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Calibrated strategies can be obtained by performing strategies that have no internal regret in some auxiliary game. Such strategies can be constructed explicitly with the use of Blackwell's approachability theorem, in an other auxiliary game. We establish the converse: a strategy that approaches a convex B-set can be derived from the construction of a calibrated strategy.

We develop these tools in the framework of a game with partial monitoring, where players do not observe the actions of their opponents but receive random signals, to define a notion of internal regret and construct strategies that have no such regret.

Introduction

Calibration, approachability and regret are three notions widely used both in game theory and machine learning. There are, at first glance, no obvious links between them. Indeed, calibration has been introduced by Dawid [8] for repeated games of predictions: at each stage, Nature chooses an outcome s in a finite set S and Predictor forecasts it by announcing, stage by stage, a probability over S. A strategy is calibrated if the empirical distribution of outcomes on the set of stages where Predictor made a specific forecast is close to it. Foster and Vohra [9] proved the existence of such strategies. Approachability has been introduced by Blackwell [START_REF] Blackwell | An analog of the minimax theorem for vector payoffs[END_REF] in two-person repeated games, where at each stage the payoff is a vector in R d : a player can approach a given set E ⊂ R d , if he can ensure that, after some stage and with a great probability, the average payoff will always remain close to E. This is possible, see Blackwell [START_REF] Blackwell | An analog of the minimax theorem for vector payoffs[END_REF], as soon as E satisfies some geometrical condition (it is then called a B-set) and this gives a full characterization for the special case of convex sets. No-regret has been introduced by Hannan [START_REF] Hannan | Approximation to Bayes risk in repeated play[END_REF] for twoperson repeated games with payoffs in R: a player has no external regret if his average payoff could not have been asymptotically better by knowing in advance the empirical distribution of moves of the other player. The existence of such strategies was also proved by Hannan [START_REF] Hannan | Approximation to Bayes risk in repeated play[END_REF].

Blackwell [START_REF] Blackwell | Controlled random walks[END_REF] (see also Luce and Raifa [START_REF] Luce | Games and Decisions: Introduction and Critical Survey[END_REF], A.8.6 and Mertens, Sorin and Zamir [START_REF] Mertens | Repeated Games CORE discussion paper[END_REF], Exercice 7 p. 107) was the first to notice that the existence of externally consistent strategies (strategies that have no external regret) can be proved using his approachability theorem. As shown by Hart and Mas-Colell [START_REF] Hart | A simple adaptive procedure leading to correlated equilibrium[END_REF], the use of Blackwell's theorem actually gives not only the existence of externally consistent strategies but also a construction of strategies that fulfill a stronger property, called internal consistency: a player has asymptotically no internal regret, if for each of his actions, he has no external regret on the set of stages where he played it (as long as this set has a positive density). This more precise definition of regret has been introduced by Foster and Vohra [START_REF] Foster | Calibrated learning and correlated equilibrium Games Econom[END_REF] (see also Fudenberg and Levine [START_REF] Fudenberg | Conditional universal consistency Games Econom[END_REF]).

Foster and Vohra [9] (see also Sorin [START_REF] Sorin | Lectures on Dynamics in Games[END_REF] for a shorter proof) constructed a calibrated strategy by computing, in an auxiliary game, a strategy with no internal regret. These results are recalled in section 1 and we also refer to Cesa-Bianchi and Lugosi [START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF] for more complete survey on sequential prediction and regret.

We provide in section 1.5 a kind of converse result by constructing an explicit ε-approachability strategy for a convex B-set through the use of a calibrated strategy, in some auxiliary game. This last statement proves that the construction of an approachability strategy of a convex set can be deduced from the construction of a calibrated strategy, which is deduced from the construction of an internally consistent strategy, itself deduced from the construction of an approachability strategy. So calibration, regret and approachability are, in some sense, equivalent.

In section 2, we consider repeated games with partial monitoring, i.e. where players do not observe the action of their opponents, but receive random signals. The idea behind the proof that, in the full monitoring case, approachability follows from calibration can be extended to this new framework to construct consistent strategies in the following sense. A player has asymptotically no external regret if his average payoff could not have been better by knowing in advance the empirical distribution of signals (see Rustichini [START_REF] Rustichini | Minimizing regret: the general case[END_REF]). The existence of strategies with no external regret was proved by Rustichini [START_REF] Rustichini | Minimizing regret: the general case[END_REF] while Lugosi, Mannor and Stoltz [START_REF] Lugosi | Strategies for prediction under imperfect monitoring[END_REF] constructed explicitly such strategies. The notion of internal regret was introduced by Lehrer and Solan [START_REF] Lehrer | Learning to play partially-specified equilibrium[END_REF] and they proved the existence of consistent strategies. Our main result is the construction of such strategies even when the signal depends on the action played. We show in section 3 that our algorithm also works when the opponent is not restricted to a finite number of actions, discuss our assumption on the regularity of the payoff function (see Assumption 1) and extend our framework to more general cases.

Full monitoring case: from approachability to calibration

We recall the main results about calibration of Foster and Vohra [9], approachability of Blackwell [START_REF] Blackwell | An analog of the minimax theorem for vector payoffs[END_REF] and regret of Hart and Mas-Colell [START_REF] Hart | A simple adaptive procedure leading to correlated equilibrium[END_REF]. We will prove some of these results in detail, since they give the main ideas about the construction of strategies in the partial monitoring framework, given in section 2.

Calibration

We consider a two-person repeated game where, at stage n ∈ N, Nature (Player 2) chooses an outcome s n in a finite set S and Predictor (Player 1) forecasts it by choosing µ n in ∆(S), the set of probabilities over S. We assume furthermore that µ n belongs to a finite set M = {µ(l), l ∈ L}. The prediction at stage n is then the choice of an element l n ∈ L, called the type of that stage. The choices of l n and s n depend on the past observations h n-1 = (l 1 , s 1 , . . . , l n-1 , s n-1 ) and may be random. Explicitly, the set of finite histories is denoted by H = n∈N (L × S) n , with (L × S) 0 = ∅ and a behavioral strategy σ of Player 1 is a mapping from H to ∆(L). Given a finite history h n ∈ (L × S) n , σ(h n ) is the law of l n+1 . A strategy τ of Nature is defined similarly as a mapping from H to ∆(S). A couple of strategies (σ, τ ) generates a probability, denoted by P σ,τ , over H = (L × S) N , the set of plays endowed with the cylinder σ-field.

We will use the following notations. For any families a = {a m ∈ R d } m∈N and l = {l m ∈ L} m∈N and any integer n ∈ N, N n (l) = {1 ≤ m ≤ n, l m = l} is the set of stages of type l (before the n-th), a n (l) = 1 Nn(l) m∈Nn(l) a m is the average of a on this set and a n = 1 n n m=1 a m is the average of a over the n first stages. Definition 1.1 (Dawid [8]) A strategy σ of Player 1 is calibrated with respect to M if for every l ∈ L and every strategy τ of Player 2:

lim sup n→+∞ |N n (l)| n s n (l) -µ(l) 2 2 -s n (l) -µ(k) 2 2 ≤ 0, ∀k ∈ L, P σ,τ -as, (1) where ∆(S) is seen as a subset of R |S| .
In words, a strategy of Player 1 is calibrated with respect to M if s n (l), the empirical distribution of outcomes when µ(l) was predicted, is asymptotically closer to µ(l) than to any other µ(k) (or conversely, that µ(l) is the closest possible prediction to s n (l)), as long as |N n (l)|/n, the frequency of l, does not go to 0. Foster and Vohra [9] proved the existence of such strategies with an algorithm based on the Expected Brier Score.

An alternative (and more general) way of defining calibration is the following. Player 1 is not restricted to make prediction in a finite set M and, at each stage, he can choose any probability in ∆(S). Consider any finite partition P = {P (k), k ∈ K} of ∆(S) with a diameter small enough (we recall that the diameter of a partition is defined as max k∈K max x,y∈P (k) xy ). A strategy is ε-calibrated if the empirical distribution of outcomes (denoted by s n (k)) when the prediction is in P (k) is asymptotically ε-close to P (k) (as long as the frequency of k ∈ K does not go to zero). Formally: Definition 1.2 A strategy σ of Player 1 is ε-calibrated if there exists η > 0 such that for every finite partition P = {P (k), k ∈ K} of ∆(S) with diameter smaller than η and every strategy τ of Player 2:

lim sup n→+∞ |N n (k)| n d 2 s n (k), P (k) -ε 2 ≤ 0, ∀k ∈ k, P σ,τ -as, ( 2 
)
where for every set

E ⊂ R d and z ∈ R d , d(z, E) = inf e∈E z -e 2 .
The following Lemma 1.3 states a calibrated strategy with respect to a grid (as in Definition 1.1) is ε-calibrated (as in Definition 1.2), therefore we will only use the first formulation.

Lemma 1.3 For every ε > 0, there exists a finite set M = {µ(l), l ∈ L} such that any calibrated strategy with respect to M is ε-calibrated.

Proof:

Let M = {µ(l), l ∈ L} be a finite ε-grid of ∆(S): for every probability µ ∈ ∆(S), there exists µ(l) ∈ M such that µµ(l) ≤ ε. In particular, for every l ∈ L and n ∈ N, there exists l ′ ∈ L such that

s n (l) -µ(l ′ ) ≤ ε. Equation (1) implies then that lim sup n→∞ |N n (l)| n d 2 (s n (l), µ(l)) -ε 2 ≤ 0, P σ,τ -as.
Let 2η be the smallest distance between any two different µ(l) and µ(l ′ ). In any finite partition P = {P (k), k ∈ K} of ∆(S) of diameter smaller η, µ(l) belongs to at most one P (k). Hence σ is obviously ε-calibrated.

Remark 1.4 Lemma 1.3 implies that one can construct an ε-calibrated strategy as soon as he can construct a calibrated strategy with respect to a finite ε-grid of ∆(S). The size of this grid is in the order of ε -|S| (exponential in ε) and it is not known yet if there exists an efficient algorithm (polynomial in ε) to compute ε-calibration. The results holds with condition (2) replaced by

lim sup n→+∞ |N n (k)| n d s n (k), P (k) -ε ≤ 0, ∀k ∈ k, P σ,τ -as however Lemma 1.
3 is trivially true with the square terms d 2 (s n (k), P (k)) and ε 2 .

Approachability

We will prove in section 1.3 that calibration follows from no-regret and that no-regret follows from approachability (proofs originally due to, respectively, Foster and Vohra [9] and Hart and Mas-Colell [START_REF] Hart | A simple adaptive procedure leading to correlated equilibrium[END_REF]). We present here the notion of approachability introduced by Blackwell [START_REF] Blackwell | An analog of the minimax theorem for vector payoffs[END_REF]. Consider a two-person game repeated in discrete time with vector payoffs, where at stage n ∈ N, Player 1 (resp. Player 2) chooses the action i n ∈ I (resp. j n ∈ J), where both I and J are finite. The corresponding vector payoff is ρ n = ρ(i n , j n ) where ρ is a mapping from I × J into R d . As usual, a behavioral strategy σ (resp. τ ) of Player 1 (resp. Player 2) is a mapping from the set of finite histories H = n∈N (I × J) n to ∆(I) (resp. ∆(J)).

For a closed set E ⊂ R d and δ ≥ 0, we denote by

E δ = {z ∈ R d , d(z, E) ≤ δ} the δ-neighborhood of E and by Π E (z) = {e ∈ E, d(z, E) = z -e } the set of closest points to z in E. Definition 1.5 i) A closed set E ⊂ R d is approachable by Player 1 if
for every ε > 0, there exist a strategy σ of Player 1 and N ∈ N, such that for every strategy τ of Player 2 and every n ≥ N :

E σ,τ [d(ρ n , E)] ≤ ε and P sup n≥N d(ρ n , E) ≥ ε ≤ ε.
Such a strategy σ, independent of ε, is called an approachability strategy of E.

ii) A set E is excludable by Player 2, if there exists δ > 0 such that the complement of E δ is approachable by Player 2.

In words, a set E ⊂ R d is approachable by Player 1, if he has a strategy such that the average payoff converges almost surely to E, uniformly with respect to the strategies of Player 2.

Blackwell [START_REF] Blackwell | An analog of the minimax theorem for vector payoffs[END_REF] noticed that a closed set E that fulfills a purely geometrical condition (see Definition 1.6) is approachable by Player 1. Before stating it, let us denote by P 1 (x) = {ρ(x, y), y ∈ ∆(J)}, the set of expected payoffs compatible with x ∈ ∆(I) and we define similarly P 2 (y).

Definition 1.6 A closed subset E of R d is a B-set, if for every z ∈ R d ,
there exist p ∈ Π E (z) and x (= x(z, p)) ∈ ∆(I) such that the hyperplane through p and perpendicular to zp separates z from P 1 (x), or formally:

∀z ∈ R d , ∃p ∈ Π E (z), ∃x ∈ ∆(I), ρ(x, y) -p, z -p ≤ 0, ∀y ∈ ∆(J). (3)
Informally, from any point z outside E there is a closest point p and a probability x ∈ ∆(I) such that, no matter the choice of Player 2, the expected payoff and z are on different sides of the hyperplane through p and perpendicular to zp. To be precise, this definition (and the following theorem) does not require that J is finite: one can assume that Player 2 chooses an outcome vector U ∈ [-1, 1] |I| so that the expected payoff is ρ(x, U ) = x, U . Theorem 1.7 (Blackwell [3]) If E is a B-set, then E is approachable by Player 1. Moreover, the strategy σ of Player 1 defined by σ(h n ) = x(ρ n ) is such that, for every strategy τ of Player 2:

E σ,τ [d 2 E (ρ n )] ≤ 4B n and P σ,τ sup n≥N d(ρ n , E) ≥ η ≤ 8B η 2 N , (4) 
with B = sup i,j ρ(i, j) 2 .

In the case of a convex set C, a complete characterization is available: 

Corollary 1.8 (Blackwell [3]) A closed convex set C ⊂ R d is
matrix R n = R(i n , U n ), where R is the mapping from I × [-1, 1] c to R c 2 defined by: R(i, U ) (i ′ ,j) = 0 if i ′ = i U j -U i otherwise.
With this definition, the average internal regret R n is defined by:

R n =   m∈Nn(i) U j m -U i m n   i,j∈I = |N n (i)| n U n (i) j -U n (i) i j∈I i∈I
.

Definition 1.10 (Foster and Vohra [START_REF] Foster | Calibrated learning and correlated equilibrium Games Econom[END_REF]) A strategy σ of Player 1 is internally consistent if for any strategy τ of Player 2:

lim sup n→∞ R n ≤ 0, P σ,τ -as.
In words, a strategy is internally consistent if for every i ∈ I (with a positive frequency), Player 1 could not have increased his payoff if he had known, before the beginning of the game, the empirical distribution of Player 2's actions on N n (i). Stated differently, when Player 1 played action i, it was his best (stationary) strategy. The existence of such strategies have been first proved by Foster and Vohra [START_REF] Foster | Calibrated learning and correlated equilibrium Games Econom[END_REF] and Fudenberg and Levine [START_REF] Fudenberg | Conditional universal consistency Games Econom[END_REF].

Theorem 1.11 There exist internally consistent strategies.

Hart and Mas-Colell [START_REF] Hart | A simple adaptive procedure leading to correlated equilibrium[END_REF] noted that an internally consistent strategy can be obtained by constructing a strategy that approaches the negative orthant Ω = R c 2 -in the auxiliary game where the vector payoff at stage n is R n . Such a strategy, derived from approachability theory, is stronger than just internally consistent since the regret converges to the negative orthant uniformly with respect to Player 2's strategy (which was not required in Definition 1.10).

The proof of the fact that Ω is a B-set relies on the two followings lemmas: Lemma 1.12 gives a geometrical property of Ω and Lemma 1.13 gives a property of the function R.

From approachability to internal no-regret

Lemma 1.12 Let Π Ω (•) be the projection onto Ω. Then, for every

A ∈ R c 2 : Π Ω (A), A -Π Ω (A) = 0. (6) 
Proof:

Note that since Ω = R c 2 -then A + = A -Π Ω (A) where A + ij = max (A ij , 0) and similarly A -= Π Ω (A). The result is just a rewriting of A -, A + = 0.
For every (c × c)-matrix A = (a ij ) i,j∈I with non-negative coefficients, λ ∈ ∆(I) is an invariant probability of A if for every i ∈ I:

j∈I λ(j)a ji = λ(i) j∈I a ij .
The existence of an invariant probability follows from the similar result for Markov chains, implied by Perron-Frobenius Theorem (see e.g. Seneta [START_REF] Seneta | Nonnegative Matrices and Markov Chains[END_REF]). Lemma 1.13 Let A = (a ij ) i,j∈I be a non-negative matrix. Then for every λ, invariant probability of A, and every U ∈ R c :

A, E λ [R(•, U )] = 0. ( 7 
)
Proof:

The (i, j)-th coordinate of E λ [R(•, U )] is λ(i) U j -U i , there- fore: A, E λ [R(•, U )] = i,j∈I a ij λ(i) U j -U i and the coefficient of each U i is j∈I a ij λ(i) -j∈I a ji λ(j) = 0, because λ is an invariant measure of A. Therefore A, E λ [R(•, U )] = 0.
Proof of Theorem 1.11: Summing equations (6) (with A = R n ) and ( 7) (with A = R n + ) gives:

E λn [R(•, U )] -Π Ω (R n ), R n -Π Ω (R n ) = 0, for every λ n invariant probability of R + n and every U ∈ [-1, 1] I . Define the strategy σ of Player 1 by σ(h n ) = λ n . The expected payoff at stage n + 1 (given h n and U n+1 = U ) is E λn [R(•, U )],
so Ω is a B-set and is approachable by Player 1.

Remark 1.14 The construction of the strategy is based on approachability properties therefore the convergence is uniform with respect to the strategies of Player 2. Theorem 1.7 implies that for every η > 0, and for every strategy τ of Player 2:

P σ,τ ∃n ≥ N, ∃i, j ∈ i, |N n (i)| n U n (i) j -U n (i) i > η = O 1 η 2 N and E σ,τ sup i∈I |N n (l)| n U n (i) j -U n (i) i + = O 1 √ n .
Although they are not required by definition 1.10, those bounds will be useful to prove that calibration implies approachability.

From internal regret to calibration

The construction of calibrated strategies can be reduced to the construction of internally consistent strategies. The proof of Sorin [START_REF] Sorin | Lectures on Dynamics in Games[END_REF] simplifies the one originally due to Foster and Vohra [START_REF] Foster | Calibrated learning and correlated equilibrium Games Econom[END_REF] by using the following lemma:

Lemma 1.15 Let (a m ) m∈N be a sequence in R d and α, β two points in R d . Then for every n ∈ N * : n m=1 a m -β 2 2 -a m -α 2 2 n = a n -β 2 2 -a n -α 2 2 , ( 8 
)
with • 2 the Euclidian norm of R d .
Proof: Develop the sums in equation ( 8) to get the result. Now, we can prove the following:

Theorem 1.16 (Foster and Vohra [START_REF] Foster | Calibrated learning and correlated equilibrium Games Econom[END_REF]) Let M be a finite grid of ∆(S).

There exist calibrated strategies of Player 1 with respect to M. In particular, for every ε > 0 there exist ε-calibrated strategies.

Proof: We start with the framework described in section 1.1. Consider the auxiliary two-person game with vector payoff defined as follows. At stage n ∈ N, Player 1 (resp. Player 2) chooses the action l n ∈ L (resp. s n ∈ S) which generates the vector payoff

R n = R(l n , U n ) ∈ R d , where R is as in 1.3, with: U n = -s n -µ(l) 2 2 l∈L ∈ R c .
By definition of R and using Lemma 1.15, for every n ∈ N * :

R lk n = |N n (l)| n m∈Nn(l) s m -µ(l) 2 2 -s m -µ(k) 2 2 |N n (l)| = |N n (l)| n s n (l) -µ(l) 2 2 -s n (l) -µ(k) 2 2 .
Let σ be an internally consistent strategy in this auxiliary game, then for every l ∈ L and k ∈ L:

lim sup n→∞ |N n (l)| n s n (l) -µ(l) 2 2 -s n (k) -µ(k) 2 2 ≤ 0, P σ,τ -as.
Therefore σ is calibrated, with respect to M; if it is an ε-grid of ∆(S), then σ is ε-calibrated.

Remark 1.17 We have proved that σ is such that, for every l ∈ L, s n (l) is closer to µ(l) than to any other µ(k), as soon as |N n (l)|/n is not too small. The facts that s n belongs to a finite set S and {µ(l)} are probabilities over S are irrelevant: one can show that for any finite set {a(l) ∈ R d , l ∈ L}, Player 1 has a strategy σ such that for any bounded sequence (a m ) m∈N in R d and for every l and k :

lim sup n→∞ |N n (l)| n a n (l) -a(l) 2 -a n (l) -a(k) 2 ≤ 0.

From calibration to approachability

The proof of Theorem 1.16 shows that the construction of a calibrated strategy can be obtained through an approachability strategy of an orthant in an auxiliary game. Conversely, we will show that the approachability of a convex B-set can be reduced to the existence of a calibrated strategy in an auxiliary game, and so give a new proof of Corollary 1.8 (and mainly construct explicit strategies).

Alternative proof of Corollary 1.8: The idea of the proof is very natural: assume that condition ( 5) is satisfied and rephrased as:

∀y ∈ ∆(J), ∃x(= x y ) ∈ ∆(I), ρ(x y , y) ∈ C. (9) 
If Player 1 knew in advance y n then he would just have to play accordingly to x yn at stage n so that the expected payoff E σ,τ [ρ n ] would be in C. Since C is convex, the average payoff would also be in C. Obviously Player 1 does not know y n but, using calibration, he can make good predictions about it.

Since ρ is multilinear and therefore continuous on ∆(I)× ∆(J), for every ε > 0, there exists δ > 0 such that:

∀y, y ′ ∈ ∆(J), y -y ′ 2 ≤ 2δ ⇒ ρ(x y , y ′ ) ∈ C ε .
We introduce the auxiliary game Γ where Player 2 chooses an action (or outcome) j ∈ J and Player 1 forecasts it by using {y(l), l ∈ L}, a finite δ-grid of ∆(J). Let σ be a calibrated strategy for Player 1, so that  n (l), the empirical distribution of actions of Player 2 on N n (l), is asymptotically δ-close to y(l).

Define the strategy of Player 1 in the initial game by performing σ and if l n = l by playing accordingly to x(l) := x y(l) ∈ ∆(I), as depicted in (9). Since the choices of actions of the two players are independent, ρ n (l) will be close to ρ (x(l),  n (l)), hence close to ρ(x(l), y(l)) (because σ is calibrated) and finally close to C ε , as soon as |N n (l)| is not too small. Indeed, by construction of σ, for every η > 0 there exists N 1 ∈ N such that, for every strategy τ of Player 2:

P σ,τ ∀l ∈ L, ∀n ≥ N 1 , |N n (l)| n  n (l) -y(l) 2 2 -δ 2 ≤ η ≥ 1 -η.
This implies that with probability greater than 1η, for every l ∈ L and n ≥ N 1 , either  n (l)y(l) ≤ 2δ or N n (l)/n ≤ η/3δ 2 , therefore with P σ,τ -probability at least 1η:

∀l ∈ L, ∀n ≥ N 1 , |N n (l)| n d (ρ(x(l),  n (l)), C) ≤ ε |N n (l)| n + η 3δ 2 . ( 10 
)
Hoeffding-Azuma [START_REF] Azuma | Weighted sums of certain dependent random variables[END_REF][START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF] inequality for sums of bounded martingale differences implies that for any η > 0, n ∈ N, σ and τ :

P σ,τ |ρ n (l) -ρ(x(l),  n (l))| ≥ η |N n (l)| ≤ 2 exp - |N n (l)|η 2 2 ,
therefore:

P σ,τ |N n (l)| n |ρ n (l) -ρ(x(l),  n (l))| ≥ η ≤ 2 exp - nη 2 2
and summing over n ∈ {N, . . . , } and l ∈ L gives that with P σ,τ -probability

at most 4L η 2 exp -N η 2 2 sup n≥N sup l∈L |N n (l)| n |ρ n (l) -ρ(x(l),  n (l))| ≥ η. (11) 
So for every η > 0, there exists N 2 ∈ N such that for every n ≥ N 2 :

P σ,τ ∀m ≥ n, ∀l ∈ L, |N n (l)| n |ρ n (l) -ρ(x(l),  n (l))| ≤ η ≥ 1 -η.
Since C is a convex set, d(•, C) is convex and with probability at least 1 -2η, for every n ≥ max(N 1 , N 2 ):

d (ρ n , C) =d l∈L |N n (l)| n ρ n (l), C ≤ l∈L |N n (l)| n d (ρ n (l), C) ≤ l∈L |N n (l)| n d (ρ(x(l),  n (l)), C) + |ρ n (l) -ρ(x(l),  n (l))| ≤ε + Lη 1 3δ 2 + 1 .
And C is approachable by Player 1.

On the other hand, if there exists y such that P 2 (y) ∩ C = ∅, then Player 2 can approach P 2 (y), by playing at every stage accordingly to y. Therefore C is not approachable by Player 1.

Remark 1.18 To deduce that ρ n is in C ε from the fact that ρ n (l) is in C ε for every l ∈ L, it is necessary that C (or d(•, C)) is convex. So this proof does not work if C is not convex.
1.6 Remarks on the algorithm a) Blackwell proved Corollary 1.8 using Von Neumann's minmax theorem, the latter allowing to show that a convex set C that fulfills condition ( 9) is a B-set. Indeed, let z be a point outside C. Recall that for every y ∈ ∆(J) there exists x y ∈ ∆(I) such that ρ(x y , y) ∈ C. Since C is convex, if we denote by Π C (z) the projection of z onto it, then for every

c ∈ C c -Π C (z), z -Π C (z) ≤ 0, . Therefore, ∀y ∈ ∆(J), ∃x ∈ ∆(J), E x,y [ρ(i, j)] -Π C (z), z -Π C (z) ≤ 0 and if we define g(x, y) = E x,y [ρ(i, j)] -Π C (z), z -Π C (z) then g is linear in both of its variable so min x∈∆(I) max y∈∆(J) g(x, y) = max y∈∆(J) min x∈∆(J) g(x, y) ≤ 0, which implies that C is a B-set.
The strategy σ defined by σ(h n ) = x n where x n is any minimizer of max y∈∆(J) G(x, y) is an approachability strategy, said to be implicit since there are no easy way to construct it. Indeed computing σ would require to find, stage by stage, an optimal action in a zero-sum game or equivalently to solve a Linear Program. There exist polynomial algorithms (see Khachiyan [START_REF] Khachiyan | Polynomial algorithms in linear programming[END_REF]) however their rates of convergence are bigger than the one of Gaussian elimination and their constants can be too huge for any practical use. Nonetheless, it is possible to find ε-optimal solution by repeating an polynomial number of time the exponential weight algorithm (see Cesa-Bianchi and Lugosi [START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF], Section 7.2 and Mannor and Stoltz [START_REF] Mannor | A geometric proof of calibration[END_REF]).

For a fixed ε > 0, the strategy (that approaches C ε ) we described computes at each stage an invariant measure of a matrix with nonnegative coefficients. This obviously reduces to solve a system of linear equations which is guaranteed to have a solution. And this is solved polynomially (in |L|) by, for example and as proposed by Foster and Vohra [START_REF] Foster | Calibrated learning and correlated equilibrium Games Econom[END_REF], a Gaussian elimination. If payoffs are bounded by 1, then one can take for {y(l), l ∈ L} any arbitrarily ε/2-grid of ∆(J), so |L| is bounded by (2/ε) |J| . Moreover, the strategy aims to approach C ε , so it is not compulsory to determine exactly x(l), one can choose them in any ε/2-grid of ∆(I).

In conclusion, Blackwell's implicit algorithm constructs a strategy that approaches (exactly) a convex C by solving, stage by stage, a Linear Program without any initialization phase. For every ε > 0, our explicit algorithm constructs a strategy that approaches C ε by solving, stage by stage, a system of linear equations with an initialization phase (the matchings between x(l) and y(l)) requiring at most (2/ε) I+J steps.

b) Blackwell's Theorem states that if for every move y ∈ ∆(J) of Player 2, Player 1 has an action x ∈ ∆(I) such that ρ(x, y) ∈ C then C is approachable by Player 1. In other words, assume that in the onestage (expected) game where Player 2 plays first and Player 1 plays second, Player 1 has a strategy such that the payoff is in a convex C.

Then he also has a strategy such that the average payoff converges to C, in the repeated (expected) game where Player 2 plays second and Player 1 plays first.

The use of calibration transforms this implicit statement into an explicit one: while performing a calibrated strategy (in an auxiliary game where J plays the role of the set of outcomes), Player 1 can enforce the property that, for every l ∈ L, the average move of Player 2 is almost y(l) on N n (l). So he just has to play x y(l) on these stage and he could not do better.

c) We stress out the fact that the construction of an approachability strategy of C ε reduces to the construction of a calibrated strategy in an auxiliary game, hence to the construction of an internally-consistent strategy in a second auxiliary game, therefore to the construction of an approachability strategy of a negative orthant in a third auxiliary game. In conclusion, the approachability of an arbitrary convex set reduces to the approachability of an orthant. Along with equations ( 10) and [START_REF] Fudenberg | Conditional universal consistency Games Econom[END_REF], this implies that

E σ,τ [d (ρ n , C) -ε] ≤ O n -1/2
. However, as said before, the constant depends on ε |J| .

d) The reduction of the approachability of a convex set C ⊂ R d in a game Γ to the approachability of an orthant in an auxiliary game Γ ′ can also be done via the following scheme: for every ε > 0, find a finite set of half-spaces {H(l), l ∈ L} such that C ⊂ ∩ l∈L H(l) ⊂ C ε . For every l ∈ L, define c(l) ∈ R d and b(l) ∈ R such that:

H(l) = ω ∈ R d , ω, c(l) ≤ b(l)
and the auxiliary game Γ ′ with payoffs defined by

ρ(i, j) = ( ρ(i, j), c(l) -b(l)) l∈L ∈ R L .
Obviously, a strategy that approaches the negative orthant in Γ ′ will approach, in the game Γ, the set H(l) and therefore C ε . However, such a strategy might not be based on regret and might not be explicit.

Internal regret in the partial monitoring framework

Consider a two person game repeated in discrete time. At stage n ∈ N, Player 1 (resp. Player 2) chooses i n ∈ I (resp. j n ∈ J), which generates the payoff ρ n = ρ(i n , j n ) where ρ is a mapping from I × J to R. Player 1 does not observe this payoff, he receives a signal s n ∈ S whose law is s(i n , j n ) where s is a mapping from I × J to ∆(S). The three sets I, J and S are finite and the two functions ρ and s are extended to ∆(I) × ∆(J) by ρ(x, y) = E x,y [ρ(i, j)] ∈ R and s(x, y) = E x,y [s(i, j)] ∈ ∆(S).

We define the mapping s from ∆(J) to ∆(S) I by s(y) = (s(i, y)) i∈I and we call such a vector of probability a flag. Player 1 cannot distinguish between two different probabilities y and y ′ in ∆(J) that induces the same flag µ ∈ ∆(S) I , i.e. such that µ = s(y) = s(y ′ ). Thus we say that µ = s(y), although unobserved, is the relevant or maximal information available to Player 1 about the choice of Player 2. We stress out that a flag µ is not observed since given x ∈ ∆(I) and y ∈ ∆(J), Player 1 has just an information about µ i which is only one component of µ (the i-th one, where i is the realization of x). Moreover, this component is the law of a random variable whose realization (i.e. the signal s ∈ S) is the only observation of Player 1. ,c,c). In order to distinguish between those two actions, Player 1 needs to know the entire flag and therefore to know s(o, y) although action o is never a best response (but is said to be purely informative).

As usual, a behavioral strategy σ of Player 1 (resp. τ of Player 2) is a function from the set of finite histories for Player 1, H 1 = n∈N (I × S) n , to ∆(I) (resp. from H 2 = n∈N (I × S × J) n to ∆(J)). A couple (σ, τ ) generates a probability P σ,τ over H = (I × S × J) N .

External regret

Rustichini [START_REF] Rustichini | Minimizing regret: the general case[END_REF] defined external consistency in the partial monitoring framework as follows: a strategy σ of Player 1 has no external regret if P σ,τ -as:

lim sup n→+∞ max x∈∆(I) min    y ∈ ∆(J), s(y) = s( n ) ρ(x, y) -ρ n ≤ 0.
where s( n ) ∈ ∆(S) I is the average flag. In words, the average payoff of Player 1 could not have been uniformly better if he had known the average distribution of flags before the beginning of the game.

Given a flag µ ∈ ∆(S) I , the function min y∈s -1 (µ) ρ(•, y) may not be linear. So the best response of Player 1 might not be a pure action in I, but a mixed action x ∈ ∆(I) and any pure action in the support of x may be a bad response. This explains why, in Rustichini's definition, the maximum is taken over ∆(I) and not just over I as in the usual definition of external regret.

Example 2.2 (Matching Penny in the dark) Player 1 chooses either

T ail or Heads and flips a coin. Simultaneously, Nature chooses on which face the coin will land. If Player 1 guessed correctly his payoff equals 1, otherwise -1. We assume that Player 1 does not observe the coin.

Payoffs and signals are resumed in the following matrices:

T H T H Payoffs: T 1 -1 and Signals: T c c H -1 1 H c c

Every choice of Nature generates the same flag (c, c). So min y∈∆(J) ρ(x, y) is always non-positive and equals zero only if x = (1/2, 1/2). Therefore the only best response of Player 1 is (1/2, 1/2), while both T or H give the worst payoff of -1.

Internal regret

We consider here a generalization of the previous's framework: at stage n ∈ N, Player 2 chooses a flag µ n ∈ ∆(S) I while Player 1 chooses an action i n and receives a signal s n whose law is the i n -th coordinate of µ n . Given a flag µ and x ∈ ∆(I), Player 1 evaluates the payoff through an evaluation function G from ∆(I) × ∆(S) I to R, which is not necessarily linear.

Recall that with full monitoring, a strategy has no internal regret if each action i ∈ I is the best response to the average empirical observation on the set of stages where i was actually played. With partial monitoring, best responses are elements of ∆(I) and not elements of I, so if we want to define internal regret in this framework, we have to distinguish the stage not as a function of the action actually played (i.e. i n ∈ I) but as a function of its law (i.e. x n ∈ ∆(I)). We assume that the strategy of Player 1 can be described by a finite family {x(l) ∈ ∆(I), l ∈ L} such that, at stage n ∈ N, Player 1 chooses a type l n and, given this choice, i n is drawn accordingly to x(l n ). We assume that L is finite since otherwise Player 1 have trivial strategies that guarantee that the frequency of every l converges to zero. Note that since the choices of l n can be random, any behavioral strategy can be described in such a way. [START_REF] Lehrer | Learning to play partially-specified equilibrium[END_REF]) For every n ∈ N and every l ∈ L, the average internal regret of type l at stage n is

Definition 2.3 (Lehrer-Solan

R n (l) = sup x∈∆(I) [G(x, µ n (l)) -G(ı n (l), µ n (l))] .
A strategy σ of Player 1 is (L, ε)-internally consistent if for every strategy τ of Player 2:

lim sup n→+∞ |N n (l)| n R n (l) -ε ≤ 0, ∀l ∈ L, P σ,τ -as.
Remark 2.4 Note that this definition, unlike in the full monitoring case, is not intrinsic. It depends on the choice (which can be assumed to be made by Player 1) of {x(l), l ∈ L}, and is based uniquely on the potential observations (i.e. the sequences of flags (µ n ) n∈N ) of Player 1.

Remark 2.5

The average flag µ n belongs to ∆(S) I and is defined by

µ i n [s] = n m=1 µ i m [s] n for every s ∈ S.
In order to construct (L, ε)-internally consistent strategies, some regularity over G is required: Assumption 1 For every ε > 0, there exist µ(l) ∈ ∆(S) I , x(l) ∈ ∆(I), l ∈ L two finite families and η, δ > 0 such that:

1. ∆(S) I ⊂ l∈L B(µ(l), δ); 2. For every l ∈ L, if x -x(l) ≤ 2η and µ -µ(l) ≤ 2δ, then x ∈ BR ε (µ),
where

BR ε (µ) = x ∈ ∆(I) : G(x, µ) ≥ sup z∈∆(I) G(z, µ) -ε is the set of ε-best response to µ ∈ ∆(S) I and B(µ, δ) = µ ′ ∈ ∆(S) I , µ ′ -µ ≤ δ .
In words, Assumption 1 implies that G is regular with respect to µ and with respect to x: given ε, the set of flags can be covered by a finite number of balls centered in {µ(l), l ∈ L}, such that x(l) is an ε-best response to any µ in this ball. And if x is close enough to x(l), then x is also an ε-best response to any µ close to µ(l). Without loss of generality, we can assume that x(l) is different from x(l ′ ) for any l = l ′ . Theorem 2.6 Under Assumption 1, there exist (L, ε)-internally consistent strategies. Some parts of the proof are quite technical, however the insight is very simple, so we give firstly the main ideas. Assume for the moment that Player 1 fully observes the flag at each stage. If, in the one stage game, Player 2 plays first and his choice generates a flag µ ∈ ∆(S) I , then Player 1 has an action x ∈ ∆(I) such that x belongs to BR ǫ (µ). Using a minmax argument (like Blackwell did for the proof of Theorem 1.8, recall Remark 1.6 b) one could prove that Player 1 has an (L, ε)-internally consistent strategy (as did Lehrer and Solan [START_REF] Lehrer | Learning to play partially-specified equilibrium[END_REF]).

The idea is to use calibration to transform this implicit proof into a constructive one, as in the alternative proof of Corollary 1.8. Fix ε > 0 and consider the game where Player 1 predicts the sequence (µ n ) n∈N using the δ-grid {µ(l), l ∈ L} given by Assumption 1. A calibrated strategy of Player 1 chooses a sequences (l n ) n∈N in such a way that µ n (l) is asymptotically δ-close to µ(l). Hence Player 1 just has to play accordingly to x(l) ∈ BR ε (µ(l)) on these stages.

Indeed, since the choices of action are independent, ı n (l) will be asymptotically η-close to x(l) and the regularity of G will imply then that ı n (l) ∈ BR ε (µ n (l)) and so the strategy will be (L, ε)-internally consistent.

The only issue is that in the current framework the signal depends on the action of Player 1 since the law of s n is the i n component of µ n , which is not observed. Signals (that belong to S) and predictions (that belong to ∆(S) I ) are in two different spaces, so the existence of calibrated strategies is not straightforward. However, it is well known that, up to a slight perturbation of x(l), the information available to Player 1 after a long time is close to µ n (l) (as in the multi-armed bandit problem, some calibration and no-regret frameworks, see e.g. Cesa-Bianchi and Lugosi [START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF] chapter 6 for a survey on these techniques).

For every x ∈ ∆(I), define x η ∈ ∆(I), the η-perturbation of x by x η = (1η)x + ηu with u the uniform probability over I and for every n define s n by:

s n = 1{s n = s}1{i n = i} x η (l n )[i n ] ∈ R SI , with x η (l n )[i n ]
≥ η > 0 the weight put by x η (l n ) on i n . We denote by s n (l), instead of s n (l), their average on N n (l).

Lemma 2.7 For every θ > 0, there exists N ∈ N such that, for every l ∈ L:

P σ,τ (∀m ≥ n, s n (l) -µ n (l) ≤ θ| N n (l) ≥ N ) ≥ 1 -θ.
Proof: Since for every n ∈ N, the choices of i n and µ n are independent:

E σ,τ [ s n | h n-1 , l n , µ n ] = i∈I s∈S µ i n [s]x η (l n )[i] 0, . . . , s x η (l n )[i] , . . . , 0 = i∈I s∈S µ i n [s] (0, . . . , s, . . . , 0) = i∈I 0, . . . , µ i n , . . . , 0 = µ 1 n , . . . , µ I n = µ n ,
where µ n is seen as an element of R SI . Therefore s n (l) is an unbiased estimator of µ n (l) and Hoeffding-Azuma's inequality (actually its multidimensionnal version by Chen and White [START_REF] Chen | Laws of large numbers for Hilbert space-valued mixingales with applications[END_REF] together with the fact that sup n∈N s n ≤ η -1 < ∞) implies that for every θ > 0 there exists N ∈ N such that, for every l ∈ L:

P σ,τ (∀m ≥ n, s n (l) -µ n (l) ≤ θ| |N n (l)| ≥ N ) ≥ 1 -θ.
Assume now that Player 1 uses a calibrated strategy to predict the sequences of s n (this is game is in full monitoring), then he knows that asymptotically s n (l) is closer to µ(l) than to any µ(k) (as soon as the frequency of l is big enough), therefore it is δ-close to µ(l). Lemma 2.7 implies that µ n (l) is asymptotically close to s n (l) and therefore 2δ-close to µ(l).

Proof of Theorem 2.6: Let the families {x(l) ∈ ∆(I), µ(l) ∈ ∆(S) I , l ∈ L} and η, δ > 0 be given by Assumption 1 for a fixed ε > 0.

Let Γ ′ be the auxiliary repeated game where, at stage n, Player 1 (resp. Player 2) chooses l n ∈ L (resp. µ n ∈ ∆(S) I ). Given these choices, i n (resp. s n ) is drawn accordingly to x η (l n ) (resp. µ in n ). By Lemma 2.7, for every θ > 0, there exists N 1 ∈ N such that for every l ∈ L:

P σ,τ (∀m ≥ n, s n (l) -µ n (l) ≤ θ| |N n (l)| ≥ N 1 ) ≥ 1 -θ. (12) 
Let σ be a calibrated strategy associated to ( s n ) n∈N in Γ ′ . For every θ > 0, there exists N 2 ∈ N such that with P σ,τ -probability greater than 1θ:

∀n ≥ N 2 , ∀l, k ∈ L, |N n (l)| n s n (l) -µ(l) 2 -s n (l) -µ(k) 2 ≤ θ. ( 13 
)
Since {µ(k), k ∈ L} is a δ-grid of ∆(S) I , for every n ∈ N and l ∈ L, there exists k ∈ L such that s n (l)µ(k) ≤ δ. Therefore, combining equation ( 12) and ( 13), for every θ > 0 there exists N 3 ∈ N such that:

P σ,τ ∀n ≥ N 3 , ∀l ∈ L, |N n (l)| n µ n (l) -µ(l) 2 -δ 2 ≤ θ, ≥ 1-θ. ( 14 
)
For every stage of type l ∈ L, i n is drawn accordingly to x η (l) and by definition x η (l)x(l) ≤ η. Therefore Hoeffding-Azuma's inequality implies that, for every θ > 0 there exists N 4 ∈ N such that:

P σ,τ ∀n ≥ N 4 , ∀l ∈ L, |N n (l)| n ı n (l) -x(l) -η ≤ θ, ≥ 1 -θ. (15) 
Combining equation ( 14), (15) and using Assumption 1, for every θ > 0, there exists N ∈ N such that for every strategy τ of Player 2:

P σ,τ ∀n ≥ N, ∀l ∈ L, |N n (l)| n R n (l) -ε ≤ θ, ≥ 1 -θ, (16) 
and σ is (L, ε)-internally consistent.

Remark 2.8 Lugosi, Mannor and Stoltz [START_REF] Lugosi | Strategies for prediction under imperfect monitoring[END_REF] provided an algorithm that constructs, by block of size m ∈ N, a strategy that has no external regret. We can describe it as follows. Play at every stage of the k-th block B k according to the same probability x k ∈ ∆(I). Then compute (using Lemma 2.7) an estimator of the average flag on this bloc and denote it by µ k . Knowing this flag, compute the average regret accumulated on this specific block and aggregate it to the previous regret in order to estimate the average regret from the beginning of the game. Decide next what action is going to be played on the following block according to a classical exponential weight algorithm. With a fine tuning of m ∈ N (and η > 0), the external regret of this strategy converges to zero at the rate O n -1/5 (the optimal rate is known to be n -1/3 ).

Instead of trying to compute (or at least approximate) the sequence of payoffs from the sequence of signals, our algorithm consider an abstract auxiliary game defined on the signal space (i.e. on the relevant information, the observations). We define payoffs in this abstract game in order to transform it into a game with full monitoring: the action set of Player 2 are flags, that are (almost) observed by Player 1.

The strategy constructed is based on δ-calibration and Hoeffding-Azuma's inequality, therefore one can show that:

E σ,τ sup l∈L |N n (l)| n R n (l) -ε ≤ O 1 √ n .
So given ε > 0, one can construct a strategy such that the internal regret converges quickly to ε, but maybe very slowly to zero (because the constants depend, once again, drastically on ε J ).

Remark 2.9 Since s n converges to µ n , the regret can be defined in terms of observed empirical flags instead of unobserved average flag. For the same reason, x(l) can be used to define regret.

On the strategy space

One might object that behavioral strategies of Players 1 are defined as mappings from the set of past histories H 1 = n∈N (I × S) n into ∆(I) while in Definition 2.3 (and Theorem 2.6) strategies considered are defined as mappings from n∈N (I × S × L) n into ∆(L), with the specification that given l n ∈ L, the law of i n is x(l n ) -for a fixed family {x(l), l ∈ L}. Hence, they can be defined as mappings from n∈N (X × I × S) n into ∆(X) (where X = ∆(I) and ∆(X) is embedded with the star-weak topology) and thus are behavioral strategies in the game where Player 1's action set is X and he receives at each stage a signal in I × S. Therefore, they are equivalent to (i.e., following Mertens Sorin and Zamir [START_REF] Mertens | Repeated Games CORE discussion paper[END_REF], Theorem 1.8 p. 55, generate the same probability on the set of plays as) mixed strategies, which are mixtures of pure strategies, i.e. mappings from n∈N (X × I × S) n into X. These latter are equivalent to applications from n∈N (I × S) n into X. Indeed, consider for example σ : n∈N (X × T ) n → X and define σ : n∈N T n → X recursively by σ(∅) = σ(∅) and σ (t 1 , . . . , t n ) = σ ( σ(∅), t 0 , . . . , σ(t 0 , . . . , t n-1 ), t n ) .

Finally, they are, in the game where Player 1's action set is I and he receives at each stage a signal in S, mixtures of behavioral strategies -also called general strategies -so are equivalent to behavioral strategies.

In conclusion, given a strategy defined as in Definition 2.3, there exists a behaviorial strategy that generates the same probability on the set of plays (for every strategy τ of Player 2).

In these general strategies, Player 1 uses two types of signals: the signals generated by the game, i.e. the sequence (i n , s n ) n∈N and some private signals generated by his own strategy, i.e. the sequences of l n . We can compute internal regret in Theorem 2.6 not only because the choices of µ n and l n are independent given the past, but mainly because the choices of µ n and i n are independent, even when l n is known.

Back on payoff space

In the section we give simple condition on G that ensures it fulfills Assumption 1. We also extend the framework to the so-called compact case. Finally, we prove that an internally consistent strategy (in a sense to be specified) is also externally consistent. Proof: Since {G(x, •), x ∈ ∆(I)} is equicontinuous and ∆(S) I compact, for every ε > 0, there exists δ > 0 such that:

The worst case fulfills Assumption 1

∀x ∈ ∆(I), ∀µ, µ ′ ∈ ∆(S) I , µ -µ ′ ≤ 2δ ⇒ G(x, µ) -G(x, µ ′ ) ≤ ε 2 .
Let {µ(l), l ∈ L} be a finite δ-grid of ∆(S) I and for every l ∈ L, x(l) ∈ BR(µ(l)) so that G(x(l), µ(l)) = max z∈∆(I) G(z, µ(l)). Since G(x(l), •) is continuous, there exists η(l) > 0 such that:

x -x(l) ≤ η(l) ⇒ |G(x, µ(l)) -G(x(l), µ(l))| ≤ ε/2.
Define η = min l∈L η(l) and let x ∈ ∆(I), µ ∈ ∆(S) I and l ∈ L such that xx(l) ≤ η and µµ(l) ≤ δ, then:

G(x, µ) ≥ G(x, µ(l)) - ε 2 ≥ G(x(l), µ(l)) -ε = max z∈∆(I)
G(z, µ(l))ε,

and x ∈ BR ε (µ).
This proposition implies that the evaluation function used by Rustichini fulfills Assumption 1 (see also Lugosi,Mannor and Stoltz [19], Lemma 3.1 and Proposition A.1). Before proving that, we introduce S, the range of s, which is a closed convex subset of ∆(S) I , and Π S (•) the projection onto it. 

W (x, µ) = inf y∈s -1 (µ) ρ(x, y) if µ ∈ S W (x, Π S (µ)) otherwise.
Then W fulfills Assumption 1.

Proof: We extend s linearly to R J by s(y) = j∈J y(j)s(j) where y = (y(j)) j∈J . Therefore (Aubin and Frankowska [START_REF] Aubin | Set-valued Analysis[END_REF], Theorem 2.2.1, p. 57) the multivalued application s -1 : S ⇉ ∆(J) I is λ-Lipschitz, and since Π S is 1-Lipschitz (because S is convex), W (x, •) is also λ-Lipschitz, for every x ∈ ∆(I). Therefore, {G(x, •), x ∈ ∆(I)} is equicontinuous. For every µ ∈ ∆(S) I , W (•, µ) is r-Lipschitz (where r = ρ , see e.g. Lugosi, Mannor and Stoltz [START_REF] Lugosi | Strategies for prediction under imperfect monitoring[END_REF]), therefore continuous. Hence, by Proposition 3.1, W fulfills Assumption 1.

Compact case

Assumption 1 does not require that Player 1 faces only one opponent, nor that his opponents have only a finite set of actions. As long as G is regular then Player 1 has a (L, ε)-internally consistent strategy, for every ε > 0. We consider in this section a particular framework, referred as the compact case (as mentioned in section 1). Player 1's action set is still denoted by I, but we now assume that the action set of Player 2 is [-1, 1] I . The payoff mapping ρ from ∆(I) × [-1, 1] I to R is simply defined by ρ(x, U ) = x, U . Let s be a multivalued application from [-1, 1] I to ∆(S) I . Given the choices of i and U , Player 1 does not observe U but receives a signal s ∈ S, whose law is the i-th component of µ which belongs to s(U ). If s(U ) is not a singleton then we can assume either that µ is chosen by Nature (a third player) or by Player 2.

A multivalued application s is closed-convex if λs(x) + (1λ)s(z) ⊂ s(λx + (1-λ)z) and its graph is closed and its inverse is defined by s

-1 (µ) = {U ∈ [-1, 1] I , µ ∈ s(U )}. It is clear that if s is closed-convex then s -1 is also closed-convex.
Proposition 3.3 Define the worst case mapping as in Corollary 3.2. If s is closed-convex and its range is a polytope (the convex hull of a finite number of points), then W fulfills Assumption 1.

Proof: We follow Aubin et Frankowska [START_REF] Aubin | Set-valued Analysis[END_REF]: let µ 0 be in S the range of s, U 0 be in s -1 (µ 0 ) and g be the mapping defined by:

g : S → R µ → g(µ) = inf U ∈s -1 (µ) U -U 0 = d U 0 , s -1 (µ) .
Since s is convex, so is s -1 (in the multivalued sense) and g (in the univalued sense). The sections {µ|g(µ) ≤ λ} are closed (see Aubin and Frankowska [START_REF] Aubin | Set-valued Analysis[END_REF], Lemma 2.2.3 p. 59) so g is lower semi-continuous. Since the domain of g is a polytope, g is also upper semi-continuous (see Rockafellar [START_REF] Rockafellar | Convex Analysis[END_REF], Theorem 10.2 p. 84). Therefore g is continuous over S and there exists δ(U 0 ) such that if µµ 0 ≤ δ(U 0 ) then d U 0 , s -1 (µ) ≤ ε.

Since s -1 (µ 0 ) is compact, for every ε > 0, there exists a finite set U such that s -1 (µ 0 ) ⊂ U ∈U B(U, ε). Define δ(µ 0 ) = inf U ∈U δ(U 0 ), then for every µ in ∆(S) I , µ-µ 0 ≤ δ(µ 0 ) implies that s -1 (µ 0 ) ⊂ s -1 (µ)+2εB (with B the unit ball). The graph of s -1 is compact so for every ε > 0 there exists 0

< δ ′ (µ 0 ) < δ(µ 0 ) such that if µ -µ 0 ≤ δ ′ (µ 0 ) then s -1 (µ) ⊂ s -1 (µ 0 ) + 2εB.
There exists a finite set M such that the compact set S is included in the union of open balls µ∈M B(µ, δ ′ (µ)/3). If we denote by δ = inf µ∈M δ ′ (µ)/3 then for every µ and µ

′ in S, if µ -µ ′ ≤ δ, there exists µ 1 ∈ M such that µ and µ ′ belongs to B(µ 1 , δ ′ (µ 1 )) hence s -1 (µ) ⊂ s -1 (µ 1 ) + 2εB ⊂ s -1 (µ ′ ) + 4εB.
Let µ and µ ′ in ∆(S) I such that µµ ′ ≤ δ. Then since S is a convex set Π S (µ) -Π S (µ ′ ) ≤ δ and for every x ∈ ∆(I)

W (x, µ) = inf U ∈s -1 (Π S (µ)) x, U ≥ inf U ∈s -1 (Π S (µ ′ ))
x, U -4ε = W (x, µ ′ ) -4ε.

Let x and x ′ in ∆(I) such that xx ′ ≤ ε then for all µ ∈ ∆(S)

I W (x, µ) = inf U ∈s -1 (Π S (µ)) x, U ≥ inf U ∈s -1 (Π S (µ)) x ′ , U -ε = W (x ′ , µ) -ε. Hence if x(l) is a ε-best response to µ(l), x -x(l) ≤ ε and µ -µ(l) ≤ δ then W (x, µ) ≥ W (x(l), µ) -ε ≥ W (x(l), µ(l)) -5ε ≥ sup z∈∆(I) W (z, µ(l)) -6ε ≥ sup z∈∆(I)
W (z, µ) -10ε, so x is a 10ε-best response to µ.

Remark 3.4 (On the assumptions over s) s is assumed to be multivalued since in the finite case, there might be two different probabilities y and y ′ in ∆(J) that generate the same outcome vector ρ(y) = (ρ(i, y)) i∈I = ρ(y ′ ) but two different flags s(y) and s(y ′ ).

It is also convex: if Player 2 can generate a flag µ by playing y ∈ ∆(J) and a flag µ ′ by playing y ′ , then a convex combination of y and y ′ should generate the same convex combination of flags. This assumption is specifically needed with repeated game: for example, Player 2 can play y on odd stages and y ′ on even stages. Player 1 must know that the average empirical flag can be generated by 1/2y + 1/2y ′ .

The fact that the range of s is a polytope (or at least that it is locally simplicial, see Rockafellar [START_REF] Rockafellar | Convex Analysis[END_REF] p. 84 for formal definitions and examples) is needed for the proof that W is continuous. It is obviously true in the finite dimension case since its graph is a polytope.

Regret in terms of actual payoffs

As Rustichini [START_REF] Rustichini | Minimizing regret: the general case[END_REF], we can define regret in term of unobserved average payoff. Definition 3.5 A strategy σ of Player 1 is (L, ε)-internally consistent with respect to the actual payoffs if for every l ∈ L:

lim sup n→+∞ |N n (l)| n sup x∈∆(I) [W (x, µ n (l)) -ρ n (l)] -ε ≤ 0, P σ,τ -as.
Proposition 3.6 For every ε > 0, there exist (L, ε)-internally consistent strategies with respect to the actual payoffs.

Proof: Consider the strategy σ given by Theorem 2.6 with the worst case mapping. By definition of W and using the independence of the choices of x(l) and µ n , one can easily show that asymptotically W (x(l), µ n (l)) ≤ ρ n (l). Therefore the strategy σ is also (L, ε)-consistent with respect to the actual payoffs. Now we can define 0-internally consistent strategies (see Lehrer and Solan [START_REF] Lehrer | Learning to play partially-specified equilibrium[END_REF] definition 10): Definition 3.7 A strategy σ of Player 1 is 0-internally consistent if for every ε > 0, there exists δ > 0 such that for every finite partition {P l ∈ L} of ∆(I) with diameter smaller than δ and every l ∈ L: [W (x, µ n (l))ρ n (l)]ε ≤ 0, P σ,τ -as, where N n (l) = {m ≤ n, x n ∈ P (l)} with x n the law (that might be chosen at random by Player 1) of i n given the past history and µ n (l) (resp. ı n (l)) is the average flag (resp. action of Player 1) on N n (l).

Proposition 3.8 There exist 0-internally consistent strategies with respect to the actual payoffs.

Proof: The proof relies uniquely on a classical doubling trick (see e.g. Sorin [START_REF] Sorin | Supergames[END_REF], Proposition 3.2 p. 56) recalled below. Denote by σ k the strategy given by Proposition 3.6 for ε k = 2 -(k+3) . Consider the strategy σ of player defined by block: on the first block of length N 1 , Player 1 plays accordingly to σ 1 , then on the second block of length N 2 accordingly to σ 2 , and so on. Formally, for n such that p-1 k=1 N k ≤ n ≤ p k=1 N k , σ(h n ) = σ p (h p n ) where h p n = (i m , l m , s m ) m∈{ p-1 k=1 N k ,...,n} is the partial history on the last block. Remark 2.8 implies that for every p ∈ N there exists M p ∈ N such that

E σ,τ sup l∈L |N n (l)| n R n (l) ≤ 1 2 p+1 .
Let (N k ) k∈N be a sequence such that k-1 p=1 N p = o(N k ) and M k+1 = o(N k ) (where u n = o(v n ) means that v n > 0 and lim n→∞ un vn = 0). With this definition, the m-th block is way longer than all the previous blocks, and longer than the time required by σ k+1 to be ε k+1 -consistent (in expectation). So the (maybe high) regret accumulated during the first M n stages of the n-th block is negligible compared to the small regret accumulated before (during the first (n -1)-blocks). After these M n stages, the regret (on the n-th block) is smaller than ε n and at the end of this block, the cumulative regret is very close to ε. Remark 3.9 The use of a doubling trick prevents us to easily find a bound on the rate of convergence of the regret. The proof of Proposition 3.8 requires that the sum of the regret on two different block is smaller than the average regret. This is why we restrict this definition to internally consistent strategies with respect to the actual payoffs. One may compare Definition 3.7 of 0-consistency to the Definition 1.2 of ε-calibrated strategies.

External and internal consistency

With full monitoring, by linearity of the payoff function, a strategy that is internally consistent is also externally consistent. This properties holds in partial monitoring, when we consider regret in terms of actual payoffs: Proposition 3.10 For every ε > 0 and {x(l), l ∈ L} of ∆(I), every (L, ε)internally consistent strategy with respect to the actual payoffs is ε-externally consistent with respect to the actual payoffs, i.e. P σ,τ -ps: 

Proof:

Let ε > 0, L ⊂ ∆(I) and σ be an (L, ε)-internally consistent strategy with respect to the actual payoffs. Since s -1 (•) is convex then, for every x ∈ ∆(I), the mapping µ → W (x, µ) is convex and so is the mapping µ → max x∈∆(I) W (x, µ). Hence Proposition 3.10 holds for the compact case under the assumption that σ is closed-convex. Note that the proof relies on the fact that W is convex and the actual payoffs are linear. It is clear that this result does not extend to any evaluation function. Indeed, consider the optimistic function defined by (for µ ∈ S):

O(x, µ) = sup y∈s -1 (µ) ρ(x, y), then the more information about  n that Player 1 gets, the less he evaluates his payoff. So an internally consistent strategy (i.e. a strategy that is consistent with a more precise knowledge on the moves of Player 2) might not be externally consistent.

Concluding remarks

In the full monitoring framework, many improvements have been made in the past years about calibration and regret (see for instance [START_REF] Lehrer | A wide range no-regret theorem[END_REF][START_REF] Sandroni | Calibration with many checking rules[END_REF][START_REF] Vovk | Non-asymptotic calibration and resolution[END_REF]). Here, we aimed to clarify the links between the original notions of approachability, internal regret and calibration in order to extend applications (in particular, to get rid of the finiteness of J), to define the internal regret with signals as calibration over an appropriate space and to give a proof derived from no-internal regret in full monitoring, itself derived from the approachability of an orthant in this space.

Example 2 . 1 (

 21 Label efficient prediction) Consider the following game (Example 6.4 in Cesa-Bianchi and Lugosi [5]). Nature chooses an outcome G or B and Player 1 can either observe the actual outcome (action o) or choose to not observe it and to pick a label g or b. If he chooses the right label, his payoff is 1 and otherwise 0. Payoffs and laws of signals received by Player 1 can be resumed by the following matrices (where a, b and c are three different probabilities over a finite set S). Action G, whose best response is g, generates the flag (a, c, c) and action B, whose best response is b, generates the flag (b

Proposition 3 . 1

 31 Let G : ∆(I) × ∆(S) I be such that for every µ ∈ ∆(S) I , G(•, µ) is continuous and the family {G(x, •), x ∈ ∆(I)} is equicontinuous.Then G fulfills Assumption 1.

Corollary 3 . 2

 32 Define W : ∆(I) × ∆(S) I → R by:

W

  (x, µ n )ρ n ≤ ε.

W

  max x∈∆(I) W (x, µ n )ρ n ≤ l∈L |N n (l)| n max x∈∆(I) W (x, µ n (l))ρ n (l) . (x, µ n )ρ n ≤ lim sup n→+∞ l∈L |N n (l)| n ε ≤ εand so σ is ε-externally consistent.

  Consider a two-person repeated game in discrete time where, at stage n ∈ N, Player 1 chooses i n ∈ I as above and Player 2 chooses a vectorU n ∈ [-1, 1] c (with c = |I|). The associated payoff is U in n , the i n -th coordinate of U n .The internal regret of the stage is the

		approach-
	able by Player 1 if and only if:	
	P 2 (y) ∩ C = ∅, ∀y ∈ ∆(J).	(5)
	In particular, a closed convex set C is either approachable by Player 1, or
	excludable by Player 2.	
	Remark 1.9 Corollary 1.8 implies that there are (at least) two different
	ways to prove that a convex set is approachable. The first one, called direct
	proof, consists in proving that C is a B-set while the second one, called
	undirect proof, consists in proving that C is not excludable by Player 2, which
	reduces to find, for every y ∈ ∆(J), some x ∈ ∆(I) such that ρ(x, y) ∈ C.
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