
SPECTRUM OF NON-HERMITIAN

HEAVY TAILED RANDOM MATRICES

CHARLES BORDENAVE, PIETRO CAPUTO, AND DJALIL CHAFAÏ

Abstract. Let (Xjk)j,k>1 be i.i.d. complex random variables such that
∣

∣Xjk

∣

∣ is in the domain
of attraction of an α-stable law, with 0 < α < 2. Our main result is a heavy tailed counterpart
of Girko’s circular law. Namely, under some additional smoothness assumptions on the law of
Xjk, we prove that there exist a deterministic sequence an ∼ n1/α and a probability measure
µα on C depending only on α such that with probability one, the empirical distribution of
the eigenvalues of the rescaled matrix (a−1

n Xjk)16j,k6n converges weakly to µα as n → ∞.
Our approach combines Aldous & Steele’s objective method with Girko’s Hermitization using
logarithmic potentials. The underlying limiting object is defined on a bipartized version of
Aldous’ Poisson Weighted Infinite Tree. Recursive relations on the tree provide some properties
of µα. In contrast with the Hermitian case, we find that µα is not heavy tailed.
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1. Introduction

The eigenvalues of an n×n complex matrixM are the roots in C of its characteristic polynomial.
We label them λ1(M), . . . , λn(M) so that |λ1(M)| > · · · > |λn(M)| > 0. We also denote by
s1(M) > · · · > sn(M) the singular values of M , defined for every 1 6 k 6 n by sk(M) :=
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λk(
√
MM∗) where M∗ = M

⊤
is the conjugate transpose of M . We define the empirical spectral

measure and the empirical singular values measure as

µM =
1

n

n∑

k=1

δλk(M) and νM =
1

n

n∑

k=1

δsk(M).

Let (Xij)i,j>1 be i.i.d. complex random variables with cumulative distribution function F . Consider
the matrix X = (Xij)16i,j6n. Following Dozier and Silverstein [20, 19], if F has finite positive
variance σ2, then for every z ∈ C, there exists a probability measure Qσ,z on [0,∞) depending
only on σ and z, with explicit Cauchy-Stieltjes transform, such that a.s. (almost surely)

ν 1√
n
X−zI  n→∞

Qσ,z (1.1)

where  denotes the weak convergence of probability measures. The proof of (1.1) is based on
a classical approach for Hermitian random matrices with bounded second moment: truncation,
centralization, recursion on the resolvent, and cubic equation for the limiting Cauchy-Stieltjes
transform. In the special case z = 0, the statement (1.1) reduces to the quarter-circular law
theorem (square version of the Marchenko-Pastur theorem, see [37, 52, 54]) and the probability
measure Qσ,0 is the quarter-circular law with Lebesgue density

x 7→ 1

πσ2

√
4σ2 − x21[0,2σ](x). (1.2)

Girko’s famous circular law theorem [25] states under the same assumptions that a.s.

µ 1√
n
X  

n→∞
Uσ (1.3)

where Uσ is the uniform law on the disc {z ∈ C; |z| 6 σ}. This statement was established through
a long sequence of partial results [39, 24, 26, 33, 21, 25, 4, 27, 5, 40, 28, 48, 50], the general case
(1.3) being finally obtained by Tao and Vu [50] by using Girko’s Hermitization with logarithmic
potentials and uniform integrability, the convergence (1.1), and polynomial bounds on the extremal
singular values.

1.1. Main results. The aim of this paper is to investigate what happens when F does not have
a finite second moment. We shall consider the following hypothesis:

(H1) there exists a slowly varying function L (i.e. limt→∞ L(x t)/L(t) = 1 for any x > 0) and a
real number α ∈ (0, 2) such that for every t > 1

P(|X11| > t) =
∫

{z∈C;|z|>t}
dF (z) = L(t)t−α,

and there exists a probability measure θ on the unit circle S1 := {z ∈ C; |z| = 1} of the
complex plane such that for every Borel set D ⊂ S1,

lim
t→∞

P

(
X11

|X11|
∈ D

∣∣∣ |X11| > t
)

= θ(D).

Assumption (H1) states a complex version of the classical criterion for the domain of attraction
of a real α-stable law, see e.g. Feller [23, Theorem IX.8.1a]. For instance, if X11 = V1 + iV2 with
i =

√
−1 and where V1 and V2 are independent real random variables both belonging to the domain

of attraction of an α-stable law then (H1) holds. When (H1) holds, we define the sequence

an := inf{a > 0 s.t. nP(|X11| > a) 6 1}
and (H1) implies that limn→∞ nP(|X11| > an) = limn→∞ na−α

n L(an) = 1. It follows then clas-
sically that an = n1/αℓ(n) for every n > 1, for some slowly varying function ℓ. The additional
possible assumptions on F to be considered in the sequel are the following:

(H2) P(|X11| > t) ∼t→∞ c t−α for some c > 0 (this implies an ∼n→∞ c1/αn1/α)
(H3) X11 has a bounded probability Lebesgue density on R or on C.

One can check that (H1-H2-H3) hold e.g. when |X11| and X11/|X11| are independent with |X11| =
|S| where S is real symmetric α-stable. Another basic example is given by X11 = εW−1/α with ε
and W independent such that ε takes values in S1 and W is uniform on [0, 1].

For every n > 1, let us define the i.i.d. n× n complex matrix A = An by

Aij := a−1
n Xij (1.4)
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for every 1 6 i, j 6 n. Our first result concerns the singular values of A− zI, z ∈ C.

Theorem 1.1 (Singular values). If (H1) holds then for all z ∈ C, there exists a probability measure
να,z on [0,∞) depending only on α and z such that a.s.

νA−zI  
n→∞

να,z.

The case z = 0 was already obtained by Belinschi, Dembo and Guionnet [6]. Theorem 1.1 is
a heavy tailed version of the Dozier and Silverstein theorem (1.1). Our main results below give
a non-Hermitian version of Wigner’s theorem for Lévy matrices [14, 7, 6, 11], as well as a heavy
tailed version of Girko’s circular law theorem (1.3).

Theorem 1.2 (Eigenvalues). If (H1-H2-H3) hold then there exists a probability measure µα on C

depending only on α such that a.s.
µA  

n→∞
µα.

Theorem 1.3 (Limiting law). The probability distribution µα from theorem 1.2 is isotropic and
has a continuous density. Its density at z = 0 equals

Γ(1 + 2/α)2Γ(1 + α/2)2/α

πΓ(1 − α/2)2/α
.

Furthermore, up to a multiplicative constant, the density of µα is equivalent to

|z|2(α−1)e−
α
2 |z|α as |z| → ∞.

Recall that for a normal matrix (i.e. which commutes with its adjoint), the absolute value of the
eigenvalues are equal to the singular values. Theorem 1.3 reveals a striking contrast between µα

and να,0. The limiting law of the eigenvalues µα has a stretched exponential tail while the limiting
law να,0 of the singular values is heavy tailed with power exponent α, see e.g. [6]. This does not
contradict the identity

∏n
k=1 |λk(A)| =

∏n
k=1 sk(A), but it does indicate that A is typically far

from being a normal matrix. A similar shrinking phenomenon appears already in the finite second
moment case (1.1)-(1.3): the law of the absolute value under the circular law Uσ has density

r 7→ 2σ−2r1[0,σ](r)

in contrast with the density (1.2) of the quarter-circular law Qσ,0, even the supports differ by a
factor 2.

The proof of theorem 1.1 is given in section 2.8. It relies on an extension to non-Hermitian
matrices of the “objective method” approach developed in [11]. More precisely, we build an explicit
operator on Aldous’ Poisson Weighted Infinite Tree (PWIT) and prove that it is the local limit
of the matrices An in an appropriate sense. While Poisson statistics arises naturally as in all
heavy tailed phenomena, the fact that a tree structure appears in the limit is roughly explained
by the observation that non vanishing entries of the rescaled matrix An = a−1

n X can be viewed
as the adjacency matrix of a sparse random graph which locally looks like a tree. In particular,
the convergence to PWIT is a weighted-graph version of familiar results on the local structure of
Erdős-Rényi random graphs.

The proof of theorem 1.2 is given in section 3. It relies on Girko’s Hermitization method with
logarithmic potentials, on theorem 1.1, and on polynomial bounds on the extremal singular values
needed to establish a uniform integrability property. This extends the Hermitization method to
more general settings, by successfully mixing various arguments already developed in [11, 12, 50].
Following Tao and Vu, one of the key steps will be a lower bound on the distance of a row of the
matrix A to a subspace of dimension at most n− n1−γ , for some small γ > 0.

Girko’s Hermitization method gives a characterization of µα in terms of its logarithmic potential
(see appendix A). In our settings, however, this is not convenient to derive properties of the measure
µα, and our proof of theorem 1.3 is based on an analysis of a self-adjoint operator on the PWIT
and a recursive characterization of the spectral measure from the resolvent of this operator. This
method is explained in section 2 while the actual computations on the PWIT are performed in
section 4.

Let us conclude with some final remarks. Following [16], the derivation of a Markovian version
of theorems 1.1 and 1.2 is an interesting problem, see [10, 11] for the symmetric case and [18, 12]
for the light tailed non-symmetric case. In another direction, it is also tempting to seek for an
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interpretation of να,z and µα in terms of a sort of graphical free probability theory. Indeed, our
random operators are defined on trees and tree structures are closely related to freeness. Also,
with a proper notion of trace, it is possible to define the spectral measure of an operator, see e.g.
[15, 31, 36]. However these notions are usually defined on algebras of bounded operators and we
will not pursue this goal here. Note finally that theorems 1.1 and 1.2 remain available for additive
perturbations of finite rank, by following the methodology used in [17, 50, 47].

1.2. Notation. Throughout the paper, the notation n ≫ 1 means large enough n. For any
c ∈ [0,∞] and any couple f, g of positive functions defined in a neighborhood of c , we say
that f(t) ∼ g(t) as t goes to c, if limt→c f(t)/g(t) = 1. We denote by D′(C) the set of Schwartz-
Sobolev distributions endowed with its usual convergence with respect to all infinitely differentiable
functions with bounded support C∞

0 (C). We will consider the differential operators on C ≃ R2,
for z = x+ iy (here i =

√
−1)

∂ =
1

2
(∂x − i∂y) and ∂̄ =

1

2
(∂x + i∂y).

We have ∂z̄ = ∂̄z = 0, ∂z = ∂̄z̄ = 1 and the Laplace differential operator on C is given by

∆ = 4∂∂̄ = ∂2x + ∂2y .

We use sometimes the shortened notation A− z instead of A− zI.

2. Bipartized resolvent matrix

The aim of this section is to develop an efficient machinery to analyze the spectral measures
of a non-hermitian matrix which avoids a direct use of the logarithmic potential and the singular
values. Our approach builds upon similar methods in the physics literature [22, 29, 44, 43].

2.1. Bipartization of a matrix. Let n be an integer, and A be a n × n complex matrix. We
introduce the symmetrized version of νA−z,

ν̌A−z =
1

2n

n∑

k=1

(
δσk(A−z) + δ−σk(A−z)

)
.

Let C+ = {z ∈ C : Im(z) > 0} and consider the quaternionic-type set

H+ =

{
U =

(
η z
z̄ η

)
, η ∈ C+, z ∈ C

}
⊂ M2(C).

For z ∈ C, η ∈ C+ and 1 6 i, j 6 n integers, we define the elements of H+ and M2(C) respectively,

U(z, η) =

(
η z
z̄ η

)
and Bij =

(
0 Aij

Āji 0

)
.

We define the matrix in Mn(M2(C)) ≃ M2n(C), B = (Bij)16i,j6n. Since B∗
ji = Bij , as an

element of M2n(C), B is an Hermitian matrix. Graphically, the matrix A can be identified with
an oriented graph on the vertex set {1, · · · , n} with weight on the oriented edge (i, j) equal to
Aij . Then, the matrix B can be thought of as the bipartization of the matrix A, that is a non-
oriented graph on the vertex set {1,−1, · · · ,−n, n}, for every integers 1 6 i, j 6 n the weight on
the non-oriented edge {i,−j} is Aij , and there is no edge between i and j or −i and −j.

For U ∈ H+, let U ⊗ In ∈ Mn(M2(C)) be the matrix given by (U ⊗ In)ij = δijU , 1 6 i, j 6 n.
The resolvent matrix is defined in Mn(M2(C)) by

R(U) = (B − U ⊗ In)
−1,

so that for all 1 6 i, j 6 n, R(U)ij ∈ M2(C). For 1 6 k 6 n, we write, with U = U(z, η),

R(U)kk =

(
ak(z, η) bk(z, η)
b′k(z, η) ck(z, η)

)
. (2.1)

The modulus of the entries of the matrix R(U)kk are bounded by (Im(η))−1 (see the forthcoming
lemma 2.2).

As an element of M2n(C), R is the usual resolvent of the matrix

B(z) = B − U(z, 0)⊗ In.
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Indeed, with U = U(z, η),

R(U) = (B(z)− ηI2n)
−1. (2.2)

In the next proposition, we shall check that the eigenvalues of B(z) are ±σk(A − z), 1 6 k 6 n,
and consequently

µB(z) = ν̌A−z. (2.3)

It will follow that the spectral measures µA and ν̌A−z can be easily recovered from the resolvent
matrix. Recall that the Cauchy-Stieltjes transform of a measure ν on R is defined, for η ∈ C+, as

mν(η) =

∫

R

1

x− η
ν(dx).

The Cauchy-Stieltjes transform characterizes the measure. For a probability measure on C, it is
possible to define a Cauchy-Stieltjes-like transform on quaternions, by setting for U ∈ H+,

Mµ(U) =

∫

C

((
0 λ
λ̄ 0

)
− U

)−1

µ(dλ) ∈ H+.

This transform characterizes the measure : in D′(C), limt↓0(∂Mµ(U(z, it))12 = −πµ. If A is
normal, i.e. if A∗A = AA∗, then it can be checked that R(U)kk ∈ H+ and

1

n

n∑

k=1

R(U)kk =MµA(U).

However, if A is not normal, the above formula fails to hold and the next proposition explains how
to recover anyway µA from the resolvent.

Theorem 2.1 (From resolvent to spectral measure). Let U = U(z, η) ∈ H+, and ak, bk, b
′
k, ck be

as in (2.1). Then (2.3) holds,

mν̌A−z (η) =
1

2n

n∑

k=1

(ak(z, η) + ck(z, η)) ,

and, in D′(C),

µA = − 1

πn

n∑

k=1

∂bk(·, 0) = lim
t↓0

− 1

πn

n∑

k=1

∂bk(·, it).

In particular, if A is a random matrix with exchangeable entries, then by linearity we get

mEν̌A−z (η) = Ea1(z, η),

and, in D′(C),

EµA = − 1

π
∂Eb1(·, 0) = lim

t↓0
− 1

π
∂Eb1(·, it).

Proof of theorem 2.1. Through a permutation of the entries, the matrix B(z) is similar to
(

0 (A− z)
(A− z)∗ 0

)
,

whose eigenvalues are easily seen to be ±σk(A− z), 1 6 k 6 n. We get

trR =

n∑

k=1

(ak + ck) =

n∑

k=1

(σk(A− z)− η)−1 +

n∑

k=1

(−σk(A− z)− η)−1.

And the first statement and (2.3) follow. Also, from (A.3), in Appendix, for z /∈ supp(µA),

UµA(z) =

∫
ln |x|µB(z)(dx) =

1

2n
ln | detB(z)|, (2.4)

where Uµ is the logarithmic potential of a measure µ on C, see (A.1). Recall that the differential
of X 7→ det(X) at point X (invertible) in the direction Y is tr(X−1Y ) det(X) (this is sometimes
referred as the Jacobi formula). The sign of detB(z) is (−1)n. We deduce that in D′(C),

∂̄ ln | detB(z)| = ∂̄ detB(z)

detB(z)
= tr

{
B(z)−1∂̄

(
0 −z
−z̄ 0

)
⊗ In

}
.
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With Rkk = R(U(z, 0))kk = (B(z)−1)kk, we get from ∂̄z = 0, ∂̄z̄ = 1,

∂̄ ln | detB(z)| =
n∑

k=1

tr

{
Rkk

(
0 0
−1 0

)}
= −

n∑

k=1

bk(z, 0).

Now from Equation (A.2), in D′(C), using ∆ = 4∂∂̄,

2πµA = ∆UµA = ∆
1

2n
ln | detB(z)| = − 2

n

n∑

k=1

∂bk.

To get the limit as t ↓ 0, we note that for real t > 0,
∫

ln |x− it|µB(z)(dx) =
1

2n
ln | det(B(z)− it)|.

Note that det(B(z) − it) is real and its sign is (−1)n. As t ↓ 0, the left hand side of the above
identity converges in D′(C), to UµA . Taking the Laplacian, and arguing as above, we get

∆

∫
ln |x− it|µB(z)(dx) = − 2

n

n∑

k=1

∂bk(z, it). (2.5)

The conclusion follows. �

Note that even if −∑k ∂bk is a measure on C, for each 1 6 k 6 n, −∂bk is not in general a
measure on C (default of positivity, this can be checked on 2× 2 matrices).

2.2. Bipartization of an operator. We shall generalize the above finite dimensional construc-
tion. Let V be a countable set and let ℓ2(V ) denote the Hilbert space defined by the scalar
product

〈φ, ψ〉 :=
∑

u∈V

φ̄uψu , φu = 〈δu, φ〉,

where δu is the unit vector supported on u ∈ V . Let D(V ) denote the dense subset of ℓ2(V ) of
vectors with finite support. Let (wuv)u,v∈V be a collection of complex numbers such that for all
u ∈ V , ∑

v∈V

|wuv|2 + |wvu|2 <∞

We may then define a linear operator A on D(V ), by the formula,

〈δu, Aδv〉 = wuv. (2.6)

Let V̂ be a set in bijection with V , the image of v ∈ V being denoted by v̂ ∈ V̂ . We set
V b = V ∪ V̂ and define the symmetric operator B on D(V b), by the formulas,

〈δu, Bδv̂〉 = 〈δv̂, Bδu〉 = wuv

〈δu, Bδv〉 = 〈δû, Bδv̂〉 = 0. (2.7)

In other words, if Πu : ℓ2(V b) → C2 denotes the orthogonal projection on (u, û),

ΠuBΠ∗
v =

(
0 wuv

w̄vu 0

)
.

For z ∈ C, we also define on D(V b), the symmetric operator B(z): for all u, v in V ,

〈δu, B(z)δv̂〉 = 〈δv̂, B(z)δu〉 = wuv − z1(u = v)

〈δu, B(z)δv〉 = 〈δû, B(z)δv̂〉 = 0.

Hence, if we identify V b with {1, 2} × V , we have

B(z) = B − U(z, 0)⊗ IV . (2.8)

The operator B(z) is symmetric and it has a closure on a domain D(B) ⊂ ℓ2(V b). We also denote
by B(z) the closure of B(z). If B is self-adjoint then B(z) is also self-adjoint (recall that the
sum of a bounded self-adjoint operator and a self-adjoint operator is also a self-adjoint operator).
Recall also that the spectrum of a self–adjoint operator is real. For all U = U(z, η) ∈ H+,
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B(z) − ηIV b = B − U(z, η) ⊗ IV is invertible with bounded inverse and the resolvent operator is
then well defined by

R(U) = (B(z)− ηIV b)−1.

We may then define

R(U)vv = ΠvR(U)Π∗
v =

(
av(z, η) bv(z, η)
b′v(z, η) cv(z, η)

)
.

In the sequel, we shall use some properties of resolvent operators.

Lemma 2.2 (Properties of resolvent). Let B be the above bipartized operator. Assume that B is
self-adjoint and let U = U(z, η) ∈ H+, v ∈ V . Then, av, cv ∈ C+, for each z ∈ C, the functions
av(z, ·), bv(z, ·), b′v(z, ·), cv(z, ·) are analytic on C+, and

|av| 6 (Im(η))−1, |cv| 6 (Im(η))−1, |bv| 6 (2Im(η))−1 and |b′v| 6 (2Im(η))−1.

Moreover, if η ∈ iR+, then av and cv are pure imaginary and b′v = b̄v.

Proof. For a proof of the first statements refer e.g. to Reed and Simon [42]. For the last statement
concerning η ∈ iR+, we define the skeleton of B(z) as the graph on V b obtained by putting an
edge between two vertices u, v in V b, if 〈δu, B(z)δv〉 6= 0. Then since there is no edge between two

vertices of V or V̂ , the skeleton of B(z) is a bipartite graph.
Assume first that B(z) is bounded: for all u ∈ V b, ‖B(z)δu‖ 6 C. Then for |η| > C, the series

expansion of the resolvent gives

R(U) = −
∞∑

n=0

B(z)n

ηn+1
.

However since the skeleton is a bipartite graph, all cycles have an even length. It implies that for
n odd, 〈δu, B(z)nδu〉 = 0. Applied first to v ∈ V , we deduce that for |η| > C, a(z,−η̄) = −ā(z, η)
and then applied to v̂, we get c(z,−η̄) = −c̄(z, η). We may then extend to C+ this last identity
by analyticity. For η = it ∈ iR+, we deduce that av and cv are pure imaginary. Similarly, since

the skeleton is a bipartite graph, a path from a vertex v ∈ V to a vertex û ∈ V̂ must of be of odd
length. We get for |η| > C

b̄′v(z,−η̄) = 〈δv̂, R(U(z,−η̄))δv〉 = −
∞∑

n=0

〈δv̂, B(z)2n+1δv〉
η2n+2

= 〈δv, R(U)δv̂〉 = bv(z, η),

where we have used the symmetry of B(z). It follows that b′v(z,−η̄) = b̄v(z, η). If B(z) is not
bounded, then B(z) is limit of a sequence of bounded operators and we conclude by invoking
Theorem VIII.25(a) in [42]. �

2.3. Operator on a tree. We keep the setting of the above paragraph and consider a (non-
oriented) tree T = (V,E) on the vertices V with edge set E (recall that a tree is a connected graph
without cycles). For ease of notation, we note u ∼ v if {u, v} ∈ E. We assume that if {u, v} /∈ E
then wuv = wvu = 0. In particular wvv = 0 for all v ∈ V . We continue to consider the operator A
defined by (2.6).

In the special case when wuv = wvu for all u, v in V , the operator A is symmetric and we first
look for sufficient conditions for A to be essentially self-adjoint.

Lemma 2.3 (Criterion of self-adjointness). Let κ > 0 and T = (V,E) be a tree. Assume that for
all u, v ∈ V , wuv = wvu and that if {u, v} /∈ E then wuv = wvu = 0. Assume also that there exists
a sequence of connected finite subsets (Sn)n>1 in V , such that Sn ⊂ Sn+1, ∪nSn = V , and for
every n and v ∈ Sn, ∑

u/∈Sn:u∼v

|wuv|2 6 κ.

Then A is essentially self-adjoint.

For a proof, see [11, Lemma A.3]. The above lemma has an interesting corollary for the bipartized
operator B of A defined by (2.7)-(2.8).
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Corollary 2.4 (Criterion of self-adjointness of bipartized operator). Let κ > 0 and T = (V,E) be
a tree. Assume that if {u, v} /∈ E then wuv = wvu = 0. Assume also that there exists a sequence
of connected finite subsets (Sn)n>1 in V , such that Sn ⊂ Sn+1, ∪nSn = V , and for every n and
v ∈ Sn, ∑

u/∈Sn:u∼v

(
|wuv|2 + |wvu|2

)
6 κ.

Then for all z ∈ C, B(z) is self-adjoint.

Proof. From (2.8), it is sufficient to check that B is self-adjoint. Let ∅ ∈ V be a distinguished

vertex, we define two disjoint trees G∅ = (V∅, E∅) and Ĝ∅ = (V̂∅, Ê∅) on a partition (V∅, V̂∅)

of V b as follows. The trees G∅ and Ĝ∅ are the unique trees such that ∅ ∈ V∅, ∅̂ ∈ V̂∅ and that
satisfy the following properties

(i) if {u, v} ∈ E and u in V∅ (or V̂∅) then v̂ ∈ V∅ (or V̂∅) and {u, v̂} ∈ E∅ (or Ê∅),

(ii) if {u, v} ∈ E and û in V∅ (or V̂∅) then v ∈ V∅ (or V̂∅) and {û, v} ∈ E∅ (or Ê∅).

We note that by construction if u ∈ V∅ and v ∈ V̂∅ then 〈δu, Bδv〉 = 0. If follows that the

operator B decomposes orthogonally into two operators B∅ and B̂∅ on domains in ℓ2(V∅) and

ℓ2(V̂∅) respectively: B = B∅ ⊕ B̂∅. We may then safely apply lemma 2.3 to B∅ and B̂∅. �

When the operator B is self-adjoint, the resolvent operator has a nice recursive expression due
to the tree structure. Let ∅ ∈ V be a distinguished vertex of V (in graph language, we root the
tree T at ∅). For each v ∈ V \{∅}, we define Vv ⊂ V as the set of vertices whose unique path to
the root ∅ contains v. We define Tv = (Vv, Ev) as the subtree of T spanned by Vv. We finally
consider Av, the projection of A on Vv, and Bv the bipartized operator of Av. The skeleton of Av

is contained in Tv. Finally, we note that if B is self-adjoint then so is Bv(z) for every z ∈ C. The
next lemma can be interpreted as a Schur complement formula on trees.

Lemma 2.5 (Resolvent on a tree). Assume that B is self-adjoint and let U = U(z, η) ∈ H+. Then

R(U)∅∅ = −
(
U +

∑

v∼∅

(
0 w∅v

wv∅ 0

)
R̃(U)vv

(
0 wv∅

w∅v 0

))−1

,

where R̃(U)vv = ΠvRBv (U)Π∗
v and RBv (U) = (Bv(z)− η)−1 is the resolvent operator of Bv.

Proof. Define the operator C on D(V b) by its matrix elements

C∅ := Π∅CΠ
∗
∅ = −U(z, 0) , Cv := Π∅CΠ

∗
v = ΠvCΠ

∗
∅ =

(
0 w∅v

wv∅ 0

)

for all v ∈ V such that v ∼ ∅, and ΠuCΠ
∗
v = 0 otherwise. The operator C is symmetric and

bounded. Its extension to ℓ2(V b) is thus self-adjoint (also denoted by C). In this way, we have
from V = {∅}

⋃
v∼∅

Vv,

B(z) = C + B̃ with B̃ =
⊕

v∼∅

Bv(z).

We shall write R̃(U) = (B̃ − ηI)−1 for the associated resolvent of B̃. From the resolvent identity,
these operators satisfy

R̃(U)CR(U) = R̃(U)−R(U) . (2.9)

Set R̃uv = ΠuR̃(U)Π∗
v and Ruv = ΠuR(U)Π∗

v. Observe that R̃∅∅ = −η−1I2. Also the direct sum

decomposition V = {∅}⋃v∼∅
Vv implies R̃vv = ΠvRBv (U)Π∗

v and R̃uv = 0 for every u 6= v with

u ∼ ∅, v ∼ ∅. Similarly we have that R̃∅v = 0 = R̃v∅ for every v ∈ V \{∅}. Using the identity∑
u∈V Π∗

uΠu = I, we get

Π∅R̃(U)CR(U)Π∗
∅ = R̃∅∅C∅R∅∅ +

∑

v∼∅

R̃∅∅CvRv∅

= η−1U(z, 0)R∅∅ − η−1
∑

v∼∅

CvRv∅.

We compose the identity (2.9) on the left by Πv and on the right by Π∗
∅, we obtain, for v ∼ ∅,

R̃vvC
∗
vR∅∅ = −Rv∅ .
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We finally compose (2.9) on the left by Π∅ and on the right by Π∗
∅,

η−1U(z, 0)R∅∅ + η−1
∑

v∼∅

CvR̃vvC
∗
vR∅∅ = −η−1I2 −R∅∅,

or equivalently (U(z, η) +
∑

v∼∅
CvR̃vvC

∗
v )R∅∅ = −I2. �

2.4. Local operator convergence. In the next paragraphs, we are going to prove that the
sequence of random matrices (An) converges to a limit random operator on an infinite tree. Let
us recall a notion of convergence that we have already used in [11].

Definition 2.6 (Local convergence). Suppose (An) is a sequence of bounded operators on ℓ2(V )
and A is a linear operator on ℓ2(V ) with domain D(A) ⊃ D(V ). For any u, v ∈ V we say that
(An, u) converges locally to (A, v), and write

(An, u) → (A, v) ,

if there exists a sequence of bijections σn : V → V such that σn(v) = u and, for all φ ∈ D(V ),

σ−1
n Anσnφ→ Aφ ,

in ℓ2(V ), as n→ ∞.

Assume in addition that A is closed and D(V ) is a core for A (i.e. the closure of A restricted to
D(V ) equals A). Then, the local convergence is the standard strong convergence of operators up
to a re-indexing of V which preserves a distinguished element. With a slight abuse of notation we
have used the same symbol σn for the linear isometry σn : ℓ2(V ) → ℓ2(V ) induced in the obvious
way. As pointed out in [11], the point for using Definition 2.6 lies in the following theorem on
strong resolvent convergence.

Theorem 2.7 (From local convergence to resolvents). Assume that (An) and A satisfy the condi-
tions of Definition 2.6 and (An, u) → (A, v) for some u, v ∈ V . Let Bn be the self-adjoint bipartized
operator of An. If the bipartized operator B of A is self-adjoint and D(V b) is a core for B, then,
for all U ∈ H+,

RBn(U)uu → RB(U)vv. (2.10)

where RB(U)vv = ΠvRB(U)Π∗
v and RB(U) = (B(z)− η)−1 is the resolvent of B(z).

Proof of theorem 2.7. It is a special case of Reed and Simon [42, Theorem VIII.25(a)]. Indeed,
we first fix z ∈ C and extend the bijection σn to V b by the formula, for all w ∈ V , σn(ŵ) =

σ̂n(w). Then we define B̃n(z) = σ−1
n Bn(z)σn, so that B̃n(z)φ → B(z)φ for all φ in a common

core of the self–adjoint operators B̃n(z), B(z). This implies the strong resolvent convergence, i.e.

(B̃n(z)−ηI)−1ψ → (B(z)−ηI)−1ψ for any η ∈ C+, ψ ∈ ℓ2(V ). We conclude by using the identities

: Πv(B̃n(z)− ηI)−1δv = Πu(Bn(z)− ηI)−1δu and Πv(B̃n(z)− ηI)−1δv̂ = Πu(Bn(z)− ηI)−1δû. �

We shall apply the above theorem in cases where the operators An and A are random operators
on ℓ2(V ), which satisfy with probability one the conditions of theorem 2.7. In this case we say that
(An, u) → (A, v) in distribution if there exists a random bijection σn as in Definition 2.6 such that
σ−1
n Anσnφ converges in distribution to Aφ, for all φ ∈ D(V ) (where a random vector ψn ∈ ℓ2(V )

converges in distribution to ψ if limn→∞ Ef(ψn) = Ef(ψ) for all bounded continuous functions
f : ℓ2(V ) → R). Under these assumptions then (2.10) becomes convergence in distribution of
(bounded) complex random variables. Note that in order to prove theorems 1.1, 1.2, we will also
need almost-sure convergence statements.

2.5. Poisson Weighted Infinite Tree (PWIT). We now define an operator on an infinite rooted
tree with random edge–weights, the Poisson weighted infinite tree (PWIT) introduced by Aldous
[1], see also [3].

Let ρ be a positive Radon measure on R such that ρ(R) = ∞. PWIT(ρ) is the random weighted
rooted tree defined as follows. The vertex set of the tree is identified with N

f := ∪k∈NN
k by

indexing the root as N0 = ∅, the offsprings of the root as N and, more generally, the offsprings
of some v ∈ Nk as (v1), (v2), · · · ∈ Nk+1 (for short notation, we write (v1) in place of (v, 1)). In
this way the set of v ∈ Nn identifies the nth generation. We then define T as the tree on Nf with
(non-oriented) edges between the offsprings and their parents.
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We denote by Be(1/2) the Bernoulli probability distribution 1
2δ0+

1
2δ1. Now assign marks to the

edges of the tree T according to a collection {Ξv}v∈Nf of independent realizations of the Poisson
point process with intensity measure ρ⊗Be(1/2) on R×{0, 1}. Namely, starting from the root ∅,
let Ξ∅ = {(y1, ε1), (y2, ε2), . . . } be ordered in such a way that |y1| 6 |y2| 6 · · · , and assign the mark
(yi, εi) to the offspring of the root labeled i. Now, recursively, at each vertex v of generation k,
assign the mark (yvi, εvi) to the offspring labeled vi, where Ξv = {(yv1, εv1), (yv2, εv2), . . . } satisfy
|yv1| 6 |yv2| 6 · · · . The Bernoulli mark εvi should be understood as an orientation of the edge
{v, vi} : if εvi = 1, the edge is oriented from vi to v and from v to vi otherwise.

For a probability measure θ on S1, we introduce the measure on C, for all Borel D:

ℓθ(D) =

∫ ∞

0

∫

S1

1{ω−αr∈D}θ(dω)dr (2.11)

Consider a realization of PWIT(2ℓθ). We now define a random operator A on D(Nf ) by the
formula, for all v ∈ Nf and k ∈ N,

〈δv, Aδvk〉 = εvky
−1/α
vk and 〈δvk, Aδv〉 = (1− εvk)y

−1/α
vk (2.12)

and 〈δv, Aδu〉 = 0 otherwise. It is an operator as in §2.3. Indeed, if u = vk is an offspring of v, we
set

wvu = εvky
−1/α
vk and wuv = (1− εvk)y

−1/α
vk , (2.13)

otherwise, we set wuv = 0. We may thus consider the bipartized operator B of A.

Proposition 2.8 (Self-adjointness of bipartized operator on PWIT). Let A be the random operator
defined by (2.12). With probability one, for all z ∈ C, B(z) is self-adjoint.

We shall use Corollary 2.4. We start with a technical lemma proved in [11, Lemma A.4].

Lemma 2.9. Let κ > 0, 0 < α < 2 and let 0 < x1 < x2 < · · · be a Poisson process of intensity 1

on R+. Define τ = inf{t ∈ N :
∑∞

k=t+1 x
−2/α
k 6 κ}. Then Eτ is finite and goes to 0 as κ goes to

infinity.

Proof of proposition 2.8. For κ > 0 and v ∈ Nf , we define

τv = inf{t > 0 :

∞∑

k=t+1

|yvk|−2/α 6 κ}.

The variables (τv) are i.i.d. and by lemma 2.9, there exists κ > 0 such that Eτv < 1. We fix such
κ. Now, we put a green color to all vertices v such that τv > 1 and a red color otherwise. We
consider an exploration procedure starting from the root which stops at red vertices and goes on
at green vertices. More formally, define the sub-forest T g of T where we put an edge between v
and vk if v is a green vertex and 1 6 k 6 τv. Then, if the root ∅ is red, we set S1 = Cg(T ) = {∅}.
Otherwise, the root is green, and we consider T g

∅ = (V g
∅, E

g
∅) the subtree of T g that contains the

root. It is a Galton-Watson tree with offspring distribution τ∅. Thanks to our choice of κ, T g
∅ is

almost surely finite. Consider Lg
∅ the leaves of this tree (i.e. the set of vertices v in V g

∅ such that
for all 1 6 k 6 τv, vk is red). We set S1 = V g

∅

⋃
v∈Lg

∅

{1 6 k 6 τv : vk}. Clearly, the set S1 satisfies

the condition of Lemma 2.3.
Now, we define the outer boundary of {∅} as ∂τ{∅} = {1, · · · , τ∅} and for v = (i1, · · · ik) ∈

N
f\{∅} we set ∂τ{v} = {(i1, · · · , ik−1, ik + 1)} ∪ {(i1, · · · , ik, 1), · · · , (i1, · · · , ik, τv)}. For a con-

nected set S, its outer boundary is

∂τS =

(
⋃

v∈S

∂τ{v}
)
\S.

Now, for each vertex u1, · · · , uk ∈ ∂τS1, we repeat the above procedure to the rooted subtrees
Tu1 , · · · , Tuk

. We set S2 = S1

⋃
∪16i6kC

b(Tui). Iteratively, we may thus almost surely define an
increasing connected sequence (Sn) of vertices with the properties required for Corollary 2.4. �
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2.6. Local convergence to PWIT. We may now come back to the random matrix An defined
by (1.4). We extend it as an operator on D(Nf ) by setting for 1 6 i, j 6 n, 〈δi, Aδj〉 = Ai,j and
otherwise, if either i or j is in Nf\{1, · · ·n}, 〈δi, Aδj〉 = 0.

The aim of this paragraph is to prove the following theorem.

Theorem 2.10 (Local convergence to PWIT). Assume (H1). Let An be as above and A be the
operator associated to PWIT(2ℓθ) defined by (2.12). Then in distribution (An, 1) → (A,∅).

Up to small differences, this theorem has already been proved in [11, Section 2]. We review here
the method of proof and stress the differences. The method relies on the local weak convergence,
a notion introduced by Benjamini and Schramm [8], Aldous and Steele [3], see also Aldous and
Lyons [2].

We define a network as a graph with weights on its edges taking values in some metric space.
Let Gn be the complete network on {1, . . . , n} whose weight on edge {i, j} equals (ξni,j), for some
collection (ξni,j)16i6j6n of i.i.d. complex random variables. We set ξnj,i = ξni,j . We consider the
rooted network (Gn, 1) obtained by distinguishing the vertex labeled 1.

We follow Aldous [1, Section 3]. For every fixed realization of the marks (ξnij), and for any

B,H ∈ N, such that (BH+1 − 1)/(B − 1) 6 n, we define a finite rooted subnetwork (Gn, 1)
B,H of

(Gn, 1), whose vertex set coincides with a B–ary tree of depth H with root at 1. To this end we
partially index the vertices of (Gn, 1) as elements in

JB,H = ∪H
ℓ=0{1, · · · , B}ℓ ⊂ N

f ,

the indexing being given by an injective map σn from JB,H to Vn := {1, . . . , n}. We set I∅ = {1}
and the index of the root 1 is σ−1

n (1) = ∅. The vertex v ∈ Vn\I∅ is given the index (k) = σ−1
n (v),

1 6 k 6 B, if ξn1,v has the kth smallest absolute value among {ξn1,j , j 6= 1}, the marks of edges
emanating from the root 1. We break ties by using the lexicographic order. This defines the first
generation. Now let I1 be the union of I∅ and the B vertices that have been selected. If H > 2, we
repeat the indexing procedure for the vertex indexed by (1) (the first child) on the set Vn\I1. We
obtain a new set {11, · · · , 1B} of vertices sorted by their weights as before (for short notation, we
concatenate the vector (1, 1) into 11). Then we define I2 as the union of I1 and this new collection.
We repeat the procedure for (2) on Vn\I2 and obtain a new set {21, · · · , 2B}, and so on. When
we have constructed {B1, · · · , BB}, we have finished the second generation (depth 2) and we have
indexed (B3 − 1)/(B− 1) vertices. The indexing procedure is then repeated until depth H so that
(BH+1 − 1)/(B− 1) vertices are sorted. Call this set of vertices V B,H

n = σnJB,H . The subnetwork
of Gn generated by V B,H

n is denoted (Gn, 1)
B,H (it can be identified with the original network Gn

where any edge e touching the complement of V B,H
n is given a mark xe = ∞). In (Gn, 1)

B,H , the
set {u1, · · · , uB} is called the set of offsprings of the vertex u. Note that while the vertex set has
been given a tree structure, (Gn, 1)

B,H is still a complete network on V B,H
n . The next proposition

shows that it nevertheless converges to a tree (i.e. extra marks diverge to ∞) if the ξni,j satisfy a
suitable scaling assumption.

Let ρ be a Radon measure on C and let T be a realization of PWIT(ρ) defined in §2.5. For
the moment, we remove the Bernoulli marks (εv)v∈Nf and, for v ∈ Nf and k ∈ N, we define the
weight on edge {v, vk} to simply be yvk. Then (T,∅) is a rooted network. We call (T,∅)B,H the
finite random network obtained by the same sorting procedure. Namely, (T,∅)B,H consists of the
subtree with vertices in JB,H , with the marks inherited from the infinite tree. If an edge is not
present in (T,∅)B,H , we assign to it the mark +∞.

We say that the sequence of random finite networks (Gn, 1)
B,H converges in distribution (as

n → ∞) to the random finite network (T,∅)B,H if the joint distributions of the marks converge
weakly. To make this precise we have to add the points {±∞} as possible values for each mark,
and continuous functions on the space of marks have to be understood as functions such that the
limit as any one of the marks diverges to +∞ exists and coincides with the limit as the same mark
diverges to −∞. We may define C = C ∪ {±∞}. The next proposition generalizes [1, Section 3],
for a proof see [11, Proposition 2.6] (the proof there is stated for a measure ρ on R, the complex
case extends verbatim).

Proposition 2.11 (Local weak convergence to a tree). Let (ξni,j)16i6j6n be a collection of i.i.d.

random variables in C and set ξnj,i = ξni,j. Let ρ be a Radon measure on C with no mass at 0 and
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assume that

nP(ξn12 ∈ ·)  
n→∞

ρ. (2.14)

Let Gn be the complete network on {1, . . . , n} whose mark on edge {i, j} equals ξnij , and T a

realization of PWIT(ρ). Then, for all integers B,H,

(Gn, 1)
B,H  

n→∞
(T,∅)B,H .

Now, we shall extend the above statement to directed networks. More precisely, let (ξni,j)16i,j6n

be i.i.d. real random variables. We consider the complete graph Ḡn on Vn whose weight on edge
{i, j} equals, if i 6 j, (ξni,j , ξ

n
j,i) ∈ R2. As above, we partially index the vertices of (Ḡn, 1) as

elements in

JB,H = ∪H
ℓ=0{1, · · · , B}ℓ ⊂ N

f ,

the indexing being given by an injective map σn from JB,H to Vn such that σ−1
n (1) = ∅. The

difference with the above construction, is that the vertex v ∈ Vn\{1} is given the index (k) =
σ−1
n (v), 1 6 k 6 B, if min(|ξn1,v|, |ξnv,1|) has the kth smallest value among {min(|ξn1,j |, |ξnj,1|), j 6= 1}.
Similarly, let (T,∅) be the infinite random rooted network with distribution PWIT(ρ). This

time we do not remove the Bernoulli marks (εv)v∈Nf and define the weight on edge {v, vk} as
(yvk,∞) if εvk = 1 and (∞, yvk) if εvk = 0. Again, we call (T,∅)B,H the finite random network
obtained by the sorting procedure : (T,∅)B,H consists of the subtree with vertices in JB,H , with
the marks inherited from the infinite tree.

We apply proposition 2.11 to the complete network Gn with mark on edge {i, j} equals, if i 6 j,
to min(|ξni,j |, |ξnj,i|). This network satisfies (2.14) with 2ρ. We remark that if u, v ∈ JB,H then
from (2.14), max(|ξnσn(u),σn(v)

|, |ξnσn(v),σn(u)
|) diverges weakly to infinity. We also notice that, given

(Gn, 1)
B,H , with equal probability |ξnσn(u),σn(v)

| is larger or less than |ξnσn(v),σn(u)
|. We deduce the

following.

Corollary 2.12 (Local weak convergence to a tree). Let ρ be a Radon measure on C with no mass
at 0. Let (ξni,j)16i,j6n be a collection of i.i.d. random variables in C such that (2.14) holds. Let Ḡn

be the complete network on {1, . . . , n} whose mark on edge {i, j} equals, if i 6 j, (ξni,j , ξ
n
j,i), and T

a realization of PWIT(2ρ). Then, for all integers B,H,

(Ḡn, 1)
B,H  

n→∞
(T,∅)B,H .

We may now prove theorem 2.10.

Proof of theorem 2.10. We argue as in the proof of theorem 2.3(i) in [11, Section 2]. We first define
the weights (ξni,j)i,j∈Nf as follows. For integers 1 6 i, j 6 n, we set

ξni,j = A−α
i,j = aαnX

−α
i,j ,

with the convention that ξni,j = ∞ if Xi,j = 0. For this choice, by assumption (H1), (2.14) holds

with ρ = ℓθ and ℓθ in (2.11). If i or j is in Nf\{1, · · · , n}, we set ξni,j = ∞.

Let Ḡn denote the complete network on {1, · · · , n} with marks (ξni,j , ξ
n
j,i) on edge {i, j}, if

i 6 j. From Corollary 2.12, for all B,H , (Ḡn, 1)
B,H converges weakly to (T,∅)B,H , where T has

distribution PWIT(2ℓθ). Let A be the random operator associated to T .
Let σB,H

n be the map σn associated to the network (Ḡn, 1)
B,H . The maps σn are arbitrarily

extended to a bijection N
f → N

f . From the Skorokhod Representation Theorem we may assume
that (Ḡn, 1)

B,H converges a.s. to (T,∅)B,H for all B,H . Thus we may find sequences Bn, Hn

tending to infinity and a sequence of bijections σ̃n := σBn,Hn
n such that (BHn+1

n − 1)/(Bn − 1) 6 n
and such that for any pair u, v ∈ Nf we have ξnσ̃n(u),σ̃n(v)

which converge a.s. to





yuk if for some integer k, v = uk and εuk = 1
yvk if for some integer k, u = vk and εvk = 0
∞ otherwise

It follows that a.s.

〈δu, σ̃−1
n Anσ̃nδv〉 = ξnσ̃n(u),σ̃n(v)

−1/α → 〈δu, Aδv〉 .
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For any v, set ψv
n := σ̃−1

n Anσ̃nδv. To prove theorem 2.10, it is sufficient to show that for any
v ∈ Nf , ψv

n → Aδv in ℓ2(Nf ) almost surely as n goes to infinity, i.e.,
∑

u

(〈δu, ψv
n〉 − 〈δu, Aδv〉)2 → 0 .

From what precedes, we know that 〈δu, ψv
n〉 → 〈δu, Aδv〉 for every u. The claim follows if we have

(almost surely) uniform (in n) square-integrability of (〈δu, ψv
n〉)u. This in turn follows from Lemma

2.4(i) and Lemma 2.7 in [11]. �

2.7. Convergence of the resolvent matrix. Let An and A be as in theorem 2.10. From
proposition 2.8, we may almost surely define the resolvent R of the bipartized random operator of
A. For U = U(z, η) ∈ H+, we set

R(U)∅∅ = Π∅R(U)Π∗
∅ =

(
a(z, η) b(z, η)
b′(z, η) c(z, η)

)
. (2.15)

We define similarly, Rn(U) = (Bn(z) − η)−1, the resolvent of Bn, the bipartized operator of An.
We set Rn(U)11 = Π1Rn(U)Π∗

1.

Theorem 2.13 (Convergence of the Resolvent matrix). Let An and A be as in theorem 2.10. For
all U = U(z, η) ∈ H+,

Rn(U)11  
n→∞

R(U)∅∅.

Proof of theorem 2.13. We apply proposition 2.8, theorem 2.10 and the“in distribution” version of
theorem 2.7. �

2.8. Proof of theorem 1.1. Again, we consider the sequence of random n × n matrices (An)
defined in introduction by (1.4).

Theorem 2.14. For all z ∈ C+, almost surely the measure ν̌An−z(dx) converges weakly to a
measure ν̌α,z(dx) whose Cauchy-Stieltjes transform is given, for η ∈ C+, by

mν̌α,z(η) = Ea(z, η),

where a(z, η) was defined in (2.15).

Proof. For every z ∈ C, by proposition 2.8, the operator B(z) is a.s. self-adjoint. It implies that
there exists a.s. a measure on R, ν∅,z, called the spectral measure with vector δ∅, such that for
all η ∈ C+,

a(z, η) = 〈δ∅, R(U)δ∅〉 =
∫
ν∅,z(dx)

x− η
= mν∅,z (η).

We define Rn as the resolvent matrix of Bn, the bipartized matrix of An. For U = U(z, η) ∈ H+,

we write Rn(U)kk =

(
ak bk
b′k ck

)
. By theorem 2.1,

mEν̌An−z (η) = Ea1(z, η).

By lemma 2.2, for U ∈ H+, the entries of the matrix Rn(U)11 are bounded. It follows from theorem
2.13 that for all U ∈ H+,

lim
n→∞

ERn(U)11 = E

(
a b
b′ c

)
,

where the limit matrix was defined in (2.15). Hence, for all z ∈ C+,

lim
n→∞

mEν̌An−z(η) = Ea(z, η).

We deduce that Eν̌An−z converges to the measure να,z = Eν∅,z . This convergence can be improved
to almost sure by showing that the random measure ν̌An−z concentrates around its mean. This
is done by applying Borel-Cantelli Lemma and lemma C.2 to the matrix Bn(z) whose spectral
measure equals ν̌An−z, see (2.3). �

Theorem 1.1 is a corollary of the above theorem up to the fact that Ea(z, η) does not depend on
the measure θ which appears in (H1). The latter will be a consequence of the forthcoming theorem
4.1.
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3. Convergence of the spectral measure

3.1. Tightness. In this paragraph, we prove that the counting probability measures of the eigen-
values and singular values of the random matrices (An) defined by (1.4) are a.s. tight. For ease of
notation, we will often write A in place of An.

Lemma 3.1 (Tightness). If (H1) holds, there exists r > 0 such that for all z ∈ C, a.s.

lim
n→∞

∫ ∞

0

tr νA−zI(dt) <∞, and thus (νA−zI)n>1 is tight.

Moreover, a.s.

lim
n→∞

∫

C

|z|r µA(dz) <∞, and thus (µA)n>1 is tight.

Proof. In both cases, the a.s. tightness follows from the moment bound and the Markov inequality.
The moment bound on µA follows from the statement on νA (take z = 0) by using the Weyl
inequality (B.6). It is therefore enough to establish the moment bound on νA−zI for every C. Let
us fix z ∈ C and r > 0. By definition of νA−zI we have

∫ ∞

0

tr νA−zI(dt) =
1

n

n∑

k=1

sk(A− zI)r.

From (B.2) we have sk(A− zI) 6 sk(A) + |z| for every 1 6 k 6 n, and one can then safely assume
that z = 0 for the proof. By using (B.7) we get for any 0 6 r 6 2,

∫ ∞

0

tr νA(dt) 6 Zn :=
1

n

n∑

i=1

Yn,i where Yn,i :=




n∑

j=1

a−2
n |Xij |2




r/2

.

We need to show that (Zn)n>1 is a.s. bounded. Assume for the moment that

sup
n>1

E(Y 4
n,1) <∞ (3.1)

for some choice of r. Since Yn,1, . . . , Yn,n are i.i.d. for every n > 1, we get from (3.1) that

E((Zn − EZn)
4) = n−4

E




∑

16i,j6n

(Yn,i − EYn,i)
2(Yn,j − EYn,j)

2


 = O(n−2).

Therefore, by the monotone convergence theorem, we get E(
∑

n>1(Zn −EZn)
4) <∞, which gives∑

n>1(Zn−EZn)
4 <∞ a.s. and thus Zn−EZn → 0 a.s. Now the sequence (EZn)n>1 = (EYn,1)n>1

is bounded by (3.1) and it follows that (Zn)n>1 is a.s. bounded.
It remains to show that (3.1) holds, say if 0 < 4r < α. To this end, let us define

Sn,a,b :=

n∑

j=1

a−2
n |X1j |21{a−2

n |X1j |2∈[a,b)} for every a < b.

Now Y 4
n,1 = (Sn,0,∞)2r = (Sn,0,1 + Sn,1,∞)2r and thus,

E(Y 4
n,1) 6 22r−1

{
E(S2r

n,0,1) + E(S2r
n,1,∞)

}
. (3.2)

We have supn>1 E(S
2r
n,0,1) <∞. Indeed, since 2r < 1, by the Jensen inequality,

E(S2r
n,0,1) 6 (ESn,0,1)

2r

and by lemma C.1,

ESn,0,1 ∼n α/(2− α).

For the second term of the right hand side of (3.2), we set

Mn := max
16j6n

a−1
n |X1j |1{a−1

n |X1j |>1} and Nn := #{1 6 j 6 n s.t. a−1
n |X1j | > 1}.

From Hölder inequality, if 1/p+ 1/q = 1, we have

E(S2r
n,1,∞) 6 E

(
N2r

n M4r
n

)
6
(
EN2rp

n

)1/p (
EM4rq

n

)1/q
. (3.3)
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Recall that P(|X12| > an) = (1 + o(1))/n 6 2/n for n≫ 1. By the union bound, for n≫ 1,

P(Nn > k) 6

(
n

k

)
P(|X12| > an)

k
6
nk

k!

2k

nk
=

2k

k!
.

In particular, we have supn>1 EN
η
n < ∞ for any η > 0. Similarly, since the function L is slowly

varying, for n≫ 1 and all t > 1, we have

P(Mn > t) 6 nP(|X12| > tan) = na−α
n t−αL(ant) 6 2t−α.

It follows that if γ < α, supn>1 EM
γ
n < ∞. Taking p and q so that 4rq < α, we thus conclude

from (3.3) that supn>1 E(S
2r
n,1,∞) <∞. �

3.2. Invertibility. In this paragraph, we find a lower bound for the smallest singular value of the
random matrix A− zI where A is defined by (1.4), in other words an upper bound on the operator
norm of the resolvent of A. Such lower bounds on the smallest singular value of random matrices
were developed in the recent years by using Littlewood-Offord type problems, as in [48, 49] and [45].
The available results require moments assumptions which are not satisfied when the entries have
heavy tails. Here we circumvent the problem by requiring the bounded density hypothesis (H3).
The removal of this hypothesis can be done by adapting the Rudelson and Vershynin approach
already used by Götze and Tikhomirov [28].

Lemma 3.2 (Invertibility). If (H3) holds then for some r > 0, every z ∈ C, a.s.

lim
n→∞

nrsn(A− zI) = +∞.

Proof. For every x, y ∈ Cn and S ⊂ Cn, we set x · y := x1y1 + · · ·+ xnyn and ‖x‖2 :=
√
x · x and

dist(x, S) := miny∈S ‖x− y‖2. Let R1, . . . , Rn be the rows of A− zI and set

R−i := span{Rj; j 6= i}
for every 1 6 i 6 n. From lemma B.2 we have

min
16i6n

dist(Ri, R−i) 6
√
nsn(A− zI)

and consequently, by the union bound, for any u > 0,

P(
√
n sn(A− zI) 6 u) 6 n max

16i6n
P(dist(Ri, R−i) 6 u).

Let us fix 1 6 i 6 n. Let Yi be a unit vector orthogonal to R−i. Such a vector is not unique. We
just pick one. This defines a random variable on the unit sphere Sn−1 = {x ∈ Cn : ‖x‖2 = 1}. By
the Cauchy–Schwarz inequality,

|Ri · Yi| 6 ‖πi(Ri)‖2‖Yi‖2 = dist(Ri, R−i)

where πi(·) is the orthogonal projection on the orthogonal complement of R−i. Let νi be the
distribution of Yi on Sn−1. Since Yi and Ri are independent, for any u > 0,

P(dist(Ri, R−i) 6 u) 6 P(|Ri · Yi| 6 u) =
∫

Sn−1

P(|Ri · y| 6 u) dνi(y)

Let us first consider the case where X11 has a bounded density ϕ on C. Since ‖y‖2 = 1 there

exists an index j0 ∈ {1, . . . , n} such that yj0 6= 0 with |yj0 |−1
6

√
n. The complex random

variable Ri · y is a sum of independent complex random variables and one of them is a−1
n Xij0 yj0 ,

which is absolutely continuous with a density bounded above by an
√
n ‖ϕ‖∞. Consequently, by a

basic property of convolutions of probability measures, the complex random variable Ri · y is also
absolutely continuous with a density ϕi bounded above by an

√
n ‖ϕ‖∞, and thus

P(|Ri · y| 6 u) =
∫

C

1|s|6uϕi(s) ds 6 πu
2 an

√
n ‖ϕ‖∞.

Therefore, for every b > 0,

P(sn(A− zI) 6 n−b−1/2) = O(n3/2−2ban)

where the O does not depend on z. By taking b large enough, the first Borel-Cantelli lemma implies
that there exists r > 0 such that a.s. for every z ∈ C and n≫ 1,

sn(A− zI) > n−r.
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It remains to consider the case whereX11 has a bounded density ϕ onR. As for the complex case, let
us fix y ∈ Sn−1. Since ‖y‖2 = 1 there exists an index j0 ∈ {1, . . . , n} such that |yj0 |−1

6
√
n. Also,

either |Re(yj0)|−1 6
√
2n or |Im(yj0)|−1 6

√
2n. Assume for instance that |Re(yj0)|−1 6

√
2n.

We observe that for every u > 0,

P(|Ri · y| 6 u) 6 P(|Re(Ri · y)| 6 u).

The real random variable Re(Ri ·y) is a sum of independent real random variables and one of them

is a−1
n Xij0Re(yj0 ), which is absolutely continuous with a density bounded above by an

√
2n ‖ϕ‖∞.

Consequently, by a basic property of convolutions of probability measures, the real random vari-
able Re(Ri · y) is also absolutely continuous with a density ϕi bounded above by an

√
2n ‖ϕ‖∞.

Therefore, we have for every u > 0,

P(|Re(Ri · y)| 6 u) =
∫

[−u,u]

ϕi(s) ds 6 23/2an
√
nu ‖ϕ‖∞.

We skip the rest of the proof, which is identical to the complex case. �

3.3. Distance from a row to a vector space. In this paragraph, we give two lower bounds on
the distance of a row of the random matrix A − z defined by (1.4) to a vector space of not too
large dimension. The first ingredient is an adaptation of Proposition 5.1 in Tao and Vu [50].

Proposition 3.3 (Distance of a row to a subspace). Assume that (H1) holds. Let 0 < γ < 1/2, and
let R be a row of an(A − z). There exists δ > 0 depending on α, γ such that for all d-dimensional
subspaces W of Cn with n− d > n1−γ , one has

P

(
dist(R,W ) 6 n(1−2γ)/α

)
6 e−nδ

.

The proof of proposition 3.3 is based on a concentration estimate for the truncated variables
X1i1{|X1i|6bn} for suitable sequences bn. We first recall a concentration inequality of Talagrand.

Theorem 3.4 (Talagrand concentration inequality [46] and [34, Corollary 4.10]). Let us denote
by D := {z ∈ C; |z| 6 1} the complex unit disc and let P be a product probability measure on the
product space Dn. Let F : Dn → R be a Lipschitz convex function on Dn with ‖F‖Lip 6 1. If
M(F ) is a median of F under P then for every r > 0,

P (|F −M(F )| > r) 6 4e−r2/4.

Proof of proposition 3.3. We first perform some pre-processing of the vector R as in Tao-Vu [50].
To fix ideas, we may assume that R is the first row of an(A− z). Then R = X1 − zane1 where X1

is the first row of X = anA. We then have

dist(R,W ) > dist(X1 − zane1, span(W, e1)) = dist(X1,W1).

where we have set W1 = span(W, e1). Note that d 6 dimW1 6 d+ 1.
For any sequence bn, from the Markov inequality,

P

(
n∑

i=1

1{|X1i|>bn} >
√
n

)
6 e−

√
n
(
Ee1|X11|>bn

)n

6 e−
√
n
(
1 + eL(bn)b

−α
n

)n

6 e−
√
n+enL(bn)b

−α
n . (3.4)

Choose bn = ann
−2γ/α. Clearly, bn/n

(1−2γ)/α ∈ [n−ε, nε] eventually for all ε > 0.
Let J denote the set of indexes i such that |X1i| 6 bn. From (3.4) we see that, for some δ > 0:

P(|J | < n−
√
n) 6 e−nδ

.

It follows that it is sufficient to prove the statement conditioned on the event {|J | > n−√
n}. In

particular, we shall prove that for any fixed I ⊂ {1, . . . , n}, such that |I| > n−√
n,

P

(
dist(X1,W1) 6 n

(1−2γ)/α | J = I
)
6 e−nδ

. (3.5)
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Without loss of generality, we assume that I = {1, · · · , n′} with n′ > n − √
n. Let πI be the

orthogonal projection on span(ei : i ∈ I). If W2 = πI(W1), we find d − √
n 6 dim(W2) 6

dim(W1) 6 d+ 1 and
dist(X1,W1) > dist(πI(X1),W2).

Note that πI(X1) is simply the vector X1i, i = 1, . . . , n′. We set

W ′ = span(W2,E[πI(X1) | J = I]) , Y = πI(X1)− E[πI(X1) | J = I] ,

so that d−√
n 6 dim(W ′) 6 d+ 2 and

dist(πI(X1),W2) > dist(Y,W ′).

Let P denote the orthogonal projection matrix to the orthogonal complement ofW ′ in Cn′
. We have

dist2(Y,W ′) =
∑

i,j YiPij Ȳj , and, since Y = (Yi)16i6n′ is a mean zero vector under P(· | I = I),

E[dist2(Y,W ′) | J = I] = E

[∑

i,j

YiPij Ȳj | J = I
]

=

n′∑

i=1

PiiE[|Yi|2 | J = I] = E[|Y1|2 | J = I] trP.

We have for any ε > 0 and for n≫ 1:

E[|Y1|2 | J = I] = E[|X11|2 | J = I]− (E[|X11| | J = I])2 > b2−α
n n−ε ,

where the last bound follows from lemma C.1, since by independence one has

E[|X11|2 | J = I] = E[|X11|2 | |X11| 6 bn] ,
and |E[X11 | J = I]|2 = |E[X11 | |X11| 6 bn]|2 is O(1) if α > 1, while (by lemma C.1) it is
O(b2−2α+ε

n ) for any ε > 0, if α ∈ (0, 1].
Using trP = n′ − dim(W ′) > 1

2 (n− d), it follows that, for any ε > 0, for n≫ 1:

E[dist2(Y,W ′) | J = I] > cL(bn)b
2−α
n (n− d) > nq(ε) , (3.6)

where q := (1− 2γ) 2α + γ − ε.

Under P(· | J = I), the vector (Y1/bn, · · · , Yn′/bn) is a vector of independent variables on Dn′
,

where D be the unit complex ball. We consider the function F : x 7→ dist(x,W ′). The mapping F
is 1-Lipschitz and convex. From theorem 3.4, we deduce that

P(|dist(Y,W ′)−M(dist(Y,W ′))| > r | J = I) 6 4e
− r2

8b2n (3.7)

where M(dist(Y,W ′)) is a median of dist(Y,W ′) under P(· | J = I).
It follows that, for e.g. δ = γ/2, taking ε = γ/4 in (3.6), we obtain q(ε) = (1 − 2γ) 2

α + δ + ε,
and therefore there exists c > 0 such that n≫ 1,

b−2
n E[dist2(Y,W ′) | J = I] > c

nq(ε)

b2n
> c nδ . (3.8)

From (3.7) it follows that

E

[
|M(dist(Y,W ′))− dist(Y,W ′)|2 | J = I

]
= O

(
b2n
)

From the Cauchy-Schwarz inequality we then have
∣∣∣∣M(dist(Y,W ′))−

√
E[dist2(Y,W ′) | J = I]

∣∣∣∣
2

6 E

[
|M(dist(Y,W ′))− dist(Y,W ′)|2 | J = I

]
= O

(
b2n
)
.

The above estimates, with (3.6) and (3.8), imply that M(dist(Y,W ′)) > 1
2 n

q(ε)/2 for n ≫ 1.
Therefore, for n≫ 1,

P

(
dist(Y,W ′) 6 n(1−2γ)/α | J = I

)

6 P

(
|M(dist(Y,W ′))− dist(Y,W ′)| > 1

4
nq(ε)/2 | J = I

)
.

The desired conclusion (3.5) now follows from (3.7) and (3.8). �
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So far we have shown that under assumption (H1), the distance of a row to a space with
codimension n−d > n1−γ is at least n(1−2γ)/α with large probability. We want a sharper estimate,
namely at the order n1/α. We will obtain such a bound in a weak sense in the forthcoming
proposition 3.7. Furthermore, we shall require assumption (H2) to do so. We start with some
preliminary facts.

Below we write Z = Z(β), β ∈ (0, 1), for the one-sided β-stable distribution such that for all
s > 0,

E exp(−sZi) = exp(−sβ) .
From the standard inversion formula, for m > 0

y−m = Γ(m)−1

∫ ∞

0

xm−1 e−x y dx ,

we see that all moments

E[Z−m] = Γ(m)−1

∫ ∞

0

xm−1 e−xβ

dx (3.9)

are finite for m > 0. Also, recall that if (Zi)16i6n is an i.i.d. vector with distribution Z then, for
every (wi)16i6n ∈ Rn

+, in distribution

n∑

i=1

wiZi
d
=

(
n∑

i=1

wβ
i

)1/β

Z1 . (3.10)

Indeed, (3.10) follows from E exp(−s∑wiZi) = exp(−sβ∑wβ
i ) and a change of variables.

Lemma 3.5. Assume (H2). There exists ε > 0 and p ∈ (0, 1) such that the random variable |X11|2
dominates stochastically the random variable εDZ, where P(D = 1) = 1 − P(D = 0) = p is a
random variable with law Be(p) , Z = Z(β) with β = α

2 , and D and Z are independent.

Proof. From our assumptions, there exist δ > 0 and x0 > 0 such that

P(|X11|2 > x) > δ x−β > P(δ2 Z > x) , x > x0 .

Let p be the probability that |X11|2 > x0. If x > x0 then P(|X11|2 > x) > pP(δ2Z > x) =
P(δ2DZ > x). On the other hand, if x 6 x0 then P(|X11|2 > x) > p > P(δ2DZ > x). In any
case, setting ε = δ2 we have

P(|X11|2 > x) > P(εDZ > x) , x > 0.

This implies the lemma. �

Lemma 3.6. Assume (H2). Let ωi ∈ [0, 1] be numbers such that ω(n) :=
∑n

i=1 ωi > n
1
2+ε for

some ε > 0. Let X1 = (X1i)16i6n be i.i.d. random variables distributed as X11, and let Z = Z(β)

with β = α
2 . There exist δ > 0 and a coupling of X1 and Z such that

P

(
n∑

i=1

ωi|X1i|2 6 δ ω(n)
1
βZ

)
6 e−nδ

. (3.11)

Proof. Let D = (Di)16i6n denote an i.i.d. vector of Bernoulli variables with parameter p given by
lemma 3.5. From this latter lemma and (3.10) we know that there exist ε > 0 and a coupling of
X1, D and Z such that

P

(
n∑

i=1

ωi|X1i|2 > ε
( n∑

i=1

ωβ
i Di

) 1
β

Z

)
= 1 .

It remains to show that for some ε′ > 0:

P

(
n∑

i=1

ωβ
i Di 6 ε

′ ω(n)

)
6 e−nε′

.
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Observe that ωβ
i > ωi, so that E

∑n
i=1 ω

β
i Di > p ω(n). Therefore, for 0 < ε′ < p,

P

(
n∑

i=1

ωβ
i Di 6 ε

′ ω(n)

)

6 P

(∣∣∣
n∑

i=1

(
ωβ
i Di − Eωβ

i Di

) ∣∣∣ > (p− ε′)ω(n)

)
6 2e−2(p−ε′)2ω(n)2/n ,

where we have used the Hoeffding inequality in the last bound. Since ω(n) > n
1
2+ε, this implies

the lemma. �

Proposition 3.7. Assume (H2) and take 0 < γ 6 α/4. Let R be the first row of the matrix
an(A− z). There exists a constant c > 0 and an event E such that for any d-dimensional subspace
W of Cn with codimension n− d > n1−γ , we have

E[dist−2(R,W ) ; E] 6 c (n− d)−
2
α and P(Ec) 6 c n−(1−2γ)/α .

Proof. As in the proof of proposition 3.3, we have

dist(R,W ) > dist(X1,W1) ,

where W1 = span(W, e1), d 6 dimW1 6 d+ 1, and X1 = (X1i)16i6n is the first row of X = anA.
Let I denote the set of indexes i such that |X1i| 6 an. From (3.4) we know that

P(|I| < n−
√
n) < e−nδ

,

for some δ > 0. It is thus sufficient to prove that for any set I ⊂ {1, . . . , n} such that |I| > n−√
n,

E[dist−2(R,W ) ; EI | I = I] 6 c (n− d)−
2
α ,

for some event EI satisfying P((EI)
c | I = I) 6 n−(1−2γ)/α. We will then simply set

E = EI ∩ {|I| > n−
√
n}.

Without loss of generality, we assume that I = {1, · · · , n′} with n′ > n − n1/2. Let πI be the
orthogonal projection on span(ei : i ∈ I). If W2 = πI(W1), set

W ′ = span (W2,E(πI(X1) | I = I)) .

Note that d−√
n 6 dim(W ′) 6 dim(W1) + 1 6 d+ 2. Defining

Y = πI(X1)− E(πI(X1) | I = I),

we have
dist(R,W ) > dist(X1,W1) > dist(Y,W ′).

Thus, Y = (Yi)16i6n′ is an i.i.d. mean zero vector under P(· | I = I). Let P denote the orthogonal

projection matrix to the orthogonal of W ′ in Cn′
. By construction, we have

E
(
dist2(Y,W ′) | I = I

)
= E

( n′∑

i,j=1

YiPij Ȳj | I = I
)
= E

[
|Y1|2 | I = I

]
trP .

Here trP =
∑n′

i=1 Pii, where Pii = (ei, P ei) ∈ [0, 1] and trP = n′ − dim(W ′) satisfies

2(n− d) > trP >
1

2
(n− d) . (3.12)

Let S =
∑n′

i=1 Pii|Yi|2. We have

E
(
(dist2(Y,W ′)− S)2 | I = I

)
= E




(∑

i6=j

YiPij Ȳj

)2
| I = I





=
∑

(i1 6=j1),(i2 6=j2)

Pi1j1Pi2j2E
(
Yi1 Ȳj1Yi2 Ȳj2 | I = I

)

= 2
∑

i1 6=j1

P 2
i1j1E[|Y1|

2 | I = I]

6 2E[|Y1|2 | I = I] trP 2.



20 CHARLES BORDENAVE, PIETRO CAPUTO, AND DJALIL CHAFAÏ

Note that,

E[|Y1|2 | I = I] 6 E[|X11|2 | I = I]

= E[|X11|2 | |X11| 6 an]

6
E[|X11|2 ; |X11| 6 an]

P(|X11| 6 an)
= O(a2n/n) ,

where the last bound follows from lemma C.1. Since P 2 = P , we deduce that

E
[
(dist2(Y,W ′)− S)2 | I = I

]
= O

(
a2n

n− d

n

)
. (3.13)

Next, let Z = Z(β) with β = α
2 , as in lemma 3.6. Set ωi = Pii, i = 1, . . . n′, and for ε > 0, consider

the event

ΓI =





n′∑

i=1

ωi|X1i|2 > ε (n− d)
1
βZ



 .

From lemma 3.6 (with n replaced by n′ > n−n1/2) and using (3.12) there exists a coupling of the
vector X1i, i = 1, . . . , n′ and Z such that

P(Γc
I) 6 e

−nδ

, (3.14)

for some δ > 0 and some choice of ε > 0. Also, since (a− b)2 > a2/2− b2 for all a, b ∈ R, we have
S > 1

2 Sa − Sb, where

Sa =

n′∑

i=1

ωi|X1i|2 , Sb =

n′∑

i=1

ωi E [|X1i| | |X1i| 6 an]
2
.

From Lemma C.1 and (3.12) we have

Sb = E [|X11| | |X11| 6 an]2 trP = h(α)(n, d) (3.15)

where h(α)(n, d) ∼ (n− d)a2n/n
2 if α ∈ (0, 1] and h(α)(n, d) ∼ (n− d) if α ∈ (1, 2). Let G1

I be the
event that Sa > 3Sb. From (3.15) and the definition of ΓI we have, for some c0 > 0

P((G1
I)

c ∩ ΓI | I = I) 6 P(Z 6 c0(n− d)−1/βh(α)(n, d) | I = I) .

Note that, thanks to the assumptions n−d > n1−γ , γ 6 α/4, we have (n−d)−1/βh(α)(n, d) 6 n−ε0

for some ε0 = ε0(α) > 0 for all α ∈ (0, 2), for n≫ 1. Therefore, for n≫ 1,

P((G1
I)

c ∩ ΓI | I = I) 6 P(Z 6 c0 n
−ε0 | I = I)

=
P(Z 6 c0 n

−ε0 ; |X1i| 6 an , ∀i = 1, . . . , n′)

P(|X1i| 6 an , ∀i = 1, . . . , n′)
,

where the last identity follows from the independence of the X1i. Observing that the probability
for the event {|X1i| 6 an , ∀i = 1, . . . , n′} is lower bounded by 1/c > 0 uniformly in n, we obtain

P((G1
I)

c ∩ ΓI | I = I) 6 cP(Z 6 c0 n
−ε0) .

The latter probability can be estimated using Markov’s inequality and the fact that E[Z−m] = um
is finite (cf. (3.9)). Indeed, for every m > 0, P(Z 6 t) 6 umt

−m . Thus, we have shown that for
every p > 0 there exists a constant κp such that

P((G1
I)

c ∩ ΓI | I = I) 6 κp n
−p . (3.16)

Next, we set Γ̃I = G1
I ∩ ΓI and we claim that

E

[
S−2 ; Γ̃I | I = I

]
= O

(
(n− d)−4/α

)
, (3.17)

Indeed, on Γ̃I we have S > 1
6 Sa >

ε
6 (n− d)2/α Z and therefore, for some constant c1,

E

[
S−2 ; Γ̃I | I = I

]
6 c1 (n− d)−4/α

E
[
Z−2 | I = I

]
.

Using independence as before, and recalling that the event {|X1i| 6 an , ∀i = 1, . . . , n′} has
uniformly positive probability we have

E
[
Z−2 | I = I

]
6 cE[Z−2] = c u2 .
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This proves (3.17).
Now, for the event Markov’s and Cauchy-Schwarz’ inequalities lead to

P

(
dist2(Y,W ′) 6 S/2 ; Γ̃I | I = I

)
6 P

( |dist2(Y,W ′)− S|
S

> 1/2 ; Γ̃I | I = I

)

6 2E

[ |dist2(Y,W ′)− S|
S

; Γ̃I | I = I

]

6 2

√
E
[
|dist2(Y,W ′)− S|2 | I = I

]
E

[
S−2 ; Γ̃I | I = I

]
.

Hence, if G2
I denotes the event {dist2(Y,W ′) > S/2}, we deduce from (3.13) and (3.17)

P

(
(G2

I)
c ∩ Γ̃I | I = I

)
= O

(
ann

− 1
2 (n− d)

1
2− 2

α

)
. (3.18)

Note that, using n− d > n1−γ , the last expression is certainly O(n− 1
α (1−2γ)). On the other hand,

by (3.17) and Cauchy-Schwarz’ inequality

E

[
dist−2(X,W ) ; G2

I ∩ Γ̃I | I = I
]
6 2E

[
S−1 ; Γ̃I | I = I

]
= O

(
(n− d)−2/α

)
. (3.19)

To conclude the proof we take EI = G2
I ∩ Γ̃I = G1

I ∩G2
I ∩ ΓI . We have

P((EI)
c | I = I) 6 P ((ΓI)

c | I = I) + P
(
(G1

I)
c ∩ ΓI | I = I

)
+ P

(
(G2

I)
c ∩G1

I ∩ ΓI | I = I
)
.

From (3.16) and (3.18) we see that,

P
(
(G1

I)
c ∩ ΓI | I = I

)
+ P

(
(G2

I)
c ∩G1

I ∩ ΓI | I = I
)
= O

(
n− 1

α (1−2γ)
)
,

and all it remains to prove is an upper bound on P ((ΓI)
c | I = I). By independence, as before

P ((ΓI)
c | I = I) 6 cP ((ΓI)

c ; |X1i| 6 an , ∀i = 1, . . . , n′) .

From (3.14) we obtain P ((ΓI)
c | I = I) 6 c e−nδ

. This ends the proof. �

3.4. Uniform integrability. Let z ∈ C and σn 6 · · · 6 σ1 be the singular values of An − z with
An defined by (1.4). For 0 < δ < 1, we define Kδ = [δ, δ−1]. In this paragraph, we prove the
uniform integrability in probability, meaning that for all ε > 0, there exists δ > 0 such that

P

(∫

Kc
δ

| ln(x)|νAn−z(dx) > ε

)
→ 0. (3.20)

From lemma 3.1, with probability 1 there exists c0 > 0, such that for all n,
∫ ∞

1

ln2(x)νAn−z(dx) < c0.

It follows from Markov inequality that for all t > 1,
∫∞
t ln(x)νAn−z(dx) < c0/ ln t. The upper part

(δ−1,∞) of (3.20) is thus not an issue. For the lower part (0, δ), it is sufficient to prove that

1

n

n−1∑

i=0

1{σn−i6δn} lnσ
−2
n−i

converges in probability to 0 for any sequence (δn)n converging to 0. From lemma 3.2, we may a.s.
lower bound σn−i by cn

−r for some constant c and all integer n > 1. Take 0 < γ < α/4 to be fixed
later. Using this latter bound for every 1 6 i 6 n1−γ , it follows that it is sufficient to prove that

1

n

n−1∑

i=⌊n1−γ⌋
1{σn−i6δn} lnσ

−2
n−i

converges in probability to 0. We are going to prove that there exists an event Fn such that, for
some δ > 0 and c > 0,

P((Fn)
c) 6 c exp(−nδ), (3.21)

and

E
[
σ−2
n−i |Fn

]
6 c

(n
i

) 2
α+1

. (3.22)
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We first conclude the proof before proving (3.21)-(3.22). From Markov inequality, and (3.22), we
deduce that

P(σn−i 6 δn) 6 P((Fn)
c) + c δ2n

(n
i

) 2
α+1

.

If follows that there exists a sequence εn = δ
1/( 2

α+1)
n tending to 0 such that the probability that

P(σn−⌊nεn⌋ 6 δn) converges to 0. We obtain that it is sufficient to prove that

1

n

⌊εnn⌋∑

i=⌊n1−γ⌋
lnσ−2

n−i

given Fn converges in probability to 0. However, using the concavity of the logarithm and (3.22)
we have

E



 1

n

⌊εnn⌋∑

i=⌊n1−γ⌋
lnσ−2

n−i

∣∣∣ Fn



 6
1

n

⌊εnn⌋∑

i=⌊n1−γ⌋
lnE[σ−2

n−i|Fn]

6
c1
n

⌊εnn⌋∑

i=1

ln
(n
i

)

= c1
(
−εn ln εn + εn +O(n−1)

)
.

It thus remain to prove (3.21)-(3.22). Let Bn be the matrix formed by the first n− ⌊i/2⌋ rows of
an(An − zI). If σ′

1 > · · · > σ′
n−⌊i/2⌋ are the singular values of Bn, then by the Cauchy interlacing

Lemma B.4,

σn−i >
σ′
n−i

an
.

By the Tao-Vu negative second moment lemma B.3, we have

σ
′−2
1 + · · ·+ σ

′−2
n−⌈i/2⌉ = dist−2

1 + · · ·+ dist−2
n−⌈i/2⌉,

where distj is the distance from the j-th row of Bn to the subspace spanned by the other rows of
Bn. In particular,

i

2
σ−2
n−i 6 a

2
n

n−⌊i/2⌋∑

j=1

dist−2
j .

Let Fn be the event that for all 1 6 j 6 n− ⌊i/2⌋, distj > n(1−2γ)/α. Since the dimension of the
span of all but one rows of Bn is at most d 6 n− i/2, we can use proposition 3.3, to obtain

P((Fn)
c) 6 exp(−nδ) ,

for some δ > 0. Then we write

i

2
σ−2
n−i 1Fn 6 a

2
n

n−⌊i/2⌋∑

j=1

dist−2
j 1Fn ,

Taking expectation, we get

E
[
iσ−2

n−i ; Fn

]
6 2 a2nnE

[
dist−2

1 ; Fn

]
, (3.23)

Since we are on Fn we can always estimate dist1 > n(1−2γ)/α. By introducing a further decom-
position we can strengthen this as follows. Recall that from proposition 3.7, there exists an event
E independent from the rows j 6= 1 such that P((E)c) 6 n−(1−2γ)/α and for any W ⊂ Cn with
dimension d < n− n1−γ one has

E[dist(R,W )−2 ; E] 6 c (n− d)−2/α .

Here R is the first row of the matrix Bn. By first conditioning on the value of the other rows of
Bn and recalling that the dimension d of the span of these is at most n− i/2 6 n− 2n1−γ , we see
that

E[dist−2
1 ; E] = O

(
i−2/α

)
.
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Therefore

E
[
dist−2

1 ; Fn

]
6 E(dist−2

1 ; E) + P((E)c)n−2(1−2γ)/α

6 c2

(
i−2/α + n−3(1−2γ)/α

)
. (3.24)

Now, if γ < 1/6 we have 3(1 − 2γ)/α > 2/α and therefore n−3(1−2γ)/α 6 i−2/α. Thus, (3.24)
implies

E
[
dist−2

1 ; Fn

]
6 2 c2 i

−2/α . (3.25)

From (3.23) we obtain

E
[
iσ−2

n−i ; Fn

]
6 2 c2 a

2
n n i

−2/α .

From (H2) it follows that (3.22) holds. This concludes the proof of (3.21)-(3.22).

3.5. Proof of theorem 1.2. We may now invoke theorem 1.1 and (3.20). From lemma A.2, µAn

converges in probability to µα, where for almost all z ∈ C,

Uµα(z) =

∫
ln(x)να,z(dx).

Let us upgrade this convergence to an a.s. convergence. By lemmas 3.1 and A.1, it is sufficient
to prove that for every z ∈ C, a.s.

lim
n→∞

UµAn
(z) = Uµa(z).

Let us fix z ∈ C from now on. Since L = Uµa(z) is deterministic, it actually suffices to show that
there exists a deterministic sequence Ln such that a.s.

lim
n→∞

(
UµAn

(z)− Ln

)
= 0. (3.26)

Now, by lemmas 3.1 and 3.2, there exists b > 0 such that a.s. for n≫ 1,

supp(νAn−zI) ⊂ [sn(An − zI), s1(An − zI)] ⊂ [n−b, nb].

Denoting fn : x ∈ R+ 7→ fn(x) = 1[n−b,nb](x) log(x), we get that a.s. for n≫ 1,

UµAn
(z) = −

∫ ∞

0

log(s) dνAn−zI(s) = −
∫ ∞

0

fn(s) dνAn−zI(s). (3.27)

The total variation of fn is bounded by c logn for some c > 0. Hence by lemma C.2, if

Ln := E

∫
fn(s)dνAn−zI(s),

then we have, for every ε > 0,

P

(∣∣∣∣
∫
fn(s)dνAn−zI(s)− Ln

∣∣∣∣ > ε
)
6 2 exp

(
−2

nε2

(c logn)2

)
.

In particular, from the first Borel-Cantelli lemma, a.s.,

lim
n→∞

(∫
fn(s) dνAn−zI(s)− Ln

)
= 0.

Finally, using (3.27), we deduce that (3.26) holds almost surely, as required.

4. Limiting spectral measure

In this section, we give a close look to the resolvent of the random operator on the PWIT and
we deduce some properties of the limiting spectral measure µα. For ease of notation we set

β =
α

2

and define the measure on R+,

Λα =
α

2
x−

α
2 −1dx.
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4.1. Resolvent operator on the Poisson Weighted Infinite Tree. In this paragraph, we
analyze the random variable

R(U)∅∅ =

(
a(z, η) b(z, η)
b′(z, η) c(z, η)

)
.

By lemma 2.2, for t ∈ R+, a(z, it) is pure imaginary and we set

h(z, t) = Im(a(z, it)) = −ia(z, it) ∈ [0, t−1].

The random variables a(z, η) and h(z, t) solve a nice recursive distribution equation.

Theorem 4.1 (Recursive Distributional Equation). Let U = U(z, η) ∈ H+, t ∈ R+. Let LU be
the distribution on C+ of a(z, η) and Lz,t the distribution of h(z, t).

(i) LU solves the equation in distribution

a
d
=

η +
∑

k∈N
ξkak

|z|2 −
(
η +

∑
k∈N

ξkak
) (
η +

∑
k∈N

ξ′ka
′
k

) , (4.1)

where a, (ak)k∈N and (a′k)k∈N are i.i.d. with law LU independent of {ξk}k∈N, {ξ′k}k∈N two
independent Poisson point processes on R+ with intensity Λα.

(ii) Lz,t is the unique probability distribution on [0,∞) such that

h
d
=

t+
∑

k∈N
ξkhk

|z|2 +
(
t+
∑

k∈N
ξkhk

) (
t+

∑
k∈N

ξ′kh
′
k

) (4.2)

where h, (hk)k∈N and (h′k)k∈N are i.i.d. with law Lz,t, independent of {ξk}k∈N, {ξ′k}k∈N

two independent Poisson point processes on R+ with intensity Λα.
(iii) For t = 0 there are two probability distributions on [0,∞) solving (4.2) such that Ehα/2 <

∞: δ0 and another denoted by Lz,0. Moreover, for the topology of weak convergence, Lz,t

converges to Lz,0 as t goes to 0.

We start with an important lemma.

Lemma 4.2. For every U = U(z, η) ∈ H+,

(
a b
b′ c

)
is equal in distribution to

1

|z|2 −
(
η +

∑
k∈N

ξkak
) (
η +

∑
k∈N

ξ′ka
′
k

)
(
η +

∑
k∈N

ξkak −z
−z̄ η +

∑
k∈N

ξ′ka
′
k

)
, (4.3)

where a, (ak)k∈N and (a′k)k∈N are i.i.d. with law LU independent of {ξk}k∈N, {ξ′k}k∈N two inde-
pendent Poisson point processes on R+ with intensity Λα.

Proof of lemma 4.2. Consider a realization of PWIT(2ℓθ) on the tree T . For k ∈ N, we define
Tk as the subtree of T spanned by kNf . With the notation of lemma 2.5, for k ∈ N, RBk

(U) =
(Bk(z)− η)−1 is the resolvent operator of Bk and set

R̃(U)kk = ΠkRBk
(U)Π∗

k =

(
ak bk
b′k ck

)
.

Then, by lemma 2.5 and (2.13), we get

R(U)∅∅ = −
(
U +

∑

k∈N

(
0 εky

−1/α
k

(1− εk)y
−1/α
k 0

)(
ak bk
b′k ck

)(
0 (1− εk)y

−1/α
k

εky
−1/α
k 0

))−1

= −
(
U +

(∑
k∈N

(1− εk)|yk|−2/αck 0

0
∑

k∈N
εk|yk|−2/αak

))−1

= D−1

(
η +

∑
k∈N

εk|yk|−2/αak −z
−z̄ η +

∑
k∈N

(1− εk)|yk|−2/αck

)
,

with D = |z|2 −
(
η +

∑
k∈N

εk|yk|−2/αak
) (
η +

∑
k∈N

(1 − εk)|yk|−2/αck
)
.

Now the structure of the PWIT implies that (i) ak and ck have common distribution LU ; and
(ii) the variables (ak, ck)k∈N are i.i.d.. Also the thinning property of Poisson processes implies
that (iii) {εk|yk|−2/α}k∈N and {(1 − εk)|yk|−2/α}k∈N are independent Poisson point process with
common intensity Λα. �
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The next well-known and beautiful lemma will be crucial in the computations that will follow.
It is a consequence of the LePage-Woodroofe-Zinn representation of stable laws [35], see also
Panchenko and Talagrand [41, Lemma 2.1].

Lemma 4.3. Let {ξk}k∈N be a Poisson process with intensity Λα. If (Yk) is an i.i.d. sequence of

non–negative random variables, independent of {ξk}k∈N, such that E[Y β
1 ] <∞ then

∑

k∈N

ξkYk
d
= E[Y β

1 ]
1
β

∑

k∈N

ξk
d
= E[Y β

1 ]
1
β S,

where S is the positive β-stable random variable with Laplace transform for all x > 0,

E exp(−xS) = exp
(
−Γ(1− β)xβ

)
. (4.4)

Proof of lemma 4.3. Recall the formulas, for y > 0, η > 0 and 0 < η < 1 respectively,

y−η = Γ(η)−1

∫ ∞

0

xη−1e−xydx and yη = Γ(1− η)−1η

∫ ∞

0

x−η−1(1− e−xy)dx. (4.5)

From the Lévy-Khinchin formula we deduce that, with s > 0,

E exp

(
−s
∑

k

ξkYk

)
= exp

(
E

∫ ∞

0

(e−xsY1 − 1)βx−β−1dx

)

= exp
(
−Γ(1− β)sβE[Y β

1 ]
)
.

�

Proof of theorem 4.1. Statement (i) is contained in lemma 4.2. For (ii), let t > 0 and h a solution
of (4.2). Then h is positive and is upper bounded by 1/t. By lemma 4.3, we may rewrite (4.2) as

h
d
=

t+ E[hβ ]1/βS

|z|2 +
(
t+ E[hβ ]1/βS

) (
t+ E[hβ ]1/βS′

) (4.6)

where S and S′ are i.i.d. variables with common Laplace transform (4.4). In particular, E[hβ ]1/β

is solution of the equation in y:

yβ = E

(
t+ yS

|z|2 + (t+ yS) (t+ yS′)

)β

Since t > 0, E[hβ ] > 0, it follows that E[hβ ]1/β is solution of the equation in y:

1 = E

(
ty−1 + S

|z|2 + (t+ yS) (t+ yS′)

)β

. (4.7)

For every S, S′ > 0, the function y 7→ ty−1+S
|z|2+(t+yS)(t+yS′) is decreasing in y. It follows that

y 7→ E

(
ty−1 + S

|z|2 + (t+ yS) (t+ yS′)

)β

is decreasing in y. As y goes to 0 it converges to ∞ and as y goes to infinity, it converges to 0. In
particular, there is a unique point, y∗(|z|2, t) of such that (4.7) holds. This proves (ii) since from
(4.6), the law of h is determined by E[hβ ]1/β = y∗(|z|2, t).

For Statement (iii) and t = 0, then h = 0 is a particular solution of (4.2). If h is not a.s. equal
to 0, then E[hβ ]1/β > 0 and the argument above still works since, for every s, s′ > 0, the function
y 7→ s

|z|2+y2ss′ is decreasing in y. We deduce the existence of a unique positive solution y∗(|z|2, 0)
of (4.7). We also have the continuity of the function t 7→ y∗(|z|2, t) on [0,∞). Finally

h
d
= y∗(|z|2, 0)S/(|z|2 + y2∗(|z|2, 0)SS′),

and from (4.6), it implies the weak convergence of Lz,t to Lz,0. �
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4.2. Density of the limiting measure. In this paragraph, we analyze the RDE (4.3). For all
t > 0, let Lz,t be as in theorem 4.1. From Equation (4.6), h may be expressed as

h
d
=

t+ y∗S

|z|2 + (t+ y∗S) (t+ y∗S′)

where S and S′ are i.i.d. variables with common Laplace transform (4.4) and y∗ := y∗(|z|2, t) is the
unique solution in (0,∞) of (4.7) (uniqueness is proved in theorem 4.1). We extend continuously
the function y∗(r, t) for t = 0 by defining y∗(|z|2, 0) as the unique solution in (0,∞):

1 = E

(
S

|z|2 + y2SS′

)β

. (4.8)

Lemma 4.4. The function y∗ : [0,∞)2 → (0,∞) is C1. For every t > 0, the mapping r 7→ y∗(r, t)
is decreasing to 0.

Proof. For every t > 0, the derivative in y > 0 of the function E

(
ty−1+S

|z|2+(t+yS)(t+yS′)

)β
is

− βty−2
E

(ty−1 + S)β−1

(|z|2 + (t+ yS) (t+ yS′))β
− βE

(ty−1 + S)β(S(t+ yS′) + S′(t+ yS))

(|z|2 + (t+ yS) (t+ yS′))β+1
. (4.9)

The last computation is justified since all terms are integrable, indeed we have

(ty−1 + S)β−1

(|z|2 + (t+ yS) (t+ yS′))β
6

y−β+1

(t+ yS) (t+ yS′)β
6
y−2β

SS′β

and from (4.5), for all η > 0,

ES−η = Γ(η)−1

∫
xη−1e−Γ(1−β)xβ

dx <∞. (4.10)

Similarly, for the second term of (4.9), we write

(ty−1 + S)β(S(t+ yS′) + S′(t+ yS))

(|z|2 + (t+ yS) (t+ yS′))β+1
6 y−1S(t+ yS′) + S′(t+ yS)

(t+ yS) (t+ yS′)β+1

6 y−1 S

(t+ yS) (t+ yS′)β
+ y−1 S′

(t+ yS′)β+1

6 y−β−2S′−β
+ y−β−2S′−β

The expression (4.9) is finite and strictly negative for all y > 0. The statement follows from the
implicit function theorem. �

From (4.3), for all t > 0,

b(z, it)
d
= − z

|z|2 + (t+ y∗(|z|2, it)S) (t+ y∗(|z|2, it)S′)
.

By lemma 4.4, we may also define

b(z, 0) = lim
t↓0

b(z, it)
d
= − z

|z|2 + y2∗(|z|2, 0)SS′ .

For ease of notation, we set y∗(r) = y∗(r, 0). Since ∂z = 1, ∂|z|2 = z̄, we deduce that

− E∂b(z, 0) = E∂
z

|z|2 + y2∗(|z|2)SS′

= E
(
|z|2 + y2∗(|z|2)SS′)−1 − |z|2E

(
|z|2 + y2∗(|z|2)SS′)−2

−2|z|2y∗(|z|2)y′∗(|z|2)ESS′ (|z|2 + y2∗(|z|2)SS′)−2

=
(
y2∗(|z|2)− 2|z|2y∗(|z|2)y′∗(|z|2)

)
E

SS′

(|z|2 + y2∗(|z|2)SS′)2
. (4.11)

The latter is justified since

SS′ (|z|2 + y2SS′)−2
6 y−4(SS′)−1.

is integrable from (4.10). The next lemma is an important consequence of Theorems 2.13 and 1.2.
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Lemma 4.5. The following identity holds in D′(C):

µα = − 1

π
∂Eb(·, 0).

Therefore the measure µα is isotropic and has a continuous density given by 1/π times the right
hand side of (4.11).

Proof. Let Rn be the resolvent matrix of Bn, the bipartized matrix of An defined by (1.4). By
theorem 2.13 and lemma 2.2, for all t > 0 and z ∈ C,

lim
n→∞

ERn(U(z, it))11 =

(
iEh(z, t) Eb(z, it)
Eb̄(z, it) iEh(z, t)

)
,

From theorem 2.14, EνAn−z converge weakly to να,z and, by lemma 3.1, for all t > 0,

lim
n→∞

1

2

∫
ln(x2 + t2)EνAn−zdx) =

1

2

∫
ln(x2 + t2)να,z(dx).

From Equation (3.20),
∫
ln(x)να,z(dx) is integrable. We deduce that for all z0 ∈ C, there exists

an open neighborhood of z0 and a sequence (tn)n>1 converging to 0 such that for all z in the
neighborhood,

lim
n→∞

ERn(U(z, itn))11 =

(
iEh(z, 0) Eb(z, 0)
Eb̄(z, 0) iEh(z, 0)

)
, (4.12)

and

lim
n→∞

1

2

∫
ln(x2 + t2n)EνAn−z(dx) =

∫
ln(x)να,z(dx). (4.13)

Moreover from theorem 1.2, Equation (3.20), lemma A.2, in D′(C):

∆

∫
ln(x)να,z(dx) = 2πµα. (4.14)

On the other hand, 1
2

∫
ln(x2 + t2)νAn−z(dx) =

1
2n ln | det(B(z)− itI2n))|, and from (2.5),

∆
1

2

∫
ln(x2 + t2)EνAn−z , (dx) = −2∂Eb1(z, it).

The conclusion follows from (4.12), (4.13) and (4.14). �

It is possible to compute explicitly the expression (4.11) at z = 0.

Lemma 4.6. The density of µα at z = 0 is

1

π

Γ(1 + 1/β)2Γ(1 + β)1/β

Γ(1− β)1/β
.

Proof. By definition, the real y∗(0) solves the equation

1 = E

(
S

y2SS′

)β

= y−2β
ES−β =

y−2β

Γ(β)

∫
xβ−1e−Γ(1−β)xβ

dx.

With the change of variable x 7→ xβ and the identity zΓ(z) = Γ(1 + z), we find easily, ES−β =

(Γ(1− β)Γ(1 + β))
−1

and

y∗(0) = (Γ(1− β)Γ(1 + β))
− 1

2β .

We also have

ES−1 =

∫
e−Γ(1−β)xβ

dx =
1

βΓ(1− β)1/β

∫
x1/β−1e−xdx =

Γ(1 + 1/β)

Γ(1− β)1/β
,

where we have used again the identity zΓ(z) = Γ(1 + z). Then the right hand side of (4.11) at
z = 0 is equal to

y2∗(0)y
−4
∗ (0)E(SS′)−1 = y−2

∗ (0)
(
ES−1

)2
.

�
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4.3. Proof of theorem 1.3. In this subsection, we prove the last statement of theorem 1.3 (the
first part of the theorem being contained in lemmas 4.5, 4.6). We start with a first technical lemma.

Lemma 4.7. Let 0 < β < 1, δ > 0, and f be a bounded measurable R+ → R function such that
f(y) = O(yβ+δ) as y ↓ 0. Let Y be a random variable such that P(Y > t) = L(t)t−β for some
slowly varying function L. Then as t goes to infinity

Ef

(
Y

t

)
∼ βL(t)t−β

∫ ∞

0

f(y)y−β−1dy.

Proof. Define Yt = Y/t. We fix ε > 0 and consider the distribution P(Yt ∈ ·|Yt > ε). By assumption,
for s > ε,

P(Yt > s|Yt > ε) ∼ (s/ε)
−β

.

In particular, the distribution of Yt given {Yt > ε} converges weakly as t goes to infinity to the
distribution with density βx−β−1εβdx. Since f is bounded and L slowly varying, we get

E

[
f

(
Y

t

)
1{Y >εt}

]
= P(Yt > ε)E

[
f (Yt)

∣∣∣ Yt > ε
]

∼ L(εt)ε−βt−β

∫ ∞

ε

f(y)βy−β−1εβdy

∼ βL(t)t−β

∫ ∞

ε

f(y)y−β−1dy.

Finally, by assumption, for some constant, c > 0,

E

[
f

(
Y

t

)
1{Y6εt}

]
6 ct−β−δ

E[Y β+δ
1{Y6εt}].

Thus by lemma C.1, for some new constant c > 0 and all t > 1/ε,

E

[
f

(
Y

t

)
1{Y6εt}

]
6 ct−β−δL(εt)(εt)δ = ct−βL(t)εδ

L(εt)

L(t)
.

We may thus conclude by letting t tend to infinity and then ε to 0. �

Lemma 4.8. Let S be a random variable with Laplace transform (4.4). There exists a constant
c0 > 0 such that as t goes to infinity,

ESβ
1{S6t} = ln t+ c0 + o(1).

Proof. Let gβ be the density function of S. From Equation (2.4.8) in Zolotarev [56], gβ has a
convergent power series representation

gβ(x) =
1

π

∞∑

n=1

(−1)n−1 Γ(nβ + 1)

Γ(n+ 1)Γ(1− β)n
sin(πnβ)x−nβ−1.

The Stirling formula Γ(x) ∼x→∞
√

2π
x

(
x
e

)x
implies that the convergence radius of the series is

+∞. Recall that Γ(β + 1) = βΓ(β), and the Euler reflection formula, Γ(1− β) sin(πβ)/π = Γ(β).
Thus, as x goes to infinity,

gβ(x) = βx−β−1 +O(x−2β−1).

�

The next lemma is a consequence of the Karamata Tauberian theorem.

Lemma 4.9. As t goes to infinity,

P(SS′ > t) ∼ βt−β ln t,

and, with c1 = β2
∫∞
0

(x+ 1)−2x−βdx,

E
SS′

(t+ SS′)2
∼ c1t

−1−β ln t.
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Proof. Let x > 0, since S and S′ are independent we have

E exp(−xSS′) = E exp
(
−Γ(1− β)xβSβ

)
.

From Corollary 8.1.7 in [9], we have as t goes to infinity, P(S > t) ∼ t−β. In particular, we have
P(Sβ > t) ∼ t−1 and a new application of Corollary 8.1.7 in [9] gives as x ↓ 0,

1− E exp(−xSβ) ∼ x lnx−1.

We obtain

1− E exp(−xSS′) ∼ Γ(1− β)xβ ln(Γ(1− β)x−β) ∼ βΓ(1 − β)xβ ln(x−1).

We then conclude by a third application of Corollary 8.1.7 in [9]. The second statement is a
consequence of lemma 4.7. �

The next lemma gives the asymptotic behavior of y∗(r) as r goes to infinity.

Lemma 4.10. There exists a constant c2 > 0 such that as r goes to infinity,

y∗(r) ∼ c2
√
re−rβ/2.

Proof. From Equations (4.5), (4.8), we have with y∗ = y∗(r),

1 =
1

Γ(β)

∫
xβ−1

E exp
(
−xr
S

− xy2∗S
′
)
dx

=
1

Γ(β)

∫
xβ−1e−xβy2β

∗ Γ(1−β)
Ee−

xr
S dx

=
1

Γ(1 + β)Γ(1 − β)y2β∗

∫
e−x

Ee
− x1/βry

−2
∗

SΓ(1−β)1/β dx. (4.15)

By lemma 4.4, limr→∞ y∗(r) = 0. Hence, from the above expression, we deduce that the term
ry−2

∗ goes to infinity as r goes to infinity. Define

I(y) =
1

Γ(1 + β)Γ(1 − β)

∫
e−xe

− x1/β

yΓ(1−β)1/β dx = I0(y) + I1(y) + I2(y),

with I0(y) = I(y)1{y>1},

I1(y) =
1{y61}

Γ(1 + β)Γ(1 − β)

∫
e
− x1/β

yΓ(1−β)1/β dx = yβ1{y61},

I2(y) =
1{y61}

Γ(1 + β)Γ(1 − β)

∫
(e−x − 1)e

− x1/β

yΓ(1−β)1/β dx.

The function I is increasing and limy→∞ I(y) < ∞. Also, the function I0 is equal to 0 in a
neighborhood of 0. By lemma 4.7, we get as t goes to infinity,

EI0(S/t) ∼ a0t
−β ,

for some positive constant a0 = 1
Γ(1+β)Γ(1−β)

∫∞
1

∫
e−xe

− x1/β

yΓ(1−β)1/β βy−β−1dxdy. By lemma 4.8,

E[I1(S/t)] = t−β ln t+ c0t
−β + o(1).

Also, from Laplace method, I2(y) ∼ −Γ(2β)Γ(1− β)2y2β as y goes to 0. By lemma 4.7,

EI2(S/t) ∼ a2t
−β ,

with a2 = 1
Γ(1+β)Γ(1−β)

∫ 1

0

∫
(e−x − 1)e

− x1/β

yΓ(1−β)1/β βy−β−1dxdy. Hence, for t = ry−2
∗ , we get from

(4.15)

y2β∗ = (ry−2
∗ )−β ln(ry−2

∗ ) + (c0 + a0 + a2)(ry
−2
∗ )−β + o((ry−2

∗ )−β).

In other words,

rβ = ln(ry−2
∗ ) + (c0 + a0 + a2) + o(1).

We conclude by setting c2 = exp((c0 + a0 + a2)/2). �
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Lemma 4.11. As r goes to infinity,

y′(r) ∼ −c−1
3 y∗(r)r

β−1,

where c3 = 2
∫∞
0

∫∞
0 xe−xe

− x1/β

sΓ(1−β)1/β βs−β−1dxds/ (Γ(1 + β)Γ(1− β)).

Proof. We define

G(y, r) = E

(
S

r + y2SS′

)β

=
1

Γ(β)

∫
xβ−1e−xβy2βΓ(1−β)

Ee−
xr
S dx.

From the implicit function theorem

y′∗(r) = −∂rG(y∗, r)
∂yG(y∗, r)

.

We have

∂yG(y, r) = −2βΓ(1− β)y2β−1

Γ(β)

∫
x2β−1e−xβy2βΓ(1−β)

Ee−
xr
S dx

= − 2

y2β+1Γ(1 + β)Γ(1 − β)

∫
xe−x

Ee
− x1/βry−2

SΓ(1−β)1/β dx

The Laplace method implies that, as t goes infinity,
∫
xe−xe

− x1/βt

Γ(1−β)1/β dx ∼ Γ(2β)Γ(1 − β)2t−2β.

Thus by lemma 4.7, we deduce that
∫
xe−x

Ee
− x1/βt

SΓ(1−β)1/β dx ∼ t−β

∫ ∫
xe−xe

− x1/β

sΓ(1−β)1/β βs−β−1dxds ∼ ct−β.

Applying the above to t = ry−2
∗ (r) we deduce, with c3 = 2c/(Γ(1 + β)Γ(1 − β)),

∂yG(y∗, r) ∼ −c3r−βy−1
∗ (r).

Similarly, the derivative of G with respect to r is

∂rG(y, r) = − 1

y2β+2Γ(1 − β)1/β+1Γ(1 + β)

∫
x1/βe−x

Ee
− x1/βry−2

SΓ(1−β)1/β S−1dx.

Once again, Laplace method implies that, as t goes infinity,
∫
x1/βe−xe

− x1/βt

Γ(1−β)1/β dx ∼ Γ(β + 1)Γ(1− β)1/β+1t−β−1.

In particular, for all ε > 0 there exists t0 such that

(1− ε)t−β−1
ESβ

1{S6t/t0}

6
1

Γ(1− β)1/β+1Γ(1 + β)

∫
x1/βe−x

Ee
− x1/βt

SΓ(1−β)1/β S−1
1{S6t/t0}dx

6 (1 + ε)t−β−1
ESβ

1{S6t/t0}.

By lemma 4.8,
ESβ

1{S6t/t0} ∼ ln t.

It follows that for some t1 > t0 and all t > t1,

(1−2ε)t−β−1 ln t 6
1

Γ(1− β)1/β+1Γ(1 + β)

∫
x1/βe−x

Ee
− x1/βt

SΓ(1−β)1/β S−1
1{S6t/t0}dx 6 (1+2ε)t−β−1 ln t.

On the other hand, for some constant c > 0 and all t > 1,
∫
x1/βe−x

Ee
− x1/βt

SΓ(1−β)1/β S−1
1{S>t/t0}dx 6

∫
x1/βe−xdxP(S > t/t0) 6 ct

−β−1tβ+1
0 .

We thus have proved that

1

Γ(1− β)1/β+1Γ(1 + β)

∫
x1/βe−x

Ee
− x1/βt

SΓ(1−β)1/β S−1dx ∼ t−β−1 ln t,
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and

∂rG(y∗(r), r) ∼ −r−β−1 ln(ry−2) ∼ −r−1.

The statement follows. �

Proof of theorem 1.3. From Equation (4.11) and lemma 4.9, the density at r = |z|2 is equivalent
to 1/π times (

1− 2r
y′∗(r)

y∗(r)

)
y−2
∗ (r)c1(ry

−2
∗ )−1−β ln(ry−2

∗ ).

It remains to apply lemmas 4.10 and 4.11, and set the multiplicative constant to be c = 2π−1c−1
3 c1c

2β
2 .
�

Appendix A. Logarithmic potentials and Hermitization

Let P(C) be the set of probability measures on C which integrate ln |·| in a neighborhood of
infinity. For every µ ∈ P(C), the logarithmic potential Uµ of µ on C is the function Uµ : C →
[−∞,+∞) defined for every z ∈ C by

Uµ(z) =

∫

C

ln |z − z′|µ(dz′) = (ln |·| ∗ µ)(z). (A.1)

Note that in classical potential theory, the definition is opposite in sign, but ours turns out to be
more convenient (lightweight) for our purposes. Since ln |·| is Lebesgue locally integrable on C, one
can check by using the Fubini theorem that Uµ is Lebesgue locally integrable on C. In particular,
Uµ < ∞ a.e. (Lebesgue almost everywhere) and Uµ ∈ D′(C). Since ln |·| is the fundamental
solution of the Laplace equation in C, we have, in D′(C),

∆Uµ = 2πµ. (A.2)

Lemma A.1 (Unicity). For every µ, ν ∈ P(C), if Uµ = Uν a.e. then µ = ν.

Proof. Since Uµ = Uν in D′(C), we get ∆Uµ = ∆Uν in D′(C). Now (A.2) gives µ = ν in D′(C),
and thus µ = ν as measures since µ and ν are Radon measures. �

If A is an n× n complex matrix and PA(z) := det(A− zI) is its characteristic polynomial,

UµA(z) =

∫

C

ln |z′ − z|µA(dz
′) =

1

n
ln |det(A− zI)| = 1

n
ln |PA(z)|

for every z ∈ C \ {λ1(A), . . . , λn(A)}. We have also the alternative expression

UµA(z) =
1

n
ln det(

√
(A− zI)(A− zI)∗) =

∫ ∞

0

ln(t) νA−zI(dt). (A.3)

The identity above bridges the eigenvalues with the singular values, and is at the heart of the
following lemma, which allows to deduce the convergence of µA from the one of νA−zI . The
strength of this Hermitization lies in the fact that contrary to the eigenvalues, one can control
the singular values with the entries of the matrix. The price paid here is the introduction of
the auxiliary variable z and the uniform integrability. We recall that on a Borel measurable space
(E, E), we say that a Borel function f : E → R is uniformly integrable for a sequence of probability
measures (ηn)n>1 on E when

lim
t→∞

lim
n→∞

∫

{|f |>t}
|f | dηn = 0.

We will use this property as follows: if ηn  η and f is continuous and uniformly integrable
for (ηn)n>1 then f is η-integrable and limn→∞

∫
f dηn =

∫
f η. Similarly for a sequence random

probability measures (ηn)n>1 we will say that f is uniformly integrable for (ηn)n>1 in probability,
if for all ε > 0

lim
t→∞

lim
n→∞

P

(∫

{|f |>t}
|f | dηn > ε

)
= 0.

A proof of lemma A.2 below can be found in [12] which covers the “a.s.” case, the “in probability”
case being similar. It relies only on the unicity lemma A.1, the classical Prohorov theorem, and
the Weyl inequalities of Lemma B.5 linking eigenvalues and singular values.
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Lemma A.2 (Girko’s Hermitization method). Let (An)n>1 be a sequence of complex random
matrices where An is n × n for every n > 1. Suppose that for Lebesgue almost all z ∈ C, there
exists a probability measure νz on [0,∞) such that

(i) a.s. (νAn−zI)n>1 tends weakly to νz
(ii) a.s. (resp. in probability) ln(·) is uniformly integrable for (νAn−zI)n>1

Then there exists a probability measure µ ∈ P(C) such that

(j) a.s. (resp. in probability) (µAn)n>1 converges weakly to µ

(jj) for a.a. z ∈ C,

Uµ(z) =

∫ ∞

0

ln(t) νz(dt).

Appendix B. General spectral estimates

Lemma B.1 (Basic inequalities [32]). If A and B are n× n complex matrices then

s1(AB) 6 s1(A)s1(B) and s1(A+B) 6 s1(A) + s1(B) (B.1)

and

max
16i6n

|si(A)− si(B)| 6 s1(A−B). (B.2)

Lemma B.2 (Rudelson-Vershynin row bound [45, 12]). Let A be a complex n × n matrix with
rows R1, . . . , Rn. Define the vector space R−i := span{Rj; j 6= i}. We have then

n−1/2 min
16i6n

dist(Ri, R−i) 6 sn(A) 6 min
16i6n

dist(Ri, R−i).

Recall that the singular values s1(A), . . . , sn′(A) of a rectangular n′ ×n complex matrix A with

n′ 6 n are defined by si(A) := λi(
√
AA∗) for every 1 6 i 6 n′.

Lemma B.3 (Tao-Vu negative second moment [50, Lemma A4]). If A is a full rank n′×n complex
matrix (n′ 6 n) with rows R1, . . . , Rn′ , and R−i := span{Rj; j 6= i}, then

n′∑

i=1

si(A)
−2 =

n′∑

i=1

dist(Ri, R−i)
−2.

Lemma B.4 (Cauchy interlacing by rows deletion [32]). Let A be an n× n complex matrix. If B
is n′ × n, obtained from A by deleting n− n′ rows, then for every 1 6 i 6 n′,

si(A) > si(B) > si+n−n′(A).

Lemma B.5 (Weyl inequalities [53]). For every n× n complex matrix A, we have

k∏

i=1

|λi(A)| 6
k∏

i=1

si(A) and

n∏

i=k

si(A) 6

n∏

i=k

|λi(A)| (B.3)

for all 1 6 k 6 n. In particular, by viewing |det(A)| as a volume,

| det(A)| =
n∏

k=1

|λk(A)| =
n∏

k=1

sk(A) =

n∏

k=1

dist(Rk, span{R1, . . . , Rk−1}) (B.4)

where R1, . . . , Rn are the rows of A. Moreover, for every increasing function ϕ from (0,∞) to
(0,∞) such that t 7→ ϕ(et) is convex on (0,∞) and ϕ(0) := limt→0+ ϕ(t) = 0, we have

k∑

i=1

ϕ(|λi(A)|2) 6
k∑

i=1

ϕ(si(A)
2) (B.5)

for every 1 6 k 6 n. In particular, with ϕ(t) = tr/2, r > 0, and k = n, we obtain

n∑

k=1

|λk(A)|r 6
n∑

k=1

sk(A)
r . (B.6)
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Lemma B.6 (Schatten bound [55, proof of Theorem 3.32]). Let A be an n × n complex matrix
with rows R1, . . . , Rn. Then for every 0 < r 6 2,

n∑

k=1

sk(A)
r 6

n∑

k=1

‖Rk‖r2. (B.7)

Appendix C. Additional lemmas

We begin with a lemma on truncated moments. We skip the proof since it follows from an
adaptation of the proof in the real case given by e.g. Feller [23, Theorem VIII.9.2].

Lemma C.1 (Truncated moments). If (H1) holds then for every p > α,

E
[
|X11|p1{|X11|6t}

]
∼ c(p)L(t)tp−α

where c(p) := α/(p− α). In particular, we have

E
[
|X11|p1{|X11|6an}

]
∼ c(p)

apn
n
.

We end up this section by a result on the concentration of the spectral measure of Hermitian or
Hermitized random matrices, mentioned in [13]. The total variation norm of f : R → R is

‖f‖TV := sup
∑

k∈Z

|f(xk+1)− f(xk)|,

where the supremum runs over all sequences (xk)k∈Z such that xk+1 > xk for any k ∈ Z. If
f = 1(−∞,s] for some real s then ‖f‖TV = 1, while if f has a derivative in L1(R), we get

‖f‖TV =

∫

R

|f ′(t)| dt.

The following lemma comes with remarkably weak assumptions, and allows to deduce the al-
most sure weak convergence of empirical spectral measures of random matrices without any mo-
ment assumptions on the entries. We discovered that this lemma was obtained independently by
Guntuboyina and Leeb in [30], where they discuss the relationships with more classical results.

Lemma C.2 (Concentration for spectral measures). Let H be an n×n random Hermitian matrix.
Let us assume that the vectors (Hi)16i6n, where Hi := (Hij)16j6i ∈ Ci, are independent. Then
for any f : R → R going to 0 at ±∞ and such that ‖f‖TV 6 1 and every t > 0,

P

(∣∣∣∣
∫
f dµH − E

∫
f dµH

∣∣∣∣ > t
)
6 2 exp

(
−nt

2

2

)
.

Similarly, if M is an n × n complex random matrix with independent rows (or with independent
columns) then for any f : R+ → R going to 0 at +∞ with ‖f‖TV 6 1 and every t > 0,

P

(∣∣∣∣
∫
f dνM − E

∫
f dνM

∣∣∣∣ > t
)
6 2 exp

(
−2nt2

)
.

Proof. We prove only the Hermitian version, the non-Hermitian version being entirely similar.
Let us start by showing that for every n × n deterministic Hermitian matrices A and B and any
measurable function f with ‖f‖TV = 1,

∣∣∣∣
∫
f dµA −

∫
f dµB

∣∣∣∣ 6
rank(A−B)

n
. (C.1)

Indeed, it is well known (follows from interlacing, see e.g. [51] or [5, Theorem 11.42]) that

‖FA − FB‖∞ 6
rank(A−B)

n
where FA and FB are the cumulative distribution functions of µA and µB respectively. Now if f
is smooth, we get, by integrating by parts,

∣∣∣∣
∫
f dµA −

∫
f dµB

∣∣∣∣ =
∣∣∣∣
∫

R

f ′(t)FA(t) dt−
∫

R

f ′(t)FB(t) dt

∣∣∣∣ 6
rank(A−B)

n

∫

R

|f ′(t)| dt,

and since the left hand side depends on at most 2n points, we get (C.1) by approximating f by
smooth functions. Next, for any x = (x1, . . . , xn) ∈ X := {(xi)16i6n : xi ∈ Ci−1 ×R}, let H(x) be
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the n×n Hermitian matrix given by H(x)ij := xi,j for 1 6 j 6 i 6 n. We have µH = µH(H1,...,Hn).

For all x ∈ X and x′i ∈ Ci−1 × R, the matrix

H(x1, . . . , xi−1, xi, xi+1, . . . , xn)−H(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)

has only the i-th row and column possibly different from 0, and thus

rank(H(x1, . . . , xi−1, xi, xi+1, . . . , xn)−H(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)) 6 2.

Therefore from C.1, we obtain, for every f : R → R with ‖f‖TV 6 1,
∣∣∣∣
∫
f dµH(x1,...,xi−1,xi,xi+1,...,xn) −

∫
f dµH(x1,...,xi−1,x′

i,xi+1,...,xn)

∣∣∣∣ 6
2

n
.

The desired result follows now from the Azuma–Hoeffding inequality, see e.g. [38, Lemma 1.2]. �
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