aubin and Frankowska [1],
Lemma 2.2.3 p.5̃9) so g is lower semi-continuous. Since the domain of g is
a polytope, g is also upper semi-continuous (see Rockafellar [24], Theorem
10.2 p. 84). Therefore g is continuous over S and there exists δ(U0) such
that if ‖µ− µ0‖ ≤ δ(U0) then d

(
U0, s

−1(µ)
)
≤ ε.

Since s−1(µ0) is compact, for every ε > 0, there exists a finite set U such
that s−1(µ0) ⊂

⋃
U∈U B(U, ε). Define δ(µ0) = infU∈U δ(U0), then for every µ

in ∆(S)I , ‖µ−µ0‖ ≤ δ(µ0) implies that s−1(µ0) ⊂ s−1(µ)+2εB (with B the
unit ball). The graph of s−1 is compact so for every ε > 0 there exists 0 <
δ′(µ0) < δ(µ0) such that if ‖µ− µ0‖ ≤ δ′(µ0) then s−1(µ) ⊂ s−1(µ0) + 2εB.

There exists a finite set M such that the compact set S is included in the
union of open balls

⋃
µ∈M B(µ, δ′(µ)/3). If we denote by δ = infµ∈M δ′(µ)/3

then for every µ and µ′ in S, if ‖µ − µ′‖ ≤ δ, there exists µ1 ∈ M such
that µ and µ′ belongs to B(µ1, δ

′(µ1)) hence s−1(µ) ⊂ s−1(µ1) + 2εB ⊂
s−1(µ′) + 4εB.
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Let µ and µ′ in ∆(S)I such that ‖µ− µ′‖ ≤ δ. Then since S is a convex
set ‖ΠS(µ)−ΠS(µ

′)‖ ≤ δ and for every x ∈ ∆(I)

W (x, µ) = inf
U∈s−1(ΠS(µ))

〈x,U〉 ≥ inf
U∈s−1(ΠS(µ′))

〈x,U〉 − 4ε = W (x, µ′)− 4ε.

Let x and x′ in ∆(I) such that ‖x− x′‖ ≤ ε then for all µ ∈ ∆(S)I

W (x, µ) = inf
U∈s−1(ΠS(µ))

〈x,U〉 ≥ inf
U∈s−1(ΠS(µ))

〈x′, U〉 − ε = W (x′, µ)− ε.

Hence if x(l) is a ε-best response to µ(l), ‖x− x(l)‖ ≤ ε and ‖µ− µ(l)‖ ≤ δ
then

W (x, µ) ≥ W (x(l), µ)− ε ≥ W (x(l), µ(l)) − 5ε ≥ sup
z∈∆(I)

W (z, µ(l)) − 6ε

≥ sup
z∈∆(I)

W (z, µ)− 10ε,

so x is a 10ε-best response to µ. �

Remark 3.4 (On the assumptions over s) s is assumed to be multival-
ued since in the finite case, there might be two different probabilities y and
y′ in ∆(J) that generate the same outcome vector ρ(y) = (ρ(i, y))i∈I = ρ(y′)
but two different flags s(y) and s(y′).

It is also convex: if Player 2 can generate a flag µ by playing y ∈ ∆(J)
and a flag µ′ by playing y′, then a convex combination of y and y′ should
generate the same convex combination of flags. This assumption is specif-
ically needed with repeated game: for example, Player 2 can play y on odd
stages and y′ on even stages. Player 1 must know that the average empirical
flag can be generated by 1/2y + 1/2y′.

The fact that the range of s is a polytope (or at least that it is locally
simplicial, see Rockafellar [24] p. 84 for formal definitions and examples) is
needed for the proof that W is continuous. It is obviously true in the finite
dimension case since its graph is a polytope.

3.3 Regret in terms of actual payoffs

As Rustichini [25], we can define regret in term of unobserved average payoff.

Definition 3.5 A strategy σ of Player 1 is (L, ε)-internally consistent with
respect to the actual payoffs if for every l ∈ L:

lim sup
n→+∞

|Nn(l)|
n

(
sup

x∈∆(I)
[W (x, µn(l))− ρn(l)]− ε

)
≤ 0, Pσ,τ -as.
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Proposition 3.6 For every ε > 0, there exist (L, ε)-internally consistent
strategies with respect to the actual payoffs.

Proof: Consider the strategy σ given by Theorem 2.6 with the worst case
mapping. By definition of W and using the independence of the choices of
x(l) and µn, one can easily show that asymptotically W (x(l), µn(l)) ≤ ρn(l).
Therefore the strategy σ is also (L, ε)-consistent with respect to the actual
payoffs. �

Now we can define 0-internally consistent strategies (see Lehrer and
Solan [17] definition 10):

Definition 3.7 A strategy σ of Player 1 is 0-internally consistent if for
every ε > 0, there exists δ > 0 such that for every finite partition {P (l), l ∈
L} of ∆(I) with diameter smaller than δ and every l ∈ L:

lim sup
n→+∞

|Nn(l)|
n

(
sup

x∈∆(I)
[W (x, µn(l))− ρn(l)]− ε

)
≤ 0, Pσ,τ -as,

where Nn(l) = {m ≤ n, xn ∈ P (l)} with xn the law (that might be chosen at
random by Player 1) of in given the past history and µn(l) (resp. ın(l)) is
the average flag (resp. action of Player 1) on Nn(l).

Proposition 3.8 There exist 0-internally consistent strategies with respect
to the actual payoffs.

Proof: The proof relies uniquely on a classical doubling trick (see e.g.
Sorin [29], Proposition 3.2 p. 56) recalled below.

Denote by σk the strategy given by Proposition 3.6 for εk = 2−(k+3).
Consider the strategy σ of player defined by block: on the first block of length
N1, Player 1 plays accordingly to σ1, then on the second block of length N2

accordingly to σ2, and so on. Formally, for n such that
∑p−1

k=1Nk ≤ n ≤∑p
k=1Nk, σ(hn) = σp(h

p
n) where hpn = (im, lm, sm)m∈{

∑p−1

k=1
Nk,...,n}

is the

partial history on the last block. Remark 2.8 implies that for every p ∈ N

there exists Mp ∈ N such that

Eσ,τ

[
sup
l∈L

|Nn(l)|
n

(
Rn(l)

)]
≤ 1

2p+1
.

Let (Nk)k∈N be a sequence such that
∑k−1

p=1 Np = o(Nk) and Mk+1 = o(Nk)
(where un = o(vn) means that vn > 0 and limn→∞

un

vn
= 0). With this

definition, the m-th block is way longer than all the previous blocks, and
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longer than the time required by σk+1 to be εk+1-consistent (in expectation).
So the (maybe high) regret accumulated during the first Mn stages of the
n-th block is negligible compared to the small regret accumulated before
(during the first (n − 1)-blocks). After these Mn stages, the regret (on the
n-th block) is smaller than εn and at the end of this block, the cumulative
regret is very close to ε. �

Remark 3.9 The use of a doubling trick prevents us to easily find a bound
on the rate of convergence of the regret. The proof of Proposition 3.8 requires
that the sum of the regret on two different block is smaller than the average
regret. This is why we restrict this definition to internally consistent strate-
gies with respect to the actual payoffs. One may compare Definition 3.7 of
0-consistency to the Definition 1.2 of ε-calibrated strategies.

3.4 External and internal consistency

With full monitoring, by linearity of the payoff function, a strategy that is
internally consistent is also externally consistent. This properties holds in
partial monitoring, when we consider regret in terms of actual payoffs:

Proposition 3.10 For every ε > 0 and {x(l), l ∈ L} of ∆(I), every (L, ε)-
internally consistent strategy with respect to the actual payoffs is ε-externally
consistent with respect to the actual payoffs, i.e. Pσ,τ -ps:

lim sup
n→+∞

max
x∈∆(I)

W (x, µn)− ρn ≤ ε.

Proof: Let ε > 0, L ⊂ ∆(I) and σ be an (L, ε)-internally consistent
strategy with respect to the actual payoffs. Since s−1(·) is convex then, for
every x ∈ ∆(I), the mapping µ 7→ W (x, µ) is convex and so is the mapping
µ 7→ maxx∈∆(I)W (x, µ). Hence

max
x∈∆(I)

W (x, µn)− ρn ≤
∑

l∈L

|Nn(l)|
n

(
max
x∈∆(I)

W (x, µn(l))− ρn(l)

)
.

Therefore, one has

lim sup
n→∞

max
x∈∆(I)

W (x, µn)− ρn ≤ lim sup
n→+∞

∑

l∈L

|Nn(l)|
n

ε ≤ ε

and so σ is ε-externally consistent. �

Proposition 3.10 holds for the compact case under the assumption that
σ is closed-convex. Note that the proof relies on the fact that W is convex
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and the actual payoffs are linear. It is clear that this result does not extend
to any evaluation function. Indeed, consider the optimistic function defined
by (for µ ∈ S):

O(x, µ) = sup
y∈s−1(µ)

ρ(x, y),

then the more information about n that Player 1 gets, the less he evaluates
his payoff. So an internally consistent strategy (i.e. a strategy that is con-
sistent with a more precise knowledge on the moves of Player 2) might not
be externally consistent.

Concluding remarks

In the full monitoring framework, many improvements have been made in the
past years about calibration and regret (see for instance [16, 26, 30]). Here,
we aimed to clarify the links between the original notions of approachability,
internal regret and calibration in order to extend applications (in particular,
to get rid of the finiteness of J), to define the internal regret with signals
as calibration over an appropriate space and to give a proof derived from
no-internal regret in full monitoring, itself derived from the approachability
of an orthant in this space.
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