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SPECTRUM OF NON-HERMITIAN
HEAVY TAILED RANDOM MATRICES

CHARLES BORDENAVE, PIETRO CAPUTO, AND DJALIL CHAFAT

ABSTRACT. Let (Xji)j,x>1 be i.i.d. complex random variables such that !Xjk| is in the domain
of attraction of an a-stable law, with 0 < a < 2. Our main result is a heavy tailed counterpart
of Girko’s circular law. Namely, under some additional smoothness assumptions on the law of
Xk, we prove that there exist a deterministic sequence an ~ nl/® and a probability measure
o on C depending only on « such that with probability one, the empirical distribution of
the eigenvalues of the rescaled matrix (a;lXjk)lgj,kgn converges weakly to puqo as n — oco.
Our approach combines Aldous & Steele’s objective method with Girko’s Hermitization using
logarithmic potentials. The underlying limiting object is defined on a bipartized version of
Aldous’ Poisson Weighted Infinite Tree. Recursive relations on the tree provide some properties
of po. In contrast with the Hermitian case, we find that po is not heavy tailed.
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1. INTRODUCTION

EEEEEEEEEEEEEEEEEammmammmme

The eigenvalues of an nxn complex matrix M are the roots in C of its characteristic polynomial.
We label them A\ (M),..., A\ (M) so that [A(M)] = -+ > |A(M)] > 0. We also denote by

Sl(M)

> - = s,(M) the singular values of M, defined for every 1 < k < n by si(M)
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—T
Ae(VMM*) where M* = M is the conjugate transpose of M. We define the empirical spectral
measure and the empirical singular values measure as

I I
= ;5,\k(1\4) and vy = - ; Osi(M)-
Let (X;;)s,j>1 be 1.i.d. complex random variables with cumulative distribution function F'. Consider
the matrix X = (Xj;)1<i,j<n. Following Dozier and Silverstein [16], [15], if F' has finite positive
variance o2, then for every z € C, there exists a probability measure Q, . on [0,00) depending
only on o and z, with explicit Cauchy-Stieltjes transform, such that a.s. (almost surely)
VﬁX—zI o Qo2 (1.1)

— 00

where ~~ denotes the weak convergence of probability measures. The proof of (1)) is based on
a classical approach for Hermitian random matrices with bounded second moment: truncation,
centralization, recursion on the resolvent, and cubic equation for the limiting Cauchy-Stieltjes
transform. In the special case z = 0, the statement (I reduces to the quartercircular law
theorem (square version of the Marchenko-Pastur theorem, see [31], [43], [45]) and the probability
measure (), is the quartercircular law with Lebesgue density

1
T W \/ 402 — 1'211.[0,20] (ZL') (12)

Girko’s famous circular law theorem [21] states under the same assumptions that a.s.

Hogx 7 Uo (1.3)
where U, is the uniform law on the disc {z € C;|z| < ¢}. This statement was established through
a long sequence of partial results [33], 20}, 22| 28] 17, 211 [4] 23] 5] [34] 24] 89, [40], the general case
(T3) being finally obtained by Tao and Vu [40] by using Girko’s Hermitization with logarithmic
potentials and uniform integrability, the convergence (I.1J), and polynomial bounds on the extremal
singular values.

1.1. Main results. The aim of this paper is to investigate what happens when F' does not have
a finite second moment. We shall consider the following hypothesis:
(H1) there exists a slowly varying function L (i.e. limy— o, L(xt)/L(t) = 1 for any = > 0) and a
real number « € (0,2) such that for every ¢ > 1

P(|X11| > t) = / dF(z) = L(t)t™7,
{2€GC;z| >t}
and there exists a probability measure 6 on the unit circle S* := {2 € C;|z| = 1} of the

complex plane such that for every Borel set D C S,

: X1
Jim P (IXuI eD \ 1X11| > t> —6(D).
Assumption (H1) states a complex version of the classical criterion for the domain of attraction
of a real a-stable law, see e.g. Feller [I9, Theorem IX.8.1a]. For instance, if X117 = V4 4 iVa with
i = v/—1 and where V; and V5 are independent real random variables both belonging to the domain
of attraction of an a-stable law then (H1) holds. When (H1) holds, we define the sequence
an = inf{a > 0 s.t. nP(|X11] > a) < 1}

and (H1) implies that lim, o nP(|X11| = an) = lim,— 00 na, *L(ay,) = 1. It follows then clas-
sically that a, = n'/®f(n) for every n > 1, for some slowly varying function ¢. The additional
possible assumptions on F' to be considered in the sequel are the following;:

(H2) P(|X11| = t) ~t—00 ct™ for some ¢ > 0 (this implies a,, ~p—o00 cl/o‘nl/o‘)

(H3) X;; has a bounded probability Lebesgue density on R or on C.
One can check that (H1-H2-H3) hold e.g. when |X11| and X3;/|X11] are independent with |X1;| =
|S| where S is real symmetric a-stable. Another basic example is given by X1; = eW =/ with ¢
and W independent such that ¢ takes values in {—1,1} and W is uniform on [0, 1].

For every n > 1, let us define the i.i.d. n x n complex matrix A = A,, by

Aij = a;lXij (14)
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for every 1 < 7,5 < n. Our first result concerns the singular values of A — zI, z € C.

Theorem 1.1 (Singular values). If (H1) holds then for all z € C, there exists a probability measure
Va,» on [0,00) depending only on a and z such that a.s.

VA—z1 ~ Vg z-
n—o00

The case z = 0 was already obtained by Belinschi, Dembo and Guionnet [6]. Theorem [I1] is
a heavy tailed version of the Dozier and Silverstein theorem ([I). Our main results below give
a non-Hermitian version of Wigner’s theorem for Lévy matrices [I3] [7, [0 [10], as well as a heavy
tailed version of Girko’s circular law theorem (L3]).

Theorem 1.2 (Eigenvalues). If (H1-H2-HS3) hold then there exists a probability measure po, on C
depending only on a such that a.s.

paA o o

n—oo

Theorem 1.3 (Limiting law). The probability distribution p, from theorem [ is isotropic and
has a continuous density. Its density at z = 0 equals

D(1+2/a)’T(1 4 a/2)/«
270(1 — «/2)2/

Furthermore, up to a multiplicative constant, the density of pe is equivalent to

2|2 Ve 21217 45 |2] — 0.

Recall that for a normal matrix (i.e. which commutes with its adjoint), the module of the
eigenvalues are equal to the singular values. Theorem [[L3] reveals a striking contrast between i,
and v, 0. The limiting law of the eigenvalues p, has a stretched exponential tail while the limiting
law v4 o of the singular values is heavy tailed with power exponent «, see e.g. [6]. This does
not contradict the identity [Tr_, [Ax(A4)| = [Ti—; sk(A), but it does indicate that A is typically
far from being a normal matrix. A similar shrinking phenomenon appears already in the finite
second moment case (LIHL3)): the law of the module under the circular law U, has density r —
20’27"]1[070] (r) in contrast with the density ([2)) of the quartercircular law Q, o (even the supports
differ by a factor 2).

The proof of theorem [Tl is given in section It relies on an extension to non-Hermitian
matrices of the “objective method” approach developed in [I0]. More precisely, we build an explicit
operator on Aldous’ Poisson Weighted Infinite Tree (PWIT) and prove that it is the local limit
of the matrices A, in an appropriate sense. While Poisson statistics arises naturally as in all
heavy tailed phenomena, the fact that a tree structure appears in the limit is roughly explained
by the observation that non vanishing entries of the rescaled matrix A4, = a,,'X can be viewed
as the adjacency matrix of a sparse random graph which locally looks like a tree. In particular,
the convergence to PWIT is a weighted-graph version of familiar results on the local structure of
Erdés-Rényi random graphs.

The proof of theorem is given in section Bl It relies on Girko’s Hermitization method with
logarithmic potentials, on theorem [[LT] and on polynomial bounds on the extremal singular values
needed to establish a uniform integrability property. This extends the Hermitization method to
more general settings, by successfuly mixing various arguments already developped in [10] [T}, 40].
Following, Tao and Vu, one of the key step will be a lower bound on the distance of a row of the
matrix A to a subspace of dimension at most n — n'~7, for some small v > 0.

Girko’s Hermitization method gives a characterization of u, in terms of its logarithmic potential
(see appendix[A]). In our settings, however, this is not convenient to derive properties of the measure
lta, and our proof of theorem [[3]is based on an analysis of a self-adjoint operator on the PWIT
and a recursive characterization of the spectral measure from the resolvent of this operator. This
method is explained in section [2] while the actual computations on the PWIT are performed in
section Ml

The derivation of a Markovian version of theorems [[.I] and is an interesting open problem
that will be analyzed elsewhere, see [10] for the symmetric case and [I1] for the light tailed non-
symmetric case. It is also tempting to seek for an interpretation of v, . and j in terms of a sort of
graphical free probability theory. With a proper notion of trace, it is possible to define the spectral
measure of an operator, see e.g. [14, 26] B0], but we will not pursue this goal here.
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1.2. Notation. Throughout the paper, the notation n > 1 means large enough n. For any
¢ € [0,00] and any couple f,g of positive functions defined in a neighborhood of ¢ , we say
that f(t) ~ g(t) as t goes to ¢, if lim;—. f(t)/g(t) = 1. We denote by D’(C) the set of Schwartz-
Sobolev distributions endowed with its usual convergence with respect to all infinitely differentiable
functions with bounded support C§°(C). We will consider the differential operators on C ~ R?

for z =z + iy (here i = v/—1)
1 = 1
We have 0z = 0z = 0, 0z = 0z = 1 and the Laplace differential operator on C is given by
= 1
A=00=2(0;+0,)
We use sometimes the shortened notation A — z instead of A — z1.

2. BIPARTIZED RESOLVENT MATRIX

The aim of this section is to develop an efficient machinery to analyze the complex spectral
measures which avoids a direct use of the logarithmic potential and the singular values. Our
approach builds upon similar methods in the physics literature [I8] 25| [36].

2.1. Bipartization of a matrix. Let n be an integer, and A be a n X n complex matrix. We
introduce the symmetrized version of v4_,,

) N
VA—z = % ; 6¢7k(A*Z) + 6fo'k(A7z)-

Consider the quaternionic-type set
n oz
H, = U= 5 1 ,neCy,zeC;y c My(C).
For z € C,n € C; and 1 < 4,j < n integers, we define the elements of H and Ms(C) respectively,

z 0 Ay
Ulz,n) = <Z 77> and B;; = (Aﬁ O]> .

We define the matrix in M,,(M2(C)) =~ M3,(C), B = (Bij)i<ij<n- Since Bj; = Byj, as an
element of Mo, (C), B is an Hermitian matrix. Graphically, the matrix A can be identified with

an oriented graph on the vertex set {1,--- ,n} with weight on the oriented edge (i,7) equal to
A;j. Then, the matrix B can be thought of as the bipartization of the matrix A, that is a non-
oriented graph on the vertex set {1, —1,---,—n,n}, for every integers 1 < ¢,j < n the weight on

the non-oriented edge {i, —j} is A;;, and there is no edge between i and j or —i and —j.
For U e Hy, let U ® I,, € M,,(M2(C)) be the matrix given by (U ® I,);; = 6;;U, 1 < 4,5 < n.
The resolvent matrix is defined in M,,(M2(C)) by
RU)=(B-U®I,)™ !,
so that for all 1 < 4,5 <n, R(U);; € M2(C). For 1 < k < n, we write, with U = U(z,7n),
ak('za 77) bk(Z, 77))
ROk = . 2.1
= (G 21
The modulus of the entries of the matrix R(U)x are bounded by (Jm(n))~! (see the forthcoming

lemma 2.3]).

As an element of My, (C), R is the usual resolvent of the matrix
B(z) =B —-U(z,0)® I,.
Indeed, with U = U(z,n),
R(U) = (B(2) - nlza) . (2.2)
In the next proposition, we shall check that the eigenvalues of B(z) are tor(A — 2), 1 < k < n,
and consequently
HB(z) = UA—z. (23>
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It will follow that the spectral measures pa and U4, can be easily recovered from the resolvent
matrix. Recall that the Cauchy-Stieltjes transform of a measure v on R is defined, for n € C4, as

1
my(n) = / v(dx).
Y RZ—T
The Cauchy-Stieltjes transform characterizes the measure. For a probability measure on C, it is
possible to define a Cauchy-Stieltjes-like transform on quaternions, by setting for U € H,

MM(U):/C((?\ 3) —U)_lu(d)\) c H,.

This transform characterizes the measure : in D'(C), lim;o(OM,(U(z,it))12 = —2mp. If Ais
normal, i.e. if A*A = AA* then it can be checked that R(U)xr € Hy and

% > RU)wr = M, (U).
k=1

However, if A is not normal, the above formula fails to hold and the next propositon explains how
to recover anyway u4 from the resolvent.

Proposition 2.1 (From resolvent to spectral measure). Let U = U(z,n) € Hy, and ay, b, b}, ck

be as in (21). Then [Z3) holds,

n

mDA,z(T]) - = Zak('zan) + ck(z’n)a
k=1

and, in D'(C),

n

1 1 n
— _E b (- :1‘m7—§ b (-, it).
Ha 2mn k:1a 5(-0) tlio 2mn k:18 k(1)

In the special case where A is a random matrix, exchangeability and linearity lead to the
following.
Corollary 2.2 (From resolvent to spectral measure). If A is a random matriz with exzchangeable
entries,
MEpA_ . (77) = Ea’l('za 77);
and, in D'(C),

1 1
Bpig = ——0Eby (-, 0) = lim — — OEby (-, it).
1A 27r8 b1(-,0) tlffol 27T8 by (-, dt)

Proof of propositon 2l Through the permutation of the entries, for p even, p — p/2 +n and p
odd, p — (p + 1)/2, the matrix B(z) is similar to

(a2 57,

whose eigenvalues are easily seen to be 2o (A — 2), 1 < k < n. We get

n

R = ap+cp = Y (on(Ad—2) = 0) "+ (~ox(A—2) =)

k=1 k=1
And the first statement and (23] follow. Also, from ([A.3]), in Appendix, for z ¢ supp(pa),
1 1
Una(z) = 5 /ln(zQ)uB(z)(d:c) ™ In(det B(2))?, (2.4)

where U, is the logarithmic potential of a measure p on C, see (AJ]). If X is an invertible matrix,
recall that the derivative of det X in the direction Y is tr(X 1Y) det X (Jacobi formula). We
deduce that in D’'(C),

5% In(det B(2))? = % _ tr{B(z)18 <_0z OZ) ®In}.
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With Rix = R(U(2,0))kx = (B(2)™kk, we get from 9z =0, 9z = 1

5% In(det B(2))* = étr {Rkk (01 8)} =— ibk(z,o).

Now from Equation (A2), in D'(C), s = AUy, = —5= > 1_; Obi. To get the limit as ¢ | 0, we
note that for real ¢t > 0,

% /111(:02 + ) pp (s (do) = % In | det(B(z) — it)| = ﬁ In(det(B(z) — it))%.

Ast | 0, the left hand side of the above identity converges in D’(C), to U,,,. Taking the Laplacian,
and arguing as above, we get

1 5 o 1 < .
A§/1n(x i )uB(z)(dx):—%I;c’)bk(z,zt). (2.5)

The conclusion follows. ]

Note that even if — )", Oby is a measure on C, for each 1 < k < n, —0by, is not in general a
measure on C (default of positivity, this can be checked on 2 x 2 matrices).

2.2. Bipartization of an operator. We shall generalize the above finite dimensional construc-
tion. Let V be a countable set and let ¢2(V) denote the Hilbert space defined by the scalar
product

(@:0) =D uthus  bu = (0u,®),
ueV

where §, is the unit vector supported on u € V. Let D(V) denote the dense subset of ¢2(V) of
vectors with finite support. Let (wyy)u,vev be a collection of complex numbers such that for all
u€evV,

D [ * + [wpu|* < 00
veV
We may then define a linear operator A on D(V'), by the formula, for all v, v in V|

<5u7A5v> = Wy - (26)

Let V be a set in bijection with V, the image of v € V being denoted by 0 € V. We set
VP =V UV and define the symmetric operator B on D(V?), by the formulas, for all u,v in V,

<5u;B573> = <573;B5u> = Wuv
(04, Bdy) = (64, Bds) = 0. (2.7)
In other words, if IT,, : £2(V*) — C2 denote the orthogonal projection on (u, 1),
Wyy 0
For z € C, we also define on D(V?), the symmetric operator B(z): for all u,v in V,
(0w, B(2)05) = (05, B(2)0u) = Wyp — 21 (u =0)
(0w, B(2)dy) = (04, B(2)ds) = 0.
Hence, if we identify V? with {1,2} x V, we have
B(z)=B-U(2,0)® Iy. (2.8)
The operator B(z) is symmetric and it has a closure on a domain D(B) C £*(V). We also denote
by B(z) the closure of B(z). If B is self-adjoint then B(z) is also self-adjoint (recall that the
sum of a bounded self-adjoint operator and a self-adjoint operator is also a self-adjoint operator).
Recall also that the spectrum of a self-adjoint operator is real. For all U = U(z,n) € Hy,

B(z) —nIy» = B—U(z,m) ® Iy is invertible with bounded inverse and the resolvent operator is
then well defined by

R(U) = (B(2) = nlys) "
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We may then define
o _ (au(z,m) bu(z,n))
R(U)py =1L, R(U)IL, = .
) wms= (e
The next lemma summarizes well-known properties of resolvent operators.

Lemma 2.3 (Properties of resolvent). Let B be the above bipartized operator. Assume that B is
self-adjoint and let U = U(z,n) € Hy, v € V. Then, a,,c, € Cy, for each z € C, the functions
ay(2,+),by(2,),b,(2,), cu(2, ) are analytic on C4, and

lao] < (@m®) ™ e < @m@n) 7 (bl < (2Tm(n)Th and b)) < (23m(n)) "
Moreover, if n € iR, then a, and c, are pure imaginary and b, = b,,.

Proof. The first statements follow from well-known properties of resolvent operators. For the last
statement on 7 € iR, we define the skeleton of B(z) as the graph on V? obtained by putting an
edge between two vertices u,v in V?, if (3,, B(2)8,) # 0. Then since there is no edge between two
vertices of V or V, the skeleton of B(z) is a bipartite graph.

The last statement follows classically, assume first that B(z) is bounded: for all u € Vo,
|B(2)dy]] < C. Then for |n| > C, the series expansion of the resolvent gives

= B(2)"
RU)=-)_ %
n=0
However since the skeleton is a bipartite graph, all cycles have an even length. It implies that for
n odd, (b, B(2)"d,) = 0. Applied to v € V, we deduce that for |z| > C, a(z,—7) = —a(z,n)
and applied to 9, we get c¢(z,—7) = —c(z,n). We may then extend to C, this last identity by
analyticity. For n = it € iR, we deduce that a, and ¢, are pure imaginary. Similarly, since the
skeleton is a bipartite graph, a path from a vertex v € V to a vertex u € V must of be of odd
length. We get for |z| > C

b o) = o KOGy = -y B0

n=0

= <5U7R(U)573> = bﬂ(zan)v

where we have used the symmetry of B(z). It follows that b/ (z,—7) = b,(z,n). If B(2) is not
bounded, then B(z) is limit of a sequence of bounded operators and we conclude by invoking
Theorem VIII.25(a) in [35]. O

2.3. Operator on a tree. We keep the setting of the above paragraph and consider a (non-
oriented) tree T' = (V, E) on the vertices V with edge set E (recall that a tree is a connected graph
without cycles). For ease of notation, we note u ~ v if {u,v} € E. We assume that if {u,v} ¢ E
then wy, = Wy = 0. In particular w,, = 0 for all v € V. We continue to consider the operator A

defined by (2.0]).
In the special case when wy, = W, for all u,v in V, the operator A is symmetric and we first

look for sufficient conditions for A to be essentially self-adjoint.

Lemma 2.4 (Criterion of self-adjointness). Let k > 0 and T = (V, E) be a tree. Assume that for
all u,v €V, Wyy = Wy and that if {u,v} ¢ E then Wy, = Wyy = 0. Assume also that there exists
a sequence of connected finite subsets (Sp)n>1 in V, such that S, C Sp+1, UpSn =V, and for

everyn and v € Sy,
> wwl* <k

ug Sy iu~v

Then A is essentially self-adjoint.

For a proof, see [10, Lemma A.3]. The above lemma has an interesting corollary for the bipartized
operator B of A defined by (2.7)-(2.8]).

Corollary 2.5 (Criterion of self-adjointness of bipartized operator). Let k > 0 and T = (V, E) be
a tree. Assume that if {u,v} ¢ E then wyy, = wyy = 0. Assume also that there exists a sequence
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of connected finite subsets (Sp)n>1 in V., such that S, C Spy1, UpSy, =V, and for every n and

v E Sy,
Z |wuv|2 + |7~UUU|2 <K
wgSpu~v
Then for all z € C, B(z) is self-adjoint.

Proof. Tt is sufficient to check that B is self-adjoint. Let @ € V be a distinguished vertex, we
define two disjoint trees Gg = (Vg,Eg) and Gy = (Vg,Eg) on a partltlon (Va, V) of VP as
follows. The trees G and Gg are the unique trees such that @ € Vy, & € Vg and that satisfy the
following properties

(i) if {u,v} € F and u in Vg (or Vg) then ¢ € V (or Vg and {u,?} € Eg (or Eg)

(i) if {u,v} € F and @ in Vg (or Vy) then v € Vg (or Vy) and {@,v} € Eg (or Eg).
We note that by construction if v € Vy and v € Vg then (5u,B(5 ) = 0. If follows that the
operator B decomposes orthogonally into two operators By and By on domains in EQ(VQ) and
EQ(Vg) respectively: B = By @& By. We may then safely apply lemma 24 to By and By. O

When the operator B is self-adjoint, the resolvent operator has a nice recursive expression due
to the tree structure. Let & € V be a distinguished vertex of V' (in graph language, we root the
tree T at @). For each v € V\{@}, we define V,, C V as the set of vertices whose unique path to
the root @ contains v. We define T, = (V,,, E,) as the subtree of T spanned by V,. We finally
consider A,, the projection of A on V,,, and B, the bipartized operator of A,. The skeleton of A,
is contained in T),. Finally, we note that if B is self-adjoint then so is B, (z) for every z € C. The
next lemma can be interpreted as a Schur complement formula on trees.

Lemma 2.6 (Resolvent on a tree). Assume that B is self-adjoint and let U = U(z,n) € Hy. Then

R(U)pe = <U+Z (ww wg”) R(U)y (w(;v “’6‘3)>1,

v~
where R(U)yy = IL,Rp, (U)IT: and Rp, (U) = (By(z) — 1)~ is the resolvent operator of B,.

Proof. Define the operator C' on D(V°) by its matrix elements

Co :=MuCIIL = —U(2,0),  C,:=1xCII* = (IL,CIT,)* = <_0 w””)

Wy 0

for all v € V such that v ~ @, and II,CII} = 0 otherwise. The operator C is symmetric and
bounded. Its extension to ¢2(V?) is thus self-adjoint (also denoted by C). In this way, we have

from V ={a} U,z Vo,
B(z)=C+B with B= @ B,(2)
v~

We shall write E(U) = (E —nI)~! for the associated resolvent of B. From the resolvent identity,
these operators satisfy

R(U)CR(U) = R(U) — R(U). (2.9)
Set Ryy = HUE(U)H* and Ry, = I, R(U )H* Observe that Ryy = - —17,. Also the direct sum
decomposition V' = {@} J, ., Vo implies Ryy = IRp, (U)IT and Ry, = 0 for every u # v with
u~ @, v~ . Similarly we have that Ry, = 0 = Ryg for every v € V\{@}. Using the identity
ZuGV I 1L, = I, we get

HZE(U>CR(U)HE = RguCyRos + Z RyzCyRus
v~
= 77 U(ZORQQ_ ZCRUQ
v~

We compose the identity ([29) on the left by I, and on the right by II%, we obtain, for v ~ &,
E’U’UO:;R@@ = *sz .
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We finally compose ([29) on the left by Iz and on the right by I,
nilU('zaO)RZZ + 7771 Z C’UEUUC:RQQ = _7771[2 - Rzz,

v~
or equivalently (U(z,7) + Y2, CoRowCi) Ry = —Is. O

2.4. Local operator convergence. In the next paragraphs, we are going to prove that the
sequence of random matrices (A4,,) converge to a limit random operator on an infinite tree. The
notion of convergence that we will use was introduced in [10] and will be recalled below.

Definition 2.7 (Local convergence). Suppose (Ay) is a sequence of bounded operators on ¢*(V)
and A is a linear operator on (*(V') with domain D(A) D D(V). For any u,v € V we say that
(An,u) converges locally to (A,v), and write

(An,u) = (4,0),

if there exists a sequence of bijections o, : V. — V such that 0,,(v) = u and, for all p € D(V),
ot Anond — Ao,

in 2(V), as n — oc.

Assume in addition that A is closed and D(V') is a core for A (i.e. the closure of A restricted to
D(V) equals A). Then, the local convergence is the standard strong convergence of operators up
to a re-indexing of V' which preserves a distinguished element. With a slight abuse of notation we
have used the same symbol o,, for the linear isometry o, : £(V) — ¢?(V') induced in the obvious
way. As pointed out in [10], the point for introducing Definition 27 lies in the following theorem
on strong resolvent convergence.

Theorem 2.8 (From local convergence to resolvents). Assume that (A,) and A satisfy the condi-
tions of Definition[2.7 and (An,u) — (A,v) for someu,v € V. Let B, be the self-adjoint bipartized
operator of A,,. If the bipartized operator B of A is self-adjoint and D(V?®) is a core for B, then,
for allU e Hy,

RBn(U)uu — RB(U)’UU' (2.10)
where Rp(U)yy = I, Rp(U)ITY and Rp(U) = (B(z) —n)~! is the resolvent of B(z).

Proof of theorem[2.8 Tt is a special case of Reed and Simon [35, Theorem VIII.25(a)]. Indeed,
we first fix z € C and extend the bijection o,, to V? by the formula, for all w € V, o, () =
Gn(w). Then we define En(z) = 0,'B,(2)on, so that En(z)qb — B(z)¢ for all ¢ in a common
core of the self-adjoint operators En(z), B(z). This implies the strong resolvent convergence, i.e.
(Bn(z)—nI) Y — (B(z)—nI)~14 for any ) € C4, ¥ € £2(V)). We conclude by using the identities
: Iy (B (2) —nI) ™16, = Iy (Bn(2) —nI) ™10, and I, (B, (2) — ) 185 = I, (Bn(2) —nl) " 164. O

We shall apply the above theorem in case where the operators A, and A are random operators
on /2(V), which satisfy with probability one the conditions of theorem 8 In this case we say that
(An,u) = (A,v) in distribution if there exists a random bijection o, as in Definition 277 such that
o, VA, 0,0 converges in distribution to Ag, for all ¢ € D(V) (where a random vector 1, € £*(V)
converges in distribution to v if lim, oo Ef(¢,) = Ef(¢) for all bounded continuous functions
f: (V) = R). Under these assumptions then ([ZI0) becomes convergence in distribution of
(bounded) complex random variables.

2.5. Poisson Weighted Infinite Tree (PWIT). We now define an operator on an infinite rooted
tree with random edge—weights, the Poisson weighted infinite tree (PWIT) introduced by Aldous
[1], see also [3].

Let p be a positive Radon measure on R such that p(R) = co. PWIT(p) is the random weighted
rooted tree defined as follows. The vertex set of the tree is identified with N/ := UpenNF by
indexing the root as N’ = &, the offsprings of the root as N and, more generally, the offsprings
of some v € N¥ as (v1), (v2),--- € N¥*1 (for short notation, we write (v1) in place of (v,1)). In
this way the set of v € N” identifies the n'" generation. We then define T as the tree on N/ with
(non-oriented) edges between the offsprings and their parents.

We denote by Be(1/2) the Bernoulli probability distribution : 180 4+ £6;. Now assign marks to
the edges of the tree T according to a collection {Z, },ens of independent realizations of the Poisson
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point process with intensity measure p ® Be(1/2) on R x {0, 1}. Namely, starting from the root &,
let 2o = {(y1,€1), (y2,€2), ... } be ordered in such a way that |y;| < |y2| < - -, and assign the mark
(yi,€:) to the offspring of the root labeled i. Now, recursively, at each vertex v of generation k,
assign the mark (y,:,€.:) to the offspring labeled vi, where Z, = {(yv1,€v1), (Y2, €v2), - - . } satisfy
|yv1] < |yv2| < ---. The Bernoulli mark e,; should be understood as an orientation of the edge
{v,vi} : if €,; = 1, the edge is oriented from vi to v and from v to vi otherwise.

For a probability measure § on S', we introduce the measure on C, for all Borel D:

EQ(D):/ / 1 {y-arepyf(dw)rdr (2.11)
0o Jst

Consider a realization of PWIT(2¢3). We now define a random operator A on D(N/) by the
formula, for all v € Nf and k € N,

(60y ABuk) = ekt and  (Suk, Ady) = (1 — ei)yn ' (2.12)
and (d,, Ad,) = 0 otherwise. It is an operator as in §23] Indeed, if u = vk is an offspring of v, we
set

Wou = ek’ and  wuy = (1 — e )y, (2.13)
otherwise, we set w,, = 0. We may thus consider the bipartized operator B of A.

Proposition 2.9 (Self-adjointness of bipartized operator on PWIT). Let A be the random operator
associated to PWIT(20y). With probability one, for all z € C, B(z) is self-adjoint.

We shall use Corollary [Z5l We start with a technical lemma proved in [10, Lemma A.4].

Lemma 2.10. Let k > 0,0 < a <2 andlet 0 < z1 < 22 < --- be a Poisson process of intensity
1 on Ry. Define T = inf{t € N: Z,;“;Hl :EI;Q/Q < k}. Then E7 is finite and goes to 0 as k goes to
nfinity.

Proof of proposition[Z.9. For k > 0 and v € N/, we define

oo
T, =inf{t > 0: Z |yvk|_2/a < K}
k=t+1

The variables (7,) are iid and by lemma 210, there exists k£ > 0 such that Er, < 1. We fix such
k. Now, we put a green color to all vertices v such that 7, > 1 and a red color otherwise. We
consider an exploration procedure starting from the root which stops at red vertices and goes on
at green vertices. More formally, define the subforest 79 of T" where we put an edge between v and
vk if v is a green vertex and 1 < k < 7,. Then, if the root @ is red, we set S; = C9(T) = {&}.
Otherwise, the root is green, and we consider T = (V, E%) the subtree of T that contains the
root. It is a Galton-Watson tree with offspring distribution 7. Thanks to our choice of &, T is
almost surely finite. Consider LY the leaves of this tree (i.e. the set of vertices v in VJ such that
for all 1 < k < 7y, vk is red). We set S; = VJ UUGL%{l < k < 7, : vk}. Clearly, the set Sp satisfies
the condition of Lemma 2.4

Now, we define the outer boundary of {@} as 0.{@} = {1,--- , 75} and for v = (i1, --ix) €
N\{2} we set 0. {v} = {(i1, -~ ,ix—1,ir + 1)} U {(i1, - ,ig,1),- -+, (i1, ,ix,Tv)}. For a con-
nected set S, its outer boundary is

9.8 = <U ar{u}> \S.

veS
Now, for each vertex uy,--- ,ur € 9;51, we repeat the above procedure to the rooted subtrees
Tuyy -+ sTu,. Weset So =51 Ulgigkcb(Tui). Iteratively, we may thus almost surely define an

increasing connected sequence (S,,) of vertices with the properties required for Corollary 25 O

2.6. Local convergence to PWIT. We may now come back to the random matrix A, defined
in Introduction by (L4). We extend it as an operator on D(Nf) by setting for 1 < 4,5 < n,
(6;, Ad;) = A; j and otherwise, if either i or j is in N/\{1,---n}, (§;, A;) = 0.

The aim of this paragraph is to prove the following theorem.

Theorem 2.11 (Local convergence to PWIT). Assume (H1). Let A, be as above and A be the
operator associated to PWIT(24y) defined by (Z12). Then in distribution (An,1) — (A, D).
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Up to small differences, this theorem has already been proved in [I0, Section 2]. We review here
the method of proof and stress on the differences. The method relies on the local weak convergence,
a notion introduced by Benjamini and Schramm [§], Aldous and Steele [3], see also Aldous and
Lyons [2].

We define a network as a graph with weights on its edges taking values in some metric space.
Let G, be the complete network on {1,...,n} whose weight on edge {i,j} equals (£};), for some
collection (£}';)1<igj<n of ii.d. complex random variables. We set {7, = ;. We consider the
rooted network (G, 1) obtained by distinguishing the vertex labeled 1.

We follow Aldous [I, Section 3]. For every fixed realization of the marks (&), and for any
B, H € N, such that (Bf*! —1)/(B — 1) < n, we define a finite rooted subnetwork (G,,,1)%H of
(Gn, 1), whose vertex set coincides with a B—ary tree of depth H with root at 1. To this end we
partially index the vertices of (G,,,1) as elements in

JB,H = Ufzo{lv T 7B}e - Nfa

the indexing being given by an injective map o, from Jp g to V,, :={1,...,n}. We set Iy = {1}
and the index of the root 1 is o,,1(1) = &. The vertex v € V,,\ I is given the index (k) = o, (v),
1 <k < B, if £, has the kth smallest absolute value among {&t;, 7 # 1}, the marks of edges
emanating from the root 1. We break ties by using the lexicographic order. This defines the first
generation. Now let I; be the union of Iy and the B vertices that have been selected. If H > 2, we
repeat the indexing procedure for the vertex indexed by (1) (the first child) on the set V,,\I;. We
obtain a new set {11,---, 1B} of vertices sorted by their weights as before (for short notation, we
concatenate the vector (1,1) into 11). Then we define I5 as the union of I; and this new collection.
We repeat the procedure for (2) on V,\I> and obtain a new set {21,---,2B}, and so on. When
we have constructed {B1,--- , BB}, we have finished the second generation (depth 2) and we have
indexed (B® —1)/(B — 1) vertices. The indexing procedure is then repeated until depth H so that
(BH+1 —1)/(B — 1) vertices are sorted. Call this set of vertices V,2'¥ = 5, Jp 5. The subnetwork
of Gy, generated by V,.2-H is denoted (G,,,1)? (it can be identified with the original network G,
where any edge e touching the complement of V.5 is given a mark x, = o). In (G,,,1)%# the
set {ul,--- ,uB} is called the set of offsprings of the vertex u. Note that while the vertex set has
been given a tree structure, (G, 1)% is still a complete network on V2. The next proposition
shows that it nevertheless converges to a tree (i.e. extra marks diverge to co) if the &i; satisty a
suitable scaling assumption.

Let p be a Radon measure on C and let T be a realization of PWIT(p) defined in §25 For
the moment, we remove the Bernoulli marks (g,),cns and, for v € N/ and k € N, we define the
weight on edge {v,vk} to simply be y,,. Then (T, @) is a rooted network. We call (T, @)5# the
finite random network obtained by the same sorting procedure. Namely, (T, 2)5 consists of the
subtree with vertices in Jp, g, with the marks inherited from the infinite tree. If an edge is not
present in (T, 2)BH we assign to it the mark +oo.

We say that the sequence of random finite networks (G, 1)5# converges in distribution (as
n — o0) to the random finite network (7, @)5# if the joint distributions of the marks converge
weakly. To make this precise we have to add the points {00} as possible values for each mark,
and continuous functions on the space of marks have to be understood as functions such that the
limit as any one of the marks diverges to +o00 exists and coincides with the limit as the same mark
diverges to —oo. The next proposition generalizes [I, Section 3], for a proof see [I0, Proposition
2.6] (the proof there is stated for a measure p on R, the complex case extends verbatim).

Proposition 2.12 (Local weak convergence to a tree). Let (§';)1<i<j<n be a collection of i.i.d.
random variables in C and set & =& Let p be a Radon measure on C with no mass at 0 and

assume that
nP(gl €) — p. (2.14)

n—oo
Let G,, be the complete network on {1,...,n} whose mark on edge {i,j} equals &%, and T a

realization of PWIT(p). Then, for all integers B, H,
(Gn, )P~ (T, )51

— 00

n
ij7

Now, let (fﬂjﬁgi,jgn be i.i.d. real random variables. We consider the complete graph G,, on
Vi, whose weight on edge {7, j} equals, if i < j, (§7',€7;) € R2. As above, we partially index the
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vertices of (G, 1) as elements in
JB,H :Uéqzo{l’ ’B}e CNf,

the indexing being given by an injective map o, from Jp g to V,, such that o,1(1) = @. The
difference with the above construction, is that the vertex v € V,\{1} is given the index (k) =
o, (v), 1 <k < B, if min(|€], |, |€]]) has the k™ smallest value among {min(|€7 41, [€711), 7 # 1}

Similarly, let (T, @) be the infinite random rooted network with distribution PWIT(p). This
time we do not remove the Bernoulli marks (e,),ens and define the weight on edge {v,vk} as
(Yor, 00) if €pr, = 1 and (00, Yur) if yr = 0. Again, we call (T, @)% H the finite random network
obtained by the sorting procedure : (T, )5 consists of the subtree with vertices in Jp g, with
the marks inherited from the infinite tree.

We apply proposition to the complete graphs G (resp. G, ) with mark on edge {i,;}
equals, if i < 7, to £'; (vesp. &7';). We remark that the assumption on the weights in proposition
2.12/imply that if u, v are integer random variables independent of (£}';)1<i<j<n then |§;, | diverges
weakly to infinity. We finally recall that the sum of two independent Poisson processes has an
intensity equal to the sum of the intensities. We deduce the following corollary.

Corollary 2.13 (Local weak convergence to a tree). Let p be a Radon measure on C with no mass
at 0. Let (5%)1@7]-@1 be a collection of i.i.d. random variables in C such that ([2-13)) holds. Let Gy,
be the complete network on {1,...,n} whose mark on edge {i, j} equals, if i < j, (§]';,€7;), and T
a realization of PWIT(2p). Then, for all integers B, H,

(G, )P s (T, 2)P1

n—oo

We may now prove theorem [Z.TT]

Proof of theorem [Z11l We argue as in the proof of theorem 2.3(i) in [I0, Section 2]. We first define
the weights (£}';); jens as follows. For integers 1 <4, j < n, we set

= A =X
With the convention that {'; = oo if X; ; = 0. For this choice, by assumption (H1), (2.14) holds
with p = £y and £y in @II). If i or j is in Nf\{1,--- ,n}, we set &y = oo.

Let G, denote the complete network on {1,---,n} with marks (£;,&;) on edge {i,j}, if
i < j. From Corollary 213 for all B, H, (G,,,1)%# converges weakly to (T, )5 where T has
distribution PWIT(24y). Let A be the random operator associated to T'.

Let 02 be the map o, associated to the network (G,,,1)5#. The maps o, are arbitrarily
extended to a bijection N/ — Nf. From Skorokhod Representation Theorem we may assume that
(G, 1)BH converges a.s. to (T, )P for all B, H. Thus we may find sequences B,,, H, tending
to infinity and a sequence of bijections &,, := o2 H» such that (BZ»*1 —1)/(B, — 1) < n and
such that for any pair u,v € N/ we have &, (1), (v) which converge a.s. to
yur  if for some integer k, v = uk and g, =1
Yor,  if for some integer k, u = vk and €, =0
00 otherwise

It follows that a.s.
(Ou T AnGnbo) = &2 (wy zn () (Ou, ABy)

For any v, set ¢° := &, 'A,,6,6,. To prove theorem ZTI1] it is sufficient to show that for any
veNF Y2 — Ad, in £2(NF) almost surely as n goes to infinity, i.e.,

D (0, 08) — (6, A6,))* = 0.

u

From what precedes, we know that (d,,1%) — (64, Ad,) for every u, the claim follows if we have

(almost surely) uniform (in n) square-integrability of ((d,,%%)),. This in turn follows from Lemma
2.4(i) and Lemma 2.7 in [10]. O
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2.7. Convergence of the resolvent matrix. Let A, and A be as in theorem ZIIl From
proposition 229 we may almost surely define the resolvent R of the bipartized random operator of
A. For U =U(z,n) € Hy, we set

V(z,m) c(z,m)

We define similarly, R, (U) = (B,(z) — n)~*, the resolvent of B,,, the bipartized operator of A,
We set Rn(U)H = Han(U)H’{

RW)os = RO = (1) 121, (215)

Theorem 2.14 (Convergence of the Resolvent matrix). Let A,, and A be as in theorem[211. For
alU =U(z,n) € Hy,
Rn(U)H = R(U)gg

Proof of theorem [2.14 We apply proposition[2.9] theorem [ZTT]and the “in distribution” version of
theorem 2.8 O

2.8. Proof of theorem I3l Again, we consider the sequence of random n x n matrices (A,)
defined in introduction by (L4).

Theorem 2.15. For all z € Cy, almost surely the measure U4, _,(dx) converges weakly to a
measure Uy, . (dx) whose Cauchy-Stieltjes transform is given, for alln € C4,

m’)a,z (77) = Ea(z’ n)’
where a(z,n) was defined in (Z13).

Theorem [[T]is a corollary of the above theorem up to the fact that Ea(z,7) does not depend on
the measure 6 which appears in (H1). The latter will be a consequence of the forthcoming theorem

£

Proof. For every z € C, by proposition 29 the operator B(z) is a.s. self-adjoint. It implies that
there exists a.s. a measure on R, vy, called the spectral measure with vector dg, such that for
all n € Cy,

ofz1) = (6o R(UYGS) = [ voslde) _ ).

We define R,, as the resolvent matrix of B,,, the bipartized matrix of A,,. For U = U(z,n) € H,,
a

we write Ry, (U)kx = (b’ Ic)k> By Corollary 2.2]
k k
My, . (1) = Eai(z, 7).

By lemma[2.3] for U € H,, the entries of the matrix R,,(U)1; are bounded. It follows from theorem
214 that for all U € Hy,

. a b

Jim B =E (5 ).

where the limit matrix was defined in (ZI5). Hence, for all z € Cy,

lim MEpA,, - (77) = Ea(za 77)'

n—oo

We deduce that Ev 4, . converges to the measure v, , = Evg .. This convergence can be improved
to almost sure by showing that the random measure 74, _, concentrates around its mean. This
is done by applying Borel-Cantelli Lemma and lemma to the matrix B, (z) whose spectral
measure equals 74, ., see (Z3)). O

3. CONVERGENCE OF THE SPECTRAL MEASURE

3.1. Tightness. In this paragraph, we prove that the counting probability measures of the eigen-
values and singular values of the random matrices (A,,) defined by ([L4) are a.s. tight.
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Lemma 3.1 (Tightness). If (H1) holds, there exists r > 0 such that for all z € C, a.s.

lim t"va_,1(dt) < oo, and thus (Va—.1)n>1 1 tight.

Moreover, a.s.

lim /|Z|T;LA(dZ) < oo, andthus (pa)n>1 is tight.
n—oo

Proof. In both cases, the a.s. tightness follows from the moment bound and the Markov inequality.
The moment bound on pa follows from the statement on v4 (take z = 0) by using the Weyl
inequality (B.6)). It is therefore enough to establish the moment bound on v4_,; for every C. Let
us fix z € C and r > 0. By definition of v4_,; we have

/ t" va_.1(dt) Zsk —zI)"
0

From (B.2) we have si(A — zI) < s5(A4) + |z| for every 1 < k < n, and one can then safely assume
that z = 0 for the proof. By using (B.7) we get for any 0 < r < 2,

r/2
00 1 n
/0 t"va(dt) < == ; ni Wwhere Y, ;:= Z a_2|XU|2
We need to show that (Z,),>1 is a.s. bounded. Assume for the moment that
supE(Y,} ;) < o0 (3.1)
n>1
for some choice of r. Since Y, 1,...,Y, , are i.i.d. for every n > 1, we get from (B.1) that

E(Zn —EZn)") =n B > (Yai—EYn,)*(Va,; —EY, ) | =0®n?).

1<i,j<n

Therefore, by the monotone convergence theorem, we get E(Zn>1 (Zn —EZ,)*) < oo, which gives
Zn>1(Zn ~EZ,)* < 0o a.s. and thus Z,, —EZ,, — 0 a.s. Now the sequence (EZ,,)n>1 = (EY,, 1)n>1
is bounded by (B) and it follows that (Z,),>1 is a.s. bounded.

It remains to show that (B]) holds, say if 0 < 4r < a. To this end, let us define

n
- -2 2
Sn,ab 1= Zan | X151 D=2 x, 2efapyy  fOr every a <b.
i=1

Now Y;l,l = (Snﬁoyoo)mn = (Sn1071 + Sn 1 OO)QT and thus,
E(Yf1)<22r HE(SY 1) +E(S2 00) }- (3.2)
We have sup,, > E(Sn 0, 1) < oco. Indeed, since 2r < 1, by the Jensen inequality,

E(S75.1) < (ESn01)%

and by lemma [C.1]
ESp 01 ~n /(2 — a).
For the second term of the right hand side of [B2), we set

M, = max a, a, |X1]|11{a;1|X1 1y and Ny o= #{1 <j <nsiteoa, ' X| > 1)

From Holder inequality, if 1/p + 1/q = 1, we have
) <E (N2 M) < (ENZP) P (Raira) (3.3)
Recall that P(| X12| > an) = (1 +0(1))/n < 2/n for n > 1. By the union bound, for n > 1,

nk 2k 2k

n i 2k
P(Nn 2 k) < (k)P(|X12| > an)" < Tk

(S2r

n,l,00
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In particular, we have sup,,»; EN;] < oo for any n > 0. Similarly, since the function L is slowly
varying, for n > 1 and all ¢ > 1, we have

P(M,, > t) < nP(|X12| > ta,) = na, “t~“L(a,t) < 2t~
It follows that if v < «, sup,,»; EM)) < oco. Taking p and ¢ so that 4r¢ < a, we thus conclude
from [B3) that sup,,>; E(S7) o) < oo. O

r
n,l,00

3.2. Invertibility. In this paragraph, we find a lower bound for the smallest singular value of the
random matrix A defined by (4.

Lemma 3.2 (Invertibility). If (H3) holds then for some r > 0, every z € C, a.s.
lim n"s, (A —2I) = +oo.

n—oo
Proof. For every z,y € C" and S C C", we set -y := 171 + - - - + T»TYn and ||z||y := /= - = and
dist(x, S) := minyegs ||z — yl||5. Let Ry,..., R, be the rows of A — 2] and set
R_; :=span{Rj;j # i}
for every 1 < i < n. From lemma [B.2] we have

1r<11jn dist(R;, R—;) < Vns,(A —z2I)
and consequently, by the union bound, for any u > 0,
P(vn sn(A — 2I) < u) <n max P(dist(R;, R_;) < u).

Let us fix 1 <7 < n. Let Y; be a unit normal vector to R_;. Such a vector is not unique. We just
pick one. This defines a random variable on the unit sphere S"~! = {x € C" : ||z||, = 1}. By the
Cauchy—Schwarz inequality,

(R - Yil < iR, [Yill, = dist(Ri, Ry)

where 7;(+) is the orthogonal projection on the orthogonal of R_;. Let v; be the distribution of Y;
on S"~!. Since Y; and R; are independent, for any u > 0,

P(ist(Ri, B-i) < u) < B(R:- Vil <) = [ (R3] <))
Sn—l

Let us first consider the case where X;; has a bounded density ¢ on C. Since |y|, = 1 there

exists an index jo € {1,...,n} such that y;, # 0 with |yj0|71 < y/n. The complex random
variable R; -y is a sum of independent complex random variables and one of them is a,; ' X;j, 70,
which is absolutely continuous with a density bounded above by a,v/n |¢|.,. Consequently, by a
basic property of convolutions of probability measures, the complex random variable R; - y is also
absolutely continuous with a density ¢; bounded above by an/n||¢|| ., and thus

P(|R; - y| < u) :/ pi(s)ds < Tu? anv/n @l

{z€CslzI<u}
Therefore, for every b > 0,

P(sn(A — 2I) < n~°"Y2) = O(n*??a,)

where the O does not depend on z. By taking b large enough, the first Borel-Cantelli lemma implies
that there exists r > 0 such that a.s. for every n € C and n > 1,

sn(A—zI)>2n™".
It remains to consider the case where X1 has a bounded density ¢ on R. As for the complex case, let
us fix y € S"~1. Since ||y||, = 1 there exists an index jo € {1,...,n} such that |yj0|_1 < v/n. Also,
either |Re(yj,)|~ < v2n or |[Im(yj,)|~! < v2n. Assume for instance that [Re(y;, )|~ < v2n.
We observe that for every u > 0,

P(|R; - y| < u) < P(|Re(R; - y)| < ).

The real random variable Re(R;-y) is a sum of independent real random variables and one of them
is a;, ' X;j,Re(yj, ), which is absolutely continuous with a density bounded above by a,v2n |¢|| .
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Consequently, by a basic property of convolutions of probability measures, the real random vari-
able Re(R; - y) is also absolutely continuous with a density ¢; bounded above by a,v2n ||| -
Therefore, we have for every u > 0,

PR y)| <u)= [ o) ds <2 anviull.
[7“‘1“]

We skip the rest of the proof, which is identical to the complex case. O

3.3. Distance from a row to a vector space. In this paragraph, we give two lower bounds on
the distance of a row of the random matrix A — z defined by (4] to a vector space of not too
large dimension. The first ingredient is an adaptation of Proposition 5.1 in Tao and Vu [41].

Proposition 3.3 (Distance of a row to a subspace). Assume that (H1) holds. Let0 < v < 1/2, and
let R be a row of an(A — z). There exists 6 > 0 depending on «,~y such that for all d-dimensional
subspace W of C™ with n —d > n'~"7, one has
P (dist(R, W) < n(1_27)/0¢) <e™
The proof of proposition is based on a concentration estimate for the truncated variables
X1ilgx,;|<p,) for suitable sequences b,. We first recall a concentration inequality of Talagrand.

Theorem 3.4 (Talagrand concentration inequality [38] and [29, Corollary 4.10]). Let us denote
by D := {z € C;|z| < 1} the complex unit disc and let P be a product probability measure on the
product space D"™. Let F' : D™ — R be a Lipschitz convex function on D" with ||F||luip < 1. If
M(F) is a meadian of F under P then for every r >0,

P(|F — M(F)| >r) <de /4.

Proof of proposition [3.3. We first perform some pre-processing of the vector R as in Tao-Vu [41].
To fix ideas, we may assume that R is the first row of a,,(A — z). Then R = X7 — za,e; where X;
is the first row of X = a,,A. We then have

dist(R, W) > dist(X1 — zane1,span(W, e1)) = dist(Xy, Wh).

where we have set W, = span(W, e;). Note that d < dimW; < d+ 1.
For any sequence b,,, from the Markov inequality,

P <Z ﬂ{\Xu\?bn} > ﬁ) < e—\/ﬁ (Eeﬂ\xu\%n)n
=1
< e VP (14 eL(ba)by®)"
< e*\/HJrenL(bn)b;". (34)

Choose b,, = a,n~2/*. Clearly, b, /n(}=2/* € [n=¢ n?] eventually for all € > 0.
Let J denote the set of indexes i such that |X1;| < b,. From [B4) we see that, for some § > 0:

P(|J]| <n7\/ﬁ)<67”5.
It follows that it is sufficient to prove the statement conditioned on the event {|7| > n —/n}. In
particular, we shall prove that for any fixed I C {1,...,n}, such that |I| > n — \/n,
P (dist(Xl, Wh) < ni=20/e | 7 = 1) <e ™. (3.5)

Without loss of generality, we assume that I = {1,---,n'} with n’ > n — \/n. Let m; be the
orthogonal projection on span(e; : i € I). If Wo = 7;(W7), we find d — /n < dim(W2) <
dim(W;) < d+1 and
diSt(Xl, Wl) 2 diSt(W[(Xl), WQ)
Note that 77(X7) is simply the vector X1;, i =1,...,n'. We set
W' = span(Wa, E[r(X1)| T =1]), Y =m1(X1) - E[r(X1)|T =1,
so that d — v/n < dim(W’) < d + 2 and
dist(r7(X1), Wa) > dist(Y, W').



NON-HERMITIAN HEAVY TAILED RANDOM MATRICES 17

Let P denote the orthogonal projection matrix to the orthogonal complement of W’ in C". We have
dist>(Y, W') = > YiPi;Yj, and, since Y = (Y)1<ign’ is @ mean zero vector under P(-|Z = I),

Eldist*(Y,W') | = 1] =E[ 3 YiPy¥; | T = 1
]

=Y PE[Yi[*|T =1l =E[Vi|*| T = ItrP.
i=1
We have for any € > 0 and for n > 1:
E(lYi*|J =1 =E[Xu* | T = 1] - B[ Xul|T =1)* > b, “n"",
where the last bound follows from lemma [C.1] since by independence one has
E[Xul?|J = 1] = E[ X1 [* || Xu] < bal,
and |E[X11 |j = I]|2 = |E[X11||X11| < bn]|2 is 0(1) if a > 1, while (by lemmam) it is
O(b2722%¢) for any € > 0, if a € (0, 1].
Using trP = n/ — dim(W’) > 3 (n — d), it follows that, for any ¢ > 0, for n > 1
E[dist?(Y, W) | T = I] > c¢L(bp)b>~%(n — d) > n (3.6)
where g := (1-27)2 +v —e¢.
Under P(-| J = I), the vector (Y /by, , Yy /by) is a vector of independent variables on D™,

where D be the unit complex ball. We consider the function F : x — dist(xz, W’). The mapping F’
is 1-Lipshitz and convex. From theorem [B.4] we deduce that

P(|dist(Y, W) — M(dist(Y, W"))| > r|J = I) < de % (3.7)
where M (dist(Y, W’)) is a median of dist(Y, W’) under P(- | J = I).
It follows that, for e.g. § = 7/2, taking ¢ = /4 in (B.6), we obtain g(¢) = (1 —27)2 +6 +¢,
and therefore there exists ¢ > 0 such that n > 1,
ni(®)

b2

n

b2 E[dist?>(Y, W) |J =1] > ¢ >cnl. (3.8)
From [B.7) it follows that
E [|M(dist(Y, W) — dist(YV, W)[* | T = I} =0 (b2)

From the Cauchy-Schwarz inequality we then have
2

‘M(dist(Y, W) — \/E[distQ(Y, W | T =1

<E [|M(dist(Y, W) — dist(V, W)|* | T = 1} =0(12).

The above estimates, with B.6) and @BJ), imply that M (dist(Y,W’)) > 1n9)/2 for n > 1.
Therefore, for n > 1,

P (dist(Y, W) < n(=20/e| 7 = I)
1
<P (|M(dist(Y, W) = dist(YV,W')| > nd©/2| g = 1) :

The desired conlcusion (3.5]) now follows from (7)) and (BJ). O

So far we have shown that under assumption (H1), the distance of a row to a space with
codimension n—d > n'~7 is at least n(!=27)/® with large probability. We want a sharper estimate,
namely at the order n'/®. We will obtain such a bound in a weak sense in the forthcoming
proposition B77 Furthermore, we shall require assumption (H2) to do so. We start with some
preliminary facts.

Below we write Z = Z(¥), 3 ¢ (0,1), for the one-sided S-stable distribution such that for all
s >0,

Eexp(—sZ;) = exp(—s").
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From the standard inversion formula, for m > 0
o0
y~™ =T(m)"! / ™ e Y dx
0

we see that all moments

E[Z™™] = T(m)™* /OOO e e dg (3.9)

are finite for m > 0. Also, recall that if (Z;)1<i<n is an i.i.d. vector with distribution Z then, for
every (w;)i<i<n € R, in distribution

n n 1/8
i=1 i=1

Indeed, (FI0) follows from Eexp(—s Y w;Z;) = exp(—s” 3 wf) and a change of variables.

Lemma 3.5. Assume (H2). There existse > 0 and p € (0,1) such that the random variable | X11|?
dominates stochastically the random variable e D Z, where P(D = 1) =1 —-P(D =0) =p is a
random variable with law Be(p) , Z = ZB) with B = 5, and D and Z are independent.
Proof. From our assumptions, there exist § > 0 and xy > 0 such that

IP’(|X11|2 >x) > Sx P > IP’((52Z >x), T>xg.

Let p be the probability that |X11|?> > x9. If # > 2 then P(|X11]?> > z) > pP(6%2Z > z) =
P(62 D Z > z). On the other hand, if z < xg then P(|X11]?> > z) > p > P(0°D Z > x). In any
case, setting ¢ = 62 we have

P(|X11]* >2) >P(eDZ >x), x>0.

This implies the lemma. O

Lemma 3.6. Assume (H2). Let w; € [0,1] be numbers such that w(n) = Y/ w; > nz*e for
some € > 0. Let X1 = (X1;)1<ign be i.i.d. random variables distributed as X11, and let Z = ALY

with 3 = 5. There exist 6 > 0 and a coupling of X1 and Z such that

P <Z wi X14)? < 5w(n)%z> <e ™. (3.11)
=1

Proof. Let D = (D;)1<ign denote an i.i.d. vector of Bernoulli variables with parameter p given by
lemma From this latter lemma and (BI0) we know that there exist € > 0 and a coupling of
X1, D and Z such that

Z) =1.

’

P <Z W D; < 5’w(n)> <e™ .
i=1

Observe that wf > w;, so that EZ?Zl wf D; > pw(n). Therefore, for 0 < &’ < p,

P (Z W D; < 5’w(n)>
i=1

= <‘ > (o DB Dy > (0 6’)w(”>> < 2e-2(p—)w(m)? /n
=1

@l

P (iwi|X1i|2 2 E(iwiﬁ Dz)
i=1 i=1

It remains to show that for some &' > 0:

where we have used the Hoeffding inequality in the last bound. Since w(n) > nzT¢, this implies
the lemma. g
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Proposition 3.7. Assume (H2) and take 0 < v < a/4. Let R be the first row of the matriz
an(A — z). There exists a constant ¢ > 0 such that for any d-dimensional subspace W of C™ with
codimension n — d > n'~7, we have

Eldist (R, W); E] < ¢ (n — d)~

2
o
)

for some event E satisfying
]P)(EC) < cn7(1727)/a

Proof. As in the proof of proposition B3] we have

dist(R, W) > dist(X1, W),
where Wy = span(W, e;), d < dimW; < d+ 1, and X; = (X1;)1<ign s the first row of X = a, A.
Let Z denote the set of indexes ¢ such that | X1;| < a,,. From [B.4]) we know that

P(|Z] <n—+/n) < e’
for some § > 0. It is thus sufficient to prove that for any set I C {1,...,n} such that |I| > n—+/n,

E[dist 2(R,W); E;|I=1]<c(n—d)"=,

for some event Ej satisfying P((Er)¢|Z = I) < n~(1=27/2 We will then simply set

E=Ern{|Z| >n— vn}.
Without loss of generality, we assume that I = {1,---,n'} with n’ > n —n'/2. Let 7; be the
orthogonal projection on span(e; : ¢ € I). If Wy = mp(W7), set

W' = span (W, E(m(X1) |Z =1)) .
Note that d — v/n < dim(W') < dim(W;) + 1 < d + 2. Defining Y = 7;(X;) — E(7(X1) | Z = 1),
we have
dist(R, W) > dist(Xy, Wi) > dist(Y, W).

Thus, Y = (Yi)1<ign’ is an i.i.d. mean zero vector under P(-|Z = I). Let P denote the orthogonal
projection matrix to the orthogonal of W’ in cr. By construction, we have

E (dist?(Y, W) | = I) (ZYPUY|I I) E[Vi]?|Z=1] tP.

1,5=1

Here trP = 37 | Py;, where Pj; = (e;, Pe;) € [0,1] and trP = n’ — dim(W”) satisfies

1
2(n—d) > trP > Q(n—d). (3.12)
Let S = Z:il P;;|Y:])?. We have
(2
E(@ist?(v, W) - 8?1 7=1) = E( (3 vipy) |1T=1
i#]

= Z P11J1P12J2E (lelyvh Y;2Y32 |I = I)
(11#71), (izijz)

= 2 Z 11]1 |Y1| |I I]

11771
2R[|Y1)? | T = I|tr P2

N

Note that,
EV1]*|Z =1 <E[Xul*|Z=1]
= E[| X1 * |1 X11] < an]

E[|X11%; [ X11] < ay)
P(|X11] < an)

/N

= O(az/n),
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where the last bound follows from lemma, Since P? = P, we deduce that

n

E [(dist*(Y,W') - S)*|Z=1] =0 (ai n- d) : (3.13)

Next, let Z = ZP) with g = S, as in lemma 3.6 Set w; = Py, i=1,...n/, and for € > 0, consider
the event

T =14 wilXiuP>e(n—-d)iz
i=1
From lemma 3.8 (with n replaced by n’ > n —n'/?) and using (B12) there exists a coupling of the
vector X1;,7 =1,...,n and Z such that
PIS) < e (3.14)

for some § > 0 and some choice of € > 0. Also, since (a — b)? > a?/2 — b? for all a,b € R, we have
S>18,— S, where

So = Zwi|X1i|27 Sy = ZwiE[|X1i| |1 X1 < an]2 .
i=1 i=1

From Lemma [CJland (B12) we have
Sy =E[|X11]| [ X11| < an)? trP = b (n,d) (3.15)
where h(%) (n,d) ~ (n — d)a? /n? if a € (0,1] and h(®)(n,d) ~ (n —d) if a € (1,2). Let G} be the
event that S, > 3Sp. From (I35 and the definition of I'; we have, for some ¢g > 0
P(GHNT|T=1)<P(Z < coln—d)" YN (n,d)|ZT=1).

Note that, thanks to the assumptions n—d > n'~7, v < a/4, we have (n—d)~Y/Ph(®) (n,d) < n=
for some €9 = gg(a) > 0 for all @ € (0,2), for n > 1. Therefore, for n > 1,
P(GH)NT | ZT=1)<P(Z<con = |T=1)
P(Z <con™c; | Xl < an, Vi=1,...,n)
]P’(|X1i|<an,Vi:1,...,n’) ’

where the last identity follows from the independence of the X;;. Observing that the probability
for the event {|X1;| < an, Vi=1,...,n'} is lower bounded by 1/¢ > 0 uniformly in n, we obtain

P(G)NT|T=1)<cP(Z<con ).

The latter probability can be estimated using Markov’s inequality and the fact that E[Z~™] = u,
is finite (cf. (39)). Indeed, for every m > 0, P(Z < t) < umt~ ™. Thus, we have shown that for
every p > 0 there exists a constant x, such that

P(GHNT|T=1)<KkynP. (3.16)
Next, we set ['; = G} NT and we claim that
E[S‘Q; fﬂz:ﬂ :O((n—d)_4/o‘), (3.17)
Indeed, on f; we have S > % So = g(n— d)2/”‘ Z and therefore, for some constant cy,
E [5*2; |7 = 1} <am—dR[z2|T=1].

Using independence as before, and recalling that the event {|X1;| < an, Vi = 1,...,n'} has
uniformly positive probability we have

E[Z?|ZT=1] <cE[Z?|=cusy.
This proves (BI7).
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Now, for the event Markov’s and Cauchy-Schwarz’ inequalities lead to

|dist?(Y, W’) — S|
S

|dist? (Y, W’) — S|
S

P(distQ(Y,W’)gS/Q;qu:I) < 1P>< >1/2;f1|11)

< 21E[ ;f1|z:1]

< 2\/152 [|dist> (Y, W) — S? | T = I] E [5—2; I|7= 1]

Hence, if G2 denotes the event {dist*(Y, W’) > S/2}, we deduce from BI3) and (F17)

P((G?)Cﬂflﬂzl) :o(annfé(n—d)%*%). (3.18)
Note that, using n — d > n' =7, the last expression is certainly O(n‘i (1_27)). On the other hand,
by (3I7) and Cauchy-Schwarz’ inequality
E [dist”(x, W) G2nT,|T = 1} <2E {S—l T/ = 1} =0 ((n - d)—%) . (3.19)
To conclude the proof we take Ej = G% N fl = G} N G% NT;. We have
P(EN|ZT=1)<P(T)|Z=0+P(G))°NI;|ZT=1)+P((G)H°NGINT[|T=1).
From (B.10) and (318) we see that,
P (G} NT/|[T=1)+P((GH°NGINT;|T=1)=0 (nféufzw) ,
and all it remains to prove is an upper bound on P ((I';)¢|Z = I). By independence, as before
P((T1)°|T = 1) < cP((T0)°; [Xuil S an, Yi=1,....0) .
From BI4) we obtain P((I'))|Z=1) < ce~"". This ends the proof. O

3.4. Uniform integrability. Let z € C and 0, < --- < 01 be the singular values of A,, — z with
A, defined by ([L4). For 0 < § < 1, we define K5 = [§,671]. In this paragraph, we prove the
uniform integrability in probability, meaning that for all € > 0, there exists § > 0 such that

?()
K
From lemma 3.1l with probability 1 there exists ¢y > 0, such that for all n,
/ In?(z)va, _.(dz) < co.
1

It follows from Markov inequality that for all ¢ > 1, ftoo In(x)va, —.(dx) < co/Int. The upper part
(671, 00) of [B20) is thus not an issue. For the lower part (0,4), it is sufficient to prove that

|In(x)|va, —.(dz) > 5) — 0. (3.20)

e
)

1 n—1
=Y 1y, <5, 100,72
n ; {G'nfzgén} no—n—l

converges in probability to 0 for any sequence (d,,),, converging to 0. From lemmaB.2] we may a.s.
lower bound o,,—; by en™" for some constant ¢ and all integer n > 1. Take 0 < v < a//4 to be fixed
later. Using this latter bound for every 1 < i < n'~7, it follows that it is sufficient to prove that
1 n—1
-2
- > o<y’
i=[nl=7]
converges in probability to 0. We are going to prove that there exists an event Fj, such that, for
some 6 > 0 and ¢ > 0,
P((F,)¢) < cexp(—n®), (3.21)

and

Qv

E[o72 | F)] <c (2)_“. (3.22)

n—u 7
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We first conclude the proof before proving B21)-(322). From Markov inequality, and $22)), we
deduce that

o (myatl
P(on-i < 0) < B((F)) + 83 (%)
i
If follows that there exists a sequence &, = 5,1/ (o) tending to 0 such that the probability that
P(0p—|ne, | < 0n) converges to 0. We obtain that it is sufficient to prove that

lenn]

% Z In O',;Ei

i=|nl=7]

given F,, converges in probability to 0. However, using the concavity of the logarithm and (B3.22])
we have

1 lenn] . 1 lenn] .
E n Z Ino %, | Fn| < n Z InEfo, %, |Fy]
i=[nl="7] i=[nt=7]
c1 Rdie n
< S Xm(F)

i=1
= (fsn Ine, +¢e, + O(nil)) )

It thus remain to prove B2I))-([322). Let B,, be the matrix formed by the first n — [i/2] rows of
an(Ap —2I). Ifoy =2 > U;L_W% are the singular values of B,,, then by the Cauchy interlacing

Lemma [B.4]

/
On—i

On—i 2
Qn,

By the Tao-Vu negative second moment lemma [B.3] we have
Oy oy = sty b dist 2o,
where dist; is the distance from the j-th row of B,, to the subspace spanned by the other rows of
B,,. In particular,
n—|s

)

~
no

[

.2
dlStj .

| =
)
3

lw
VAN
IS}
3

1

Let F,, be the event that for all 1 < j < n — [i/2], dist; > n!=27/%_ Since the dimension of the
span of all but one rows of B, is at most d < n — /2, we can use proposition B3] to obtain

P((F2)°) < exp(—n),

— <

for some ¢ > 0. Then we write

Taking expectation, we get

E [io,%,; Fy] < 2a2nE [dist;*; F,] (3.23)

n—i?

Since we are on F, we can always estimate dist; > n(!=27)/@ By introducing a further decom-
position we can strengthen this as follows. Recall that from proposition B.7l there exists an event
E independent from the rows j # 1 such that P((E)¢) < n~(1=27/® and for any W C C" with
dimension d < n — n'~7 one has

E[dist(R, W)™2; E] < ¢(n—d)~?/®,

Here R is the first row of the matrix B,,. By first conditioning on the value of the other rows of
B,, and recalling that the dimension d of the span of these is at most n —i/2 < n — 2n!'~7, we see
that

Eldist;2; E] = O (rQ/a) .
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Therefore
E [dist;?; F,,| < E(dist;?; E) +P((E)%)n=20=20/
< e (i72/a+n73(172'y)/a) . (3.24)

Now, if v < 1/6 we have 3(1 — 2vy)/a > 2/a and therefore n=3(1=27)/> < =2/ Thus, [3:24)
implies
E [dist;?; Fn] < 2¢pi™ 2/, (3.25)
From (3.23) we obtain
E [ioggi ; Fn} < 2c¢ ainiiQ/o‘.

From (H2) it follows that ([3.22]) holds. This concludes the proof of (B.21))-([B22]).

3.5. Proof of theorem We may now invoke theorem [Tl and (320). From lemma [A2] 4,
converges in probability to i, where for almost all z € C, U, () = [ In(z)v,,.(dz). Now, from
lemma B the sequence of measures (4, ),n € N, is a.s. tight. From the unicity of the limit, it
follows that p4, converges a.s. to .

4. LIMITING SPECTRAL MEASURE

In this section, we give a close look to the resolvent of the random operator on the PWIT and
we deduce some properties of the limiting spectral measure p,. For ease of notation we set

e
P=3
and define the measure on R,
A, = %zfgfld:c.

4.1. Resolvent operator on the Poisson Weighed Infinite Tree. In this paragraph, we

analyze the random variable
_ (alzm) b(zm)

BU)ao = (b’(z,n) c(z,m))

By lemma 23] for t € Ry, a(z,it) is pure imaginary and we set
h(z,t) = Jm(a(z,it)) = —ia(z,it) € [0,t7].

The random variables a(z,7n) and h(z,t) solve a pleasantly nice recursive distribution equation.
Theorem 4.1 (Recursive Distributional Equation). Let U = U(z,7n) € Hy, t € Ry. Let Ly be
the distribution on C1 of a(z,n) and L, the distribution of h(z,t).

(i) Ly solves the equation in distribution

g n+ ZkeN gkak
122 = (0 + X Erar) (0 + Dpen&rar)’

where a, (ak)ken and (a},)ken are i.i.d. with law Ly independent of {&x}ken, {&, }ren two
independent Poisson point processes of Ry with intensity Ay, .
(ii) L. is the unique probability distribution on [0,00) such that

i t+ ZkeN Erhi
2] + (t + 2 ke fkhk) (t + 2 ke El/ch;c)

where h, (hi)ren and (h})ren are i.4.d. with law L., independent of {&k}ren, {&}; ren
two independent Poisson point processes of Ry with intensity A,.

(iii) Fort = 0 there are two probability distributions on [0,00) solving ({-3) such that Eh®/? <
oo: 0p and another denoted by L. o. Moreover, for the topology of weak convergence, L+
converges to L, o as t goes to 0.

(4.1)

a

h (4.2)

We start with an important lemma.
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Lemma 4.2. For every U = U(z,n) € Hy, (;, lc)) is equal in distribution to

1 (77 + 2 ken Sk —z ) (4.3)
2| — (77 + ZkeN ‘fkak) (77 + ZkeN fl/ca;c) -z n+ ZkeN §eay)

where a, (ag)ken and (a},)ken are i.i.d. with law Ly independent of {&k}ren, {&), }ren two inde-
pendent Poisson point processes of Ry with intensity Ag,.

Proof of lemma[{-3 Consider a realization of PWIT(2/y) on the tree T. For k € N, we define
T}, as the subtree of T spanned by kNf. With the notation of lemma 28] for k € N, Rp, (U) =
(Bi(z) —n)~! is the resolvent operator of By and set

- . b
R(U)kk = Ik Rp, (U)II}, = (Z/k ck) :
k k

Then, by lemma 2.6 and (ZI3)), we get

1
0 € yil/a ar b 0 l—¢ yil/a
— <U+Z ( 1 —1/a F 16 ) <b/k Ck> < —1/a ( Iz)) k
keN ( *Ek)yk k k €LY,
—1
_ > ken(l— er) el 2/ “er 0
= (U+ ( 0 |72/aak

R(U)gzw

ZkeN 5k|yk
p-1 (77+ZkeN 5k|yk|72/aak -z )
~Z N+ pen(l = en)lyel =2/ “er )’

with D = |22 = (n+ X pen erlyel =2 %ar) (n+ S pen(l — e)lye| =2/ %cx).

Now the structure of the PWIT implies that (i) a; and ¢ have common distribution Ly; and
(ii) the variables (ag, cx)ren are i.i.d.. Also the thinning property of Poisson processes implies that
(iif) {exlye] =2/ * ren and {(1 — 1) |yx|~2/*}ren are independent Poisson point process of common
intensity Ag. O

The next well-known and beautiful lemma will be crucial in the computations that will follow.

Lemma 4.3. Let {&}ren be a Poisson process with intensity Ao If (Vi) is an i.i.d. sequence of
non—negative random variables, independent of {&k }ren, such that E[Ylﬁ] < oo then

ey LEN]5 > ¢ SEL)ES,

keN keN

where S is the positive B-stable random variable with Laplace transform for all x > 0,
Eexp(—zS) = exp (—I'(1 — ﬂ)z’ﬁ) . (4.4)
Proof of lemma[{.3 Recall the formulas, for y > 0, n > 0 and 0 < n < 1 respectively,
y "= F(n)fl/ 2" e ™dy and y" =T(1— 7})717]/ 71— e ™). (4.5)
0 0

From the Lévy-Khinchin formula we deduce that, with s > 0,

EeXp <_SZ€kYk> = exp (E /Oo(e_mslﬁ _ 1)6-T_B_1d.’1])
k 0

= exp (4(1 - msBE[Yf]) .
O

Proof of theorem [{-1] Statement (7) is contained in lemma 2l For (i¢), let ¢ > 0 and h a solution
of (£2). Then h is positive and is upper bounded by 1/t. By lemma [£3] we may rewrite [@2]) as
d t +E[RP]V/ES

" 2P+ (¢ - EWP]VPS) (¢ + ERPTPS)

h (4.6)
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where S and S’ are i.i.d. variables with common Laplace transform (@3). In particular, E[n]'/#
is solution of the equation in y:

Y 22+ (t+yS) (t + yS")

Since t > 0, E[h?] > 0, it follows that E[1®]/# is solution of the equation in y:

1_E( ty™ + 5 )"
o |22+ (t+yS)(t+yS) )

(4.7)

1

For every S, S’ > 0, the function y m is decreasing in y. It follows that

_ B
ty= 1+ S
— E
Y <|z|2+<t+ys><t+y5f>>

is decreasing in y. As y goes to 0 it converges to co and as y goes to infinity, it converges to 0. In
particular, there is a unique point, y.(|z|?,¢) of such that (7)) holds. This proves (i) since from
(E8), the law of h is determined by E[h?]'/8 = y,(|z|2,t).

For Statement (4i7) and ¢t = 0, then h = 0 is a particular solution of ([@2). If h is not a.s. equal
to 0, then E[hﬁ]l/ﬂ > 0 and the argument above still works since, for every s, s’ > 0, the function
Y > m is decreasing in y. We deduce the existence of a unique positive solution y.(|z|?,0)

of [T). We also have the continuity of the function ¢ — y.(|z|?,¢) on [0,00). Finally
h = ya(|22,008/ (|22 + y2(|2[2, 0)8S),
and from (@6, it implies the weak convergence of L. ; to L, o. ]

4.2. Density of the limiting measure. In this paragraph, we analyze the RDE (4.3). For all
t >0, let L,; be as in theorem LIl From Equation (£0]), » may expressed as

h
|27 + (¢ + y5) (t + yuS")

where S and S are i.i.d. variables with common Laplace transform (&4 and y. := y.(|z|?,t) is the
unique solution in (0,00) of (&8 (uniqueness is proved in theorem [T]). We extend continuously
the function y.(r,t) for t = 0 by defining y.(|2|?,0) as the unique solution in (0, 00):

S B

Lemma 4.4. The function y, : [0,00)? — (0,00) is C1. For everyt > 0, the mapping v — y.(r,t)
is decreasing to 0.

- B
Proof. For every t > 0, the derivative in y > 0 of the function E (W) is

(ty~' + 5)P~1 e 9S4 yS") + 5'(t+yS))

— Bty °E
o (1212 + (t +yS) (t +yS"))” (122 + (t + yS) (t +yS5)

(4.9)

The last computation is justified since all terms are integrable, indeed we have

(ty~! + §)51 _ y—B+1 _ y—26
(22 + t+yS) t+yS)’ ~ (t+yS)(t+yS)* — S5°
and from (@A), for all n > 0,

ES™" =T(n)"*! /x"flefr(lfﬁ)zﬂdx < 0. (4.10)



26 CHARLES BORDENAVE, PIETRO CAPUTO, AND DJALIL CHAFAI

Similarly, for the second term of ([@3]), we write
(ty ' +9)°(S(t+yS) + S (t+yS) _ - S(t+yS") + 5t +yS)
(22 + o) e +s)™ T (4 yS) (E+ys) T
1 S -1 S’
5TY S}
(t+y9) (t+y9) (t+yS")
< y—ﬂ—Qsl*ﬁ +y—B—QSI*ﬂ

The expression ([49) is finite and strictly negative for all y > 0. The statement follows from the
implicit function theorem. ]

From (43), for all ¢ > 0,

/N

d z
T P (A pa([2]i)S) (A ya(|2]2,08)87)
By lemma [£.4] we may also define

b(z,it)

z
21? + y2(l2[*,0)59"

For ease of notation, we set y.(r) = y.(r,0). Since 9z = 1, 9|z|?> = z, we deduce that

z
~E(z0) = Ed g —srmgs
(

E (|22 +y2(121)88") 7" = [2PE (|2]? + 42(|2[2)55")
—202 Py (122)yL (121 ESS’ (|2]? + y2(|12[2)8S")

Ss’
— 322 — 2|22y, (|2)? 122 E 2"

. . d
=1 e
b(z,0) = tljgl b(z,it) =

2

(4.11)

The latter is justified since
SS' (121> + 4288") 2 < y~4(SS") .
is integrable from (@I0). The next lemma is an important consequence of Theorems [2.T4] and
Lemma 4.5. The following identity holds in D'(C):
Lo = —%aEb(-,O).
Therefore the measure piq, 18 isotropic and has a continuous density given by 1/27 times the right

hand side of (4.11)).

Proof. Let R,, be the resolvent matrix of B,,, the bipartized matrix of A,, defined by ([4). By
theorem 2,14 and lemma 23] for all ¢t > 0 and 2 € C,

. ) _ (iEh(z,t) Eb(z,it)
Aim BB (U2, 1)1 = (EE(z,it) iEh(z,1))
From theorem [2ZT5] Eva, . converge weakly to v, , and, by lemma[B.1] for all ¢t > 0,
1 1
li_>m 3 /ln(gc2 +1*)Eva, . dx) = 3 /ln(nc2 + 1% g, (d2).

From Equation (320), [In(z)va,.(dz) is integrable. We deduce that for all zgp € C, there exists
an open neighborhood of zy and a sequence (t,)n>1 converging to 0 such that for all z in the
neighborhood,

= () 200 wm
and
nlLrI;o%/ln(xQ +t2)Eva, . (dx) = /ln(z)yayz(d:c). (4.13)

Moreover from theorem [[.2, Equation (3:20), lemma [A2] in D'(C):

A/ln(z)yayz(dz) = Tle- (4.14)
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On the other hand, [In(z? + ¢*)va, —.(dz) = 5~ In|det(B(z) — itls,))|, and from (ZF),

A / (22 + 2)Eva. ., (dz) = —Oby (2, it).

The conclusion follows from ([4.12), (4.13)) and [A.14). O
It is possible to compute explicitly the expression [@I1]) at z = 0.

Lemma 4.6. The density of po at z =10 is

1 T(1+1/8)°0(1 + B)1/?
2r TA-/VF

Proof. By definition, the real y.(0) solves the equation
B —28
S _ _ Y 1 T(1—3)4B
1= (-5_\ =, g ﬁ:_/ B-1,-T(1-B)z g
(yQSS’) Y S () " e x
With the change of variable z — 2 and the identity 2I'(z) = I'(1 + z), we find easily, ES™" =
(C(1 = B)L(1+ )" and
_
y«(0) = (I'(1 = BI'(1+p8)) .

We also have

B o 1 .. TA+1/p)
BST = /e re e = BU(1— B)1/8 /xw et = T(1—p)/8’

where we have used again the identity 2I'(z) = T'(1 + z). Then the right hand side of @I at
z =0 is equal to
_ _ _ _1\2
Y20y H(OE(SS) ™ =y 2(0) (ESTH)"
O

4.3. Proof of theorem [I.3l In this subsection, we prove the last statement of theorem [[3] (the
first part of the theorem being contained in lemmas 5] [6). We start with a first technical lemma.

Lemma 4.7. Let 0 < <1, d > 0, and f be a bounded measurable Ry — R function such that
fly) = OyP*?%) asy | 0. Let Y be a random variable such that P(Y > t) = L(t)t=" for some
slowly varying function L. Then as t goes to infinity

51 () ~onn? [ s

Proof. DefineY; = Y/t. We fix ¢ > 0 and consider the distribution P(Y; € |Y; > ). By assumption,
for s > ¢,

P(Y; > s|V; > ¢) ~ (s/e) "
In particular, the distribution of Y; given {Y; > €} converges weakly as ¢ goes to infinity to the
distribution with density fz=?~'efdz. Since f is bounded and L slowly varying, we get

E {f (%) {Y>st}] = P(Y; > ¢)E [f (Y) } Y, > 5}

~ L(et)e Pt /Oo fly)ByPtelay

~ s [ T Fy .

Finally, by assumption, for some constant, ¢ > 0,
Y _5_
E {f (?) 1{Y<st}:| < ot POEY Ly ).

Thus by lemma [C] for some new constant ¢ > 0 and all ¢ > 1/e,

B[7 (F) tiven] <@ nenien — a-rzie

We may thus conclude by letting ¢ tend to infinity and then € to 0. g




28 CHARLES BORDENAVE, PIETRO CAPUTO, AND DJALIL CHAFAI

Lemma 4.8. Let S be a random variable with Laplace transform ({-4). There exists a constant
co > 0 such that as t goes to infinity,

ESBH{Sgt} =Int+ co + 0(1)

Proof. Let gg be the density function of S. From Equation (2.4.8) in Zolotarev [47], gz has a
convergent power series representation

oo

o) = 7 3 (1) i)

n=1

The Stirling formula I'(z) ~z 00 2n (Z

- e)m implies that the convergence radius of the series is

+00. Recall that I'(8+1) = AT'(8), and the the Euler reflection formula, I'(1—8) sin(78) /7 = T'(B).
Thus, as x goes to infinity,

gs(@) = Ba=P~1 + O(@=271).

The next lemma is a consequence of the Karamata Tauberian theorem.
Lemma 4.9. Ast goes to infinity,
P(SS" >t) ~ ft~?Int,
and, with ¢; = 3 fooo (x+ 1) 227 Pdx,
E(t—fig:g’ﬁ ~ clt_l_’ﬁ Int.
Proof. Let x > 0, since S and S’ are independent we have

Eexp(—2SS') = Eexp (-I'(1 — B)a”S”) .
From Corollary 8.1.7 in [J], we have as t goes to infinity, P(S > t) ~ t~#. In particular, we have
P(S# > t) ~ ¢t~ and a new application of Corollary 8.1.7 in [9] gives as « | 0,
1 —Eexp(—zS?) ~ zlnz~!.
We obtain
1 —Eexp(—zS8S") ~T(1 — B)a’ In(I'(1 — B)z™") ~ BT(1 — B)a’ In(z~1).

We then conclude by a third application of Corollary 8.1.7 in [9]. The second statement is a
consequence of lemma [£7] a

The next lemma gives the asymptotic behavior of y.(r) as r goes to infinity.

Lemma 4.10. There exists a constant co > 0 such that as r goes to infinity,

yu(r) ~ con/re 1,
Proof. From Equations (£1), (£]), we have with y. = y.(r),

1 xr
1 = —= A-1E — —ay29')d
) /:c exp( 5 xy*S) T

1 /5—1 Py (=B = %
= — [ 2P e Yx Ee™ sdx
L'(B)
21/Bry=2

1 Py,

= 55 /eiIEe sra-mP dg, (4.15)
LA+ /I - By

By lemma B4 lim, o y«(r) = 0. Hence, from the above expression, we deduce that the term

ry; 2 goes to infinity as r goes to infinity. Define

1 z1/B

) = FrgEr ] e T e = ki) + B + B,
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with Io(y) = I(y)Liy>13,

II_{ <1} __ LB

I = vs wL1-0) 1P dp = 4P1

1) L1+ /ra-a) /e =y Ly<ay
Tiy<1y _ S

I = ES T _1)e wra-mY8 dg.

0 = rrraea—g )€ Ve ’

The function I is increasing and lim,_, I(y) < oco. Also, the function Iy is equal to 0 in a
neighborhood of 0. By lemma [L7] we get as t goes to infinity,

EIo(S/t) ~ aot™"?,

z1/8

for some positive constant ag = [ [em®e wa=0'77 By=F=ldzdy. By lemma E.8

W
E[L(S/t)] =t P Int + cot =P + o(1).
Also, from Laplace method, I>(y) ~ —I'(28)['(1 — B)%y?? as y goes to 0. By lemma A7,
Bl (S/t) ~ agt™?,

#1/8
—1)e ww-»7 By=B=ldxdy. Hence, for t = ry;2, we get from

. 1,
with a2 = srgyra—gy Jo J (e
v = (ry ) P In(ry®) + (co + ao + a2)(ry*) ™7 + ol(ry*) 7).
In other words,
¥ =n(ry;?) + (co + ao + az) + o(1).
We conclude by setting co = exp((co + ag + a2)/2). O
Lemma 4.11. As r goes to infinity,

y'(r) ~ —c3 ty(r)r? 1,

L LU/B
where c3 = 2 [[° [F ze™"e T-97 Bs7F " dzds/ (T(1 + B)T(1 — B)).
Proof. We define

S A 1 8. 28 or
=K = Ale=a v TU-BRe=F dx.
Gly:m) (r+yzss/) r(B) /x € ¢ sd

From the implicit function theorem

OrG(Ys,T)
! 9
Y \r) = —
(r) OyG (s, )
We have
28T(1 — B)y?P-1 2 or
2,G(y,7) = ~— AL F(Bﬂ))y /xw*le*ﬁy TA-AEe~ ¥ dy
2 _ o1/Bry =2
_ - Sr(1—p)L/B
(1 + BT(1— B) ] e o

The Laplace method implies that, as ¢ goes infinity,
_ ml/ﬂt
/xefxe ra=m'% dg ~ T(26)0(1 — B)%t=25.
Thus by lemma (47 we deduce that
21/By V2
/.Te_lEe Sra-m1F8 o~ ¢~ ﬂ//xe e sT(1-p)L/B ﬁs_ﬂ_ldxds ~ct—B.
Applying the above to t = ry_2(r) we deduce, with c3 = 2¢/(T'(1 + 8)I'(1 — 3)),
8y Gye, ) ~ —car Py (r).
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Similarly, the derivative of G with respect to r is

1
T y2BH20(1 — B)V/BHIT(1 + B)

/B2
0r-G(y,7) /zl/ﬁesze sra-»)178 Sy,

Once again, Laplace method implies that, as ¢ goes infinity,

21/B¢
/xl/'ge_le_ ra-m% dg ~ T(B 4 1)0(1 — B)Y/AT1=A-1

In particular, for all € > 0 there exists ¢ty such that

(1= )t "' ESP L (s<t/t0)

1 18—~ s o1
S r(lﬂ)wur(uﬂ)/x e T L

<1+ e)t P ES L is<iyty)-
By lemma (4.8
ESP1{s<tjtey ~ Int.
It follows that for some t; > tg and all t > ¢,
1
I'(1—B)Y/FHT(1+p5)
On the other hand, for some constant ¢ > 0 and all t > 1,

2By
(1-2e)t %It < /xl/Be_””Ee sra-pt/p S_lll{sgt/to}dx < (142¢)t 7P~ 1Int.

__ al/B4
/xl/'ge_zEe sra-pt/8 S_I]l{sgt/to}d:c < /zl/Be_Id:cP(S > t/ty) < ct_'ﬁ_lthrl.

We thus have proved that

1 /8, — - —B—
*Re sta-m77 § 1y ~ t7P  Int
I'(1—B)YAHT (1 + B) /x e e x nt,
and
0.G(yu(r),r) ~ —r P In(ry=2) ~ =L,
The statement follows. g

Proof of theorem [L.3. From Equation (ZI1I) and lemma 9 the density at r = |2|? is equivalent
to 1/(27) times
y;(r)) -2 —2\—1-7 -2
1—2r=—= )y, “(r)ei(ry, In(ry, *).
(1220 s () )

It remains to apply lemmas@T0and[ETT] and set the multiplicative constant to be ¢ = 7~ 26

-1
cy c1cy .
O

1

APPENDIX A. LOGARITHMIC POTENTIALS AND HERMITIZATION

Let P(C) be the set of probability measures on C which integrate In|-| in a neighborhood of
infinity. For every p € P(C), the logarithmic potential U, of p on C is the function U, : C —
[—00, +00) defined for every z € C by

Unz) = [l =21 n(a) = (n = ). (A1)

Note that in classical potential theory, the definition is opposite in sign, but ours turns out to be
more convenient (lightweight) for our purposes. Since In|-| is Lebesgue locally integrable on C, one
can check by using the Fubini theorem that U, is Lebesgue locally integrable on C. In particular,
U, < oo a.e. (Lebesgue almost everywhere) and U, € D’(C). Since In|-| is the fundamental
solution of the Laplace equation in C, we have, in D’'(C),

AU, =mp. (A.2)
Lemma A.1 (Unicity). For every p,v € P(C), if U, =U, a.e. then p=v.

Proof. Since U, = U, in D'(C), we get AU, = AU, in D'(C). Now (A.2) gives p = v in D'(C),
and thus p = v as measures since y and v are Radon measures. O
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If A is an n x n complex matrix and P4(z) := det(A — zI) is its characteristic polynomial,
1 1
Upa(z) = /1n|z’ — 2| pa(dz’) = —In|det(A — zI)| = — In|Pa(z)|
C n n

for every z € C\ {\(4),..., A\ (A)}. We have also the alternative expression

o0

U, (2) = % Indet(y/(A = 2T)(A = 21)7) = /0 () va_or (dE). (A.3)
The identity above bridges the eigenvalues with the singular values, and is at the heart of the
following lemma, which allows to deduce the convergence of 4 from the one of va_,;. The
strength of this Hermitization trick lies in the fact that in contrary to the eigenvalues, one can
control the singular values with the entries of the matrix. The price payed here is the introduction
of the auxiliary variable z and the uniform integrability. We recall that on a Borel measurable
space (E, &), we say that a Borel function f : F — R is uniformly integrable for a sequence of
probability measures (1,)n>1 on E when

lim lim | f|dn, = 0.

t—00 n—oo {If1>t}

We will use this property as follows: if 7, ~» n and f is continuous and uniformly integrable
for (nn)n>1 then f is n-integrable and lim, oo [fdn, = [fn. Similarly for a sequence random
probability measures (9, )n>1 we will say that f is uniformly integrable for (9, )n>1 in probability,

if for all e > 0
lim MP</ |f|d77n>s>:0.
t—oo n—oo {\f|>t}

A proof of lemma [A2 below can be found in [IT] which covers the “a.s.” case, the “in probability”
case being similar. It relies only on the unicity lemma [AT] the classical Prohorov theorem, and
the Weyl inequalities of Lemma linking eigenvalues and singular values.

Lemma A.2 (Girko’s Hermitization method). Let (Ay)n>1 be a sequence of complex random
matrices where A, is n X n for every n > 1. Suppose that for Lebesgue almost all z € C, there
exists a probability measure v, on [0,00) such that

(i) a.s. (va,-z21),>, tends weakly to v,
(i) a.s. (resp. in probability) In(-) is uniformly integrable for (va,—=r),>,
Then there exists a probability measure p € P(C) such that

(i) a.s. (resp. in probability) (pa,),s, converges weakly to pu
(i) for a.a. z € C,

Uu(z) = /Oooln(t) v, (dt).

APPENDIX B. GENERAL SPECTRAL ESTIMATES

Lemma B.1 (Basic inequalities [27]). If A and B are n X n complex matrices then

s1(AB) < 51(A)s1(B) and s1(A+ B) < s1(A) + s1(B) (B.1)
and
1Iélia<xn|si(A) —s5i(B)] < s1(A—-B). (B.2)

Lemma B.2 (Rudelson-Vershynin row bound [37, I1]). Let A be a complex n X n matriz with
rows Ri,...,R,. Define the vector space R_; := span{R;;j # i}. We have then

n~ Y2 min dist(R;, R_;) < s,(A) < min dist(R;, R_;).

1<ign 1<ign

Recall that the singular values s1(A), ..., sp/(A) of a rectangular n’ x n complex matrix A with
n' < n are defined by s;(A) := A\;(vVAA*) for every 1 < i< n'.
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Lemma B.3 (Tao-Vu negative second moment [41, Lemma A4)). If A is a full rank n’ xn complex
matriz (n' < n) with rows Ry,..., Ry, and R_; := span{R;;j # i}, then
Z Si(A)_Q = Z diSt(Ri, R_i)_2.

i=1 i=1

Lemma B.4 (Cauchy interlacing by rows deletion [27]). Let A be an n x n complex matriz. If B
is n’ X n, obtained from A by deleting n —n’ rows, then for every 1 < i< n/,

5i(A) = si(B) = Sitn—n'(A).

Lemma B.5 (Weyl inequalities [44]). For every n X n complex matriz A, we have

=

k n n
H|)\i(A)|< si(A)  and Hsi(A)<H|)\i(A)| (B.3)

i=1 i=k

-
Il

for all 1 < k < n. In particular, by viewing |det(A)| as a volume,

|det(A)] = [] IM(A)] = ] sk(4) = ] dist(Rx,span{Ry,..., Rx_1}) (B.4)
k=1 k=1 k=1
where Ry, ..., Ry, are the rows of A. Moreover, for every increasing function ¢ from (0,00) to

(0,00) such that t — ¢(et) is conver on (0,00) and ¢(0) := lim,_o+ ¢(t) = 0, we have
k

k
Yo e(r(A)) < Zw(Si(A)2) (B.5)

i=1

or every 1 < k < n. In particular, with o(t) =t"/2, r > 0, and k = n, we obtain
y p ’ 80 2’ ’ )

3
3

Do P < Y sw(A) (B.6)

Lemma B.6 (Schatten bound [46] proof of Theorem 3.32]). Let A be an n x n complex matriz
with rows Ra, ..., R,. Then for every 0 <r < 2,
> sk(A)T <> I Rells (B.7)

k=1 k=1

APPENDIX C. ADDITIONAL LEMMAS

We begin with a lemma on truncated moments. We skip the proof since it follows from an
adaptation of the proof in the real case given by e.g. Feller [I9, Theorem VIII.9.2].

Lemma C.1 (Truncated moments). If (H1) holds then for every p > «,
E[| X111 x <] ~ c(p) L)
where ¢(p) := a/(p — ). In particular, we have
ap,

E[| X0 " L(x,, <] ~ ep)

We end up this section by a result on the concentration of the spectral measure of Hermitian or
Hermitized random matrices, mentioned in [I2]. The total variation norm of f: R — R is

£ llpy :=sup > |f (@rga) = fn)],
kEZ

where the supremum runs over all sequences (zj)rez such that xzp41 > i for any k € Z. If
f =1(_w,g for some real s then |||l = 1, while if f has a derivative in L*(R), we get

|vmv:4mﬁnw
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Lemma C.2 (Concentration for spectral measures). Let H be an n x n random Hermitian matriz.
Let us assume that the vectors (H;)1<i<n, where H; = (H;j)1<j<i € C', are independent. Then
for any f:R = R with || ||y < 1 and every t > 0,

2
P( /fduH—E/fduH‘ >t) < 2exp (—%)

Similarly, if M is an n X n complex random matriz with independent rows (or with independent
columns) then for any f: R — R with || ||y < 1 and every t >0,

P(’/fduM—E/fdyM

Proof. We prove only the Hermitian version, the non-Hermitian version being entirely similar.
Let us start by showing that for every n x n deterministic Hermitian matrices A and B and any
measurable function f with || f|l;, = 1,

’/fd,uA_/fdﬂB

Indeed, it is well known (follows from interlacing, see e.g. [42] or [5, Theorem 11.42]) that
rank(A — B)

n

> t) < 2exp (—nt?).

< rank(;lfB)_ 1)

[1Fa = Fll, <

where F4 and Fp are the cumulative distribution functions of 4 and pp respectively. Now if f
is smooth, we get, by integrating by parts,

[ aua— [ raus) = ‘/Rf’@)FA(t) dt—/Rf%t)FB@)dt] <=2 [irar

and since the left hand side depends on at most 2n points, we get (CI) by approximating f by
smooth functions. Next, for any z = (z1,...,2,) € X := {(2;)1<i<n : i € C'71 x R}, let H(z) be
the n x n Hermitian matrix given by H(x); := x; ; for 1 < j <i <n. We have uy = ppm, .. H,)-
For all z € X and o} € C*~! x R, the matrix

H((El, sy Ti—1, Liy Tit1, - - - axn) - H(:Ela s axi—la‘r;’axi-‘rla s ;:En)
has only the i-th row and column possibly different from 0, and thus
rank(H (@1, ..o, Tic1, iy Tig 1y - oy Tn) — H(T1, oo i1, T T, ooy ) < 2
Therefore from [CI] we obtain, for every f: R — R with || f|lpy <1,
2
/f d/'[/H(Il,...,Ii71,:E,;,Ii+1,...,xn) - /f dl'l’H(zl,...,Iifl,mfi,:E,H,l,...,zn) < -

n

The desired result follows now from the Azuma—-Hoeffding bounded difference inequality, see e.g.
[32] Lemma 1.2] or [29] Lemma 4.1]. O
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