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Abstract

The Faradaic impedance of a microdisk electrode inlaid in an insulating sur-
face is revisited by numerical computation using a finite element method (FEM)
with anisotropic mesh adaptation. First, the convergence of numerical results is
checked under both steady-state and harmonic conditions, depending on the size of
the calculation domain. Next, new features of the numerical results, as compared
to previous works, are analyzed. A first attractive feature, not yet discussed in the
electrochemical literature, is that the diffusion impedance relative to a microdisk
electrode, evaluated at the equilibrium potential of the electrode, depends both on
electron-transfer and mass-transport kinetics, in contrast to the usual behaviour of
uniformly accessible electrodes. The validity of the semi-analytical formulation of
diffusion impedance, derived in the pioneering work of Fleischmann and Pons, is
also discussed in terms of the dimensionless parameter that compares the standard
rate constant of electron transfer to the microelectrode diffusion constant. The other
results presented in this article focus on the characteristic quantities available from
impedance graphs, which are the diffusion resistance, the characteristic frequency
corresponding to the apex of the Nyquist diagram and the imaginary part of the
diffusion impedance measured at this apex. Closed form approximations are pro-
posed for all quantities in order to make the theoretical representation and analysis
of experimental data easier.
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Abstract

The Faradaic impedance of a microdisk electrode inlaid in an insulating surface
is revisited by numerical computation using a finite element method (FEM) with
anisotropic mesh adaptation. New features of the numerical results, as compared
to previous works, are analyzed. A first attractive feature, not yet discussed in the
electrochemical literature, is that the diffusion impedance relative to a microdisk
electrode, evaluated at the equilibrium potential of the electrode, depends both on
electron-transfer and mass-transport kinetics, in contrast to the usual behaviour of
uniformly accessible electrodes. Next, the validity of the Fleishmann and Pons semi-
analytical formulation of diffusion impedance is discussed. Finally, the characteristic
quantities available from impedance graphs, which are the diffusion resistance, the
characteristic frequency corresponding to the apex of the Nyquist diagram and the
imaginary part of the diffusion impedance measured at this apex, are studied as
functions depending on a dimensionless parameter that compares the standard rate
constant of electron transfer to the microelectrode diffusion constant. Closed form
approximations are proposed for all quantities in order to make the theoretical rep-
resentation and analysis of experimental data easier.
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Abstract

The Faradaic impedance of a microdisk electrode inlaid in an insulating surface
is revisited by numerical computation using a finite element method (FEM) with
anisotropic mesh adaptation. New features of the numerical results are analyzed. A
first attractive feature, not yet discussed in the electrochemical literature, is that the
diffusion impedance relative to a microdisk electrode, evaluated at the equilibrium
potential of the electrode, depends both on electron-transfer and mass-transport ki-
netics, in contrast to the usual behaviour of uniformly accessible electrodes. Next,
the domain of validity of the Fleishmann and Pons semi-analytical formulation of
diffusion impedance is determined. Finally, the characteristic quantities available
from impedance graphs (the diffusion resistance, the characteristic frequency corres-
ponding to the apex of the Nyquist diagram and the imaginary part of the diffusion
impedance measured at this apex) are studied as functions depending on a dimen-
sionless parameter that compares the standard rate constant of electron transfer
to the microelectrode diffusion constant. Closed form approximations are proposed
for all quantities in order to make the theoretical representation and analysis of
experimental data easier.

Abstract Abridegd V3 : 167 words ; 14.1 lines

Abstract

The Faradaic impedance of a microdisk electrode inlaid in an insulating sur-
face is revisited by numerical computation using a finite element method (FEM)
with anisotropic mesh adaptation. New features of the numerical results, as com-
pared to previous works, are analyzed. A first attractive feature is that the diffusion



impedance relative to a microdisk electrode, evaluated at the equilibrium potential
of the electrode, depends both on electron-transfer and mass-transport kinetics, in
contrast with the usual behaviour of uniformly accessible electrodes. Next, the do-
main of validity of the Fleishmann and Pons semi-analytical formulation of diffusion
impedance is determined. Finally, the characteristic of impedance graphs, which
are the diffusion resistance, the characteristic frequency at the apex of the Nyquist
diagram and the imaginary part of the diffusion impedance at this apex, are studied
as functions of a dimensionless parameter that comparing the standard rate constant
of electron transfer to the microelectrode diffusion constant. Closed form approxi-
mations are proposed for all quantities in order to help the analysis of experimental
data.

Keyword: Impedance, Microelectrode, Microdisk, Simulation, Finite element method,
Anisotropic mesh adaptation.



1 Introduction

Despite the large literature dedicated to the theory of electrochemical impedance spec-
troscopy (EIS) [1-3] on the one hand and the theory of ultramicroelectrodes (UMEs)
[4,5] with application to scanning electrochemical microscopy [6] on the other hand, only a
few papers have dealt with the theoretical derivation of the impedance of a microdisk elec-
trode inlaid in an insulating surface. The analysis presented by Fleischmann and Pons [7|
opened up the use of microelectrodes to ac impedance measurements. They calculated
the real and imaginary parts of the diffusion impedance from Bessel’s function integrals.
When achieving this work, the numerical evaluation of Fleischmann and Pons formulae
was not an easy task. In order to make the impedance calculation easier, they presented
their numerical data in the form of tabulated functions. Some additional information is
available from the recent work by Navarro-Laboulais et al. [8]. These authors derived
the theoretical formulation of the diffusion resistance that is the low-frequency limit of
the diffusion impedance. They evaluated numerically the characteristic dimensionless fre-
quency at the apex of the Nyquist impedance graph. An algorithm for calculation of
the microdisk impedance was outlined by these authors for implementation in complex

non-linear least-squares fitting (CNLS-Fit) programs.

An alternative approach for computing the impedance of microdisk electrodes is based
on finite element analysis. The pioneering work on this topic was that of Ferrigno and
Girault [9], which focused on the axisymmetric recessed microdisk geometry. As a limit,
the inlaid disk electrode was recovered when the recess depth tends towards zero. A
relatively good (qualitative) agreement was observed with the semi-analytical formula-
tion of Fleischmann and Pons. However, this calculation was limited to the recessed
microdisk geometry to avoid the presence of a singularity in the neighbourhood of the
electrode edge where the boundary condition changes from the Dirichlet type (uniform
concentration perturbation) on the disk to the homogeneous Neumann type (zero flux)
on the insulator (see [10] for analysis of this kind of local singularities). The singularity

refers to the concentration perturbation field which is not twice differentiable. Gabrielli



et al. [11,12] circumvented the above problem in recent articles relative to numerical sim-
ulation of the electrochemical impedance of an inlaid microdisk electrode using COMSOL
Multiphysics (formerly FEMLAB) software. These authors investigated the influence of
the disk radius and the total electrode radius (electroactive disk + insulating sheath)
on the impedance diagram. Their theoretical predictions were compared to experimen-
tal data collected from a 10 pm diameter Pt microdisk immersed in a 10 mM K3Fe(CN)g
+ 10 mM K4Fe(CN)g + 0.5 M KCI aqueous solution. The impedance was measured
at the equilibrium potential of Pt electrode. Very good agreement was found for the
impedance diagram simulated numerically using Fleischmann and Pons equations, as well
as with the simulated FEM diagram. As discussed by Gabrielli et al. [11], Ferrigno and
Girault |9] used a Dirichlet boundary condition at the disk/electrolyte interface (with the
perturbation of interfacial concentration of electroactive species being directly controlled
by the electrode potential perturbation), while Fleischmann and Pons [7] used a uniform
non-homogeneous Neumann boundary condition (i.e. the distribution of the diffusional
flux perturbation is assumed to be uniform over the disk surface). The more rigorous
treatment proposed by Gabrielli et al. [11] makes use of the Fourier-Robin boundary con-
dition that is the linearized formulation with respect to the electrode potential of the

Butler-Volmer current-potential characteristic.

The aim of this work is an attempt to refine the numerical simulation of the impedance of
inlaid microdisk electrodes using a finite element method (FEM) with anisotropic mesh
adaptation. In this article, the computation procedure is employed for modeling the

Faradaic impedance of microdisk electrodes at the equilibrium potential.

The results presented here are focused on the characteristic quantities available from
impedance graphs, which are the diffusion resistance, the characteristic frequency observed
at the apex of the Nyquist diagram, and the imaginary part of the impedance measured
at this apex. Of course, the whole impedance diagram will be of major importance for its
implementation in CNLS-Fit programs. However, the three quantities mentioned above
are sufficient to compare the accuracy of the semi-analytical (Fleischmann and Pons) and

numerical (FEM) procedures for computing the impedance of microdisk electrodes.



First, the theory of microdisk electrodes is detailed in Section 2. The numerical method,
including both the mesh adaptation strategy and some aspects of computer implementa-
tion, is presented in Section 3. Next, the influence of computational domain size on the
accuracy of computed diffusion impedance is investigated in Section 4. The validity of
Fleischmann and Pons formulae is checked in Section 5 by comparison with adaptative
FEM computations. Finally, in Section 6, the characteristic elements from the diffusion
impedance graph are analyzed with respect to the dimensionless number that compares

the standard rate constant of electron transfer to the diffusion constant of microelectrodes.

2 Theory

2.1 Geometry

We consider a microdisk electrode inlaid in an insulating surface. The microdisk radius
and the total electrode radius (electroactive disk -+ insulating sheath) are respectively
denoted by 7, and r,,.,. The geometry of the device is axisymmetric, so the calculation
domain (2 is reduced to a 2-D meridian section of the domain occupied by the electrolytic
solution. This domain is sketched in Fig. 1 where (7,z) denote the usual cylindrical
coordinates. Its boundary I' decomposes into 'y, the symmetry axis; I's, the electrode
surface; I';, the insulator surface; and I'y,, the bulk electrolyte. These parts of the boundary

I" are defined as follows:

Iy = {(rz); r=0 and 0 < 2z < Zpax} (1a)
I'e = {(r,z); 0<r<r, and z =0} (1b)
Iy = {(rz); re <7 < rmax and z =0} (1c)
Iy = {(rnz2); (r=rmax and 0 < 2 < zpay) or (0 <7 < rpae and 2 = 20 H(1d)

I'y, represents the part of the electrolyte which is located at a sufficient distance from the
microdisk so that the influence of the electrochemical reaction (2) occurring at the disk

surface can be neglected on I',. This assumption allows to impose the boundary condition



of semi-infinite diffusion on I'y, while, in a rigorous way, it should be imposed at an infinite
distance from I'.. The validity of this assumption mainly depends on the ratio 7.y /7e as

will be discussed in Section 4.

2.2 Phenomenology: electron-transfer and mass-transport pro-

cesses

A one-step electrochemical reaction occurs at the disk surface and involves a n-electron-
transfer process (usually n = 1) between two soluble species (O and R) at the metal (e.g.
Pt) /electrolyte interface Te:

O 4+ ne =— R (2)

The reaction rate is described by Butler-Volmer kinetics [3,13] and, at the electrode po-

tential E, it is expressed in the usual way by:

v=~Fk" (exp(— &) co — exp (o) cx ) with £ = (nF/RT) <E — EO,) on Iy (3)

where ¢y denotes the concentration of species X = O, R, and the electron-transfer process
is characterized by its standard rate constant k°, the standard (formal) potential E° and
the symmetry coefficients «, and «,, with a, + o, = 1, the other symbols having their

usual meaning.

Due to the quiescent solution and the presence of a suitable supporting electrolyte, migra-
tion and convection effects on mass-transport processes can be neglected!, thus resulting

in a pure diffusion process such that the flux-vector Jy of species X = O, R is given by:
Ji=—-DxVex in Q (4)

where the diffusion coefficient Dy is a constant in the presence of supporting electrolyte,

1Strictly speaking, mass-transport of electroactive species by unforced convection should be taken into
consideration using the model presented by Amatore et al. [14,15]. Nevertheless, these authors showed
that the contribution of unforced convection can be neglected for an electrode radius 7. < 25 pm. This
condition is satisfied in our work.



and Ve is the concentration gradient whose components in cylindrical coordinates are

the partial derivatives, 0,cx and 0,cy, of cx with respect to r and z respectively.

2.3 Structure of the Faradaic impedance

2.3.1 Steady-state problem

The first step to analyse the Faradaic impedance is to calculate the steady-state regime
corresponding to a static value Fy of the potential imposed to the electrode. This regime
is characterized by the static concentrations cs x, for species X = O, R, which are solutions
of the following boundary value problem where the subscript s’ stands for steady-state

conditions:

Given Eg, find, for X = O, R, csx : (r,2) € Q — csx(r, 2) € R such that?:

—DxAcsx =0 in Q (ha)

DX VCS,X n = EX US (Es, CS,O’ CS,R) on Fe (5b)

DyVesx-n=0 on I (5¢)

Csx = % on I (5d)

where e, = —1, g = +1, ¢} denotes the bulk concentration of species X, n is the outward

unit vector normal to I', and A is the Laplace operator whose cylindrical expression is
given by Acsx = 02.¢sx + +0,¢s x + 02,5 x. The steady-state reaction rate vs in Eq. (5b)
comes from Eq. (3) where E and ¢y are respectively replaced by Fg and cgx. Once the
problem (5) has been solved, the interfacial concentrations are known and the steady-state

Faradaic current is obtained by integration along the radial direction (r) as follows:

[S’f =—2rnk / vsds = =2mn F / Vs (E57 Cs,0; CS,R) rdr (6)
T'e 0

2The boundary condition on I'y takes on the formulation, r Dx Vs x - m = 0, which results from
the weak (variational) formulation of the boundary value problem used in the FEM framework. This
is straightforwardly satisfied because of r = 0 on I'y. Hence, it is not necessary to write this boundary
condition in Eq. (5). The same remark applies to the harmonic boundary value problem in Eq. (9).



Note that the boundary condition (5d) is only an approximation of the semi-infinite

diffusion boundary condition c¢s (7, 2) — ¢% when r or z — 0.

2.3.2 Harmonic problem

In the second step, a small harmonic perturbation of the electrode potential is imposed:

E(t) = Es + Ey exp(jwt) (7)

where j = /—1, w = 2nf is the angular frequency, f is the frequency and E} is the
amplitude of perturbation. Under the above conditions, the permanent regime resulting

from the potential perturbation leads to the following concentration fields:

CX(Ta Z, t7 w) = CS,X(Ta 2) + CH,X(rv z, w) eXp(.th) (8)

The spatial part of the concentration fields perturbations ¢ «(r, z;w) are solutions of
the following boundary value problem where the subscript 'u’ stands for the permanent

Y

harmonic regime and where the notation ’;w’ is used for highlighting the role of w as a

parameter:

Given Eg, Fy and w, find, for X = O, R, ¢yx : (1,2) € Q — cyx(r, z) € C such that

jwepx — Dx Acyx =0 in Q (9a)

Dy Veyx - = ex vy (B, Cs.0, Csrs Fyty Cos Ciir) on I (9b)
DyVeyx-mn=0 on I (9¢)

cax =0 on Iy (9d)

The harmonic perturbation of the reaction rate vy results from linearization of the ex-

pression in Eq. (3) around the static polarization point (FEj, ¢s o, ¢sr). Using Eq. (7) for



the potential and Eq. (8) for the concentration fields, we obtain:

nkF

vu(Es, ¢s.0, Csr, Bus Cuos Cup) = —k° (ﬁ gs By — exp (—an &) cno + exp (o &s) cH’R)
(10)

where

gs = ap exp (—ap &) cso + o exp (apés) csg and & =nF (ES — EO/> /(RT) (11)

2.3.3 Harmonic perturbation of Faradaic current and Faradaic impedance

Once the harmonic problem (9) is solved, the harmonic perturbations of interfacial concen-
trations are known and the permanent perturbation [, ; of the Faradaic current resulting
from Eqs. (7) and (8) can be derived by integration along the radial direction (r) as

follows:

IH,f — —27T’I’LF / UH dS — —27T’I’LF / ,UH (ES7CS,O’CS,R7 EH7CH,O7CH,R) ’I"d’l" (].2)
e 0

This expression is evaluated for each value of the angular frequency w. The ratio I,/ Ey
defines the Faradaic admittance Yi(w) as a function of w. Its formulation results directly

from Eq. (10). It can be derived as:

Yi(w) = G + Yao(w) + Yar(w) (13a)
Tl2 F2 Te
G = K° BT 27T/0 gs(r, 0) rdr (13b)
F e
Yio(w) = —k“% exp(—arfs)%r/ Cuo(r, 0;w) rdr (13¢c)
H 0
F e
Yar(w) = konE— exp(ao§s)2ﬂ/ Cur(r,0;w) rdr (13d)
54 0

where GG is the electron-transfer conductance, and Ygx denotes the concentration admit-
tance relative to the species X = O, R. Of course, the Faradaic impedance is obtained

as

Zp(w) = 1/Yi(w) (14)

10



Note that the electrochemical process and its mathematical formulation involve the cor-
respondence Iy, — I¢. So it is the admittance which comes naturally from the above

equations and not the impedance.

3 Numerical resolution

3.1 Dimensionless formulation and limiting conditions
3.1.1 Dimensionless numbers

It is easy to show that the solutions cso and cgy of the steady-state boundary value

problem (5) satisfy the relation:

Do cso(r,2) + Dy csr(r,2) = Do b + Dy ch, for (r,2) € (15)

This property makes it possible to reduce the problem (5) to the determination of one
concentration field only. Arbitrarily, we choose this concentration as ¢y and we use the
diffusion coefficient and bulk concentration of species R as the reference quantities for the
definition of the dimensionless variables r* = r/re, 2* = z/re, t* = t Dy /12, ¢§ = csx/Ch
and ¢}, = ¢y x/cy, where superscript 'x” indicates a dimensionless variable or operator.

The dimensionless numbers resulting from this scaling are:

0 2
A= hore and u= 2 (16)
R R

3.1.2 Influence of A: static conditions

A compares the standard rate constant of electron transfer to the diffusion constant of
microelectrodes. It comes from the dimensionless form of the static boundary condition
(5b) written for the species X = R and combined together with Eq. (15) in order to elim-

inate cs . The resulting equation is expressed by the following Fourier-Robin boundary

11



condition written in dimensionless form:

Vi, -n" = Aa(s) [cﬁsz(fs) —ck } on I* (17a)

S,R

with:

D ct

O

Dy ey ) 1+ g—g exp(&s)

Cronlts) = ( and () = explants) + 2 expl-a,E)
(17h)

where i, (§s) stands for the dimensionless static interfacial concentration for Nernstian

systems.

When A «(&) is very large, the Fourier-Robin boundary condition (17a) leads to the
Dirichlet boundary condition ¢}, = ¢4 (&s) over the disk surface I'c. In contrast, at
very low values of A a(&s), the Fourier-Robin boundary condition leads to a uniform non-
homogeneous Neumann boundary condition, i.e. assuming a uniform perturbation flux

over the disk surface, except in a small neighbourhood of the electrode edge.

3.1.3 Influence of A: harmonic conditions

When D, = Dy, the perturbations of concentrations fields satisfy ¢, o (7, 2; w)+cur(r, z;w) =

0 for (r,z) € Q, which leads to the simplified formulation of Eqs. (9b) and (10):

V*C;,R nt=-A Oé(fs) [C;H,R =+ C;,R] on F; (18&)
with:
C;H,R - S s (18b)

exXp (_&r éS) + €xp (Oéo éS) CbR

where ¢}, , stands for the dimensionless harmonic interfacial concentration perturbation

n F Ey
RT

for Nernstian systems and &; = Note that gg, obtained from Eq. (11), is constant
over the electrode surface when the electrode impedance is calculated at the equilibrium
potential. The situation would be much more intricate for impedance calculations per-

formed away from the equilibrium potential.

12



So the system kinetics is still governed by A a(&s) under harmonic conditions. Two lim-
iting situations can be predicted. When A (&) is large, the harmonic perturbations of
concentration fields tend to satisfy Dirichlet conditions at the disk/electrolyte interface
like in the work of Ferrigno and Girault [9]. When A «(&s) is small, the harmonic pertur-
bations of diffusional fluxes present approximately uniform values over the disk surface,
and then, like in the work by Fleischmann and Pons [7], the Fourier-Robin boundary
condition (18a) can be replaced by a uniform Neumann condition on I',. Both limiting

conditions will be numerically verified in Section 6.2.

At the opposite, when D, # Dy, no simplification of harmonic equations is possible, so

FEM computations should be performed with two concentration perturbation fields.

In the present work, we use the same approach as Gabrielli et al. [12], i.e. the Fourier-
Robin boundary condition defined by Eq. (9b) without any approximation, except that
the steady-state potential of the electrode is equal to its equilibrium potential, so & is

given by the Nernst equation: & = In(cp /¢y ), therefore & = 0 when ¢ = c}.

3.1.4 Influence of u

The dimensionless angular frequency u comes directly from the dimensionless form of Eq.
(9a):
Dy
Dy

. *
JUuCyx

A*¢h =0 in QF (19)

It compares the angular frequency w with the reciprocal of diffusion time constant 72/ Dy,.
When u is very large, it follows from the partial differential equation (19) that the con-
centration perturbations are vanishing in the electrolyte, except in the immediate neigh-
bourhood of the disk surface (due to the boundary condition (18a)), so a boundary layer
develops near I'; at high frequencies. Conversely, at low frequencies, the concentration
fields perturbations extend from the interface I'; into the electrolyte until they vanish on

I,

13



3.2 Mesh adaptation strategy

Since the works of Nann and Heinze [16,17] and Harriman et al.  [18-20] , it has become
widely accepted that, when performing simulations of electrochemical processes at mi-
crodisk electrodes, unstructured meshes must be used if a sufficiently accurate solution is
to be obtained within a reasonable computing time. Adaptative finite element algorithms
have been proposed and used for solving the mass-transport equations pertaining to the
microdisk electrode geometry under steady-state [18-21|, as well as time-dependent

[17,22-24] conditions relative to the chronoamperometry, linear scan voltammetry and
cyclic voltammetry methods. In the most recent articles, the main key factor is that the

mesh refinement is under the control of an error estimator of the current [18-24] .

Schematically, a mesh adaptation strategy associates two main stages. The first stage
consists in the estimation of the error between the numerical approximation and the
exact solution. The second stage consists in using this estimate to refine the mesh. In
all previous works, the authors used a specific a posteriori estimation of the standard
approzimation error (see |25] for further details) and refined the mesh by subdivision of the
current elements. Using this strategy, the error estimator should depend on the problem to

be solved (i.e. mass-transport process, reaction mechanism and electrochemical method).

The mesh adaptation strategy used in this work is well documented in the article by
Frey and Alauzet [26]. This method is based on the control of the interpolation error,
which allows to control the approximation error and, hence, the accuracy of the numerical
solution (see the contribution of Ciarlet [27] for a explanation of these concepts). On
each mesh element, this interpolation error is locally bounded by a functional which
depends on the tensor of second derivatives of the concentration perturbation (curvature
tensor) and on the geometry of the element. From the eigenvectors and eigenvalues
of this curvature tensor, computed at each vertex of the current mesh, it is possible
to generate a new mesh for which the interpolation error is fixed to a specified value,
and is constant over all elements and equidistributed in all directions. This adaptation

process is performed by a complete remeshing without any reference to the current mesh.

14



Fundamentally, this adaptation method allows to generate anisotropic meshes presenting
highly stretched elements in arbitrary directions. This property is very useful to capture
the behaviour of the concentration perturbations in the neighbourhood of the electrode
edge (which introduces a singularity at all frequencies), as well as close to the microdisk
surface (so-called boundary layer) where the concentration perturbation is essentially
located in the high-frequency range. The whole procedure is repeated at each frequency,
and, in particular the meshes, which lead to the specified interpolation error for two
distinct frequencies, are distinct. A great advantage of the above strategy is that the
mesh adaptation is of general purpose; it can be used irrespective of the electrochemical
conditions: mass-transport process, reaction mechanism, cell geometry, electrochemical

method...

An example of mesh generated by the anisotropic adaptation algorithm is presented in
Fig. 2. The enlarged views highlight the refinement of the mesh near the singularity
at the electrode edge. In addition, due to the high-frequency condition used in Fig. 2,
the final mesh contains very stretched elements near the disk surface ("dark zone" in the
figure). In this boundary layer, near the origin (/7. ~ 0), the radial dimension of mesh

elements is 500 times larger than the axial dimension.

3.3 Solvers, implementation and validation

The FEM used in this work has been implemented in FreeFem++ developed by Hecht
[28,29], which is a powerful high-level language specially dedicated to weak formulation
of boundary value problems for partial differential equations and to their approximations
by finite element methods. Another particularly attractive feature of FreeFem++ is the fact

that it provides a set of meshing tools allowing simple use of anisotropic mesh adaptation.

Finite element discretization of the partial differential equations (9) is performed using
triangular elements and approximation by continuous piecewise quadratic polynomial on
each triangle. This leads to a system of complex linear equations, which is solved by a

Gaussian elimination algorithm stabilized by partial pivoting strategy.

15



In order for the computation cost to remain reasonable, we also used the possibility
of coupling FreeFem++ with the Davis’s high performing solver UMFPack (30, 31|, the
Goto’s [32] and Whaley’s [33] basic linear algebra subprograms (BLAS). The resulting
computational environment allowed us to compute each Nyquist diagram in about half
an hour on a Nocona processor running a 32-bits linux system. The whole computation,
carried out at ninety different frequencies for each impedance graph, requires a little more
than a thousand matrix factorizations of order varying from 2,500 to 1,600,000. Further

details of the computation procedure can be found in Ref. [34].

The validity of the above strategy has been checked by comparison of the computed static
concentration fields to the closed form solution derived by Crank and Furzeland [35] for
Nerstian systems (i.e. setting A — oo with our notation). A very good agreement has
been observed. In addition, Fig. 3 clearly shows that the resulting approximation error
on the concentration field is controlled by the interpolation error imposed by the mesh

adaptation algorithm.

4 Convergence vs. computational domain size

4.1 Nyquist plot

Although it is the admittance that comes directly from Egs. (13), as indicated above,
the general use in electrochemistry is to plot impedance diagrams using the Nyquist
representation, —Im(Z¢) vs Re(Z), with orthonormal axes. In addition, the influence
of ohmic drop and double layer capacitance being neglected in this work, the electrode

impedance reduces to the Faradaic impedance:

Zi(u) = Rey + Za(u) (20)

16



which is the sum of the diffusion impedance of soluble species Z4(u) and the electron-

transfer resistance:

1
Ry = lim Zg(u) = (21)

umo G

where G is given by Eq. (13b). The low-frequency limit of Faradaic impedance is the

so-called polarization resistance R, defined as:
Rp = hmo Zf(u) = Rct + Rd (22)
with the diffusion resistance being the limit:

Ry = uliLno Za(u) (23)
Some Faradaic impedance graphs have been plotted in Fig. 4 for typical values of electro-
chemical parameters and different values of computational domain size, i.e. for rpa./7e
ranging from 4 to 512. It should be noticed that, although all computations were per-
formed with dimensionless numbers (&g, &, A, u...) the impedance graphs and related
quantities are presented here with their usual units in order to keep in mind the order of

magnitude of the impedance of microdisk electrodes.

The higher 7y, /7., the larger the frequency domain where the ’true’ diffusion impedance

relative to an inlaid microdisk electrode is computed with high accuracy.

An enlarged view of the low-frequency domain shows that the shape of the diagram,
computed at small ry,,, /7. values, is quite different from that predicted by Fleischmann
and Pons [7]. Indeed, the low frequency tail of the impedance graph corresponds to a
small ’semicircle’, rather than a straight line with slope (-1). This is in perfect agreement
with the previous simulation by Gabrielli et al. [12]. However, a straight line with slope

(-1) is recovered for large computational domains, typically at rp.c/7e = 512.

This can be quantified by investigating the convergence error of the Faradaic impedance
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with respect to the computation domain size. This error and its norm are defined by:

H E:fvlfmax/l"e

2 . f7512 fyrmax/re
= g Ef rmax /re (U with ¢, . () = 24
2 \/ - ‘ f, / ( k)‘ f / ( ) Zf74(u) Zf,rmax/re(u) ( )

Here, Z; ... /v.(u) denotes the Faradaic impedance computed by FEM from Eqs (13) and
(14) at the given value of 7. /7e. The wuy’s are the discrete values of dimensionless
frequency in the different ranges defined in Fig. 5 where the decimal logarithm of the
error norm has been plotted vs 7., /7. for the same parameters values than in Fig 4. The
four curves were obtained for impedance calculation carried out over different frequency
ranges. For example, at f > 1072 Hz, that is u > 1.25 x 102 in dimensionless notation,
convergence is reached (i.e. a plateau is observed) as soon as ry../r. > 40. In contrast,
Tmax/Te > 200 is required to compute accurately the impedance at frequency down to
10~*Hz. Finally, convergence is not yet reached, even at T'max/Te = 256, when the whole
frequency domain (u > 0) is taken into consideration. Note, however, that frequencies
such that f < 10~* Hz are well beyond the range of experimentally accessible frequencies
in electrochemistry, so the computational domain size ry,.y /7. = 128 will be used hereafter

to plot impedance graphs.

4.2 Polarization resistance

We use the ratio (Ryy,../re. — Bpa) / (Rp512 — Rp4) to define the normalized error on the
polarization resistance. R, . . is computed, at the given value of rp../7c, from Eqgs.
(13) and (14) after setting w = 0 (i.e. u = 0) in the harmonic boundary value problem
(9). The normalized polarization resistance error has been plotted in Fig. 6 with respect
to the computational domain size. An attractive feature is that convergence curves are
the same for £° ranging from 107> to 10 cms~!. The second feature is that convergence

of R, is reached within 5 %o relative error, typically for ryax /7 > 300.
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5 Validity domain for Fleischmann and Pons (FP) for-

mulae

FP formulae, reviewed in the Appendix A, are the references for computation of the
impedance of microdisk electrodes. In previous works of Ferrigno and Girault 9], as well
as Gabrielli et al. [12], good agreement with FP formulae was reported by the authors.
Because of controlled computation accuracy in this work, we are now able to predict the

validity domain of such formulae in terms of the parameter A defined in Eq. (16).

It should be noted that the FP formulae were derived at the equilibrium potential assum-
ing that D, = Dy = D and ¢, = ¢}, = ¢”. The same assumptions are used here in FEM

computations under harmonic conditions, so that & = 0 is satisfied in Eq. (18).

We compare Zggp(u), computed from the FP formulae (Eqgs.(A.1) and (A.2) in the Ap-
pendix A), to Za,,. /r.(u), computed by self-adaptative FEM, thanks to the following

measure of relative deviation:

||€d7rmax/re

Zaww(u) — Z (uw)
Z 2 . d,FP A max/re
2 \/ k |€d,rmax/re (ukf)| w1 gd,rmax/re (U) Zd,FP(u) ( )

The relative deviation has been plotted in Fig. 7 at different values of the standard rate
constant of electron-transfer process. Convergence is reached for all £° values at increasing
size of computational domain. In particular, the relative error converges very rapidly in

the frequency domain f > 1073 Hz, i.e. at u > 1.25 x 1073,

Now, let us look at the plateau values. The relative error attains the asymptotic value
4 %1073 when k° < 1075 cms™!, which indicates that the diffusion impedances computed
from the FP formulae and adaptative FEM are very close to each others due to sluggish
electron transfer kinetics at the microdisk surface. As soon as k° increases, the relative
deviation also increases up to a constant value (not represented in the figure) at k° >
1cms™ ! Indeed, the deviation between the two sets of impedance values is maximum for

very fast charge-transfer kinetics. Hence, the FP formulae should not be employed to fit
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experimental impedance data measured from Nernstian systems.

The diffusion impedance computed using the self-adaptative FEM is also compared to
the predictions from Fleischmann and Pons equations in Fig. 8 and 9 where the relative
deviations of real and imaginary parts of the diffusion impedance have been plotted vs the
decimal logarithm of frequency. For the intermediate value, £° = 10~ 2cm s}, in Fig. 8,
the deviation of Im(Zy) presents a bell-shaped curve, the maximum deviation (in absolute
value) being close to 8 % near the characteristic frequency of the impedance diagram. The
relative deviation of Re(Zy) shows a more complex feature. The larger deviation, typically
5 % in absolute value, is observed in the low-frequency range, while the two computation
procedures are in good agreement with each other in the high-frequency domain (Warburg

impedance).

In contrast, the relative deviation becomes very small due sluggish electron transfer (typi-
cally at £° = 10 %cms™!). Scattering of numerical data in Fig. 9 is due to computational
noise which is of the same order of magnitude than the relative deviation between the two

computed impedances.

6 Characteristic elements from the diffusion impedance

graphs

6.1 Definitions

The diffusion impedance (see Fig. 4) can be characterized by the diffusion resistance that
is the low-frequency limit of Z4 in Eq. (23), the angular frequency w,. corresponding to

the apex on the Nyquist diagram, and the imaginary part of Z4 measured at this apex.

The following dimensionless quantities will be used in what follows. First, R} denotes the

dimensionless diffusion resistance:

R} = Rq (26)




where it is assumed that D, = Dy = D and ¢ = ¢} = ¢". Next, u. is the characteristic

value of the dimensionless angular frequency at the apex of the Nyquist plot:

(27)

Slote

Ue = We

Finally, the dimensionless value of minus the imaginary part of Z, measured at the apex

is:
n2EF?nr,DcP
ImZz* = — ° ImZ 2
mZ} BT mZe. (28)

6.2 Influence of A; approximation formulae

We now look for an approximation formula between each characteristic element and A.

The numerical procedure is as follows. Given any set of parameters values (r., k°, D,
c...), first, R and Ry are computed using adaptative FEM under static conditions, and
harmonic conditions with u = 0, respectively. Next, both u. and ImZ; are obtained by
coupling adaptative FEM computations with the accelerated golden section algorithm [36|
and a smoothing procedure based on a parabolic fitting near the apex. Finally, R}, ImZ}
and u. are plotted as dots in Fig. 10 vs. the decimal logarithm of A = %. The ratio
ImZy/ R} is also plotted in this figure.

The four curves present interesting features not yet discussed in the electrochemical liter-
ature. First of all, the diffusion impedance relative to a microdisk electrode, evaluated at

the equilibrium potential of the electrode, depends both on electron-transfer and mass-

transport kinetics, in contrast with the usual behaviour of uniformly accessible electrodes

kO re
-

(see [3]). Indeed, the diffusion resistance is a function of A = The same remark
applies to the imaginary part of the diffusion impedance at the apex of the Nyquist graph.
Note, however, that the changes of R} and ImZ} vs log(A) are not the same, i.e. the
ratio ImZ/ R} is not constant, so the impedance loop is more depressed at large values
of A. Finally, a frequency shift can be predicted on the impedance diagram by looking at

the change of u. with respect to log(A) in Fig. 10.
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Two horizontal asymptotes pertaining to small and large values of A respectively, are
clearly revealed in Fig. 10. First, considering very fast electron-transfer kinetics (large
k%), and/or a very large disk radius, and/or a very small diffusion coefficient, i.e. at
very large values of A, the diffusion impedance is the same as the one obtained from the
Dirichlet boundary condition initially employed by Ferrigno and Girault [9]. The limiting

value for R} then is equal to 7/2 (see [34]).

In contrast, at very low values of A, due to a small k° and/or a very small disk radius,
and/or a very large diffusion coefficient, the boundary condition (18a) is asymptotically
the same as the uniform non-homogeneous Neumann boundary condition used by Fleis-
chmann and Pons. This is clearly indicated in Fig. 10 by the upper limits of R}, ImZ}
and u. matching quasi-exactly the numerical values R} = 16/(37) ~ 1.698, ImZ} ~ 0.395

and u. ~ 2.440 derived from the FP formulae in Appendix A.

Because of the asymptotic behaviours observed at small and large values of A, respectively,
exponential functions are well suited to fit the numerical data in Fig. 10. Setting A =
log(A) for the sake of simplification, and using a standard non-linear fitting procedure, the
variations of R}, ImZ} and u. with respect to \ can be fitted accurately by the following

function (among different possible fitting functions):

a2
[14 by exp(—by A)]™

f) = ar - (29)

where the constants a; and as are directly obtained from the two horizontal asymptotes,
while by, by and b3 are adjustable parameters. Their best-fitted values are given in Table 1.
The quality of the fit is illustrated by the solid lines plotted in Fig. 10, as well as the
x? values reported in Table 1. Tt may be noticed that Eq. (29) is only a “representation

model”, so the best-fitted numerical coefficients have no particular physical meaning.

Looking at Fig. 10, it becomes very clear that the validity condition for the FP formulae
is typically A < 107!, while the second limiting behaviour corresponding to Nernstian

system kinetics is typically observed for A > 102.
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6.3 Application to experimental data analysis

Of course, a CNLS-Fit program should be used for accurate evaluation of the diffusion
coefficient of electroactive species from EIS data measured at a microdisk electrode. How-

ever, a first evaluation of D is possible, from experimental values of R, and Ry, as follows.

Assuming that D, = Dy = D and ¢, = ¢}, = ¢", the electron—transfer resistance evaluated

at the equilibrium potential of a microdisk electrode is given by [7]:

RT
Fo = n? F2mor2k°ch (30)

Using Eqgs. (16), (26), (29) and (30), we obtain:

Ry
Rct

— A SN (31)

Given experimental values for the disk radius and the resistances Rq and R, Eqs. (29)
and (31), employed together with the relevant numerical coefficients in the first entry of

Table 1, result in an implicit equation with respect to A = k°r./D.

This equation can be readily solved for £°/D, e.g. using the 'FindRoot’ command of
Mathematica [37] or the one-dimensional Root-Finding algorithm of the Gnu scientific
library [38], while the standard rate constant of electron transfer can be directly obtained
from the electron-transfer resistance in Eq. (30), so the diffusion coefficient can be readily

evaluated.

By way of illustration, let us consider the EIS data collected by Gabrielli et al. [12] from
a 10 pm diameter Pt microdisk immersed in a 10 mM K3Fe(CN)g + 10 mM K Fe(CN)g +
0.5 M KCI aqueous solution. The impedance was measured at the equilibrium potential
of Pt electrode. The values, Ry =~ 0.85 M2 and Rq ~ 4.15 M2, can be extracted from
the impedance spectra. Using the above calculation procedure, we obtain k° = 4.0 x
1072cms ™ and D = 6.7 x 107 %cm?s™!. Such values can be favorably compared to those

values obtained by Gabrielli et al. using a CNLS-Fit program (Simplex algorithm), i.e.
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E°=36x102cms and D =6.6 x 1075 cm?s7!.

7 Conclusions

The major points of this article are the following.

e A finite element method with anisotropic mesh adaptation has been used for the
first time to compute electrochemical impedance data, in the case of a microdisk

electrode inlaid in an insulating surface.

e The mesh adaptation strategy used in this work is of general purpose. It allows the
use of anisotropic meshes and provides a numerical solution with uniform accuracy
(fixed by the user) over each mesh element. This strategy can be employed irrespec-
tive of the electrochemical conditions. For example, the mesh adaptation strategy
is used both for solving the steady-state boundary value problem and the harmonic

boundary value problem.

e The numerical method used in this work has been implemented in FreeFem++ which
is a powerful high-level language specially dedicated to weak formulation of bound-
ary value problems for partial differential equations and to their approximations
by finite element methods. FreeFem++ provides a set of meshing tools allowing a
simple use of anisotropic mesh adaptation and can be coupled with the Davis’s high

performing solver UMFPack and specialized algebra library.

e The size of the finite element calculation domain is a crucial parameter for computing
the Faradaic impedance of microdisk electrodes. A large ratio of the total radius to
the disk radius, typically rpax/7e > 128, is required to attain high accuracy in the

frequency range f > 1073 Hz.

e We have shown that the diffusion impedance, computed by self-adaptative FEM at

the equilibrium potential of the electrode, depends on the dimensionless parameter
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k°r./D. This behaviour strongly differs from that predicted for uniformly accessible

electrodes [3].

e The impedance of a microdisk electrode depends, of course, on the boundary con-
dition at the metal surface. In this work, we used the Fourier-Robin boundary con-
dition, which is the linearized formulation of the Butler-Volmer current-potential

characteristic.

e The validity of the semi-analytical formulation of Zg g (u), derived in the pioneering
work by Fleischmann and Pons |7], has been discussed for impedance computations
carried out at the equilibrium potential of the electrode. From our finite element
simulations, we came to the conclusion that the semi-analytical formulation is only
valid at low values of k° /D, typically at k°r./D < 107! In contrast, at intermedi-
ate or large values of k°r./D, deviation of Zy from Fleischmann and Pons formulae
was predicted. The maximum deviation is of the order of 8-15 % in terms of the
diffusion resistance, the characteristic frequency at the apex of the Nyquist diagram,
and the value of —Im(Zy4) at this apex. A frequency shift is also predicted on the

impedance diagram, which depends both on frequency and the £°r./D value.

e The results presented here are essentially focused on the characteristic quantities
available from impedance graphs, which are the diffusion resistance, the character-
istic frequency at the apex of the Nyquist impedance graph, and the imaginary part
of the impedance measured at this apex. Eqs. (26)—(28) are the theoretical formu-
lations for these quantities, with R}, ImZ} and u. being evaluated numerically by

adaptative FEM.

e The variations of R}, ImZ} and u. with respect to log(k°r./D) have been fitted
accurately by the function in Eq. (29), employed together with the numerical coef-
ficients in Table 1, in order to make the evaluation of such characteristic quantities

easier whatever the values of the electrochemical system parameters.

e We have shown that the above quantities can be used for the evaluation of the
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diffusion coefficient of soluble species from experimental EIS data at a microdisk

electrode.
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A Faradaic impedance derived from Fleischmann and

Pons formulae

In the seminal work by Fleischmann and Pons [7| the impedance of a microdisk electrode

was calculated assuming that both oxidized and reduced species have the same diffusion
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coefficient (D, = Dy = D) and the same bulk concentration (¢ = ¢ = ¢"). In ad-
dition, Ohmic potential drop and double-layer effects were disregarded, so the electrode
impedance reduces to the Faradaic impedance. The major assumptions are, firstly, that
the impedance is calculated at the equilibrium potential of the electrode, and, secondly,
that the diffusion flux perturbation is supposed uniform over the microdisk surface. The
resulting discontinuity in the boundary condition, which changes from the uniform non-
homogeneous Neumann boundary condition (uniform flux perturbation) on the microdisk
to the homogeneous Neumann boundary condition (zero flux) on the insulator, was taken
into account thanks to the Weber-Schafheitlin integral [39], so-called "discontinuous def-

inite Bessel integrals" in Ref. [7].

The electron—transfer resistance relative to the electrochemical reaction in Eq. (2), eval-
uated at the equilibrium potential of the disk electrode with the same bulk concentration
of oxidized and reduced species in the electrolytic solution, is given by Eq. (30). The
Faradaic impedance relative to the electrochemical reaction in Eq. (2), can be written as
the sum of R, and the diffusion impedance of soluble species Z4(u) according to Eq. (20).
Starting from Fleischmann and Pons formulae [7], the real part (Re) and the imaginary

part (Im) of the diffusion impedance can be written respectively as:

n?F2rreDc® Ju

Re(Zapp(u)) = (A.1a)

and:
ART  ®s(u)
n?F2rr.Dc® \Ju

Im(Zgpp(u)) = (A.1b)

with the functions ®4(u) and ®5(u) being defined as the following integrals:

v = [ v (A28

and:

vt = [ v - (A.20)
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where J;(y) is the Bessel function of the first kind and first order, with the real argument
y = x\/u, and 0 = arctan(1/2?).

First, using a computer algebra system like Mathematica [37|, the low—frequency be-

haviour is readily obtained from the following limits:

L Qu(w) (TP, 4 0
ulino \/ﬂ _/0 y2 dy— 3 (A.3)

and:

lim q)%“) =0 (A.3b)

in agreement with the previous derivation by Navarro-Laboulais et al. [8]. From Egs.
(A.la), (A.2a) and (A.3a), we derive the diffusion resistance where the subscript 'FP’

refers to Fleischmann and Pons:

16 RT

3n?2F2n2r, D cP

Rypp = (A.4)

Next, the characteristic frequency corresponding to the apex of the diffusion impedance
graph was given as u.zp = 2.5 by Rotenberg et al. [40], while Navarro-Laboulais et al. [§]
calculated numerically u. pp = 2.5119. The more accurate value, uc zp = 2.440, is proposed

in this work [34].

Finally, minus the imaginary part of the diffusion impedance, calculated at the apex of
the Nyquist diagram, satisfies (ImZ./Rq),, = 0.233 [40], therefore:
RT

I (Zagp()) = = 0395 -~ (A.5)
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Figure 1 — Schematic representation of the finite element calculation domain, with cylindrical
symmetry, and ryax/re = 4, for a microdisk inlaid electrode. : finite element calculation
domain corresponding to a meridian subsection of the domain filled by the electrolytic solution;
I'c: interface with the electronic conductor; I': axis of symmetry; I';: interface with the insulator;

I'y: electrolyte bulk.
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Figure 2 — Example of mesh generated by anisotropic adaptation algorithm in the high frequency
range. Left: global view of the mesh corresponding to mmax/7e = 4 and presenting a boundary
layer near the electronic conductor (the “dark zone”). Right: enlarged view in the neighbourhood
of the singularity, with a magnification factor 400 x 400 (top) and 4000 x 4000 (bottom).
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Figure 3 — Comparison between the imposed interpolation error and the resulting maximal
approximation error on the steady-state concentration for a Nernstian system. The reference

solution is taken from Crank and Furzeland [35]. Computation domain size ryax/7e = 256. Both
errors are absolute dimensionless errors.
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Figure 4 — Faradaic impedance relative to an inlaid microdisk electrode computed by adaptative
FEM at the equilibrium potential for n = 1, k¥ = 103 ecms™!, a; = ap = 1/2, Dy = Do =
5x 107 %cm?s7t ¢ = ¢ = 107" molem™3, 7, = 1073 cm and T = 298 K. Left: Nyquist plot,
for rmax/re = 4,8,16,512 from left to right in the low-frequency domain. Some values of the
decimal logarithm of f/Hz are reported on the graphs. Right: enlarged view of the impedance
diagrams in the low-frequency domain for ryax/re = 16,32,64,512; full circles correspond to

f = 1073 Hz and empty circles correspond to the values —4, —5 and —6 of the decimal logarithm
of f/Hz from top to bottom.
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Figure 5 — Evolution of the decimal logarithm of the error norm ||&;,,..../w|ly in Eq. (24) for the
Faradaic impedance convergence with respect to the size ryax/re of the computational domain.
The Faradaic impedance is computed at the equilibrium potential of the microdisk electrode and
its convergence error is evaluated for f/Hz > 0 (a), f/Hz > 10~* (b), f/Hz > 1073 (c) and
f/Hz > 1072 (d). The values of parameters are the same as in Fig. 4, so the corresponding
dimensionless frequency u = 27 fr2/Dy is such that u > 0 (a), v > 1.25 x 107% (b), u >
1.25 x 1073 (c) and u > 1.25 x 1072 (d).
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Figure 6 — Normalized error for computation of the polarization resistance

—Rp74)/(Rp7512—Rp74) plotted with respect to the size 7yax/re of computa-
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tional domain. All the curves plotted for a standard rate constant of electron transfer £°/cm s~
varying from 107° to 10 are superposed. The other parameters have the same values as in Fig 4.
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Figure 7 — Comparison of the diffusion impedance Zg ;. .. /. (u), computed by FEM, with Zg gp(u)
predicted from Fleischmann and Pons, depending on the size ryax/re of the computational
domain, using the relative deviation norm in Eq. (25). The relative deviation is calculated for
f/Hz > 0 (left) and for f/Hz > 103 (right). In both cases, k°/cms™! is equal to 107! (a), 1072
(b), 1072 (c), 1074 (d), 107> and 107 (e) and the diffusion impedances are calculated at the
equilibrium potential of the microdisk electrode. The other parameters have the same values as
in Fig. 4.
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Figure 8 — Comparison of the diffusion impedance Zg 123(u), computed by FEM for rpax/1e =
128, with Zg pp(u) predicted from Fleischmann and Pons formulae, as a function of the decimal
logarithm of frequency /Hz. k°/cms~! = 1072. The other parameters have the same values as in
Fig. 4. Left: relative deviation of the real part. Right: relative deviation of the imaginary part.
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Figure 9 — Same figure caption as in Fig. 8, except for k°/cms~! = 1076, Scattering of numerical
data is due to the computational noise which is of the same order of magnitude as the relative
deviation in %oo.
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Figure 10 — Evolution of the characteristic quantities of the diffusion impedance graph computed
by FEM vs log A, with A = k°r,/Dg. The numerical data (dots) have been fitted (solid lines)
using Eq. (29). The best-fitted values of parameters have been reported in Tab. 1.
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Table

Characteristic ap ay b, by bs x>
quantity
Ry 1.6957 0.1268 1.8968 1.7836 1.4239 5.7 x 1077
Ug 2.4410 0.3560 2.4656 1.9235 1.4205 3.2 x 107°
ImZ; 0.3950 0.0472 1.7013 1.8818 1.3467 1.3 x 10"

Table 1 — Best-fits of the numerical coefficients in Eq. (29) relative to R}, ImZ} and u. which
can be used to predict the diffusion resistance at an inlaid microdisk electrode under the same
operating conditions as in Ref. 7], as well as the characteristic frequency at the apex of the
Nyquist impedance diagram, and finally the imaginary part of the diffusion impedance at this
apex, from Eqgs. (26)—(28), respectively. The best values have been obtained by nonlinear fitting
of the numerical data in Fig. 10.
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