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Numerial omputation of theFaradai impedane ofinlaid mirodisk eletrodesusing a �nite element methodwith anisotropi mesh adaptationR. Mihel1,⋆, C. Montella1, C. Verdier2, J.-P. Diard1(1) Laboratoire d'Életrohimie et de Physiohimie des Matériaux et Interfaes, UMR 5631CNRS+Grenoble-INP+UJF, Bât. PHELMA, 1130 Rue de la Pisine, B.P. 75, Domaine Uni-versitaire, 38402 Saint Martin d'Hères, Cedex, Frane.(2) Laboratoire de Spetrométrie Physique, UMR 5588 CNRS-UJF, Domaine Universitaire, 140Avenue de la Physique, 38402 Saint Martin d'Hères, Frane.
⋆ orresponding author.Tel.: + 33-4-76826547; fax: + 33-4-76826630e-mail: Rihard.Mihel�lepmi.grenoble-inp.frAbstratThe Faradai impedane of a mirodisk eletrode inlaid in an insulating sur-fae is revisited by numerial omputation using a �nite element method (FEM)with anisotropi mesh adaptation. New features of the numerial results, as om-pared to previous works, are analyzed. A �rst attrative feature is that the di�usionimpedane relative to a mirodisk eletrode, evaluated at the equilibrium potentialof the eletrode, depends both on eletron-transfer and mass-transport kinetis, inontrast with the usual behaviour of uniformly aessible eletrodes. Next, the do-main of validity of the Fleishmann and Pons semi-analytial formulation of di�usionimpedane is determined. Finally, the harateristi of impedane graphs, whihare the di�usion resistane, the harateristi frequeny at the apex of the Nyquistdiagram and the imaginary part of the di�usion impedane at this apex, are studiedas funtions of a dimensionless parameter that omparing the standard rate onstantof eletron transfer to the miroeletrode di�usion onstant. Closed form approxi-mations are proposed for all quantities in order to help the analysis of experimentaldata.Keyword : Impedane, Miroeletrode, Mirodisk, Simulation, Finite element method,Anisotropi mesh adaptation.
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1 IntrodutionDespite the large literature dediated to the theory of eletrohemial impedane spe-trosopy (EIS) [1�3℄ on the one hand and the theory of ultramiroeletrodes (UMEs) [4,5℄with appliation to sanning eletrohemial mirosopy [6℄ on the other hand, only a fewpapers have dealt with the theoretial derivation of the impedane of a mirodisk ele-trode inlaid in an insulating surfae. The analysis presented by Fleishmann and Pons [7℄opened up the use of miroeletrodes to a impedane measurements. They alulatedthe real and imaginary parts of the di�usion impedane from Bessel's funtion integrals.When ahieving this work, the numerial evaluation of Fleishmann and Pons formulaewas not an easy task. In order to make the impedane alulation easier, they presentedtheir numerial data in the form of tabulated funtions. Some additional information isavailable from the reent work by Navarro-Laboulais et al. [8℄. These authors derivedthe theoretial formulation of the di�usion resistane that is the low-frequeny limit ofthe di�usion impedane. They evaluated numerially the harateristi dimensionless fre-queny at the apex of the Nyquist impedane graph. An algorithm for alulation ofthe mirodisk impedane was outlined by these authors for implementation in omplexnon-linear least-squares �tting (CNLS-Fit) programs.An alternative approah for omputing the impedane of mirodisk eletrodes is basedon �nite element analysis. The pioneering work on this topi was that of Ferrigno andGirault [9℄, whih foused on the axisymmetri reessed mirodisk geometry. As a limit,the inlaid disk eletrode was reovered when the reess depth tends towards zero. Arelatively good (qualitative) agreement was observed with the semi-analytial formula-tion of Fleishmann and Pons. However, this alulation was limited to the reessedmirodisk geometry to avoid the presene of a singularity in the neighbourhood of theeletrode edge where the boundary ondition hanges from the Dirihlet type (uniformonentration perturbation) on the disk to the homogeneous Neumann type (zero �ux)on the insulator (see [10℄ for analysis of this kind of loal singularities). The singularityrefers to the onentration perturbation �eld whih is not twie di�erentiable. Gabrielli2



et al. [11,12℄ irumvented the above problem in reent artiles relative to numerial sim-ulation of the eletrohemial impedane of an inlaid mirodisk eletrode using COMSOLMultiphysis (formerly FEMLAB) software. These authors investigated the in�uene ofthe disk radius and the total eletrode radius (eletroative disk + insulating sheath)on the impedane diagram. Their theoretial preditions were ompared to experimen-tal data olleted from a 10 µm diameter Pt mirodisk immersed in a 10 mM K3Fe(CN)6+ 10 mM K4Fe(CN)6 + 0.5 M KCl aqueous solution. The impedane was measuredat the equilibrium potential of Pt eletrode. Very good agreement was found for theimpedane diagram simulated numerially using Fleishmann and Pons equations, as wellas with the simulated FEM diagram. As disussed by Gabrielli et al. [11℄, Ferrigno andGirault [9℄ used a Dirihlet boundary ondition at the disk/eletrolyte interfae (with theperturbation of interfaial onentration of eletroative speies being diretly ontrolledby the eletrode potential perturbation), while Fleishmann and Pons [7℄ used a uniformnon-homogeneous Neumann boundary ondition (i.e. the distribution of the di�usional�ux perturbation is assumed to be uniform over the disk surfae). The more rigoroustreatment proposed by Gabrielli et al. [11℄ makes use of the Fourier-Robin boundary on-dition that is the linearized formulation with respet to the eletrode potential of theButler-Volmer urrent-potential harateristi.The aim of this work is an attempt to re�ne the numerial simulation of the impedane ofinlaid mirodisk eletrodes using a �nite element method (FEM) with anisotropi meshadaptation. In this artile, the omputation proedure is employed for modeling theFaradai impedane of mirodisk eletrodes at the equilibrium potential.The results presented here are foused on the harateristi quantities available fromimpedane graphs, whih are the di�usion resistane, the harateristi frequeny observedat the apex of the Nyquist diagram, and the imaginary part of the impedane measuredat this apex. Of ourse, the whole impedane diagram will be of major importane for itsimplementation in CNLS-Fit programs. However, the three quantities mentioned aboveare su�ient to ompare the auray of the semi-analytial (Fleishmann and Pons) andnumerial (FEM) proedures for omputing the impedane of mirodisk eletrodes.3



First, the theory of mirodisk eletrodes is detailed in Setion 2. The numerial method,inluding both the mesh adaptation strategy and some aspets of omputer implementa-tion, is presented in Setion 3. Next, the in�uene of omputational domain size on theauray of omputed di�usion impedane is investigated in Setion 4. The validity ofFleishmann and Pons formulae is heked in Setion 5 by omparison with adaptativeFEM omputations. Finally, in Setion 6, the harateristi elements from the di�usionimpedane graph are analyzed with respet to the dimensionless number that omparesthe standard rate onstant of eletron transfer to the di�usion onstant of miroeletrodes.
2 Theory2.1 GeometryWe onsider a mirodisk eletrode inlaid in an insulating surfae. The mirodisk radiusand the total eletrode radius (eletroative disk + insulating sheath) are respetivelydenoted by re and rmax. The geometry of the devie is axisymmetri, so the alulationdomain Ω is redued to a 2-D meridian setion of the domain oupied by the eletrolytisolution. This domain is skethed in Fig. 1 where (r, z) denote the usual ylindrialoordinates. Its boundary Γ deomposes into Γs, the symmetry axis; Γe, the eletrodesurfae; Γi, the insulator surfae; and Γb, the bulk eletrolyte. These parts of the boundary
Γ are de�ned as follows:

Γs = {(r, z) ; r = 0 and 0 < z < zmax} (1a)
Γe = {(r, z) ; 0 < r < re and z = 0} (1b)
Γi = {(r, z) ; re < r < rmax and z = 0} (1)
Γb = {(r, z) ; (r = rmax and 0 < z < zmax) or ( 0 ≤ r ≤ rmax and z = zmax)}(1d)

Γb represents the part of the eletrolyte whih is loated at a su�ient distane from themirodisk so that the in�uene of the eletrohemial reation (2) ourring at the disksurfae an be negleted on Γb. This assumption allows to impose the boundary ondition4



of semi-in�nite di�usion on Γb while, in a rigorous way, it should be imposed at an in�nitedistane from Γe. The validity of this assumption mainly depends on the ratio rmax/re aswill be disussed in Setion 4.2.2 Phenomenology: eletron-transfer and mass-transport pro-essesA one-step eletrohemial reation ours at the disk surfae and involves a n-eletron-transfer proess (usually n = 1) between two soluble speies (O and R) at the metal (e.g.Pt)/eletrolyte interfae Γe:
O + n e −→←− R (2)The reation rate is desribed by Butler-Volmer kinetis [3, 13℄ and, at the eletrode po-tential E, it is expressed in the usual way by:

v = k0 (exp (−αr ξ) cO − exp (αo ξ) cR ) with ξ = (n F/RT )
(

E − E0 ′

) on Γe (3)where cX denotes the onentration of speies X = O, R, and the eletron-transfer proessis haraterized by its standard rate onstant k0, the standard (formal) potential E0 ′ , andthe symmetry oe�ients αo and αr, with αo + αr = 1, the other symbols having theirusual meaning.Due to the quiesent solution and the presene of a suitable supporting eletrolyte, migra-tion and onvetion e�ets on mass-transport proesses an be negleted1, thus resultingin a pure di�usion proess suh that the �ux-vetor JX of speies X = O, R is given by:
JX = −DX ∇cX in Ω (4)where the di�usion oe�ient DX is a onstant in the presene of supporting eletrolyte,1Stritly speaking, mass-transport of eletroative speies by unfored onvetion should be taken intoonsideration using the model presented by Amatore et al. [14, 15℄. Nevertheless, these authors showedthat the ontribution of unfored onvetion an be negleted for an eletrode radius re < 25 µm. Thisondition is satis�ed in our work. 5



and ∇cX is the onentration gradient whose omponents in ylindrial oordinates arethe partial derivatives, ∂rcX and ∂zcX, of cX with respet to r and z respetively.2.3 Struture of the Faradai impedane2.3.1 Steady-state problemThe �rst step to analyse the Faradai impedane is to alulate the steady-state regimeorresponding to a stati value ES of the potential imposed to the eletrode. This regimeis haraterized by the stati onentrations cS,X, for speies X = O, R, whih are solutionsof the following boundary value problem where the subsript 'S' stands for steady-stateonditions:Given ES, �nd, for X = O, R, cS,X : (r, z) ∈ Ω→ cS,X(r, z) ∈ R suh that2:
−DX ∆cS,X = 0 in Ω (5a)

DX ∇cS,X · n = ǫX vS (ES, cS,O, cS,R) on Γe (5b)
DX ∇cS,X · n = 0 on Γi (5)

cS,X = cb

X
on Γb (5d)where ǫO = −1, ǫR = +1, cb

X
denotes the bulk onentration of speies X, n is the outwardunit vetor normal to Γ, and ∆ is the Laplae operator whose ylindrial expression isgiven by ∆cS,X = ∂2

rrcS,X + 1
r
∂rcS,X + ∂2

zzcS,X. The steady-state reation rate vS in Eq. (5b)omes from Eq. (3) where E and cX are respetively replaed by ES and cS,X. One theproblem (5) has been solved, the interfaial onentrations are known and the steady-stateFaradai urrent is obtained by integration along the radial diretion (r) as follows:
IS,f = −2π n F

∫

Γe

vS ds = −2π n F

∫ re

0

vS (ES, cS,O, cS,R) r dr (6)2The boundary ondition on Γs takes on the formulation, r DX ∇cS,X · n = 0, whih results fromthe weak (variational) formulation of the boundary value problem used in the FEM framework. Thisis straightforwardly satis�ed beause of r = 0 on Γs. Hene, it is not neessary to write this boundaryondition in Eq. (5). The same remark applies to the harmoni boundary value problem in Eq. (9).6



Note that the boundary ondition (5d) is only an approximation of the semi-in�nitedi�usion boundary ondition cS,X(r, z) −→ cb

X
when r or z −→ ∞.2.3.2 Harmoni problemIn the seond step, a small harmoni perturbation of the eletrode potential is imposed:

E(t) = ES + EH exp(jωt) (7)where j =
√
−1, ω = 2πf is the angular frequeny, f is the frequeny and EH is theamplitude of perturbation. Under the above onditions, the permanent regime resultingfrom the potential perturbation leads to the following onentration �elds:

cX(r, z, t; ω) = cS,X(r, z) + cH,X(r, z; ω) exp(jωt) (8)The spatial part of the onentration �elds perturbations cH,X(r, z; ω) are solutions ofthe following boundary value problem where the subsript 'H' stands for the permanentharmoni regime and where the notation '; ω' is used for highlighting the role of ω as aparameter:Given ES, EH and ω, �nd, for X = O, R, cH,X : (r, z) ∈ Ω→ cH,X(r, z) ∈ C suh that
j ω cH,X −DX ∆cH,X = 0 in Ω (9a)

DX ∇cH,X · n = ǫX vH (ES, cS,O, cS,R, EH, cH,O, cH,R) on Γe (9b)
DX ∇cH,X · n = 0 on Γi (9)

cH,X = 0 on Γb (9d)The harmoni perturbation of the reation rate vH results from linearization of the ex-pression in Eq. (3) around the stati polarization point (ES, cS,O, cS,R). Using Eq. (7) for
7



the potential and Eq. (8) for the onentration �elds, we obtain:
vH(ES, cS,O, cS,R, EH, cH,O, cH,R) = − k0

(

n F

R T
gS EH − exp (−αr ξS) cH,O + exp (αo ξS) cH,R

)(10)where
gS = αr exp (−αr ξS) cS,O + αo exp (αo ξS) cS,R and ξS = n F

(

ES −E0 ′

)

/(R T ) (11)2.3.3 Harmoni perturbation of Faradai urrent and Faradai impedaneOne the harmoni problem (9) is solved, the harmoni perturbations of interfaial onen-trations are known and the permanent perturbation IH,f of the Faradai urrent resultingfrom Eqs. (7) and (8) an be derived by integration along the radial diretion (r) asfollows:
IH,f = −2π n F

∫

Γe

vH ds = −2π n F

∫ re

0

vH (ES, cS,O, cS,R, EH, cH,O, cH,R) r dr (12)This expression is evaluated for eah value of the angular frequeny ω. The ratio IH,f/EHde�nes the Faradai admittane Yf(ω) as a funtion of ω. Its formulation results diretlyfrom Eq. (10). It an be derived as:
Yf(ω) = Gct + YdO(ω) + YdR(ω) (13a)

Gct = k0
n2 F 2

R T
2 π

∫ re

0

gS(r, 0) r dr (13b)
YdO(ω) = −k0

n F

EH

exp(−αr ξS) 2 π

∫ re

0

cH,O(r, 0; ω) r dr (13)
YdR(ω) = k0

n F

EH

exp(αo ξS) 2 π

∫ re

0

cH,R(r, 0; ω) r dr (13d)where Gct is the eletron-transfer ondutane, and YdX denotes the onentration admit-tane relative to the speies X = O, R. Of ourse, the Faradai impedane is obtainedas
Zf(ω) = 1/Yf(ω) (14)8



Note that the eletrohemial proess and its mathematial formulation involve the or-respondene EH −→ IH,f . So it is the admittane whih omes naturally from the aboveequations and not the impedane.
3 Numerial resolution3.1 Dimensionless formulation and limiting onditions3.1.1 Dimensionless numbersIt is easy to show that the solutions cS,O and cS,R of the steady-state boundary valueproblem (5) satisfy the relation:

DO cS,O(r, z) + DR cS,R(r, z) = DO cb

O
+ DR cb

R
for (r, z) ∈ Ω (15)This property makes it possible to redue the problem (5) to the determination of oneonentration �eld only. Arbitrarily, we hoose this onentration as cS,R and we use thedi�usion oe�ient and bulk onentration of speies R as the referene quantities for thede�nition of the dimensionless variables r⋆ = r/re, z⋆ = z/re, t⋆ = t DR/r2

e , c⋆
S,X = cS,X/cb

Rand c⋆
H,X = cH,X/cb

R
where supersript '⋆' indiates a dimensionless variable or operator.The dimensionless numbers resulting from this saling are:

Λ =
k0 re

DR

and u =
ω r2

e

DR

(16)3.1.2 In�uene of Λ: stati onditions
Λ ompares the standard rate onstant of eletron transfer to the di�usion onstant ofmiroeletrodes. It omes from the dimensionless form of the stati boundary ondition(5b) written for the speies X = R and ombined together with Eq. (15) in order to elim-inate cS,O. The resulting equation is expressed by the following Fourier-Robin boundary9



ondition written in dimensionless form:
∇

⋆c⋆
S,R
· n⋆ = Λ α(ξS)

[

c⋆
NS,R(ξS)− c⋆

S,R

] on Γ⋆
e (17a)with:

c⋆
NS,R(ξS) =

(

DO cb

O

DR cb

R

+ 1

)

1

1 + DO

DR
exp(ξS)

and α(ξS) = exp(αo ξS) +
DR

DO

exp(−αr ξS)(17b)where c⋆
NS,R(ξS) stands for the dimensionless stati interfaial onentration for Nernstiansystems.When Λ α(ξS) is very large, the Fourier-Robin boundary ondition (17a) leads to theDirihlet boundary ondition c⋆

S,R
= c⋆

NS,R(ξS) over the disk surfae Γe. In ontrast, atvery low values of Λ α(ξS), the Fourier-Robin boundary ondition leads to a uniform non-homogeneous Neumann boundary ondition, i.e. assuming a uniform perturbation �uxover the disk surfae, exept in a small neighbourhood of the eletrode edge.3.1.3 In�uene of Λ: harmoni onditionsWhen DO = DR, the perturbations of onentrations �elds satisfy cH,O(r, z; ω)+cH,R(r, z; ω) =

0 for (r, z) ∈ Ω, whih leads to the simpli�ed formulation of Eqs. (9b) and (10):
∇

⋆c⋆
H,R
· n⋆ = −Λ α(ξS)

[

c⋆
NH,R + c⋆

H,R

] on Γ⋆
e (18a)with:

c⋆
NH,R =

ξH

exp (−αr ξS) + exp (αo ξS)

gS

cb

R

(18b)where c⋆
NH,R stands for the dimensionless harmoni interfaial onentration perturbationfor Nernstian systems and ξH = n F EH

R T
. Note that gS, obtained from Eq. (11), is onstantover the eletrode surfae when the eletrode impedane is alulated at the equilibriumpotential. The situation would be muh more intriate for impedane alulations per-formed away from the equilibrium potential.10



So the system kinetis is still governed by Λ α(ξS) under harmoni onditions. Two lim-iting situations an be predited. When Λ α(ξS) is large, the harmoni perturbations ofonentration �elds tend to satisfy Dirihlet onditions at the disk/eletrolyte interfaelike in the work of Ferrigno and Girault [9℄. When Λ α(ξS) is small, the harmoni pertur-bations of di�usional �uxes present approximately uniform values over the disk surfae,and then, like in the work by Fleishmann and Pons [7℄, the Fourier-Robin boundaryondition (18a) an be replaed by a uniform Neumann ondition on Γe. Both limitingonditions will be numerially veri�ed in Setion 6.2.At the opposite, when DO 6= DR, no simpli�ation of harmoni equations is possible, soFEM omputations should be performed with two onentration perturbation �elds.In the present work, we use the same approah as Gabrielli et al. [12℄, i.e. the Fourier-Robin boundary ondition de�ned by Eq. (9b) without any approximation, exept thatthe steady-state potential of the eletrode is equal to its equilibrium potential, so ξS isgiven by the Nernst equation: ξS = ln(cb

O
/cb

R
), therefore ξS = 0 when cb

O
= cb

R
.3.1.4 In�uene of uThe dimensionless angular frequeny u omes diretly from the dimensionless form of Eq.(9a):

j u c⋆
H,X
− DX

DR

∆⋆c⋆
H,X

= 0 in Ω⋆ (19)It ompares the angular frequeny ω with the reiproal of di�usion time onstant r2
e/DR.When u is very large, it follows from the partial di�erential equation (19) that the on-entration perturbations are vanishing in the eletrolyte, exept in the immediate neigh-bourhood of the disk surfae (due to the boundary ondition (18a)), so a boundary layerdevelops near Γ⋆

e at high frequenies. Conversely, at low frequenies, the onentration�elds perturbations extend from the interfae Γ⋆
e into the eletrolyte until they vanish on

Γ⋆
b.

11



3.2 Mesh adaptation strategySine the works of Nann and Heinze [16, 17℄ and Harriman et al. [18�20℄, it has be-ome widely aepted that, when performing simulations of eletrohemial proesses atmirodisk eletrodes, unstrutured meshes must be used if a su�iently aurate solu-tion is to be obtained within a reasonable omputing time. Adaptative �nite elementalgorithms have been proposed and used for solving the mass-transport equations per-taining to the mirodisk eletrode geometry under steady-state [18�21℄, as well as time-dependent [17, 22�24℄ onditions relative to the hronoamperometry, linear san voltam-metry and yli voltammetry methods. In the most reent artiles, the main key fator isthat the mesh re�nement is under the ontrol of an error estimator of the urrent [18�24℄.Shematially, a mesh adaptation strategy assoiates two main stages. The �rst stageonsists in the estimation of the error between the numerial approximation and theexat solution. The seond stage onsists in using this estimate to re�ne the mesh. Inall previous works, the authors used a spei� a posteriori estimation of the standardapproximation error (see [25℄ for further details) and re�ned the mesh by subdivision of theurrent elements. Using this strategy, the error estimator should depend on the problem tobe solved (i.e. mass-transport proess, reation mehanism and eletrohemial method).The mesh adaptation strategy used in this work is well doumented in the artile byFrey and Alauzet [26℄. This method is based on the ontrol of the interpolation error,whih allows to ontrol the approximation error and, hene, the auray of the numerialsolution (see the ontribution of Ciarlet [27℄ for a explanation of these onepts). Oneah mesh element, this interpolation error is loally bounded by a funtional whihdepends on the tensor of seond derivatives of the onentration perturbation (urvaturetensor) and on the geometry of the element. From the eigenvetors and eigenvaluesof this urvature tensor, omputed at eah vertex of the urrent mesh, it is possibleto generate a new mesh for whih the interpolation error is �xed to a spei�ed value,and is onstant over all elements and equidistributed in all diretions. This adaptationproess is performed by a omplete remeshing without any referene to the urrent mesh.12



Fundamentally, this adaptation method allows to generate anisotropi meshes presentinghighly strethed elements in arbitrary diretions. This property is very useful to apturethe behaviour of the onentration perturbations in the neighbourhood of the eletrodeedge (whih introdues a singularity at all frequenies), as well as lose to the mirodisksurfae (so-alled boundary layer) where the onentration perturbation is essentiallyloated in the high-frequeny range. The whole proedure is repeated at eah frequeny,and, in partiular the meshes, whih lead to the spei�ed interpolation error for twodistint frequenies, are distint. A great advantage of the above strategy is that themesh adaptation is of general purpose; it an be used irrespetive of the eletrohemialonditions: mass-transport proess, reation mehanism, ell geometry, eletrohemialmethod...An example of mesh generated by the anisotropi adaptation algorithm is presented inFig. 2. The enlarged views highlight the re�nement of the mesh near the singularityat the eletrode edge. In addition, due to the high-frequeny ondition used in Fig. 2,the �nal mesh ontains very strethed elements near the disk surfae ("dark zone" in the�gure). In this boundary layer, near the origin (r/re ≈ 0), the radial dimension of meshelements is 500 times larger than the axial dimension.3.3 Solvers, implementation and validationThe FEM used in this work has been implemented in FreeFem++ developed by Heht[28, 29℄, whih is a powerful high-level language speially dediated to weak formulationof boundary value problems for partial di�erential equations and to their approximationsby �nite element methods. Another partiularly attrative feature of FreeFem++ is the fatthat it provides a set of meshing tools allowing simple use of anisotropi mesh adaptation.Finite element disretization of the partial di�erential equations (9) is performed usingtriangular elements and approximation by ontinuous pieewise quadrati polynomial oneah triangle. This leads to a system of omplex linear equations, whih is solved by aGaussian elimination algorithm stabilized by partial pivoting strategy.13



In order for the omputation ost to remain reasonable, we also used the possibilityof oupling FreeFem++ with the Davis's high performing solver UMFPak [30, 31℄, theGoto's [32℄ and Whaley's [33℄ basi linear algebra subprograms (BLAS). The resultingomputational environment allowed us to ompute eah Nyquist diagram in about halfan hour on a Noona proessor running a 32-bits linux system. The whole omputation,arried out at ninety di�erent frequenies for eah impedane graph, requires a little morethan a thousand matrix fatorizations of order varying from 2,500 to 1,600,000. Furtherdetails of the omputation proedure an be found in Ref. [34℄.The validity of the above strategy has been heked by omparison of the omputed stationentration �elds to the losed form solution derived by Crank and Furzeland [35℄ forNerstian systems (i.e. setting Λ → ∞ with our notation). A very good agreement hasbeen observed. In addition, Fig. 3 learly shows that the resulting approximation erroron the onentration �eld is ontrolled by the interpolation error imposed by the meshadaptation algorithm.
4 Convergene vs. omputational domain size4.1 Nyquist plotAlthough it is the admittane that omes diretly from Eqs. (13), as indiated above,the general use in eletrohemistry is to plot impedane diagrams using the Nyquistrepresentation, −Im(Zf) vs Re(Zf), with orthonormal axes. In addition, the in�ueneof ohmi drop and double layer apaitane being negleted in this work, the eletrodeimpedane redues to the Faradai impedane:

Zf(u) = Rct + Zd(u) (20)
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whih is the sum of the di�usion impedane of soluble speies Zd(u) and the eletron-transfer resistane:
Rct = lim

u−→∞

Zf(u) =
1

Gct

(21)where Gct is given by Eq. (13b). The low-frequeny limit of Faradai impedane is theso-alled polarization resistane Rp de�ned as:
Rp = lim

u−→0
Zf(u) = Rct + Rd (22)with the di�usion resistane being the limit:

Rd = lim
u−→0

Zd(u) (23)Some Faradai impedane graphs have been plotted in Fig. 4 for typial values of eletro-hemial parameters and di�erent values of omputational domain size, i.e. for rmax/reranging from 4 to 512. It should be notied that, although all omputations were per-formed with dimensionless numbers (ξS, ξH, Λ, u...) the impedane graphs and relatedquantities are presented here with their usual units in order to keep in mind the order ofmagnitude of the impedane of mirodisk eletrodes.The higher rmax/re, the larger the frequeny domain where the 'true' di�usion impedanerelative to an inlaid mirodisk eletrode is omputed with high auray.An enlarged view of the low-frequeny domain shows that the shape of the diagram,omputed at small rmax/re values, is quite di�erent from that predited by Fleishmannand Pons [7℄. Indeed, the low frequeny tail of the impedane graph orresponds to asmall 'semiirle', rather than a straight line with slope (-1). This is in perfet agreementwith the previous simulation by Gabrielli et al. [12℄. However, a straight line with slope(-1) is reovered for large omputational domains, typially at rmax/re = 512.This an be quanti�ed by investigating the onvergene error of the Faradai impedane
15



with respet to the omputation domain size. This error and its norm are de�ned by:
‖εf,rmax/re

‖
2

=

√

∑

k

|εf,rmax/re
(uk)|2 with εf,rmax/re

(u) =
Zf,512(u)− Zf,rmax/re(u)

Zf,4(u)− Zf,rmax/re(u)
(24)Here, Zf,rmax/re(u) denotes the Faradai impedane omputed by FEM from Eqs (13) and(14) at the given value of rmax/re. The uk's are the disrete values of dimensionlessfrequeny in the di�erent ranges de�ned in Fig. 5 where the deimal logarithm of theerror norm has been plotted vs rmax/re for the same parameters values than in Fig 4. Thefour urves were obtained for impedane alulation arried out over di�erent frequenyranges. For example, at f ≥ 10−2 Hz, that is u ≥ 1.25× 10−2 in dimensionless notation,onvergene is reahed (i.e. a plateau is observed) as soon as rmax/re ≥ 40. In ontrast,

rmax/re ≥ 200 is required to ompute aurately the impedane at frequeny down to
10−4 Hz. Finally, onvergene is not yet reahed, even at rmax/re = 256, when the wholefrequeny domain (u ≥ 0) is taken into onsideration. Note, however, that frequeniessuh that f ≤ 10−4 Hz are well beyond the range of experimentally aessible frequeniesin eletrohemistry, so the omputational domain size rmax/re = 128 will be used hereafterto plot impedane graphs.4.2 Polarization resistaneWe use the ratio (

Rp,rmax/re −Rp,4

)

/ (Rp,512 −Rp,4) to de�ne the normalized error on thepolarization resistane. Rp,rmax/re is omputed, at the given value of rmax/re, from Eqs.(13) and (14) after setting ω = 0 (i.e. u = 0) in the harmoni boundary value problem(9). The normalized polarization resistane error has been plotted in Fig. 6 with respetto the omputational domain size. An attrative feature is that onvergene urves arethe same for k0 ranging from 10−5 to 10 cm s−1. The seond feature is that onvergeneof Rp is reahed within 5� relative error, typially for rmax/re ≥ 300.
16



5 Validity domain for Fleishmann and Pons (FP) for-mulaeFP formulae, reviewed in the Appendix A, are the referenes for omputation of theimpedane of mirodisk eletrodes. In previous works of Ferrigno and Girault [9℄, as wellas Gabrielli et al. [12℄, good agreement with FP formulae was reported by the authors.Beause of ontrolled omputation auray in this work, we are now able to predit thevalidity domain of suh formulae in terms of the parameter Λ de�ned in Eq. (16).It should be noted that the FP formulae were derived at the equilibrium potential assum-ing that DO = DR = D and cb

O
= cb

R
= cb. The same assumptions are used here in FEMomputations under harmoni onditions, so that ξS = 0 is satis�ed in Eq. (18).We ompare Zd,FP(u), omputed from the FP formulae (Eqs.(A.1) and (A.2) in the Ap-pendix A), to Zd,rmax/re(u), omputed by self-adaptative FEM, thanks to the followingmeasure of relative deviation:

‖εd,rmax/re
‖

2
=

√

∑

k

|εd,rmax/re
(uk)|2 with εd,rmax/re

(u) =
Zd,FP(u)− Zd,rmax/re(u)

Zd,FP(u)
(25)The relative deviation has been plotted in Fig. 7 at di�erent values of the standard rateonstant of eletron-transfer proess. Convergene is reahed for all k0 values at inreasingsize of omputational domain. In partiular, the relative error onverges very rapidly inthe frequeny domain f ≥ 10−3 Hz, i.e. at u ≥ 1.25× 10−3.Now, let us look at the plateau values. The relative error attains the asymptoti value

4× 10−3 when k0 ≤ 10−5 cm s−1, whih indiates that the di�usion impedanes omputedfrom the FP formulae and adaptative FEM are very lose to eah others due to sluggisheletron transfer kinetis at the mirodisk surfae. As soon as k0 inreases, the relativedeviation also inreases up to a onstant value (not represented in the �gure) at k0 ≥

1 cm s−1. Indeed, the deviation between the two sets of impedane values is maximum forvery fast harge-transfer kinetis. Hene, the FP formulae should not be employed to �t17



experimental impedane data measured from Nernstian systems.The di�usion impedane omputed using the self-adaptative FEM is also ompared tothe preditions from Fleishmann and Pons equations in Fig. 8 and 9 where the relativedeviations of real and imaginary parts of the di�usion impedane have been plotted vs thedeimal logarithm of frequeny. For the intermediate value, k0 = 10−2 cm s−1, in Fig. 8,the deviation of Im(Zd) presents a bell-shaped urve, the maximum deviation (in absolutevalue) being lose to 8 % near the harateristi frequeny of the impedane diagram. Therelative deviation of Re(Zd) shows a more omplex feature. The larger deviation, typially
5 % in absolute value, is observed in the low-frequeny range, while the two omputationproedures are in good agreement with eah other in the high-frequeny domain (Warburgimpedane).In ontrast, the relative deviation beomes very small due sluggish eletron transfer (typi-ally at k0 = 10−6 cm s−1). Sattering of numerial data in Fig. 9 is due to omputationalnoise whih is of the same order of magnitude than the relative deviation between the twoomputed impedanes.
6 Charateristi elements from the di�usion impedanegraphs6.1 De�nitionsThe di�usion impedane (see Fig. 4) an be haraterized by the di�usion resistane thatis the low-frequeny limit of Zd in Eq. (23), the angular frequeny ωc orresponding tothe apex on the Nyquist diagram, and the imaginary part of Zd measured at this apex.The following dimensionless quantities will be used in what follows. First, R⋆

d denotes thedimensionless di�usion resistane:
R⋆

d =
n2 F 2 π re D cb

R T
Rd (26)18



where it is assumed that DO = DR = D and cb

O
= cb

R
= cb. Next, uc is the harateristivalue of the dimensionless angular frequeny at the apex of the Nyquist plot:

uc = ωc

r2
e

D
(27)Finally, the dimensionless value of minus the imaginary part of Zd measured at the apexis:

ImZ⋆
c = −n2 F 2 π re D cb

R T
ImZc (28)6.2 In�uene of Λ; approximation formulaeWe now look for an approximation formula between eah harateristi element and Λ.The numerial proedure is as follows. Given any set of parameters values (re, k0, D,

cb...), �rst, R⋆
ct and R⋆

p are omputed using adaptative FEM under stati onditions, andharmoni onditions with u = 0, respetively. Next, both uc and ImZ⋆
c are obtained byoupling adaptative FEM omputations with the aelerated golden setion algorithm [36℄and a smoothing proedure based on a paraboli �tting near the apex. Finally, R⋆

d, ImZ⋆
cand uc are plotted as dots in Fig. 10 vs. the deimal logarithm of Λ = k0 re

D
. The ratio

ImZ⋆
c /R

⋆
d is also plotted in this �gure.The four urves present interesting features not yet disussed in the eletrohemial liter-ature. First of all, the di�usion impedane relative to a mirodisk eletrode, evaluated atthe equilibrium potential of the eletrode, depends both on eletron-transfer and mass-transport kinetis, in ontrast with the usual behaviour of uniformly aessible eletrodes(see [3℄). Indeed, the di�usion resistane is a funtion of Λ = k0 re

D
. The same remarkapplies to the imaginary part of the di�usion impedane at the apex of the Nyquist graph.Note, however, that the hanges of R⋆

d and ImZ⋆
c vs log(Λ) are not the same, i.e. theratio ImZ⋆

c /R
⋆
d is not onstant, so the impedane loop is more depressed at large valuesof Λ. Finally, a frequeny shift an be predited on the impedane diagram by looking atthe hange of uc with respet to log(Λ) in Fig. 10.19



Two horizontal asymptotes pertaining to small and large values of Λ respetively, arelearly revealed in Fig. 10. First, onsidering very fast eletron-transfer kinetis (large
k0), and/or a very large disk radius, and/or a very small di�usion oe�ient, i.e. atvery large values of Λ, the di�usion impedane is the same as the one obtained from theDirihlet boundary ondition initially employed by Ferrigno and Girault [9℄. The limitingvalue for R⋆

d then is equal to π/2 (see [34℄).In ontrast, at very low values of Λ, due to a small k0 and/or a very small disk radius,and/or a very large di�usion oe�ient, the boundary ondition (18a) is asymptotiallythe same as the uniform non-homogeneous Neumann boundary ondition used by Fleis-hmann and Pons. This is learly indiated in Fig. 10 by the upper limits of R⋆
d, ImZ⋆

cand uc mathing quasi-exatly the numerial values R⋆
d = 16/(3 π) ≈ 1.698, ImZ⋆

c ≈ 0.395and uc ≈ 2.440 derived from the FP formulae in Appendix A.Beause of the asymptoti behaviours observed at small and large values of Λ, respetively,exponential funtions are well suited to �t the numerial data in Fig. 10. Setting λ =

log(Λ) for the sake of simpli�ation, and using a standard non-linear �tting proedure, thevariations of R⋆
d, ImZ⋆

c and uc with respet to λ an be �tted aurately by the followingfuntion (among di�erent possible �tting funtions):
f(λ) = a1 −

a2

[1 + b1 exp(−b2 λ)]b3
(29)where the onstants a1 and a2 are diretly obtained from the two horizontal asymptotes,while b1, b2 and b3 are adjustable parameters. Their best-�tted values are given in Table 1.The quality of the �t is illustrated by the solid lines plotted in Fig. 10, as well as the

χ2 values reported in Table 1. It may be notied that Eq. (29) is only a �representationmodel�, so the best-�tted numerial oe�ients have no partiular physial meaning.Looking at Fig. 10, it beomes very lear that the validity ondition for the FP formulaeis typially Λ ≤ 10−1, while the seond limiting behaviour orresponding to Nernstiansystem kinetis is typially observed for Λ ≥ 102.20



6.3 Appliation to experimental data analysisOf ourse, a CNLS-Fit program should be used for aurate evaluation of the di�usionoe�ient of eletroative speies from EIS data measured at a mirodisk eletrode. How-ever, a �rst evaluation of D is possible, from experimental values of Rct and Rd, as follows.Assuming that DO = DR = D and cb

O
= cb

R
= cb, the eletron�transfer resistane evaluatedat the equilibrium potential of a mirodisk eletrode is given by [7℄:

Rct =
R T

n2 F 2 π r2
e k0 cb

(30)Using Eqs. (16), (26), (29) and (30), we obtain:
Rd

Rct

= Λ f(λ) (31)Given experimental values for the disk radius and the resistanes Rd and Rct, Eqs. (29)and (31), employed together with the relevant numerial oe�ients in the �rst entry ofTable 1, result in an impliit equation with respet to Λ = k0 re/D.This equation an be readily solved for k0/D, e.g. using the 'FindRoot' ommand ofMathematia [37℄ or the one-dimensional Root-Finding algorithm of the Gnu sienti�library [38℄, while the standard rate onstant of eletron transfer an be diretly obtainedfrom the eletron-transfer resistane in Eq. (30), so the di�usion oe�ient an be readilyevaluated.By way of illustration, let us onsider the EIS data olleted by Gabrielli et al. [12℄ froma 10 µm diameter Pt mirodisk immersed in a 10 mM K3Fe(CN)6 + 10 mM K4Fe(CN)6 +0.5 M KCl aqueous solution. The impedane was measured at the equilibrium potentialof Pt eletrode. The values, Rct ≈ 0.85 MΩ and Rd ≈ 4.15 MΩ, an be extrated fromthe impedane spetra. Using the above alulation proedure, we obtain k0 = 4.0 ×

10−2 cm s−1 and D = 6.7× 10−6 cm2 s−1. Suh values an be favorably ompared to thosevalues obtained by Gabrielli et al. using a CNLS-Fit program (Simplex algorithm), i.e.21



k0 = 3.6× 10−2 cm s−1 and D = 6.6× 10−6 cm2 s−1.
7 ConlusionsThe major points of this artile are the following.� A �nite element method with anisotropi mesh adaptation has been used for the�rst time to ompute eletrohemial impedane data, in the ase of a mirodiskeletrode inlaid in an insulating surfae.� The mesh adaptation strategy used in this work is of general purpose. It allows theuse of anisotropi meshes and provides a numerial solution with uniform auray(�xed by the user) over eah mesh element. This strategy an be employed irrespe-tive of the eletrohemial onditions. For example, the mesh adaptation strategyis used both for solving the steady-state boundary value problem and the harmoniboundary value problem.� The numerial method used in this work has been implemented in FreeFem++ whihis a powerful high-level language speially dediated to weak formulation of bound-ary value problems for partial di�erential equations and to their approximationsby �nite element methods. FreeFem++ provides a set of meshing tools allowing asimple use of anisotropi mesh adaptation and an be oupled with the Davis's highperforming solver UMFPak and speialized algebra library.� The size of the �nite element alulation domain is a ruial parameter for omputingthe Faradai impedane of mirodisk eletrodes. A large ratio of the total radius tothe disk radius, typially rmax/re ≥ 128, is required to attain high auray in thefrequeny range f ≥ 10−3 Hz.� We have shown that the di�usion impedane, omputed by self-adaptative FEM atthe equilibrium potential of the eletrode, depends on the dimensionless parameter22



k0 re/D. This behaviour strongly di�ers from that predited for uniformly aessibleeletrodes [3℄.� The impedane of a mirodisk eletrode depends, of ourse, on the boundary on-dition at the metal surfae. In this work, we used the Fourier-Robin boundary on-dition, whih is the linearized formulation of the Butler-Volmer urrent�potentialharateristi.� The validity of the semi-analytial formulation of Zd,FP(u), derived in the pioneeringwork by Fleishmann and Pons [7℄, has been disussed for impedane omputationsarried out at the equilibrium potential of the eletrode. From our �nite elementsimulations, we ame to the onlusion that the semi-analytial formulation is onlyvalid at low values of k0 re/D, typially at k0 re/D ≤ 10−1. In ontrast, at intermedi-ate or large values of k0 re/D, deviation of Zd from Fleishmann and Pons formulaewas predited. The maximum deviation is of the order of 8-15 % in terms of thedi�usion resistane, the harateristi frequeny at the apex of the Nyquist diagram,and the value of −Im(Zd) at this apex. A frequeny shift is also predited on theimpedane diagram, whih depends both on frequeny and the k0 re/D value.� The results presented here are essentially foused on the harateristi quantitiesavailable from impedane graphs, whih are the di�usion resistane, the harater-isti frequeny at the apex of the Nyquist impedane graph, and the imaginary partof the impedane measured at this apex. Eqs. (26)�(28) are the theoretial formu-lations for these quantities, with R⋆
d, ImZ⋆

c and uc being evaluated numerially byadaptative FEM.� The variations of R⋆
d, ImZ⋆

c and uc with respet to log(k0 re/D) have been �ttedaurately by the funtion in Eq. (29), employed together with the numerial oef-�ients in Table 1, in order to make the evaluation of suh harateristi quantitieseasier whatever the values of the eletrohemial system parameters.� We have shown that the above quantities an be used for the evaluation of the23
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A Faradai impedane derived from Fleishmann andPons formulaeIn the seminal work by Fleishmann and Pons [7℄ the impedane of a mirodisk eletrodewas alulated assuming that both oxidized and redued speies have the same di�usion26



oe�ient (DO = DR = D) and the same bulk onentration (cb

O
= cb

R
= cb). In ad-dition, Ohmi potential drop and double-layer e�ets were disregarded, so the eletrodeimpedane redues to the Faradai impedane. The major assumptions are, �rstly, thatthe impedane is alulated at the equilibrium potential of the eletrode, and, seondly,that the di�usion �ux perturbation is supposed uniform over the mirodisk surfae. Theresulting disontinuity in the boundary ondition, whih hanges from the uniform non-homogeneous Neumann boundary ondition (uniform �ux perturbation) on the mirodiskto the homogeneous Neumann boundary ondition (zero �ux) on the insulator, was takeninto aount thanks to the Weber-Shafheitlin integral [39℄, so-alled "disontinuous def-inite Bessel integrals" in Ref. [7℄.The eletron�transfer resistane relative to the eletrohemial reation in Eq. (2), eval-uated at the equilibrium potential of the disk eletrode with the same bulk onentrationof oxidized and redued speies in the eletrolyti solution, is given by Eq. (30). TheFaradai impedane relative to the eletrohemial reation in Eq. (2), an be written asthe sum of Rct and the di�usion impedane of soluble speies Zd(u) aording to Eq. (20).Starting from Fleishmann and Pons formulae [7℄, the real part (Re) and the imaginarypart (Im) of the di�usion impedane an be written respetively as:

Re(Zd,FP(u)) =
4 R T

n2 F 2 π re D cb

Φ4(u)√
u

(A.1a)and:
Im(Zd,FP(u)) = − 4 R T

n2 F 2 π re D cb

Φ5(u)√
u

(A.1b)with the funtions Φ4(u) and Φ5(u) being de�ned as the following integrals:
Φ4(u) =

∫

∞

0

[J1(x
√

u)
]2 cos(θ/2)

x (1 + x4)1/4
dx (A.2a)and:

Φ5(u) =

∫

∞

0

[J1(x
√

u)
]2 sin(θ/2)

x (1 + x4)1/4
dx (A.2b)27



where J1(y) is the Bessel funtion of the �rst kind and �rst order, with the real argument
y = x

√
u, and θ = arctan(1/x2).First, using a omputer algebra system like Mathematia [37℄, the low�frequeny be-haviour is readily obtained from the following limits:

lim
u−→0

Φ4(u)√
u

=

∫

∞

0

[J1(y)]2

y2
dy =

4

3 π
(A.3a)and:

lim
u−→0

Φ5(u)√
u

= 0 (A.3b)in agreement with the previous derivation by Navarro-Laboulais et al. [8℄. From Eqs.(A.1a), (A.2a) and (A.3a), we derive the di�usion resistane where the subsript 'FP'refers to Fleishmann and Pons:
Rd,FP =

16 R T

3 n2 F 2 π2 re D cb
(A.4)Next, the harateristi frequeny orresponding to the apex of the di�usion impedanegraph was given as uc,FP = 2.5 by Rotenberg et al. [40℄, while Navarro-Laboulais et al. [8℄alulated numerially uc,FP = 2.5119. The more aurate value, uc,FP = 2.440, is proposedin this work [34℄.Finally, minus the imaginary part of the di�usion impedane, alulated at the apex ofthe Nyquist diagram, satis�es (ImZc/Rd)FP

= 0.233 [40℄, therefore:
Im(Zd,FP(uc)) = − 0.395

R T

n2 F 2 π re D cb
(A.5)
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Figure 1 � Shemati representation of the �nite element alulation domain, with ylindrialsymmetry, and rmax/re = 4, for a mirodisk inlaid eletrode. Ω: �nite element alulationdomain orresponding to a meridian subsetion of the domain �lled by the eletrolyti solution;
Γe: interfae with the eletroni ondutor; Γs: axis of symmetry; Γi: interfae with the insulator;
Γb: eletrolyte bulk.

Figure 2 � Example of mesh generated by anisotropi adaptation algorithm in the high frequenyrange. Left: global view of the mesh orresponding to rmax/re = 4 and presenting a boundarylayer near the eletroni ondutor (the �dark zone�). Right: enlarged view in the neighbourhoodof the singularity, with a magni�ation fator 400× 400 (top) and 4000 × 4000 (bottom).
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Figure 3 � Comparison between the imposed interpolation error and the resulting maximalapproximation error on the steady-state onentration for a Nernstian system. The referenesolution is taken from Crank and Furzeland [35℄. Computation domain size rmax/re = 256. Botherrors are absolute dimensionless errors.

Figure 4 � Faradai impedane relative to an inlaid mirodisk eletrode omputed by adaptativeFEM at the equilibrium potential for n = 1, k0 = 10−3 cm s−1, αr = αo = 1/2, DR = DO =
5 × 10−6 cm2 s−1, cb

R
= cb

O
= 10−5 mol cm−3, re = 10−3 cm and T = 298K. Left: Nyquist plot,for rmax/re = 4, 8, 16, 512 from left to right in the low-frequeny domain. Some values of thedeimal logarithm of f/Hz are reported on the graphs. Right: enlarged view of the impedanediagrams in the low-frequeny domain for rmax/re = 16, 32, 64, 512; full irles orrespond to

f = 10−3 Hz and empty irles orrespond to the values −4, −5 and −6 of the deimal logarithmof f/Hz from top to bottom.
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Figure 5 � Evolution of the deimal logarithm of the error norm ‖εf,rmax/re
‖
2
in Eq. (24) for theFaradai impedane onvergene with respet to the size rmax/re of the omputational domain.The Faradai impedane is omputed at the equilibrium potential of the mirodisk eletrode andits onvergene error is evaluated for f/Hz ≥ 0 (a), f/Hz ≥ 10−4 (b), f/Hz ≥ 10−3 () and

f/Hz ≥ 10−2 (d). The values of parameters are the same as in Fig. 4, so the orrespondingdimensionless frequeny u = 2π f r2
e/DR is suh that u ≥ 0 (a), u ≥ 1.25 × 10−4 (b), u ≥

1.25× 10−3 () and u ≥ 1.25 × 10−2 (d).

Figure 6 � Normalized error for omputation of the polarization resistane
(

Rp,rmax/re −Rp,4

)

/ (Rp,512 −Rp,4) plotted with respet to the size rmax/re of omputa-tional domain. All the urves plotted for a standard rate onstant of eletron transfer k0/cm s−1varying from 10−5 to 10 are superposed. The other parameters have the same values as in Fig 4.
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Figure 7 � Comparison of the di�usion impedane Zd,rmax/re(u), omputed by FEM, with Zd,FP(u)predited from Fleishmann and Pons, depending on the size rmax/re of the omputationaldomain, using the relative deviation norm in Eq. (25). The relative deviation is alulated for
f/Hz ≥ 0 (left) and for f/Hz ≥ 10−3 (right). In both ases, k0/cm s−1 is equal to 10−1 (a), 10−2(b), 10−3 (), 10−4 (d), 10−5 and 10−6 (e) and the di�usion impedanes are alulated at theequilibrium potential of the mirodisk eletrode. The other parameters have the same values asin Fig. 4.

Figure 8 � Comparison of the di�usion impedane Zd,128(u), omputed by FEM for rmax/re =
128, with Zd,FP(u) predited from Fleishmann and Pons formulae, as a funtion of the deimallogarithm of frequeny/Hz. k0/cm s−1 = 10−2. The other parameters have the same values as inFig. 4. Left: relative deviation of the real part. Right: relative deviation of the imaginary part.
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Figure 9 � Same �gure aption as in Fig. 8, exept for k0/cm s−1 = 10−6. Sattering of numerialdata is due to the omputational noise whih is of the same order of magnitude as the relativedeviation in�.

Figure 10 � Evolution of the harateristi quantities of the di�usion impedane graph omputedby FEM vs log Λ, with Λ = k0 re/DR. The numerial data (dots) have been �tted (solid lines)using Eq. (29). The best-�tted values of parameters have been reported in Tab. 1.
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Table Charateristi a1 a2 b1 b2 b3 χ2quantity
R⋆

d 1.6957 0.1268 1.8968 1.7836 1.4239 5.7× 10−7

uc 2.4410 0.3560 2.4656 1.9235 1.4205 3.2× 10−5

ImZ⋆
c 0.3950 0.0472 1.7013 1.8818 1.3467 1.3× 10−7Table 1 � Best-�ts of the numerial oe�ients in Eq. (29) relative to R⋆

d, ImZ⋆
c and uc whihan be used to predit the di�usion resistane at an inlaid mirodisk eletrode under the sameoperating onditions as in Ref. [7℄, as well as the harateristi frequeny at the apex of theNyquist impedane diagram, and �nally the imaginary part of the di�usion impedane at thisapex, from Eqs. (26)�(28), respetively. The best values have been obtained by nonlinear �ttingof the numerial data in Fig. 10.
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