

Virus recovery and full-length sequence analysis of a typical bovine pestivirus Th/04_KhonKaen

Lihong Liu, Jaruwan Kampa, Sándor Belák, Claudia Baule

▶ To cite this version:

Lihong Liu, Jaruwan Kampa, Sándor Belák, Claudia Baule. Virus recovery and full-length sequence analysis of atypical bovine pestivirus Th/04_KhonKaen. Veterinary Microbiology, 2009, 138 (1-2), pp.62. 10.1016/j.vetmic.2009.03.006 . hal-00490550

HAL Id: hal-00490550 https://hal.science/hal-00490550

Submitted on 9 Jun2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Virus recovery and full-length sequence analysis of atypical bovine pestivirus Th/04_KhonKaen

Authors: Lihong Liu, Jaruwan Kampa, Sándor Belák, Claudia Baule

PII:	S0378-1135(09)00110-2
DOI:	doi:10.1016/j.vetmic.2009.03.006
Reference:	VETMIC 4376
To appear in:	VETMIC
Received date:	16-9-2008
Revised date:	11-2-2009
Accepted date:	2-3-2009

Please cite this article as: Liu, L., Kampa, J., Belák, S., Baule, C., Virus recovery and full-length sequence analysis of atypical bovine pestivirus Th/04_KhonKaen, *Veterinary Microbiology* (2008), doi:10.1016/j.vetmic.2009.03.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	
2	
3	Virus recovery and full-length sequence analysis of atypical
4	bovine pestivirus Th/04_KhonKaen ¹
5	
6	
7	Lihong Liu ^{a,b} , Jaruwan Kampa ^c , Sándor Belák ^{a,b} , Claudia Baule ^{b,*}
8	
9	^a Department of Biomedical Sciences and Veterinary Public Health, Swedish University of
10	Agricultural Sciences, SE-751 89 Uppsala, Sweden
11	^b Joint R&D Division of Virology, The National Veterinary Institute & The Swedish
12	University of Agricultural Sciences, SE-751 89 Uppsala, Sweden
13	^c Faculty of Veterinary Medicine, Khon Kaen University, 40002, Khon Kaen, Thailand
14	
15	
16	
17	*Corresponding author: Mailing address: Joint R&D Division of Virology, The National
18	Veterinary Institute & The Swedish University of Agricultural Sciences, SE-751 89
19	Uppsala, Sweden. Phone: +46-18-674638. Fax: +46-18-674669.
20	Email: Claudia.Baule@bvf.slu.se

¹ The full-length sequence of the Th/04_KhonKaen virus has been deposited in GenBank under accession number FJ040215.

21 Abstract

22 Phylogenetic analysis of recently identified bovine "atypical" pestiviruses, performed 23 based on different gene regions, has revealed unclear relationships with other established 24 species, therefore, their phylogenetic position could not been determined so far. In this 25 study, the atypical pestivirus Th/04 KhonKaen was recovered from serum of a naturally 26 infected calf and the complete genome sequence was determined and analysed, as means to define its position. The viral genome is 12 337 nucleotides (nt) long, and comprises a 5' 27 28 UTR of 383 nt, a 3' UTR of 254 nt and an open reading frame of 11700 nt, without 29 duplication of viral sequences or insertions of cellular sequences. The phylogenetic 30 analyses of the full-length sequence, performed by Neighbor-joining, maximum 31 likelihood, and the Bayesian approach, unanimously placed Th/04 KhonKaen in a single 32 lineage, distinct from the established pestivirus species, and close to bovine viral diarrhea 33 virus types 1 and 2. Furthermore, Th/04 KhonKaen and two previously reported atypical 34 pestiviruses D32/00 'HoBi' and CH-KaHo/cont formed a well-supported monophyletic clade in trees based on the complete N^{pro} and E2 gene regions. The finding provides 35 36 conclusive classification of the Th/04 KhonKaen virus and confirms the standing of the bovine "atypical" pestiviruses as a novel pestivirus species. 37 38 39 40

41

42 Keywords: BVDV, genotyping, pestivirus, phylogeny, Th/04_KhonKaen

43

44 **1. Introduction**

45

46	The pestivirus genome is a single-stranded, positive-sense RNA molecule, which
47	comprises two untranslated regions (UTRs) at the 5' and 3' ends, and one open reading
48	frame (ORF) encoding a large polyprotein. This polyprotein is co- and post-translationally
49	processed into 11-12 polypeptides in the following order: N-terminal autoprotease (N ^{pro}),
50	capsid protein (C), envelope proteins (E ^{ms} , E1, and E2), p7, and non-structural (NS)
51	proteins [(NS2-3 (or NS2 and NS3), NS4A, NS4B, NS5A, and NS5B)] (reviewed by
52	Rümenapf and Thiel, 2008). Recombination or point mutations in the viral genome have
53	been shown to correlate with induction of cytopatogenic effects (CPE) on cell culture
54	following infection with BVDV (Thiel et al., 2006). Accordingly, two biotypes of BVDV
55	can be distinguished: the non-cytopathogenic (ncp), that replicates without cytopathic
56	effect, and cytopathogenic (cp), that leads to death of infected cells (Thiel et al., 1996).
57	
58	The genus Pestivirus of the family Flaviviridae includes four recognized species: Bovine
59	viral diarrhea virus 1 (BVDV-1), Bovine viral diarrhea virus 2 (BVDV-2), Border
60	disease virus (BDV), Classical swine fever virus (CSFV), and a fifth tentative species
61	Pestivirus of giraffe (Seventh Report of the International Committee on Taxonomy of
62	Viruses; http://www.virustaxonomyonline.com). A recently identified new pestivirus,
63	D32/00_'HoBi', was isolated from a batch of fetal calf serum originating from Brazil and
64	was proposed as a sixth pestivirus species (Schirrmeier et al., 2004). Additional atypical
65	pestiviruses of bovine-origin have also been described, including: Brz buf 9, originally
66	isolated from a buffalo in Brazil; CH-KaHo/cont, a cell culture contaminant possibly

67	originating from a batch of fetal calf serum produced in South America (Stalder et al.,
68	2005); and Th/04_KhonKaen from a naturally infected calf in Thailand (Ståhl et al.,
69	2007). All these pestiviruses were shown to be closely related to D32/00_'HoBi', based on
70	trees generated from the 5'UTR and N ^{pro} regions, however their final phylogenetic
71	classification could not be determined.
72	
73	The Th/04_KhonKaen virus was first detected by ELISA tests and preliminarily
74	characterized by virus neutralization and partial sequence analysis of the 5' UTR (Ståhl et
75	al., 2007). Further genetic characterization of this pestivirus required a virus isolate, but
76	the fact that the serum had been inactivated hampered virus isolation by conventional
77	methods. In this study, a viable Th/04_KhonKaen virus was recovered by transfection of
78	bovine turbinate cells with RNA extracted from an inactivated serum sample, and the
79	complete sequence was determined. Comparative sequence analyses show that the
80	Th/04_KhonKaen virus, together with atypical pestiviruses D32/00_'HoBi' and CH-
81	KaHo/cont represent a new species within the pestivirus genus.
82	
83	2. Materials and Methods
84	
85	2.1. Virus recovery from an inactivated serum sample
86	
87	The serum sample was obtained from a calf in a herd in Thailand. According to the
88	legislation in Sweden the sample had to be heat-inactivated at 56°C for 90 min, therefore it
89	was no longer suitable for virus isolation by conventional methods. To recover virus, RNA

90	was extracted from this sample using TRIzol Reagent (Invitrogen, Carlsbad, USA), and
91	purified with phenol-chloroform. The RNA was electroporated into BVDV-free bovine
92	turbinate (BT) cells in a cell suspension containing 1×10^6 cells, using a Bio-Rad Gene
93	Pulser Xcell electroporator. The cells were grown in Eagle's minimum essential medium
94	(EMEM) containing 10% horse serum, 1% L-glutamine, and 100 U/ml of penicillin and
95	100 μ g/ml of streptomycin, at 37°C in a CO ₂ incubator. Confluent cells were split and
96	grown for four days. The cells were then frozen and thawed and the lysates were clarified
97	by centrifugation. The supernatants were used to infect fresh sub-confluent BT cells, as
98	performed routinely for virus propagation. After incubation at 37°C for four days, total
99	RNA extracted from lysates of the cells was used to confirm presence of viral RNA with a
100	pan-pestivirus RT-PCR targeting the 5' UTR.

101

102 2.2. Immunoperoxidase test

103

The immunoperoxidase (IPX) test was performed to demonstrate presence of BVDV 104 105 specific antigens in cells infected with the recovered virus. Briefly, serial dilutions of the 106 supernatant from virus-infected BT cells were used to infect BT cells grown in a 96-well 107 plate. Following incubation at 37°C for 4 days, the cells were washed once with 0.01 M 108 PBS, pH 7.6, fixed with fixation fluid and dried. After re-dehydration of the cells, an anti-109 serum directed against BVDV-1 was added to each well and the plates were incubated at 110 room temperature for 15 min. The cells were washed three times and 50 µl of diluted 111 rabbit anti-bovine horseradish peroxidase conjugate was added, followed by incubation

112	and washing as before. For detection, 50 μl of substrate solution (5 ml of 0.05 M sodium
113	acetate, 6 μ l of 3% H ₂ O ₂ , and 300 μ l of chromogen solution) was used.
114	
115	2.3. Amplification, sequencing and analysis of the full-length genome
116	
117	2.3.1. RNA extraction
118	
119	When presence of virus was confirmed by RT-PCR, infected cells were washed twice with
120	cold PBS without Mg ²⁺ and Ca ²⁺ , and lysed with a lysis buffer containing 100 mM Tris-
121	HCl, pH 8.0, 500 mM LiCl, 5 mM DTT, 10 mM EDTA, pH 8.0 and 5% Lithium
122	Duodecyl Sulphate. Total RNA was purified from the cell lysates by phenol/chloroform
123	and precipitated in an equal volume of isopropanol. After centrifugation, the RNA pellet
124	was washed once with 70% of ice-cold ethanol. The dried pellet was re-suspended in 30 μl
125	RNase-free water.
126	
127	2.3.2. Synthesis of double-stranded cDNA
128	
129	SuperScript II (Invitrogen, Carlsbad, USA) was used to synthesize the first strand cDNA
130	using 2 μ M of a gene-specific primer (PAS1) in a 20- μ l volume, following conditions
131	recommended by the manufacturer. The second strand was prepared in 150-µl reaction
132	volume, containing the 1 st strand reaction, <i>E. coli</i> DNA ligase (10 U), E. coli DNA
133	polymerase (40 U), <i>E. coli</i> RNAse H (2 U) in $1 \times$ second strand buffer. The reaction was
134	performed at 16°C for 2 hours. The cDNA was purified with phenol/chloroform and

135	precipitated in 95% ethanol at -20° C overnight. The cDNA pellet was washed with 75%
136	ethanol, and resuspended in 20 µl of distilled water.
137	
138	2.3.3. PCR amplification
139	
140	The primers were designed based on conserved sequences of established pestiviruses and
141	the sequence of the D32/00_HoBi virus. The list of primers for PCR amplification and
142	DNA sequencing is presented in Table 1. The viral genome sequence, excluding the 5' and
143	3' ends, was amplified in two overlapping fragments by PCR using primers TF1-TR1, and
144	TF2-TR2. PCR was performed in a 25- μ l volume, containing 0.5 μ M of forward and
145	reverse primers, 0.5 mM dNTP mix, 1.25 U of PfuUltra High-Fidelity or 2.5 U EXL DNA
146	polymerase (Stratagene, La Jolla, CA, WSA), 1 μ l of cDNA, and 1 × reaction buffer with
147	MgCl ₂ . After initial denaturation at 92°C for 2 min, a three-step cycling of 30 cycles was
148	performed with denaturation at 92°C for 30 sec, annealing at 55°C for 30 sec, and
149	elongation at 72°C for 7 min. Following amplification, the PCR products were separated
150	on 0.8% agarose gels, and the designed band was excised from the gel and purified with
151	the Wizard SV Gel and PCR Clean-Up System (Promega Co., Madison, WI, USA).
152	
153	2.3.4. Determination of the 5' and 3' ends by RNA ligase-mediated RACE
154	
155	To determine the 5' and 3' ends, a GeneRacer Kit (Invitrogen, Carlsbad, USA) was used,
156	following manufacturer's instruction. In brief, the GeneRacer RNA oligo, and RNA oligo

157	2 (Table 1) were ligated to the 5'end and 3'end of the viral genome, respectively. Ten
158	units of T4 RNA ligase were used in the reactions and ligation was performed at 37°C for
159	1 h. The reactions were then treated with proteinase K, followed by phenol/chloroform
160	purification, and precipitation of the RNA in 95% ethanol in the presence of 0.1M sodium
161	acetate. The RNA was pelleted by centrifugation, washed with 70% ethanol and
162	resuspended in 30 μl of RNase-free water. The GeneRacer 5' primer from the kit and gene-
163	specific primer T5U-R1 were used to amplify the target 5'end using a one-step RT-PCR
164	kit (Qiagen, Hilden, Germany), with the following cycling profile: 50°C for 30 min, 95°C
165	for 15 min, 35 cycles of 95°C for 15 sec, 54°C for 20 sec, and 72°C for 1 min, and a final
166	extension at 72°C for 7 min. To amplify the 3'end, the gene-specific primer T3U-F1 and
167	M13 forward primer (complementary to the 5'end of the RNA oligo) were used. The same
168	reaction was performed as for amplification of the 5'end.
169	
170	The purified PCR products were cloned into pCR4-TOPO (Invitrogen, Carlsbad, USA).
171	Four clones containing inserts of the 5' and 3'ends of the genome were used for DNA
172	sequencing with M13 forward and reverse primers (Invitrogen, Carlsbad, USA).
173	
174	2.3.5. DNA sequencing
175	
176	An ABI PRISM BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems,
177	Foster City, CA, USA) was used for DNA sequencing. Sequencing reactions were
178	performed in a total volume of 10 $\mu l,$ containing 1.5 μl of ABI 5 \times sequencing buffer, 0.5
179	μ M primer, 1.0 μ l of BigDye, and 1.0 μ l of the purified PCR product. The thermo profile

180	was 25 cycles of denaturation at 96°C for 15 sec, annealing at 50°C for 10 sec, and
181	extension at 60°C for 4 min. To remove contaminating salts and unincorporated dye
182	terminators from the sequencing reactions, the Montage SEQ96 sequencing reaction
183	cleanup kit (Millipore Co., Billerica, MA, USA) was used, following the manufacturer's
184	instructions. Capillary electrophoresis was carried out in an ABI 3100 genetic analyzer
185	(Applied Biosystems, Foster City, CA, USA). Sequences were analyzed with multiple
186	programs of the Lasergene package (DNASTAR, Inc., Madison, WI).
187	
188	2.3.6. Phylogenetic analysis
189	
190	For phylogenetic analysis, a total of 24 full-length genome sequences of pestiviruses were
191	retrieved from GenBank, including 9 of CSFV, 3 of BDV, 7 of BVDV-1 and 4 of BVDV-
192	2, and Pestivirus of giraffe. The GenBank accession numbers are included in Table 2.
193	Multiple sequence alignment was performed with software BioEdit version 7.0.5.2 (Hall,
194	1999), using CLUSTAL W (Thompson et al., 1994). To avoid bias due to different
195	methods, phylogenetic analysis of complete genome sequences was performed with three
196	methods: Neighbor-joining, maximum likelihood and the Bayesian approach. All gaps
197	created by insertions were deleted by the software MEGA prior to the analyses. MEGA 4
198	(Tamura et al., 2007) was used to reconstruct the Neighbor-joining tree under the
199	nucleotide substitution model of Tamura 3-parameter, and tree reliability was evaluated by
200	bootstrapping 1000 replicates. PHYML (v2.4.4) was used for phylogeny inference
201	according to maximum likelihood criterion. The analysis settings were: Base frequency
202	estimates (ML); Proportion of invariable sites (estimated); Nucleotide substitution model

203	(GTR); Number of substitution rate categories (4); Gamma distribution parameter
204	(estimated). Following tree reconstruction, 1000 non-parametric bootstrap analyses were
205	performed to test the robustness of the hypothesis. Bayesian inference analysis was
206	performed with the software MrBayes 3.1 (Huelsenbeck and Ronquist, 2001; Ronquist and
207	Huelsenbeck, 2003), as previously described (Xia et al., 2007). In brief, the model settings
208	were a Dirichlet prior for both substitution rates (Nst=6) and state frequencies (# states=4).
209	Rate variation across sites was modeled using a γ -distribution with a proportion of sites
210	invariable (rates=invgamma). The MCMC search was run with four chains for 2 000 000
211	generations, sampling the Markov chain every 1000 generations. The first 25% trees were
212	discarded as "burn-in". Each analysis was performed three times and a representative
213	consensus tree is shown in this paper.
214	
215	In order to demonstrate the relationships among these recently described atypical
216	pestiviruses, sequences of the complete N ^{pro} and E2 coding regions from 64 pestiviruses,
217	corresponding to the GenBank accession numbers listed in Table 2, were analysed with
218	the Bayesian approach. The same parameters applied for the full-length phylogeny
219	analysis were used.
220	
221	3. Results
222	
223	3.1. Virus recovery
224	

225	The RNA extracted from lysates of infected cells yielded a specific PCR product on
226	amplification with a pan-pestivirus RT-PCR targeting 5' UTR. The recovered virus was
227	confirmed by the IPX test that showed presence of pestivirus-specific proteins upon
228	propagation following cell transfection. The Th/04_KhonKaen virus reacted with the
229	BVDV-1 antiserum, which also recognizes BVDV-2 and D32/00_'HoBi'. Cytopathic
230	effect (CPE) was not observed on isolation and propagation of the virus, supporting the
231	recovery of a non-cytopathogenic pestivirus from the serum sample.
232	
233	3.2. Sequence analysis of the viral genome
234	
235	The full-length sequence was assembled from partial sequences obtained from the two
236	RT-PCR fragments and the 5' and 3' ends of the genome. The complete genome contains
237	12 337 nucleotides (nt), comprising 383 nt at the 5' UTR, 254 nt at the 3' UTR and an
238	ORF of 11 700 nt. The ORF involves the 11 gene regions that correspond to predicted
239	products of polyprotein processing: the pestivirus-specific N-terminal protease N ^{pro} (504
240	nt), capsid (303 nt), E ^{ms} (681 nt), E1 (585 nt), E2 (1119 nt), p7 (210 nt), NS2-3 (3408 nt),
241	NS4A (192 nt), NS4B (1041 nt), NS5A (1491 nt), and NS5B (2166 nt). Neither
242	duplication of viral sequences nor insertions of cellular sequences were found in the
243	genome. Comparative sequence analysis showed that this virus shares 67.3-68.3% identity
244	with other pestivirus species, with the highest identity of 68.3 to BVDV-1 and -67.9% to
245	BVDV-2, respectively (Table 3).
246	

247	The polyprotein (3899 aa) was used as a query protein for searching in the Protein Data
248	Bank (PDB). The protein BLAST revealed several conserved domains, including the N ^{pro}
249	endopeptidase C53 that is unique to pestiviruses; the RNase T2 in the Erns region; the
250	pestivirus NS3 polyprotein peptidase S31 and DEXH-box helicases located in NS3; and
251	RNA-dependent RNA polymerase within NS5B. Such analysis provided additional
252	support for the classification of Th/04_KhonKaen as a pestivirus.
253	
254	3.3. Phylogenetic analysis of Th/04_KhonKaen sequence
255	
256	Three methods, Neighbor-joining, maximum likelihood, and the Bayesian approach were
257	exploited for phylogenetic analysis. By applying the later method, we have previously
258	shown that a total evidence approach could be used for confident classification of BVDV
259	into subgroups (Xia et al., 2007). All three methods produced a single, reliable
260	phylogenetic hypothesis that was supported by significantly high bootstrap values and
261	posterior probability (Fig. 1). The established species BVDV-1, BVDV-2, BDV, CSFV
262	separated into four monophyletic clades, and the tentative pestivirus of Giraffe formed a
263	single branch. Th/04_KhonKaen also formed a single branch positioned distinctly from
264	the four established pestivirus species and from pestivirus of Giraffe, and closely related to
265	BVDV-1 and BVDV-2. The position of Th/04_KhonKaen in the consensus trees was
266	supported by bootstrap values of 99% (Neighbor-joining), 93% (ML), and posterior
267	probability of 1.00 (Bayesian approach).
268	

269	To demonstrate the relationship between the Th/04_KhonKaen virus and other atypical
270	pestiviruses D32/00_'HoBi' and CH-KaHo/cont, single N ^{pro} and E2 gene analyses were
271	performed. As shown in Fig. 2 (a and b), all three atypical pestiviruses formed a
272	monophyletic clade strongly supported by bootstrap value and posterior probability. The
273	position of this clade in the tree of E2 gene was same as that of Th/04_KhonKaen virus in
274	the tree based on full-length sequence analysis. As in the tree of Figure 1, this clade is
275	genetically distant from the established bovine pestivirus species BVDV-1 and BVDV-2,
276	as well as distinct from BDV, CSFV and pestivirus of Giraffe. The four recognized
277	species BVDV-1, BVDV-2, BDV and CSFV also formed monophyletic clades.
278	
279	4. Discussion
280	
281	Phylogenetic analysis is useful to classify novel viruses, and to reveal their evolutionary
282	history. Particularly for pestiviruses, whole-genome phylogeny has been used to classify
283	two novel species, Giraffe-1 and Reindeer-1 (Avalos-Ramirez et al., 2001), although the
284	latter has been re-classified as BDV (Becher et al., 2003).
285	
286	In this study the complete genome sequence of the recently identified pestivirus
287	Th/04_KhonKaen was determined and analysed, aiming to establish the phylogenetic
288	positioning of this virus and to determine its relationship with known pestivirus species.
289	Following successful recovery of the virus from an inactivated serum sample, the genome
290	organization of Th/04_KhonKaen was shown to be reminiscent of that of an ncp
291	pestivirus, consistent with the recovery of a virus that did not induce CPE. The full-length

292	nucleotide identity of the Th/04_KhonKaen with the recognized BVDV species is around
293	68%, which is close to the range of 69.5% that separates BVDV-2 from BVDV-1 (Table
294	3), motivating its discrimination as a distinct pestivirus species of bovine origin.
295	
296	A single phylogenetic tree topology was produced by all three methods, highly supported
297	by strong bootstrap and posterior probability values, on analysis of the full-length
298	sequence. This analysis unambiguously positioned the Th/04_KhonKaen virus as a unique
299	species in the consensus tree, distinct from the four established pestivirus species and
300	pestivirus of Giraffe, and closely related to the bovine species BVDV-1 and BVDV-2.
301	Remarkably, analysis of sequences of the complete N ^{pro} and E2 coding region showed that
302	the three atypical pestiviruses formed a well-supported single clade, demonstrating that
303	these atypical bovine pestiviruses are genetically distinct from the current well established
304	pestivirus species. This relationship has been unequivocally confirmed by the analysis of a
305	sequence dataset combining the 5'UTR, and the complete N^{pro} and E2 gene regions of 56
306	pestiviruses, published in Liu et al. (2009).
307	
308	Recovery of the Th/04_KhonKaen virus enables further studies currently in progress to
309	define cross-reactivity patterns with polyclonal and monoclonal antibodies, as well as the
310	characterization of in vitro and in vivo biological properties of this group of viruses.
311	
312	In conclusion, the atypical pestivirus Th/04_KhonKaen was isolated from an inactivated
313	serum sample. Sequence analysis supported positioning of the Th/04_KhonKaen virus as a
314	new species within the pestivirus genus. Comparisons of sequences of the N ^{pro} and E2

315	gene regions with those of the atypical pestiviruses D32/00_'HoBi', Brz buf 9, and CH-
316	KaHo/cont confirmed a high sequence similarity among these viruses, demonstrating that
317	they belong to a same, new group of pestiviruses of bovine origin.
318 319	Acknowledgements
320	
321	The authors thank Dr. Karl Ståhl, The National Veterinary Institute, and Prof. Stefan
322	Alenius, Department of Clinical Sciences, Swedish University of Agricultural Sciences for
323	fruitful discussions. We are grateful to Dr. Hongyan Xia, Department of Biomedical
324	Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, for
325	valuable comments on the manuscript.
326	
327	References
328	Avalos-Ramirez, R., Orlich, M., Thiel, HJ., Becher, P., 2001. Evidence for the presence
329	of two novel pestivirus species. Virology 286, 456-465.
330	Becher, P., Avalos Ramirez, R., Orlich, M., Cedillo Rosales, S., Konig, M., Schweizer,
331	M., Stalder, H., Schirrmeier, H., Thiel, H.J., 2003. Genetic and antigenic characterization
332	of novel pestivirus genotypes: implications for classification. Virology 311, 96-104.
333	Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and
334	analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41, 95-98.
335	Huelsenbeck, J.P., Ronquist, F., 2001. MRBAYES: Bayesian inference of phylogenetic
336	trees. Bioinformatics 17, 754-755.

- Liu, L., Xia, H., Wahlberg, N., Belák, S., Baule, C., 2009. Phylogeny, classification and
- evolutionary insights into pestiviruses. Virology (doi:10.1016/j.virol.2008.12.004).
- 339 Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under
- 340 mixed models. Bioinformatics 19, 1572-1574.
- 341 Rümenapf, T., Thiel, H.-J., 2008. Molecular Biology of Pestiviruses, in: Mettenleiter T.C.,
- 342 Sobrino, F. (Eds), Animal Viruses: Molecular Biology. Caister Academic Press, Norfolk,
- 343 UK, pp.
- 344 Schirrmeier, H., Strebelow, G., Depner, K., Hoffmann, B., Beer, M., 2004. Genetic and
- 345 antigenic characterization of an atypical pestivirus isolate, a putative member of a novel
- 346 pestivirus species. J. Gen. Virol. 85, 3647-3652.
- 347 Ståhl, K., Kampa, J., Alenius, S., Persson Wadman, A., Baule, C., Aiumlamai, S., Belák,
- 348 S., 2007. Natural infection of cattle with an atypical 'HoBi'-like pestivirus—implications
- for BVD control and for the safety of biological products. Vet. Res. 38, 517-523.
- 350 Stalder, H.P., Meier, P., Pfaffen, G., Wageck-Canal, C., Rüfenacht, J., Schaller, P.,
- 351 Bachofen, C., Marti, S., Vogt, H.R., Peterhans, E., 2005. Genetic heterogeneity of
- 352 pestiviruses of ruminants in Switzerland. Prev. Vet. Med. 72, 37-41.
- 353 Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: Molecular Evolutionary
- 354 Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599.
- 355 Thiel, H.-J., Plagemann, P.G.W., Moenning, V., 1996. Pestiviruses, in: Fields, B.N.,
- 356 Knipe, D.M., Howley, P.M. (Eds.), Fields Virology, 3rd ed. Vol. 1, Lippincott-Raven,
- 357 Philadelphia, PA. pp. 1059–1073.
- 358 Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the
- 359 sensitivity of progressive multiple sequence alignment through sequence weighting,

- 360 position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-
- 361 4680.
- 362 Xia, H., Liu, L., Wahlberg, N., Baule, C., Belák, S., 2007. Molecular phylogenetic
- analysis of bovine viral diarrhoea virus: a Bayesian approach. Virus Res. 130, 53-62.

Sector Man

Fig. 1. Consensus phylogenetic tree based on analysis of the full-length sequence of the Th/04_KhonKaen virus and those of pestivirus species available in the GenBank. The Neighbor-joining tree was reconstructed under the nucleotide substitution model of Tamura 3-parameter using MEGA 4. PHYML (v2.4.4) was used for phylogeny inference according to maximum likelihood (ML) criterion, and MrBayes 3.1 for Bayesian inferring. The robustness of the tree was evaluated by bootstrapping 1000 replicates by Neighbor-joining and maximum likelihood, and by posterior probability from Bayesian analysis. The supporting value for major clades is shown in the order of NJ/ML/PP. "1.00" indicates 100%/100%/1.00. A representative, un-rooted consensus tree is shown in

the Figure. The bar indicates changes per site.

Fig. 2. Phylogenetic trees based on analysis of sequences of the complete N^{pro} (a., left) and E2 (b., right) gene regions. The relationship of atypical pestiviruses Th/04_KhonKaen, D32/00_'HoBi' and CH-KaHo/cont with representatives of established pestivirus species retrieved from GenBank is shown. The un-rooted consensus trees are inferred by Bayesian approach. Numbers indicate posterior probability values for major clades. The bar indicates changes per site.

TF1GCTAGCCATGCCCTTAGTAGGA98-119TR1CCCTAGTTCGGCCCATTGAGTC5382-5403TF2GGGCCGAACTAGGGTGGTGT5390-5409TR2GTGCGTTGAGTGTAGTGTGTC12247-12268TF3ATGGAGTTGTTAAACTTTGAAC384-405TR3GCAGCTTCCTACCCAGATGG868-878TF5GACCTCAGTTGTAAGCCTGAG2457-2477TR5CCCCCTAGCTCCTTGTCAGT3554-3575TF4ACCCCACCAAAAACAAACCAGA1090-1111TR4TGGGCCTATCTCATTGGTCTCA2495-2516TF6TCTTGGGTGGGAAGGTATGTGCT3505-3526TR6TTAGGCCCCTTGCTTCTTTCTC4648-4669TF7CAAGGCCCCAGAGCAAAGACG4431-4451TF8CGAGCAGCGGCAGAATCAGTAT5913-5934TR8GTCCGGCCAGTCCAACC7120-7136TF9CAAATGCCATAGAATCAGGAGTA6496-6518TF10TGATCACCCGGAACCCATACAG6923-6944TF11AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TR1CCCTAGTTCGGCCCATTGAGTC5382-5403TF2GGGCCGAACTAGGGTGGTGT5390-5409TR2GTGCGTTGAGTGTAGTGTGTGTC12247-12268TF3ATGGAGTTGTTAAACTTTGAAC384-405TR3GCAGCTTCCTACCCAGATGG868-878TF5GACCTCAGTTGTAAACCTTGAGC2457-2477TR5CCCCCTAGCTCCTTGTTCAGT3554-3575TF4ACCCCACCAAAAACAAACCAGA1090-1111TR4TGGGCCTATCTCATTGGTCTCA2495-2516TF6TCTTGGGTGGGAGGTATGTGCT3505-3526TR6TTAGGCCCCTTGCTTCTTTCTC4648-4669TF7CAAGGCCCCAGAGCAAAGACG4431-4451TF8CGAGCAGCGGCAGAATCAGTAT5913-5934TR8GTCCGGCCAGTCCAACC7120-7136TF9CAAATGCCATAGAATCAGGAGTA6496-6518TF10TGATCACCCGGAACCATACAG6923-6944TF11AGGCAAGAGTGGGGAGTGAAACA7619-7639TF12AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGCT10965-10985
TF2GGGCCGAACTAGGGTGGTGT5390-5409TR2GTGCGTTGAGTGTAGTGTGTGTC12247-12268TF3ATGGAGTTGTTAAACTTTGAAC384-405TR3GCAGCTTCCTACCCAGATGG868-878TF5GACCTCAGTTGTAAGCCTGAG2457-2477TR5CCCCCTAGCTCCTTGTTCAGTT3554-3575TF4ACCCCACCAAAAACAAACCAGA1090-1111TR4TGGGCCTATCTCATTGGTCTCA2495-2516TF6TCTTGGGTGGGAGGTATGTGCT3505-3526TR6TTAGGCCCCTGCTTGTTCTTTCT4648-4669TF7CAAGGCCCCAGAGCAAAGACG4431-4451TF8CGAGCAGCGGCAGAATCAGTAT5913-5934TR8GTCCGGCCAGTCCAACC7120-7136TF9CAAATGCCATAGAATCAGGAGTA6496-6518TF10TGATCACCCGGAACCATACAG6923-6944TF11AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TR2GTGCGTTGAGTGTAGTGTTGTC12247-12268TF3ATGGAGTTGTAAACTTTGAAC384-405TR3GCAGCTTCCTACCCAGATGG868-878TF5GACCTCAGTTGTAAGCCTGAG2457-2477TR5CCCCCTAGCTCCTTGTTCAGTT3554-3575TF4ACCCCACCAAAAACAAACCAGA1090-1111TR4TGGGCCTATCTCATTGGTCTCA2495-2516TF6TCTTGGGTGGGAGGTATGTGCT3505-3526TR6TTAGGCCCCTTGCTTCTTTCTC4648-4669TF7CAAGGCCCCAGAGCAAAGACG4431-4451TF8CGAGCAGCGGCAGAATCAGTAT5913-5934TR8GTCCGGCCAGTCCAACC7120-7136TF9CAAATGCCATAGAATCAGGAGTA6496-6518TF10TGATCACCCGGAACCCATACAG6923-6944TF11AGGCAGGCTGGGGAGTGAAAC7619-7639TF12AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGCT10965-10985
TF3ATGGAGTTGTTAAACTTTGAAC384-405TR3GCAGCTTCCTACCCAGATGG868-878TF5GACCTCAGTTGTAAGCCTGAG2457-2477TR5CCCCCTAGCTCCTTGTTCAGTT3554-3575TF4ACCCCACCAAAAACAAACCAGA1090-1111TR4TGGGCCTATCTCATTGGTCTCA2495-2516TF6TCTTGGGTGGGAGGTATGTGCT3505-3526TR6TTAGGCCCCTTGCTTCTTTCTC4648-4669TF7CAAGGCCCCAGAGCAAAGACG4431-4451TF8CGAGCAGCGGCAGAATCAGTAT5913-5934TR8GTCCGGCCAGTCCAACC7120-7136TF9CAAATGCCATAGAATCAGGAGTA6496-6518TF10TGATCACCCGGAACCCATACAG6923-6944TF11AGGCAAGAGCTGGGGAGTGAAAC7619-7639TF12AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TR3GCAGCTTCCTACCCAGATGG868-878TF5GACCTCAGTTGTAAGCCTGAG2457-2477TR5CCCCCTAGCTCCTTGTTCAGTT3554-3575TF4ACCCCACCAAAAACAAACCAGA1090-1111TR4TGGGCCTATCTCATTGGTCTCA2495-2516TF6TCTTGGGTGGGAAGGTATGTGCT3505-3526TR6TTAGGCCCCTTGCTTCTTTCTC4648-4669TF7CAAGGCCCCAGAGCAAAGACG4431-4451TF8CGAGCAGCGGCAGAATCAGTAT5913-5934TR8GTCCGGCCAGTCCAACC7120-7136TF9CAAATGCCATAGAATCAGGAGTA6496-6518TF10TGATCACCCGGAACCCATACAG6923-6944TF11AGGCAAGGCTGGGGAAGTGAAAC7619-7639TF12AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTACCTGAGTGTC10965-10985
TF5GACCTCAGTTGTAAGCCTGAG2457-2477TR5CCCCCTAGCTCCTTGTTCAGTT3554-3575TF4ACCCCACCAAAAACAAACCAGA1090-1111TR4TGGGCCTATCTCATTGGTCTCA2495-2516TF6TCTTGGGTGGGAGGTATGTGCT3505-3526TR6TTAGGCCCCTTGCTTCTTTCTC4648-4669TF7CAAGGCCCCAGAGCAAAGACG4431-4451TF8CGAGCAGCGGCAGAATCAGTAT5913-5934TR8GTCCGGCCAGTCCAACC7120-7136TF9CAAATGCCATAGAATCAGGAGTA6496-6518TF10TGATCACCCGGAACCCATACAG6923-6944TF11AGGCAGGCTGGGGAGTGAAAC7619-7639TF12AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TR5CCCCCTAGCTCCTTGTTCAGTT3554-3575TF4ACCCCACCAAAAACCAAACCAGA1090-1111TR4TGGGCCTATCTCATTGGTCTCA2495-2516TF6TCTTGGGTGGGAGGTATGTGCT3505-3526TR6TTAGGCCCCTTGCTTCTTTCTC4648-4669TF7CAAGGCCCCAGAGCAAAGACG4431-4451TF8CGAGCAGCGGCAGAATCAGTAT5913-5934TR8GTCCGGCCAGTCCAACC7120-7136TF9CAAATGCCATAGAATCAGGAGTA6496-6518TF10TGATCACCCGGAACCCATACAG6923-6944TF11AGGCAAGAGCTGGGGAAGTGAAAC7619-7639TF12AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TF4ACCCCACCAAAAACAAACCAGA1090-1111TR4TGGGCCTATCTCATTGGTCTCA2495-2516TF6TCTTGGGTGGGAGGTATGTGCT3505-3526TR6TTAGGCCCCTTGCTTCTTTCTC4648-4669TF7CAAGGCCCCAGAGCAAAGACG4431-4451TF8CGAGCAGCGGCAGAATCAGTAT5913-5934TR8GTCCGGCCAGTCCAACC7120-7136TF9CAAATGCCATAGAATCAGGAGTA6496-6518TF10TGATCACCCGGAACCCATACAG6923-6944TF11AGGCAGGCTGGGGAGTGAAAC7619-7639TF12AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TR4TGGGCCTATCTCATTGGTCTCA2495-2516TF6TCTTGGGTGGGAGGTATGTGCT3505-3526TR6TTAGGCCCCTTGCTTCTTTCTC4648-4669TF7CAAGGCCCCAGAGCAAAGACG4431-4451TF8CGAGCAGCGGCAGAATCAGTAT5913-5934TR8GTCCGGCCAGTCCAACC7120-7136TF9CAAATGCCATAGAATCAGGAGTA6496-6518TF10TGATCACCCGGAACCCATACAG6923-6944TF11AGGCAGGCTGGGGAGTGAAAC7619-7639TF12AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TF6TCTTGGGTGGGAGGTATGTGCT3505-3526TR6TTAGGCCCCTTGCTTCTTTCTC4648-4669TF7CAAGGCCCCAGAGCAAAGACG4431-4451TF8CGAGCAGCGGCAGAATCAGTAT5913-5934TR8GTCCGGCCAGTCCAACC7120-7136TF9CAAATGCCATAGAATCAGGAGTA6496-6518TF10TGATCACCCGGAACCCATACAG6923-6944TF11AGGCAGGCTGGGGGAGTGAAAC7619-7639TF12AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TR6TTAGGCCCCTTGCTTCTTCTC4648-4669TF7CAAGGCCCCAGAGCAAAGACG4431-4451TF8CGAGCAGCGGCAGAATCAGTAT5913-5934TR8GTCCGGCCAGTCCAACC7120-7136TF9CAAATGCCATAGAATCAGGAGTA6496-6518TF10TGATCACCCGGAACCCATACAG6923-6944TF11AGGCAGGCTGGGGAGTGAAAC7619-7639TF12AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TF7CAAGGCCCCAGAGCAAAGACG4431-4451TF8CGAGCAGCGGCAGAATCAGTAT5913-5934TR8GTCCGGCCAGTCCAACC7120-7136TF9CAAATGCCATAGAATCAGGAGTA6496-6518TF10TGATCACCCGGAACCCATACAG6923-6944TF11AGGCAGGCTGGGGAGTGAAAC7619-7639TF12AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TF8CGAGCAGCGGCAGAATCAGTAT5913-5934TR8GTCCGGCCAGTCCAACC7120-7136TF9CAAATGCCATAGAATCAGGAGTA6496-6518TF10TGATCACCCGGAACCCATACAG6923-6944TF11AGGCAGGCTGGGGGAGTGAAAC7619-7639TF12AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TR8GTCCGGCCAGTCCAACC7120-7136TF9CAAATGCCATAGAATCAGGAGTA6496-6518TF10TGATCACCCGGAACCCATACAG6923-6944TF11AGGCAGGCTGGGGGAGTGAAAC7619-7639TF12AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TF9CAAATGCCATAGAATCAGGAGTA6496-6518TF10TGATCACCCGGAACCCATACAG6923-6944TF11AGGCAGGCTGGGGAGTGAAAC7619-7639TF12AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TF10TGATCACCCGGAACCCATACAG6923-6944TF11AGGCAGGCTGGGGGAGTGAAAC7619-7639TF12AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TF11AGGCAGGCTGGGGAGTGAAAC7619-7639TF12AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TF12AGGCAAAAGAATTAGCGGAAAGA8317-8339TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TR9TGCCCAGGCTGAGTGCYTCYA9649-9669TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TR10TCCTTCCCGTTCCAGTTGTTCT10283-10304TR11GCGGCTTGTTACCTGAGTGTC10965-10985
TR11 GCGGCTTGTTACCTGAGTGTC 10965-10985
TF13 CTCTAAAATGAAGAAAGGGTGYG 10895-10917
TR12 CTGTGGTTTGCCAGATTCATAC 11327-11348
TR13 GGGGATATACATTTTGCCAGTC 11885-11906
TF14 AGGCACACCAGCAAGAGACTAC 11790-11811
PAS1 CTGTGTGCRTTRARTGTAGTG 12252-12273
T3U-F1 TTATTACTTAGGCTGATGAGAAC 12214-12236
T5U-R1 CAGGGAGCTCACTGCCACCAC 139-159
GeneRacer RNA oligo CGACUGGAGCACGAGGACACUGACA
UGGACUGAAGGAGUAGAAA
GeneRacer 5' primer CGACTGGAGCACGAGGACACTGA
RNA oligo 2 CGCAAAUGGGCGGUAGGCGUGCUGG
CCGUCGUUUUAC

Table 1. Nucleotide sequence of primers used for PCR amplification and sequencing of the Th/04_KhonKaen virus.

^a Bold bases indicate mismatches with the sequence of the Th/04_KhonKaen virus.

Species ^a	Pestivirus	Genomic sequence	N ^{pro}	E2
BDV	X818	NC_003679	g ^b	g
	BD31	U70263	_ ^c	-
	Reindeer-1	NC_003677	g	g
	Bison-1	-	-	AF144619
	17385/00	-	-	AY163658
	Chamois_1	-	AY738083	-
	Gifhorn	-	AY163653	-
	CHBD1	-	AY895008	-
	CHBD2	-	AY895009	-
	466	-	AY163650	-
	CB5	-	AF145358	-
	M3	-	DQ273163	-
	C121	-	DQ273159	-
	C27	-	DQ273156	-
	AV	-	EF693962	-
	85F488	-	EF693963	-
	85F588	-	EF693966	-
	89F5415	-	EF693965	-
	90F6335	-	EF693968	-
	91F7014	-	EF693971	2
	94F74461	-	EF693974	-
	96F7624	-	EF693976	-
	06F0299 60369	-	EF696979	-
BVDV-1	ZM-95	AF526381	g	g
	SD1	M96751	g	g
	NADL	AJ133738	g	g
	Singer Arg	DO088995	-	g
	CP7	U63479	g	g g
	VEDEVAC	AJ585412	5 -	8 -
	Osloss	M96687	g	g
	Oregon C24V	-	8 -	ÅF091605
	Deer NZ1		_	AF144614
	Bega	_	AF049221	AF049221
	Trangie Y546	_	-	AF049222
	Deer GB1	-	-	AF144615
	KS86-1ncn	-	_	AB078950
	721	-	_	AF144609
	11468	-	_	AY734488
BVDV-2	n110	AY149215	σ	σ
2,2,2	p24515	AY149216	5 -	Б -
	1373	AF145967	_	-
	NY93	AF502339	σ	σ
	890	-	σ	5 1118059
	BVDV-2 Ref	-	Б -	NC 002032
CSEV	94 4/II /94/TWN	AV646427	σ	-
COLV	Brescia	AF091661	5 0	σ
	Brescia_2	M31768	5	5
	Riems	AV259122	_	σ
	Shimen/HVRI	AY775178	_	ь -
	Glentorf	1145478	_	_
	Alfort/178	X87030	- α	- α
	Paderborn	AV072024	Б	5 a
	Alfort/Tübingen	A 1 0 / 2 7 2 4 10 / 3 5 8	-	Б
	GYW702	JUTJJU	-	- AV367767
	UAWL02	-	-	A130//0/

Table 2. List of pestiviruses included in the analyses and their GenBank accession numbers

^a Including unclassified pestiviruses
^b Same as genomic sequence
^c Sequence is not included in the analysis

Pestivirus of giraffe Giraffe-1 NC_003678 g g
Atypical pestivirusCH-KaHo/cont-AY895011EU38560.D32/00_HoBi-AY489117AY60472Th/04_KhonKaenFJ040215gg

Table 3 Identities of Th/04	KhonKaen with full-length	sequences of 18 r	pestiviruses
		bequeinces of to p	/esti vii uses

	BD31	Reindeer	BDV	Oregon	Osloss	SD1	ZM-95	BVDV-1	1373	890	New	p11Q	BVDV-2	Alfort	Brescia	HCLV	Riems	CSFV	Giraffe-1
		-1	/Ref	C24V				/Ref			York'93		/Ref	/187				/Ref	
Th_04_KhonKaen	67.4	67.8	67.3	68.3	67.8	68.1	67.6	68.2	67.9	67.8	67.9	67.9	67.7	67.6	67.6	67.4	67.3	67.5	67.8
Giraffe_1	68.3	68.4	68.7	67.8	67.6	67.6	67.5	67.6	67.8	67.6	67.8	67.7	67.6	68	67.9	68	67.9	68.1	
CSFV/Ref	72	71.5	72.1	67.4	66.7	67.4	67.1	67.2	67	66.9	67	67.1	66.8	98	94.8	96.2	96.1		
Riems	71.5	71.1	71.6	67.5	66.7	67.5	66.9	67.3	67	67	67	67.1	66.8	96	93.2	99.2			
HCLV	71.6	71.2	71.6	67.5	66.7	67.5	66.9	67.3	67	66.9	67.1	67.1	66.8	96	93.2				
Brescia	71.7	71.7	72.1	67.5	67.1	67.2	67	67.2	66.7	66.6	66.7	66.7	66.5	94.9					
Alfort/187	71.9	71.5	72.1	67.5	66.8	67.4	67.1	67.4	66.9	66.9	66.9	66.9	66.8						
BVDV-2/Ref	66.9	67.3	66.9	69.4	69.6	69.6	69.6	69.5	96.4	96.3	96.3	96.4							
p11Q	67.1	67.4	67.2	69.6	69.7	69.9	70	69.7	96.8	96.3	96.7								
New York'93	67.2	67.4	67.2	69.6	69.8	69.9	70.1	69.8	99.4	96.1									
890	67.1	67.4	67	69.4	69.7	69.8	69.8	69.7	96.1										
1373	67.1	67.4	67.1	69.6	69.8	69.9	70	69.8											
BVDV-1/Ref	67.4	66.5	67.4	88.3	79.1	88.5	79.5												
ZM-95	67.2	67	67.5	79.9	78.7	79.8													
SD1	67.6	66.9	67.8	90.5	79.7														
Osloss	66.6	66.4	66.6	79.8															
Oregon C24V	67.3	66.8	67.3																
BDV/Ref	89.7	77																	
Reindeer-1	76.9																		