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Numeri
al 
omputation of theFaradai
 impedan
e ofinlaid mi
rodisk ele
trodesusing a �nite element methodwith anisotropi
 mesh adaptationR. Mi
hel1,⋆, C. Montella1, C. Verdier2, J.-P. Diard1(1) Laboratoire d'Éle
tro
himie et de Physi
o
himie des Matériaux et Interfa
es, UMR 5631CNRS+Grenoble-INP+UJF, Bât. PHELMA, 1130 Rue de la Pis
ine, B.P. 75, Domaine Uni-versitaire, 38402 Saint Martin d'Hères, Cedex, Fran
e.(2) Laboratoire de Spe
trométrie Physique, UMR 5588 CNRS-UJF, Domaine Universitaire, 140Avenue de la Physique, 38402 Saint Martin d'Hères, Fran
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orresponding author.Tel.: + 33-4-76826547; fax: + 33-4-76826630e-mail: Ri
hard.Mi
hel�lepmi.inpg.frAbstra
t original : 215 words, 18.3 linesAbstra
tThe Faradai
 impedan
e of a mi
rodisk ele
trode inlaid in an insulating sur-fa
e is revisited by numeri
al 
omputation using a �nite element method (FEM)with anisotropi
 mesh adaptation. First, the 
onvergen
e of numeri
al results is
he
ked under both steady-state and harmoni
 
onditions, depending on the size ofthe 
al
ulation domain. Next, new features of the numeri
al results, as 
omparedto previous works, are analyzed. A �rst attra
tive feature, not yet dis
ussed in theele
tro
hemi
al literature, is that the di�usion impedan
e relative to a mi
rodiskele
trode, evaluated at the equilibrium potential of the ele
trode, depends both onele
tron-transfer and mass-transport kineti
s, in 
ontrast to the usual behaviour ofuniformly a

essible ele
trodes. The validity of the semi-analyti
al formulation ofdi�usion impedan
e, derived in the pioneering work of Fleis
hmann and Pons, isalso dis
ussed in terms of the dimensionless parameter that 
ompares the standardrate 
onstant of ele
tron transfer to the mi
roele
trode di�usion 
onstant. The otherresults presented in this arti
le fo
us on the 
hara
teristi
 quantities available fromimpedan
e graphs, whi
h are the di�usion resistan
e, the 
hara
teristi
 frequen
y
orresponding to the apex of the Nyquist diagram and the imaginary part of thedi�usion impedan
e measured at this apex. Closed form approximations are pro-posed for all quantities in order to make the theoreti
al representation and analysisof experimental data easier. 1



Abstra
t Abridegd V1 : 181 words, 15.6 linesAbstra
tThe Faradai
 impedan
e of a mi
rodisk ele
trode inlaid in an insulating surfa
eis revisited by numeri
al 
omputation using a �nite element method (FEM) withanisotropi
 mesh adaptation. New features of the numeri
al results, as 
omparedto previous works, are analyzed. A �rst attra
tive feature, not yet dis
ussed in theele
tro
hemi
al literature, is that the di�usion impedan
e relative to a mi
rodiskele
trode, evaluated at the equilibrium potential of the ele
trode, depends both onele
tron-transfer and mass-transport kineti
s, in 
ontrast to the usual behaviour ofuniformly a

essible ele
trodes. Next, the validity of the Fleishmann and Pons semi-analyti
al formulation of di�usion impedan
e is dis
ussed. Finally, the 
hara
teristi
quantities available from impedan
e graphs, whi
h are the di�usion resistan
e, the
hara
teristi
 frequen
y 
orresponding to the apex of the Nyquist diagram and theimaginary part of the di�usion impedan
e measured at this apex, are studied asfun
tions depending on a dimensionless parameter that 
ompares the standard rate
onstant of ele
tron transfer to the mi
roele
trode di�usion 
onstant. Closed formapproximations are proposed for all quantities in order to make the theoreti
al rep-resentation and analysis of experimental data easier.Abstra
t Abridegd V2 : 176 words, 15.25 linesAbstra
tThe Faradai
 impedan
e of a mi
rodisk ele
trode inlaid in an insulating surfa
eis revisited by numeri
al 
omputation using a �nite element method (FEM) withanisotropi
 mesh adaptation. New features of the numeri
al results are analyzed. A�rst attra
tive feature, not yet dis
ussed in the ele
tro
hemi
al literature, is that thedi�usion impedan
e relative to a mi
rodisk ele
trode, evaluated at the equilibriumpotential of the ele
trode, depends both on ele
tron-transfer and mass-transport ki-neti
s, in 
ontrast to the usual behaviour of uniformly a

essible ele
trodes. Next,the domain of validity of the Fleishmann and Pons semi-analyti
al formulation ofdi�usion impedan
e is determined. Finally, the 
hara
teristi
 quantities availablefrom impedan
e graphs (the di�usion resistan
e, the 
hara
teristi
 frequen
y 
orres-ponding to the apex of the Nyquist diagram and the imaginary part of the di�usionimpedan
e measured at this apex) are studied as fun
tions depending on a dimen-sionless parameter that 
ompares the standard rate 
onstant of ele
tron transferto the mi
roele
trode di�usion 
onstant. Closed form approximations are proposedfor all quantities in order to make the theoreti
al representation and analysis ofexperimental data easier.Abstra
t Abridegd V3 : 167 words ; 14.1 linesAbstra
tThe Faradai
 impedan
e of a mi
rodisk ele
trode inlaid in an insulating sur-fa
e is revisited by numeri
al 
omputation using a �nite element method (FEM)with anisotropi
 mesh adaptation. New features of the numeri
al results, as 
om-pared to previous works, are analyzed. A �rst attra
tive feature is that the di�usion2



impedan
e relative to a mi
rodisk ele
trode, evaluated at the equilibrium potentialof the ele
trode, depends both on ele
tron-transfer and mass-transport kineti
s, in
ontrast with the usual behaviour of uniformly a

essible ele
trodes. Next, the do-main of validity of the Fleishmann and Pons semi-analyti
al formulation of di�usionimpedan
e is determined. Finally, the 
hara
teristi
 of impedan
e graphs, whi
hare the di�usion resistan
e, the 
hara
teristi
 frequen
y at the apex of the Nyquistdiagram and the imaginary part of the di�usion impedan
e at this apex, are studiedas fun
tions of a dimensionless parameter that 
omparing the standard rate 
onstantof ele
tron transfer to the mi
roele
trode di�usion 
onstant. Closed form approxi-mations are proposed for all quantities in order to help the analysis of experimentaldata.Keyword : Impedan
e, Mi
roele
trode, Mi
rodisk, Simulation, Finite element method,Anisotropi
 mesh adaptation.
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1 Introdu
tionDespite the large literature dedi
ated to the theory of ele
tro
hemi
al impedan
e spe
-tros
opy (EIS) [1�3℄ on the one hand and the theory of ultrami
roele
trodes (UMEs)[4,5℄ with appli
ation to s
anning ele
tro
hemi
al mi
ros
opy [6℄ on the other hand, only afew papers have dealt with the theoreti
al derivation of the impedan
e of a mi
rodisk ele
-trode inlaid in an insulating surfa
e. The analysis presented by Fleis
hmann and Pons [7℄opened up the use of mi
roele
trodes to a
 impedan
e measurements. They 
al
ulatedthe real and imaginary parts of the di�usion impedan
e from Bessel's fun
tion integrals.When a
hieving this work, the numeri
al evaluation of Fleis
hmann and Pons formulaewas not an easy task. In order to make the impedan
e 
al
ulation easier, they presentedtheir numeri
al data in the form of tabulated fun
tions. Some additional information isavailable from the re
ent work by Navarro-Laboulais et al. [8℄. These authors derivedthe theoreti
al formulation of the di�usion resistan
e that is the low-frequen
y limit ofthe di�usion impedan
e. They evaluated numeri
ally the 
hara
teristi
 dimensionless fre-quen
y at the apex of the Nyquist impedan
e graph. An algorithm for 
al
ulation ofthe mi
rodisk impedan
e was outlined by these authors for implementation in 
omplexnon-linear least-squares �tting (CNLS-Fit) programs.An alternative approa
h for 
omputing the impedan
e of mi
rodisk ele
trodes is basedon �nite element analysis. The pioneering work on this topi
 was that of Ferrigno andGirault [9℄, whi
h fo
used on the axisymmetri
 re
essed mi
rodisk geometry. As a limit,the inlaid disk ele
trode was re
overed when the re
ess depth tends towards zero. Arelatively good (qualitative) agreement was observed with the semi-analyti
al formula-tion of Fleis
hmann and Pons. However, this 
al
ulation was limited to the re
essedmi
rodisk geometry to avoid the presen
e of a singularity in the neighbourhood of theele
trode edge where the boundary 
ondition 
hanges from the Diri
hlet type (uniform
on
entration perturbation) on the disk to the homogeneous Neumann type (zero �ux)on the insulator (see [10℄ for analysis of this kind of lo
al singularities). The singularityrefers to the 
on
entration perturbation �eld whi
h is not twi
e di�erentiable. Gabrielli4



et al. [11,12℄ 
ir
umvented the above problem in re
ent arti
les relative to numeri
al sim-ulation of the ele
tro
hemi
al impedan
e of an inlaid mi
rodisk ele
trode using COMSOLMultiphysi
s (formerly FEMLAB) software. These authors investigated the in�uen
e ofthe disk radius and the total ele
trode radius (ele
troa
tive disk + insulating sheath)on the impedan
e diagram. Their theoreti
al predi
tions were 
ompared to experimen-tal data 
olle
ted from a 10 µm diameter Pt mi
rodisk immersed in a 10 mM K3Fe(CN)6+ 10 mM K4Fe(CN)6 + 0.5 M KCl aqueous solution. The impedan
e was measuredat the equilibrium potential of Pt ele
trode. Very good agreement was found for theimpedan
e diagram simulated numeri
ally using Fleis
hmann and Pons equations, as wellas with the simulated FEM diagram. As dis
ussed by Gabrielli et al. [11℄, Ferrigno andGirault [9℄ used a Diri
hlet boundary 
ondition at the disk/ele
trolyte interfa
e (with theperturbation of interfa
ial 
on
entration of ele
troa
tive spe
ies being dire
tly 
ontrolledby the ele
trode potential perturbation), while Fleis
hmann and Pons [7℄ used a uniformnon-homogeneous Neumann boundary 
ondition (i.e. the distribution of the di�usional�ux perturbation is assumed to be uniform over the disk surfa
e). The more rigoroustreatment proposed by Gabrielli et al. [11℄ makes use of the Fourier-Robin boundary 
on-dition that is the linearized formulation with respe
t to the ele
trode potential of theButler-Volmer 
urrent-potential 
hara
teristi
.The aim of this work is an attempt to re�ne the numeri
al simulation of the impedan
e ofinlaid mi
rodisk ele
trodes using a �nite element method (FEM) with anisotropi
 meshadaptation. In this arti
le, the 
omputation pro
edure is employed for modeling theFaradai
 impedan
e of mi
rodisk ele
trodes at the equilibrium potential.The results presented here are fo
used on the 
hara
teristi
 quantities available fromimpedan
e graphs, whi
h are the di�usion resistan
e, the 
hara
teristi
 frequen
y observedat the apex of the Nyquist diagram, and the imaginary part of the impedan
e measuredat this apex. Of 
ourse, the whole impedan
e diagram will be of major importan
e for itsimplementation in CNLS-Fit programs. However, the three quantities mentioned aboveare su�
ient to 
ompare the a

ura
y of the semi-analyti
al (Fleis
hmann and Pons) andnumeri
al (FEM) pro
edures for 
omputing the impedan
e of mi
rodisk ele
trodes.5



First, the theory of mi
rodisk ele
trodes is detailed in Se
tion 2. The numeri
al method,in
luding both the mesh adaptation strategy and some aspe
ts of 
omputer implementa-tion, is presented in Se
tion 3. Next, the in�uen
e of 
omputational domain size on thea

ura
y of 
omputed di�usion impedan
e is investigated in Se
tion 4. The validity ofFleis
hmann and Pons formulae is 
he
ked in Se
tion 5 by 
omparison with adaptativeFEM 
omputations. Finally, in Se
tion 6, the 
hara
teristi
 elements from the di�usionimpedan
e graph are analyzed with respe
t to the dimensionless number that 
omparesthe standard rate 
onstant of ele
tron transfer to the di�usion 
onstant of mi
roele
trodes.
2 Theory2.1 GeometryWe 
onsider a mi
rodisk ele
trode inlaid in an insulating surfa
e. The mi
rodisk radiusand the total ele
trode radius (ele
troa
tive disk + insulating sheath) are respe
tivelydenoted by re and rmax. The geometry of the devi
e is axisymmetri
, so the 
al
ulationdomain Ω is redu
ed to a 2-D meridian se
tion of the domain o

upied by the ele
trolyti
solution. This domain is sket
hed in Fig. 1 where (r, z) denote the usual 
ylindri
al
oordinates. Its boundary Γ de
omposes into Γs, the symmetry axis; Γe, the ele
trodesurfa
e; Γi, the insulator surfa
e; and Γb, the bulk ele
trolyte. These parts of the boundary
Γ are de�ned as follows:

Γs = {(r, z) ; r = 0 and 0 < z < zmax} (1a)
Γe = {(r, z) ; 0 < r < re and z = 0} (1b)
Γi = {(r, z) ; re < r < rmax and z = 0} (1
)
Γb = {(r, z) ; (r = rmax and 0 < z < zmax) or ( 0 ≤ r ≤ rmax and z = zmax)}(1d)

Γb represents the part of the ele
trolyte whi
h is lo
ated at a su�
ient distan
e from themi
rodisk so that the in�uen
e of the ele
tro
hemi
al rea
tion (2) o

urring at the disksurfa
e 
an be negle
ted on Γb. This assumption allows to impose the boundary 
ondition6



of semi-in�nite di�usion on Γb while, in a rigorous way, it should be imposed at an in�nitedistan
e from Γe. The validity of this assumption mainly depends on the ratio rmax/re aswill be dis
ussed in Se
tion 4.2.2 Phenomenology: ele
tron-transfer and mass-transport pro-
essesA one-step ele
tro
hemi
al rea
tion o

urs at the disk surfa
e and involves a n-ele
tron-transfer pro
ess (usually n = 1) between two soluble spe
ies (O and R) at the metal (e.g.Pt)/ele
trolyte interfa
e Γe:
O + n e −→←− R (2)The rea
tion rate is des
ribed by Butler-Volmer kineti
s [3, 13℄ and, at the ele
trode po-tential E, it is expressed in the usual way by:

v = k0 (exp (−αr ξ) cO − exp (αo ξ) cR ) with ξ = (n F/RT )
(

E − E0 ′

) on Γe (3)where cX denotes the 
on
entration of spe
ies X = O, R, and the ele
tron-transfer pro
essis 
hara
terized by its standard rate 
onstant k0, the standard (formal) potential E0 ′ , andthe symmetry 
oe�
ients αo and αr, with αo + αr = 1, the other symbols having theirusual meaning.Due to the quies
ent solution and the presen
e of a suitable supporting ele
trolyte, migra-tion and 
onve
tion e�e
ts on mass-transport pro
esses 
an be negle
ted1, thus resultingin a pure di�usion pro
ess su
h that the �ux-ve
tor JX of spe
ies X = O, R is given by:
JX = −DX ∇cX in Ω (4)where the di�usion 
oe�
ient DX is a 
onstant in the presen
e of supporting ele
trolyte,1Stri
tly speaking, mass-transport of ele
troa
tive spe
ies by unfor
ed 
onve
tion should be taken into
onsideration using the model presented by Amatore et al. [14, 15℄. Nevertheless, these authors showedthat the 
ontribution of unfor
ed 
onve
tion 
an be negle
ted for an ele
trode radius re < 25 µm. This
ondition is satis�ed in our work. 7



and ∇cX is the 
on
entration gradient whose 
omponents in 
ylindri
al 
oordinates arethe partial derivatives, ∂rcX and ∂zcX, of cX with respe
t to r and z respe
tively.2.3 Stru
ture of the Faradai
 impedan
e2.3.1 Steady-state problemThe �rst step to analyse the Faradai
 impedan
e is to 
al
ulate the steady-state regime
orresponding to a stati
 value ES of the potential imposed to the ele
trode. This regimeis 
hara
terized by the stati
 
on
entrations cS,X, for spe
ies X = O, R, whi
h are solutionsof the following boundary value problem where the subs
ript 'S' stands for steady-state
onditions:Given ES, �nd, for X = O, R, cS,X : (r, z) ∈ Ω→ cS,X(r, z) ∈ R su
h that2:
−DX ∆cS,X = 0 in Ω (5a)

DX ∇cS,X · n = ǫX vS (ES, cS,O, cS,R) on Γe (5b)
DX ∇cS,X · n = 0 on Γi (5
)

cS,X = cb

X
on Γb (5d)where ǫO = −1, ǫR = +1, cb

X
denotes the bulk 
on
entration of spe
ies X, n is the outwardunit ve
tor normal to Γ, and ∆ is the Lapla
e operator whose 
ylindri
al expression isgiven by ∆cS,X = ∂2

rrcS,X + 1
r
∂rcS,X + ∂2

zzcS,X. The steady-state rea
tion rate vS in Eq. (5b)
omes from Eq. (3) where E and cX are respe
tively repla
ed by ES and cS,X. On
e theproblem (5) has been solved, the interfa
ial 
on
entrations are known and the steady-stateFaradai
 
urrent is obtained by integration along the radial dire
tion (r) as follows:
IS,f = −2π n F

∫

Γe

vS ds = −2π n F

∫ re

0

vS (ES, cS,O, cS,R) r dr (6)2The boundary 
ondition on Γs takes on the formulation, r DX ∇cS,X · n = 0, whi
h results fromthe weak (variational) formulation of the boundary value problem used in the FEM framework. Thisis straightforwardly satis�ed be
ause of r = 0 on Γs. Hen
e, it is not ne
essary to write this boundary
ondition in Eq. (5). The same remark applies to the harmoni
 boundary value problem in Eq. (9).8



Note that the boundary 
ondition (5d) is only an approximation of the semi-in�nitedi�usion boundary 
ondition cS,X(r, z) −→ cb

X
when r or z −→ ∞.2.3.2 Harmoni
 problemIn the se
ond step, a small harmoni
 perturbation of the ele
trode potential is imposed:

E(t) = ES + EH exp(jωt) (7)where j =
√
−1, ω = 2πf is the angular frequen
y, f is the frequen
y and EH is theamplitude of perturbation. Under the above 
onditions, the permanent regime resultingfrom the potential perturbation leads to the following 
on
entration �elds:

cX(r, z, t; ω) = cS,X(r, z) + cH,X(r, z; ω) exp(jωt) (8)The spatial part of the 
on
entration �elds perturbations cH,X(r, z; ω) are solutions ofthe following boundary value problem where the subs
ript 'H' stands for the permanentharmoni
 regime and where the notation '; ω' is used for highlighting the role of ω as aparameter:Given ES, EH and ω, �nd, for X = O, R, cH,X : (r, z) ∈ Ω→ cH,X(r, z) ∈ C su
h that
j ω cH,X −DX ∆cH,X = 0 in Ω (9a)

DX ∇cH,X · n = ǫX vH (ES, cS,O, cS,R, EH, cH,O, cH,R) on Γe (9b)
DX ∇cH,X · n = 0 on Γi (9
)

cH,X = 0 on Γb (9d)The harmoni
 perturbation of the rea
tion rate vH results from linearization of the ex-pression in Eq. (3) around the stati
 polarization point (ES, cS,O, cS,R). Using Eq. (7) for
9



the potential and Eq. (8) for the 
on
entration �elds, we obtain:
vH(ES, cS,O, cS,R, EH, cH,O, cH,R) = − k0

(

n F

R T
gS EH − exp (−αr ξS) cH,O + exp (αo ξS) cH,R

)(10)where
gS = αr exp (−αr ξS) cS,O + αo exp (αo ξS) cS,R and ξS = n F

(

ES −E0 ′

)

/(R T ) (11)2.3.3 Harmoni
 perturbation of Faradai
 
urrent and Faradai
 impedan
eOn
e the harmoni
 problem (9) is solved, the harmoni
 perturbations of interfa
ial 
on
en-trations are known and the permanent perturbation IH,f of the Faradai
 
urrent resultingfrom Eqs. (7) and (8) 
an be derived by integration along the radial dire
tion (r) asfollows:
IH,f = −2π n F

∫

Γe

vH ds = −2π n F

∫ re

0

vH (ES, cS,O, cS,R, EH, cH,O, cH,R) r dr (12)This expression is evaluated for ea
h value of the angular frequen
y ω. The ratio IH,f/EHde�nes the Faradai
 admittan
e Yf(ω) as a fun
tion of ω. Its formulation results dire
tlyfrom Eq. (10). It 
an be derived as:
Yf(ω) = Gct + YdO(ω) + YdR(ω) (13a)

Gct = k0
n2 F 2

R T
2 π

∫ re

0

gS(r, 0) r dr (13b)
YdO(ω) = −k0

n F

EH

exp(−αr ξS) 2 π

∫ re

0

cH,O(r, 0; ω) r dr (13
)
YdR(ω) = k0

n F

EH

exp(αo ξS) 2 π

∫ re

0

cH,R(r, 0; ω) r dr (13d)where Gct is the ele
tron-transfer 
ondu
tan
e, and YdX denotes the 
on
entration admit-tan
e relative to the spe
ies X = O, R. Of 
ourse, the Faradai
 impedan
e is obtainedas
Zf(ω) = 1/Yf(ω) (14)10



Note that the ele
tro
hemi
al pro
ess and its mathemati
al formulation involve the 
or-responden
e EH −→ IH,f . So it is the admittan
e whi
h 
omes naturally from the aboveequations and not the impedan
e.
3 Numeri
al resolution3.1 Dimensionless formulation and limiting 
onditions3.1.1 Dimensionless numbersIt is easy to show that the solutions cS,O and cS,R of the steady-state boundary valueproblem (5) satisfy the relation:

DO cS,O(r, z) + DR cS,R(r, z) = DO cb

O
+ DR cb

R
for (r, z) ∈ Ω (15)This property makes it possible to redu
e the problem (5) to the determination of one
on
entration �eld only. Arbitrarily, we 
hoose this 
on
entration as cS,R and we use thedi�usion 
oe�
ient and bulk 
on
entration of spe
ies R as the referen
e quantities for thede�nition of the dimensionless variables r⋆ = r/re, z⋆ = z/re, t⋆ = t DR/r2

e , c⋆
S,X = cS,X/cb

Rand c⋆
H,X = cH,X/cb

R
where supers
ript '⋆' indi
ates a dimensionless variable or operator.The dimensionless numbers resulting from this s
aling are:

Λ =
k0 re

DR

and u =
ω r2

e

DR

(16)3.1.2 In�uen
e of Λ: stati
 
onditions
Λ 
ompares the standard rate 
onstant of ele
tron transfer to the di�usion 
onstant ofmi
roele
trodes. It 
omes from the dimensionless form of the stati
 boundary 
ondition(5b) written for the spe
ies X = R and 
ombined together with Eq. (15) in order to elim-inate cS,O. The resulting equation is expressed by the following Fourier-Robin boundary11




ondition written in dimensionless form:
∇

⋆c⋆
S,R
· n⋆ = Λ α(ξS)

[

c⋆
NS,R(ξS)− c⋆

S,R

] on Γ⋆
e (17a)with:

c⋆
NS,R(ξS) =

(

DO cb

O

DR cb

R

+ 1

)

1

1 + DO

DR
exp(ξS)

and α(ξS) = exp(αo ξS) +
DR

DO

exp(−αr ξS)(17b)where c⋆
NS,R(ξS) stands for the dimensionless stati
 interfa
ial 
on
entration for Nernstiansystems.When Λ α(ξS) is very large, the Fourier-Robin boundary 
ondition (17a) leads to theDiri
hlet boundary 
ondition c⋆

S,R
= c⋆

NS,R(ξS) over the disk surfa
e Γe. In 
ontrast, atvery low values of Λ α(ξS), the Fourier-Robin boundary 
ondition leads to a uniform non-homogeneous Neumann boundary 
ondition, i.e. assuming a uniform perturbation �uxover the disk surfa
e, ex
ept in a small neighbourhood of the ele
trode edge.3.1.3 In�uen
e of Λ: harmoni
 
onditionsWhen DO = DR, the perturbations of 
on
entrations �elds satisfy cH,O(r, z; ω)+cH,R(r, z; ω) =

0 for (r, z) ∈ Ω, whi
h leads to the simpli�ed formulation of Eqs. (9b) and (10):
∇

⋆c⋆
H,R
· n⋆ = −Λ α(ξS)

[

c⋆
NH,R + c⋆

H,R

] on Γ⋆
e (18a)with:

c⋆
NH,R =

ξH

exp (−αr ξS) + exp (αo ξS)

gS

cb

R

(18b)where c⋆
NH,R stands for the dimensionless harmoni
 interfa
ial 
on
entration perturbationfor Nernstian systems and ξH = n F EH

R T
. Note that gS, obtained from Eq. (11), is 
onstantover the ele
trode surfa
e when the ele
trode impedan
e is 
al
ulated at the equilibriumpotential. The situation would be mu
h more intri
ate for impedan
e 
al
ulations per-formed away from the equilibrium potential.12



So the system kineti
s is still governed by Λ α(ξS) under harmoni
 
onditions. Two lim-iting situations 
an be predi
ted. When Λ α(ξS) is large, the harmoni
 perturbations of
on
entration �elds tend to satisfy Diri
hlet 
onditions at the disk/ele
trolyte interfa
elike in the work of Ferrigno and Girault [9℄. When Λ α(ξS) is small, the harmoni
 pertur-bations of di�usional �uxes present approximately uniform values over the disk surfa
e,and then, like in the work by Fleis
hmann and Pons [7℄, the Fourier-Robin boundary
ondition (18a) 
an be repla
ed by a uniform Neumann 
ondition on Γe. Both limiting
onditions will be numeri
ally veri�ed in Se
tion 6.2.At the opposite, when DO 6= DR, no simpli�
ation of harmoni
 equations is possible, soFEM 
omputations should be performed with two 
on
entration perturbation �elds.In the present work, we use the same approa
h as Gabrielli et al. [12℄, i.e. the Fourier-Robin boundary 
ondition de�ned by Eq. (9b) without any approximation, ex
ept thatthe steady-state potential of the ele
trode is equal to its equilibrium potential, so ξS isgiven by the Nernst equation: ξS = ln(cb

O
/cb

R
), therefore ξS = 0 when cb

O
= cb

R
.3.1.4 In�uen
e of uThe dimensionless angular frequen
y u 
omes dire
tly from the dimensionless form of Eq.(9a):

j u c⋆
H,X
− DX

DR

∆⋆c⋆
H,X

= 0 in Ω⋆ (19)It 
ompares the angular frequen
y ω with the re
ipro
al of di�usion time 
onstant r2
e/DR.When u is very large, it follows from the partial di�erential equation (19) that the 
on-
entration perturbations are vanishing in the ele
trolyte, ex
ept in the immediate neigh-bourhood of the disk surfa
e (due to the boundary 
ondition (18a)), so a boundary layerdevelops near Γ⋆

e at high frequen
ies. Conversely, at low frequen
ies, the 
on
entration�elds perturbations extend from the interfa
e Γ⋆
e into the ele
trolyte until they vanish on

Γ⋆
b.

13



3.2 Mesh adaptation strategySin
e the works of Nann and Heinze [16,17℄ and Harriman et al. [18�20℄ , it has be
omewidely a

epted that, when performing simulations of ele
tro
hemi
al pro
esses at mi-
rodisk ele
trodes, unstru
tured meshes must be used if a su�
iently a

urate solution isto be obtained within a reasonable 
omputing time. Adaptative �nite element algorithmshave been proposed and used for solving the mass-transport equations pertaining to themi
rodisk ele
trode geometry under steady-state [18�21℄ , as well as time-dependent[17, 22�24℄ 
onditions relative to the 
hronoamperometry, linear s
an voltammetry and
y
li
 voltammetry methods. In the most re
ent arti
les, the main key fa
tor is that themesh re�nement is under the 
ontrol of an error estimator of the 
urrent [18�24℄ .S
hemati
ally, a mesh adaptation strategy asso
iates two main stages. The �rst stage
onsists in the estimation of the error between the numeri
al approximation and theexa
t solution. The se
ond stage 
onsists in using this estimate to re�ne the mesh. Inall previous works, the authors used a spe
i�
 a posteriori estimation of the standardapproximation error (see [25℄ for further details) and re�ned the mesh by subdivision of the
urrent elements. Using this strategy, the error estimator should depend on the problem tobe solved (i.e. mass-transport pro
ess, rea
tion me
hanism and ele
tro
hemi
al method).The mesh adaptation strategy used in this work is well do
umented in the arti
le byFrey and Alauzet [26℄. This method is based on the 
ontrol of the interpolation error,whi
h allows to 
ontrol the approximation error and, hen
e, the a

ura
y of the numeri
alsolution (see the 
ontribution of Ciarlet [27℄ for a explanation of these 
on
epts). Onea
h mesh element, this interpolation error is lo
ally bounded by a fun
tional whi
hdepends on the tensor of se
ond derivatives of the 
on
entration perturbation (
urvaturetensor) and on the geometry of the element. From the eigenve
tors and eigenvaluesof this 
urvature tensor, 
omputed at ea
h vertex of the 
urrent mesh, it is possibleto generate a new mesh for whi
h the interpolation error is �xed to a spe
i�ed value,and is 
onstant over all elements and equidistributed in all dire
tions. This adaptationpro
ess is performed by a 
omplete remeshing without any referen
e to the 
urrent mesh.14



Fundamentally, this adaptation method allows to generate anisotropi
 meshes presentinghighly stret
hed elements in arbitrary dire
tions. This property is very useful to 
apturethe behaviour of the 
on
entration perturbations in the neighbourhood of the ele
trodeedge (whi
h introdu
es a singularity at all frequen
ies), as well as 
lose to the mi
rodisksurfa
e (so-
alled boundary layer) where the 
on
entration perturbation is essentiallylo
ated in the high-frequen
y range. The whole pro
edure is repeated at ea
h frequen
y,and, in parti
ular the meshes, whi
h lead to the spe
i�ed interpolation error for twodistin
t frequen
ies, are distin
t. A great advantage of the above strategy is that themesh adaptation is of general purpose; it 
an be used irrespe
tive of the ele
tro
hemi
al
onditions: mass-transport pro
ess, rea
tion me
hanism, 
ell geometry, ele
tro
hemi
almethod...An example of mesh generated by the anisotropi
 adaptation algorithm is presented inFig. 2. The enlarged views highlight the re�nement of the mesh near the singularityat the ele
trode edge. In addition, due to the high-frequen
y 
ondition used in Fig. 2,the �nal mesh 
ontains very stret
hed elements near the disk surfa
e ("dark zone" in the�gure). In this boundary layer, near the origin (r/re ≈ 0), the radial dimension of meshelements is 500 times larger than the axial dimension.3.3 Solvers, implementation and validationThe FEM used in this work has been implemented in FreeFem++ developed by He
ht[28, 29℄, whi
h is a powerful high-level language spe
ially dedi
ated to weak formulationof boundary value problems for partial di�erential equations and to their approximationsby �nite element methods. Another parti
ularly attra
tive feature of FreeFem++ is the fa
tthat it provides a set of meshing tools allowing simple use of anisotropi
 mesh adaptation.Finite element dis
retization of the partial di�erential equations (9) is performed usingtriangular elements and approximation by 
ontinuous pie
ewise quadrati
 polynomial onea
h triangle. This leads to a system of 
omplex linear equations, whi
h is solved by aGaussian elimination algorithm stabilized by partial pivoting strategy.15



In order for the 
omputation 
ost to remain reasonable, we also used the possibilityof 
oupling FreeFem++ with the Davis's high performing solver UMFPa
k [30, 31℄, theGoto's [32℄ and Whaley's [33℄ basi
 linear algebra subprograms (BLAS). The resulting
omputational environment allowed us to 
ompute ea
h Nyquist diagram in about halfan hour on a No
ona pro
essor running a 32-bits linux system. The whole 
omputation,
arried out at ninety di�erent frequen
ies for ea
h impedan
e graph, requires a little morethan a thousand matrix fa
torizations of order varying from 2,500 to 1,600,000. Furtherdetails of the 
omputation pro
edure 
an be found in Ref. [34℄.The validity of the above strategy has been 
he
ked by 
omparison of the 
omputed stati

on
entration �elds to the 
losed form solution derived by Crank and Furzeland [35℄ forNerstian systems (i.e. setting Λ → ∞ with our notation). A very good agreement hasbeen observed. In addition, Fig. 3 
learly shows that the resulting approximation erroron the 
on
entration �eld is 
ontrolled by the interpolation error imposed by the meshadaptation algorithm.
4 Convergen
e vs. 
omputational domain size4.1 Nyquist plotAlthough it is the admittan
e that 
omes dire
tly from Eqs. (13), as indi
ated above,the general use in ele
tro
hemistry is to plot impedan
e diagrams using the Nyquistrepresentation, −Im(Zf) vs Re(Zf), with orthonormal axes. In addition, the in�uen
eof ohmi
 drop and double layer 
apa
itan
e being negle
ted in this work, the ele
trodeimpedan
e redu
es to the Faradai
 impedan
e:

Zf(u) = Rct + Zd(u) (20)
16



whi
h is the sum of the di�usion impedan
e of soluble spe
ies Zd(u) and the ele
tron-transfer resistan
e:
Rct = lim

u−→∞

Zf(u) =
1

Gct

(21)where Gct is given by Eq. (13b). The low-frequen
y limit of Faradai
 impedan
e is theso-
alled polarization resistan
e Rp de�ned as:
Rp = lim

u−→0
Zf(u) = Rct + Rd (22)with the di�usion resistan
e being the limit:

Rd = lim
u−→0

Zd(u) (23)Some Faradai
 impedan
e graphs have been plotted in Fig. 4 for typi
al values of ele
tro-
hemi
al parameters and di�erent values of 
omputational domain size, i.e. for rmax/reranging from 4 to 512. It should be noti
ed that, although all 
omputations were per-formed with dimensionless numbers (ξS, ξH, Λ, u...) the impedan
e graphs and relatedquantities are presented here with their usual units in order to keep in mind the order ofmagnitude of the impedan
e of mi
rodisk ele
trodes.The higher rmax/re, the larger the frequen
y domain where the 'true' di�usion impedan
erelative to an inlaid mi
rodisk ele
trode is 
omputed with high a

ura
y.An enlarged view of the low-frequen
y domain shows that the shape of the diagram,
omputed at small rmax/re values, is quite di�erent from that predi
ted by Fleis
hmannand Pons [7℄. Indeed, the low frequen
y tail of the impedan
e graph 
orresponds to asmall 'semi
ir
le', rather than a straight line with slope (-1). This is in perfe
t agreementwith the previous simulation by Gabrielli et al. [12℄. However, a straight line with slope(-1) is re
overed for large 
omputational domains, typi
ally at rmax/re = 512.This 
an be quanti�ed by investigating the 
onvergen
e error of the Faradai
 impedan
e
17



with respe
t to the 
omputation domain size. This error and its norm are de�ned by:
‖εf,rmax/re

‖
2

=

√

∑

k

|εf,rmax/re
(uk)|2 with εf,rmax/re

(u) =
Zf,512(u)− Zf,rmax/re(u)

Zf,4(u)− Zf,rmax/re(u)
(24)Here, Zf,rmax/re(u) denotes the Faradai
 impedan
e 
omputed by FEM from Eqs (13) and(14) at the given value of rmax/re. The uk's are the dis
rete values of dimensionlessfrequen
y in the di�erent ranges de�ned in Fig. 5 where the de
imal logarithm of theerror norm has been plotted vs rmax/re for the same parameters values than in Fig 4. Thefour 
urves were obtained for impedan
e 
al
ulation 
arried out over di�erent frequen
yranges. For example, at f ≥ 10−2 Hz, that is u ≥ 1.25× 10−2 in dimensionless notation,
onvergen
e is rea
hed (i.e. a plateau is observed) as soon as rmax/re ≥ 40. In 
ontrast,

rmax/re ≥ 200 is required to 
ompute a

urately the impedan
e at frequen
y down to
10−4 Hz. Finally, 
onvergen
e is not yet rea
hed, even at rmax/re = 256, when the wholefrequen
y domain (u ≥ 0) is taken into 
onsideration. Note, however, that frequen
iessu
h that f ≤ 10−4 Hz are well beyond the range of experimentally a

essible frequen
iesin ele
tro
hemistry, so the 
omputational domain size rmax/re = 128 will be used hereafterto plot impedan
e graphs.4.2 Polarization resistan
eWe use the ratio (

Rp,rmax/re −Rp,4

)

/ (Rp,512 −Rp,4) to de�ne the normalized error on thepolarization resistan
e. Rp,rmax/re is 
omputed, at the given value of rmax/re, from Eqs.(13) and (14) after setting ω = 0 (i.e. u = 0) in the harmoni
 boundary value problem(9). The normalized polarization resistan
e error has been plotted in Fig. 6 with respe
tto the 
omputational domain size. An attra
tive feature is that 
onvergen
e 
urves arethe same for k0 ranging from 10−5 to 10 cm s−1. The se
ond feature is that 
onvergen
eof Rp is rea
hed within 5� relative error, typi
ally for rmax/re ≥ 300.
18



5 Validity domain for Fleis
hmann and Pons (FP) for-mulaeFP formulae, reviewed in the Appendix A, are the referen
es for 
omputation of theimpedan
e of mi
rodisk ele
trodes. In previous works of Ferrigno and Girault [9℄, as wellas Gabrielli et al. [12℄, good agreement with FP formulae was reported by the authors.Be
ause of 
ontrolled 
omputation a

ura
y in this work, we are now able to predi
t thevalidity domain of su
h formulae in terms of the parameter Λ de�ned in Eq. (16).It should be noted that the FP formulae were derived at the equilibrium potential assum-ing that DO = DR = D and cb

O
= cb

R
= cb. The same assumptions are used here in FEM
omputations under harmoni
 
onditions, so that ξS = 0 is satis�ed in Eq. (18).We 
ompare Zd,FP(u), 
omputed from the FP formulae (Eqs.(A.1) and (A.2) in the Ap-pendix A), to Zd,rmax/re(u), 
omputed by self-adaptative FEM, thanks to the followingmeasure of relative deviation:

‖εd,rmax/re
‖

2
=

√

∑

k

|εd,rmax/re
(uk)|2 with εd,rmax/re

(u) =
Zd,FP(u)− Zd,rmax/re(u)

Zd,FP(u)
(25)The relative deviation has been plotted in Fig. 7 at di�erent values of the standard rate
onstant of ele
tron-transfer pro
ess. Convergen
e is rea
hed for all k0 values at in
reasingsize of 
omputational domain. In parti
ular, the relative error 
onverges very rapidly inthe frequen
y domain f ≥ 10−3 Hz, i.e. at u ≥ 1.25× 10−3.Now, let us look at the plateau values. The relative error attains the asymptoti
 value

4× 10−3 when k0 ≤ 10−5 cm s−1, whi
h indi
ates that the di�usion impedan
es 
omputedfrom the FP formulae and adaptative FEM are very 
lose to ea
h others due to sluggishele
tron transfer kineti
s at the mi
rodisk surfa
e. As soon as k0 in
reases, the relativedeviation also in
reases up to a 
onstant value (not represented in the �gure) at k0 ≥

1 cm s−1. Indeed, the deviation between the two sets of impedan
e values is maximum forvery fast 
harge-transfer kineti
s. Hen
e, the FP formulae should not be employed to �t19



experimental impedan
e data measured from Nernstian systems.The di�usion impedan
e 
omputed using the self-adaptative FEM is also 
ompared tothe predi
tions from Fleis
hmann and Pons equations in Fig. 8 and 9 where the relativedeviations of real and imaginary parts of the di�usion impedan
e have been plotted vs thede
imal logarithm of frequen
y. For the intermediate value, k0 = 10−2 cm s−1, in Fig. 8,the deviation of Im(Zd) presents a bell-shaped 
urve, the maximum deviation (in absolutevalue) being 
lose to 8 % near the 
hara
teristi
 frequen
y of the impedan
e diagram. Therelative deviation of Re(Zd) shows a more 
omplex feature. The larger deviation, typi
ally
5 % in absolute value, is observed in the low-frequen
y range, while the two 
omputationpro
edures are in good agreement with ea
h other in the high-frequen
y domain (Warburgimpedan
e).In 
ontrast, the relative deviation be
omes very small due sluggish ele
tron transfer (typi-
ally at k0 = 10−6 cm s−1). S
attering of numeri
al data in Fig. 9 is due to 
omputationalnoise whi
h is of the same order of magnitude than the relative deviation between the two
omputed impedan
es.
6 Chara
teristi
 elements from the di�usion impedan
egraphs6.1 De�nitionsThe di�usion impedan
e (see Fig. 4) 
an be 
hara
terized by the di�usion resistan
e thatis the low-frequen
y limit of Zd in Eq. (23), the angular frequen
y ωc 
orresponding tothe apex on the Nyquist diagram, and the imaginary part of Zd measured at this apex.The following dimensionless quantities will be used in what follows. First, R⋆

d denotes thedimensionless di�usion resistan
e:
R⋆

d =
n2 F 2 π re D cb

R T
Rd (26)20



where it is assumed that DO = DR = D and cb

O
= cb

R
= cb. Next, uc is the 
hara
teristi
value of the dimensionless angular frequen
y at the apex of the Nyquist plot:

uc = ωc

r2
e

D
(27)Finally, the dimensionless value of minus the imaginary part of Zd measured at the apexis:

ImZ⋆
c = −n2 F 2 π re D cb

R T
ImZc (28)6.2 In�uen
e of Λ; approximation formulaeWe now look for an approximation formula between ea
h 
hara
teristi
 element and Λ.The numeri
al pro
edure is as follows. Given any set of parameters values (re, k0, D,

cb...), �rst, R⋆
ct and R⋆

p are 
omputed using adaptative FEM under stati
 
onditions, andharmoni
 
onditions with u = 0, respe
tively. Next, both uc and ImZ⋆
c are obtained by
oupling adaptative FEM 
omputations with the a

elerated golden se
tion algorithm [36℄and a smoothing pro
edure based on a paraboli
 �tting near the apex. Finally, R⋆

d, ImZ⋆
cand uc are plotted as dots in Fig. 10 vs. the de
imal logarithm of Λ = k0 re

D
. The ratio

ImZ⋆
c /R

⋆
d is also plotted in this �gure.The four 
urves present interesting features not yet dis
ussed in the ele
tro
hemi
al liter-ature. First of all, the di�usion impedan
e relative to a mi
rodisk ele
trode, evaluated atthe equilibrium potential of the ele
trode, depends both on ele
tron-transfer and mass-transport kineti
s, in 
ontrast with the usual behaviour of uniformly a

essible ele
trodes(see [3℄). Indeed, the di�usion resistan
e is a fun
tion of Λ = k0 re

D
. The same remarkapplies to the imaginary part of the di�usion impedan
e at the apex of the Nyquist graph.Note, however, that the 
hanges of R⋆

d and ImZ⋆
c vs log(Λ) are not the same, i.e. theratio ImZ⋆

c /R
⋆
d is not 
onstant, so the impedan
e loop is more depressed at large valuesof Λ. Finally, a frequen
y shift 
an be predi
ted on the impedan
e diagram by looking atthe 
hange of uc with respe
t to log(Λ) in Fig. 10.21



Two horizontal asymptotes pertaining to small and large values of Λ respe
tively, are
learly revealed in Fig. 10. First, 
onsidering very fast ele
tron-transfer kineti
s (large
k0), and/or a very large disk radius, and/or a very small di�usion 
oe�
ient, i.e. atvery large values of Λ, the di�usion impedan
e is the same as the one obtained from theDiri
hlet boundary 
ondition initially employed by Ferrigno and Girault [9℄. The limitingvalue for R⋆

d then is equal to π/2 (see [34℄).In 
ontrast, at very low values of Λ, due to a small k0 and/or a very small disk radius,and/or a very large di�usion 
oe�
ient, the boundary 
ondition (18a) is asymptoti
allythe same as the uniform non-homogeneous Neumann boundary 
ondition used by Fleis-
hmann and Pons. This is 
learly indi
ated in Fig. 10 by the upper limits of R⋆
d, ImZ⋆

cand uc mat
hing quasi-exa
tly the numeri
al values R⋆
d = 16/(3 π) ≈ 1.698, ImZ⋆

c ≈ 0.395and uc ≈ 2.440 derived from the FP formulae in Appendix A.Be
ause of the asymptoti
 behaviours observed at small and large values of Λ, respe
tively,exponential fun
tions are well suited to �t the numeri
al data in Fig. 10. Setting λ =

log(Λ) for the sake of simpli�
ation, and using a standard non-linear �tting pro
edure, thevariations of R⋆
d, ImZ⋆

c and uc with respe
t to λ 
an be �tted a

urately by the followingfun
tion (among di�erent possible �tting fun
tions):
f(λ) = a1 −

a2

[1 + b1 exp(−b2 λ)]b3
(29)where the 
onstants a1 and a2 are dire
tly obtained from the two horizontal asymptotes,while b1, b2 and b3 are adjustable parameters. Their best-�tted values are given in Table 1.The quality of the �t is illustrated by the solid lines plotted in Fig. 10, as well as the

χ2 values reported in Table 1. It may be noti
ed that Eq. (29) is only a �representationmodel�, so the best-�tted numeri
al 
oe�
ients have no parti
ular physi
al meaning.Looking at Fig. 10, it be
omes very 
lear that the validity 
ondition for the FP formulaeis typi
ally Λ ≤ 10−1, while the se
ond limiting behaviour 
orresponding to Nernstiansystem kineti
s is typi
ally observed for Λ ≥ 102.22



6.3 Appli
ation to experimental data analysisOf 
ourse, a CNLS-Fit program should be used for a

urate evaluation of the di�usion
oe�
ient of ele
troa
tive spe
ies from EIS data measured at a mi
rodisk ele
trode. How-ever, a �rst evaluation of D is possible, from experimental values of Rct and Rd, as follows.Assuming that DO = DR = D and cb

O
= cb

R
= cb, the ele
tron�transfer resistan
e evaluatedat the equilibrium potential of a mi
rodisk ele
trode is given by [7℄:

Rct =
R T

n2 F 2 π r2
e k0 cb

(30)Using Eqs. (16), (26), (29) and (30), we obtain:
Rd

Rct

= Λ f(λ) (31)Given experimental values for the disk radius and the resistan
es Rd and Rct, Eqs. (29)and (31), employed together with the relevant numeri
al 
oe�
ients in the �rst entry ofTable 1, result in an impli
it equation with respe
t to Λ = k0 re/D.This equation 
an be readily solved for k0/D, e.g. using the 'FindRoot' 
ommand ofMathemati
a [37℄ or the one-dimensional Root-Finding algorithm of the Gnu s
ienti�
library [38℄, while the standard rate 
onstant of ele
tron transfer 
an be dire
tly obtainedfrom the ele
tron-transfer resistan
e in Eq. (30), so the di�usion 
oe�
ient 
an be readilyevaluated.By way of illustration, let us 
onsider the EIS data 
olle
ted by Gabrielli et al. [12℄ froma 10 µm diameter Pt mi
rodisk immersed in a 10 mM K3Fe(CN)6 + 10 mM K4Fe(CN)6 +0.5 M KCl aqueous solution. The impedan
e was measured at the equilibrium potentialof Pt ele
trode. The values, Rct ≈ 0.85 MΩ and Rd ≈ 4.15 MΩ, 
an be extra
ted fromthe impedan
e spe
tra. Using the above 
al
ulation pro
edure, we obtain k0 = 4.0 ×

10−2 cm s−1 and D = 6.7× 10−6 cm2 s−1. Su
h values 
an be favorably 
ompared to thosevalues obtained by Gabrielli et al. using a CNLS-Fit program (Simplex algorithm), i.e.23



k0 = 3.6× 10−2 cm s−1 and D = 6.6× 10−6 cm2 s−1.
7 Con
lusionsThe major points of this arti
le are the following.� A �nite element method with anisotropi
 mesh adaptation has been used for the�rst time to 
ompute ele
tro
hemi
al impedan
e data, in the 
ase of a mi
rodiskele
trode inlaid in an insulating surfa
e.� The mesh adaptation strategy used in this work is of general purpose. It allows theuse of anisotropi
 meshes and provides a numeri
al solution with uniform a

ura
y(�xed by the user) over ea
h mesh element. This strategy 
an be employed irrespe
-tive of the ele
tro
hemi
al 
onditions. For example, the mesh adaptation strategyis used both for solving the steady-state boundary value problem and the harmoni
boundary value problem.� The numeri
al method used in this work has been implemented in FreeFem++ whi
his a powerful high-level language spe
ially dedi
ated to weak formulation of bound-ary value problems for partial di�erential equations and to their approximationsby �nite element methods. FreeFem++ provides a set of meshing tools allowing asimple use of anisotropi
 mesh adaptation and 
an be 
oupled with the Davis's highperforming solver UMFPa
k and spe
ialized algebra library.� The size of the �nite element 
al
ulation domain is a 
ru
ial parameter for 
omputingthe Faradai
 impedan
e of mi
rodisk ele
trodes. A large ratio of the total radius tothe disk radius, typi
ally rmax/re ≥ 128, is required to attain high a

ura
y in thefrequen
y range f ≥ 10−3 Hz.� We have shown that the di�usion impedan
e, 
omputed by self-adaptative FEM atthe equilibrium potential of the ele
trode, depends on the dimensionless parameter24



k0 re/D. This behaviour strongly di�ers from that predi
ted for uniformly a

essibleele
trodes [3℄.� The impedan
e of a mi
rodisk ele
trode depends, of 
ourse, on the boundary 
on-dition at the metal surfa
e. In this work, we used the Fourier-Robin boundary 
on-dition, whi
h is the linearized formulation of the Butler-Volmer 
urrent�potential
hara
teristi
.� The validity of the semi-analyti
al formulation of Zd,FP(u), derived in the pioneeringwork by Fleis
hmann and Pons [7℄, has been dis
ussed for impedan
e 
omputations
arried out at the equilibrium potential of the ele
trode. From our �nite elementsimulations, we 
ame to the 
on
lusion that the semi-analyti
al formulation is onlyvalid at low values of k0 re/D, typi
ally at k0 re/D ≤ 10−1. In 
ontrast, at intermedi-ate or large values of k0 re/D, deviation of Zd from Fleis
hmann and Pons formulaewas predi
ted. The maximum deviation is of the order of 8-15 % in terms of thedi�usion resistan
e, the 
hara
teristi
 frequen
y at the apex of the Nyquist diagram,and the value of −Im(Zd) at this apex. A frequen
y shift is also predi
ted on theimpedan
e diagram, whi
h depends both on frequen
y and the k0 re/D value.� The results presented here are essentially fo
used on the 
hara
teristi
 quantitiesavailable from impedan
e graphs, whi
h are the di�usion resistan
e, the 
hara
ter-isti
 frequen
y at the apex of the Nyquist impedan
e graph, and the imaginary partof the impedan
e measured at this apex. Eqs. (26)�(28) are the theoreti
al formu-lations for these quantities, with R⋆
d, ImZ⋆

c and uc being evaluated numeri
ally byadaptative FEM.� The variations of R⋆
d, ImZ⋆

c and uc with respe
t to log(k0 re/D) have been �tteda

urately by the fun
tion in Eq. (29), employed together with the numeri
al 
oef-�
ients in Table 1, in order to make the evaluation of su
h 
hara
teristi
 quantitieseasier whatever the values of the ele
tro
hemi
al system parameters.� We have shown that the above quantities 
an be used for the evaluation of the25
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A Faradai
 impedan
e derived from Fleis
hmann andPons formulaeIn the seminal work by Fleis
hmann and Pons [7℄ the impedan
e of a mi
rodisk ele
trodewas 
al
ulated assuming that both oxidized and redu
ed spe
ies have the same di�usion28




oe�
ient (DO = DR = D) and the same bulk 
on
entration (cb

O
= cb

R
= cb). In ad-dition, Ohmi
 potential drop and double-layer e�e
ts were disregarded, so the ele
trodeimpedan
e redu
es to the Faradai
 impedan
e. The major assumptions are, �rstly, thatthe impedan
e is 
al
ulated at the equilibrium potential of the ele
trode, and, se
ondly,that the di�usion �ux perturbation is supposed uniform over the mi
rodisk surfa
e. Theresulting dis
ontinuity in the boundary 
ondition, whi
h 
hanges from the uniform non-homogeneous Neumann boundary 
ondition (uniform �ux perturbation) on the mi
rodiskto the homogeneous Neumann boundary 
ondition (zero �ux) on the insulator, was takeninto a

ount thanks to the Weber-S
hafheitlin integral [39℄, so-
alled "dis
ontinuous def-inite Bessel integrals" in Ref. [7℄.The ele
tron�transfer resistan
e relative to the ele
tro
hemi
al rea
tion in Eq. (2), eval-uated at the equilibrium potential of the disk ele
trode with the same bulk 
on
entrationof oxidized and redu
ed spe
ies in the ele
trolyti
 solution, is given by Eq. (30). TheFaradai
 impedan
e relative to the ele
tro
hemi
al rea
tion in Eq. (2), 
an be written asthe sum of Rct and the di�usion impedan
e of soluble spe
ies Zd(u) a

ording to Eq. (20).Starting from Fleis
hmann and Pons formulae [7℄, the real part (Re) and the imaginarypart (Im) of the di�usion impedan
e 
an be written respe
tively as:

Re(Zd,FP(u)) =
4 R T

n2 F 2 π re D cb

Φ4(u)√
u

(A.1a)and:
Im(Zd,FP(u)) = − 4 R T

n2 F 2 π re D cb

Φ5(u)√
u

(A.1b)with the fun
tions Φ4(u) and Φ5(u) being de�ned as the following integrals:
Φ4(u) =

∫

∞

0

[J1(x
√

u)
]2 cos(θ/2)

x (1 + x4)1/4
dx (A.2a)and:

Φ5(u) =

∫

∞

0

[J1(x
√

u)
]2 sin(θ/2)

x (1 + x4)1/4
dx (A.2b)29



where J1(y) is the Bessel fun
tion of the �rst kind and �rst order, with the real argument
y = x

√
u, and θ = arctan(1/x2).First, using a 
omputer algebra system like Mathemati
a [37℄, the low�frequen
y be-haviour is readily obtained from the following limits:

lim
u−→0

Φ4(u)√
u

=

∫

∞

0

[J1(y)]2

y2
dy =

4

3 π
(A.3a)and:

lim
u−→0

Φ5(u)√
u

= 0 (A.3b)in agreement with the previous derivation by Navarro-Laboulais et al. [8℄. From Eqs.(A.1a), (A.2a) and (A.3a), we derive the di�usion resistan
e where the subs
ript 'FP'refers to Fleis
hmann and Pons:
Rd,FP =

16 R T

3 n2 F 2 π2 re D cb
(A.4)Next, the 
hara
teristi
 frequen
y 
orresponding to the apex of the di�usion impedan
egraph was given as uc,FP = 2.5 by Rotenberg et al. [40℄, while Navarro-Laboulais et al. [8℄
al
ulated numeri
ally uc,FP = 2.5119. The more a

urate value, uc,FP = 2.440, is proposedin this work [34℄.Finally, minus the imaginary part of the di�usion impedan
e, 
al
ulated at the apex ofthe Nyquist diagram, satis�es (ImZc/Rd)FP

= 0.233 [40℄, therefore:
Im(Zd,FP(uc)) = − 0.395

R T

n2 F 2 π re D cb
(A.5)
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Figure 1 � S
hemati
 representation of the �nite element 
al
ulation domain, with 
ylindri
alsymmetry, and rmax/re = 4, for a mi
rodisk inlaid ele
trode. Ω: �nite element 
al
ulationdomain 
orresponding to a meridian subse
tion of the domain �lled by the ele
trolyti
 solution;
Γe: interfa
e with the ele
troni
 
ondu
tor; Γs: axis of symmetry; Γi: interfa
e with the insulator;
Γb: ele
trolyte bulk.

Figure 2 � Example of mesh generated by anisotropi
 adaptation algorithm in the high frequen
yrange. Left: global view of the mesh 
orresponding to rmax/re = 4 and presenting a boundarylayer near the ele
troni
 
ondu
tor (the �dark zone�). Right: enlarged view in the neighbourhoodof the singularity, with a magni�
ation fa
tor 400× 400 (top) and 4000 × 4000 (bottom).
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Figure 3 � Comparison between the imposed interpolation error and the resulting maximalapproximation error on the steady-state 
on
entration for a Nernstian system. The referen
esolution is taken from Crank and Furzeland [35℄. Computation domain size rmax/re = 256. Botherrors are absolute dimensionless errors.

Figure 4 � Faradai
 impedan
e relative to an inlaid mi
rodisk ele
trode 
omputed by adaptativeFEM at the equilibrium potential for n = 1, k0 = 10−3 cm s−1, αr = αo = 1/2, DR = DO =
5 × 10−6 cm2 s−1, cb

R
= cb

O
= 10−5 mol cm−3, re = 10−3 cm and T = 298K. Left: Nyquist plot,for rmax/re = 4, 8, 16, 512 from left to right in the low-frequen
y domain. Some values of thede
imal logarithm of f/Hz are reported on the graphs. Right: enlarged view of the impedan
ediagrams in the low-frequen
y domain for rmax/re = 16, 32, 64, 512; full 
ir
les 
orrespond to

f = 10−3 Hz and empty 
ir
les 
orrespond to the values −4, −5 and −6 of the de
imal logarithmof f/Hz from top to bottom.
32



Figure 5 � Evolution of the de
imal logarithm of the error norm ‖εf,rmax/re
‖
2
in Eq. (24) for theFaradai
 impedan
e 
onvergen
e with respe
t to the size rmax/re of the 
omputational domain.The Faradai
 impedan
e is 
omputed at the equilibrium potential of the mi
rodisk ele
trode andits 
onvergen
e error is evaluated for f/Hz ≥ 0 (a), f/Hz ≥ 10−4 (b), f/Hz ≥ 10−3 (
) and

f/Hz ≥ 10−2 (d). The values of parameters are the same as in Fig. 4, so the 
orrespondingdimensionless frequen
y u = 2π f r2
e/DR is su
h that u ≥ 0 (a), u ≥ 1.25 × 10−4 (b), u ≥

1.25× 10−3 (
) and u ≥ 1.25 × 10−2 (d).

Figure 6 � Normalized error for 
omputation of the polarization resistan
e
(

Rp,rmax/re −Rp,4

)

/ (Rp,512 −Rp,4) plotted with respe
t to the size rmax/re of 
omputa-tional domain. All the 
urves plotted for a standard rate 
onstant of ele
tron transfer k0/cm s−1varying from 10−5 to 10 are superposed. The other parameters have the same values as in Fig 4.
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Figure 7 � Comparison of the di�usion impedan
e Zd,rmax/re(u), 
omputed by FEM, with Zd,FP(u)predi
ted from Fleis
hmann and Pons, depending on the size rmax/re of the 
omputationaldomain, using the relative deviation norm in Eq. (25). The relative deviation is 
al
ulated for
f/Hz ≥ 0 (left) and for f/Hz ≥ 10−3 (right). In both 
ases, k0/cm s−1 is equal to 10−1 (a), 10−2(b), 10−3 (
), 10−4 (d), 10−5 and 10−6 (e) and the di�usion impedan
es are 
al
ulated at theequilibrium potential of the mi
rodisk ele
trode. The other parameters have the same values asin Fig. 4.

Figure 8 � Comparison of the di�usion impedan
e Zd,128(u), 
omputed by FEM for rmax/re =
128, with Zd,FP(u) predi
ted from Fleis
hmann and Pons formulae, as a fun
tion of the de
imallogarithm of frequen
y/Hz. k0/cm s−1 = 10−2. The other parameters have the same values as inFig. 4. Left: relative deviation of the real part. Right: relative deviation of the imaginary part.
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Figure 9 � Same �gure 
aption as in Fig. 8, ex
ept for k0/cm s−1 = 10−6. S
attering of numeri
aldata is due to the 
omputational noise whi
h is of the same order of magnitude as the relativedeviation in�.

Figure 10 � Evolution of the 
hara
teristi
 quantities of the di�usion impedan
e graph 
omputedby FEM vs log Λ, with Λ = k0 re/DR. The numeri
al data (dots) have been �tted (solid lines)using Eq. (29). The best-�tted values of parameters have been reported in Tab. 1.
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Table Chara
teristi
 a1 a2 b1 b2 b3 χ2quantity
R⋆

d 1.6957 0.1268 1.8968 1.7836 1.4239 5.7× 10−7

uc 2.4410 0.3560 2.4656 1.9235 1.4205 3.2× 10−5

ImZ⋆
c 0.3950 0.0472 1.7013 1.8818 1.3467 1.3× 10−7Table 1 � Best-�ts of the numeri
al 
oe�
ients in Eq. (29) relative to R⋆

d, ImZ⋆
c and uc whi
h
an be used to predi
t the di�usion resistan
e at an inlaid mi
rodisk ele
trode under the sameoperating 
onditions as in Ref. [7℄, as well as the 
hara
teristi
 frequen
y at the apex of theNyquist impedan
e diagram, and �nally the imaginary part of the di�usion impedan
e at thisapex, from Eqs. (26)�(28), respe
tively. The best values have been obtained by nonlinear �ttingof the numeri
al data in Fig. 10.
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