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HÉLÉNE BROGNIEZ

Laboratoire Atmosphères, Milieux, Observations Spatiales/IPSL/CNRS, Paris, France

CATHERINE PRIGENT

Laboratoire de l’Etude du Rayonnement et de la Matière en Astrophysique, CNRS, Observatoire

de Paris, Paris, France

(Manuscript received 10 November 2009, in final form 18 May 2010)

ABSTRACT

Retrieval schemes often use two important components: 1) a radiative transfer model (RTM) inside the

retrieval procedure or to construct the learning dataset for the training of the statistical retrieval algorithms

and 2) a numerical weather prediction (NWP) model to provide a first guess or, again, to construct a learning

dataset. This is particularly true in operational centers. As a consequence, any physical retrieval or similar

method is limited by inaccuracies in the RTM and NWP models on which it is based. In this paper, a method

for partially compensating for these errors as part of the sensor calibration is presented and evaluated. In

general, RTM/NWP errors are minimized as best as possible prior to the training of the retrieval method, and

then tolerated. The proposed method reduces these unknown and generally nonlinear residual errors by

training a separate preprocessing neural network (NN) to produce calibrated radiances from real satel-

lite data that approximate those radiances produced by the ‘‘flawed’’ NWP and RTM models. The final

‘‘compensated/flawed’’ retrieval assures better internal consistency of the retrieval procedure and then produces

more accurate results. To the authors’ knowledge, this type of NN model has not been used yet for this purpose.

The calibration approach is illustrated here on one particular application: the retrieval of atmospheric water

vapor from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and the

Humidity Sounder for Brazil (HSB) measurements for nonprecipitating scenes, over land and ocean. Before

being inverted, the real observations are ‘‘projected’’ into the space of the RTM simulation space from which

the retrieval is designed. Validation of results is performed with radiosonde measurements and NWP analysis

departures. This study shows that the NN calibration of the AMSR-E/HSB observations improves water vapor

inversion, over ocean and land, for both clear and cloudy situations. The NN calibration is efficient and very

general, being applicable to a large variety of problems. The nonlinearity of the NN allows for the calibration

procedure to be state dependent and adaptable to specific cases (e.g., the same correction will not be applied to

medium-range measurement and to extreme conditions). Its multivariate nature allows for a full exploitation of

the complex correlation structure among the instrument channels, making the calibration of each single channel

more robust. The procedure would make it possible to project the satellite observations in a reference obser-

vational space defined by radiosonde measurements, RTM simulations, or other instrument observational space.
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1. Introduction

In the context of satellite remote sensing, calibration

often refers to the quantification and the adjustment of the

instrument responses to known signals that are traceable

to agreed standard. This is a very general definition: one

dataset is transformed so that it becomes closer, in some

sense that needs to be specified, to a reference dataset.

This definition covers a large ensemble of applications: to

adjust the response of an instrument, to correct the in-

strument’s drift over time, or to intercalibrate multiple

instruments. This paper concentrates on the ‘‘inversion

for calibration,’’ which deals with the transformation of

the satellite observations to improve the retrieval process.

However, the methodology presented in this study is very

general and this introduction mentions various aspects of

calibration.

A reliable instrument calibration is a prerequisite for

any retrieval scheme. The calibration has to be stable

over a long time period and free from any biases. This is

a difficult task because the satellite observations can be

polluted by an instrument drift plus a legitimate clima-

tological trend. Colton and Poe (1999) performed sig-

nificant intercalibration work on the series of Special

Sensor Microwave Imager (SSM/I) microwave instru-

ments. Even if only one type of instrument is involved,

satellite drift within the lifespan of one given satellite

and satellite intercalibration between successive satel-

lites of the same family can be very difficult to achieve.

The analysis of the Normalized Difference Vegetation

Index (NDVI) from the Advanced Very High Resolu-

tion Radiometer (AVHRR) over long time series suf-

fers from these difficulties (Gutman 1999). In addition,

when trying to cover the whole globe and the full diurnal

cycle, the simultaneous use of several satellite types is

necessary and stringent constraints are then imposed on

the satellite intercalibration. For instance, the Inter-

national Satellite Cloud Climatology Project (ISCCP;

Rossow and Schiffer 1999), which supplies global cloud

information every 3 h, combines all the visible and in-

frared observations from the National Oceanic and At-

mospheric Administration (NOAA) polar orbiters and

the geostationary satellites to provide both the spatial and

temporal coverages. A huge effort has been dedicated to

the accurate radiance calibration and intercalibration of

all the instruments over the long time series to produce the

ISCCP results (Brest et al. 1997). Another example is

provided by the long-term study of the upper-tropospheric

humidity variability estimated from measurements de-

rived from geostationary satellites such as the Meteosat

series. For this purpose, it is necessary to correct for the

heterogeneities induced by 1) the successive radiome-

ters with slightly different filter functions and 2) the

improvement of the vicarious calibration techniques

used by the European Organisation for the Exploitation

of Meteorological Satellites (EUMETSAT; Picon et al.

2003; Brogniez et al. 2006).

In addition to a detailed and systematic analysis of

each sensor calibration from an engineering point of

view, various methodologies have to be developed to

calibrate the satellite observations in order to improve

the retrievals. For example, if multiparameter retrievals

are performed using multiple satellite observations, the

calibration of the instruments needs to be consistent at

several levels. First, the calibration has to be consistent

among the various channels of a given instrument. From

the point of view of information theory, it is not optimal

to calibrate independently the various channels (essen-

tially by monitoring the mean and standard deviation

over time or by indirect comparison with in situ mea-

surements). The covariance among channels can be ex-

ploited to perform the calibration and this potential

should be examined. At least, monitoring the interdepen-

dence among the channels can help check the calibration

quality. However, caution has to be exercised in this pro-

cedure since too stringent constraints could mask some

real extreme behavior in one channel. Second, the inter-

satellite calibration has to be performed and consistency

has to be ensured across platforms. Observations from

coincident overpasses can be compared, provided that the

measurements are performed exactly in the same condi-

tions (frequency, incidence angle, polarization). An alter-

native is to compare the retrieved products from the two

coincident satellite measurements. Rigorous statistical

comparisons of radiative transfer model (RTM) calcu-

lations and satellite observations can also be performed,

with the same assumptions for the two satellites, in or-

der to diagnose the radiance biases between instru-

ments. The retrieved products across satellites can also

be compared.

A generic calibration method that includes many of

these above aspects is under development at NOAA/

National Environmental Satellite, Data, and Informa-

tion Service (NESDIS) to intercalibrate radiometers in

the visible, infrared, and microwave (Weng et al. 2005).

It has already been applied to Microwave Sounding Unit

(MSU) (Zou et al. 2006, 2009). In the Global Precipi-

tation Mission (GPM) framework, efforts are also con-

ducted to intercalibrate the passive microwave imagers

on a common standard to ensure consistency among

precipitation products (C. Kummerow 2009, personal

communication; see http://mrain.atmos.colostate.edu/

LEVEL1C/index.html).

Having together all the satellite observations and us-

ing the same methods and data to calibrate them would

inevitably benefit the retrieval. For instance, it is worrying
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to realize that there is not one uniformly calibrated set

of the Scanning Multichannel Microwave Radiometer

(SMMR) and SSM/I observations over the full period

of satellite operation that is easily available to the user

community. A strong effort should be supported to sys-

tematically apply these new calibration approaches. The

resulting multiplatform calibrated datasets should be

easily accessible to the community: it would stimulate

the developments of the next generation of retrieval

algorithms.

Modern satellite applications are involving an increas-

ing number of measurements from various instruments

and platforms. The use of multiple sources of information

in a unique algorithm [such as in an assimilation scheme in

a numerical weather prediction (NWP) center] requires

the observations to be coherent. For example, the Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF) assimilates the satellite observations from a

large set of instruments. To assimilate all these observa-

tions, a particular calibration scheme has been developed.

However, this calibration is specifically designed for the

ECMWF assimilation scheme. The calibration is part of

the assimilation process itself: the calibration coefficients

evolve with time and space to force the agreement be-

tween the model and the satellite observations. This means

that this calibration effort cannot be directly used in other

contexts.

Any physical retrieval scheme or equivalent method

uses, explicitly or implicitly, 1) an RTM inside the retrieval

procedure (e.g., iterative inversion) or to construct the

learning dataset used to calibrate the statistical retrieval

algorithms, and 2) an NWP model to provide a first guess

or, again, to construct a learning dataset. This is particu-

larly true in operational centers. As a consequence, any

physical retrieval or similar method is limited by inaccur-

acies in the RTM and NWP models on which it is based. In

this paper, a method for partially compensating for these

errors as part of the sensor calibration is presented and

evaluated. In general RTM/NWP errors are minimized as

best as possible prior to the training of the retrieval

method, and then tolerated. The proposed method reduces

these unknown and generally nonlinear residual errors: it

trains a separate preprocessing neural network (NN) to

produce calibrated radiances from real satellite data that

approximate those radiances produced by the ‘‘flawed’’

NWP and RTM models. Having thus tuned the observed

radiances to be more consistent with the flawed training of

the retrieval method, the final ‘‘compensated/flawed’’ re-

trieval assures better internal consistency of the retrieval

procedure and produces more accurate results for those

cases that are otherwise limited by NWP and RTM errors.

In this study, a water vapor (WV) retrieval scheme is

developed for the Aqua platform using the Advanced

Microwave Scanning Radiometer for Earth Observing

System (AMSR-E) and the Humidity Sounder for Brazil

(HSB) instruments. This inversion algorithm is designed

by training an NN on a learning dataset built from RTM

simulations over one year of operational analysis from

ECMWF. For internal consistency, when used on real

satellite observations, this retrieval scheme requires the

calibration of the observations onto the space of the

RTM simulations. It will be shown that the retrieval of

WV is improved when using our calibration procedure

before the inversion algorithm is applied.

The datasets used in this study are presented in section

2. Section 3 introduces the calibration methodology and

results. The impact of the calibration procedure on a WV

retrieval algorithm is discussed in section 4. Section

5 provides a discussion on some perspectives of the

calibration methodology. Conclusions are drawn in

section 6.

2. Datasets

This study focuses on clear and nonprecipitating at-

mospheric situations over both land and ocean.

The dataset used as a ‘‘reference’’ for the projection of

the actual satellite observations could be a large sample

of in situ measurements from radiosondes. First, these

radiosondes are not uniformly distributed over the globe.

Second, they can require significant quality control and

interpolation/extrapolation work to be used as inputs to

RTM simulations. Third, the number of coincident ra-

diosondes can be limited if just few months of real ob-

servations are available, which is the case for this

experiment.

Instead, RTM simulations performed on the analysis

from the ECMWF model are used here as the reference

dataset. Such a dataset avoids the previously mentioned

limitations of the radiosondes. Furthermore, the hori-

zontal and vertical resolution of the analysis is compatible

and appropriate for climate models, which is a strong

advantage for a possible forthcoming variational assimi-

lation.

To compare real satellite observations and RTM sim-

ulations, several datasets need to be put in space/time

coincidences.

a. AMSR-E/HSB observations

The satellite measurements are composed of collo-

cated observations from two microwave radiometers

onboard the Aqua platform, AMSR-E and HSB (HSB

only operated from May 2002 to February 2003). AMSR-

E is a dual-polarized radiometer observing at 6.9, 10.7,

18.7, 23.8, 36.5, and 89 GHz. The instrument has
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a conically scanning antenna that provides multichannel

observations at a constant incidence angle of 558 across

a 1445-km swath. The spatial resolution of AMSR-E

varies from approximately 60 km at 6.9 GHz to 5 km at

89 GHz (Kawanishi et al. 2003). The HSB cross-track

sounder is a nearly identical copy of the Advanced Mi-

crowave Sounding Unit B (AMSU-B) with four moisture

sounding channels (instead of five for AMSU-B). Three

out of four are located around the strong water vapor

absorption line at 183.31 GHz (61.0, 63.0, and 67.0)

and the fourth channel is a window channel at 150 GHz

that measures part of the water vapor continuum (Lam-

brigtsen and Calheiros 2003). During one scan, HSB

samples ninety 1.18 scenes, from 249.58 to 149.58, with

a footprint size of 13.5 km at nadir. The 12 channels of

AMSR-E coupled to the four channels of HSB provide

a monitoring of the earth’s water cycle: profiles of at-

mospheric water vapor, cloud water, precipitation rate,

sea surface winds and temperature, soil moisture, snow

water equivalent, and sea ice concentration.

The collocation between AMSR-E and HSB foot-

prints assumes that for both sensors, the footprints are

coregistered. Observations for AMSR-E are extracted

from level-2A data that provide a resampling of the

nominal resolution observations into coarser-resolution

fields of view. In the present study, the chosen resolution

is 21 km. The coastal pixels are suppressed. HSB obser-

vations are taken from level-1B data (calibrated, geo-

located, and scene analyzed). The collocation method

averages all the HSB scenes that fall into each AMSR-E

elliptical footprint, at a maximum time difference of 70 s

and assuming that the information provided for each

HSB scene is concentrated at its center. The final satellite

database is composed of two full months of observations

(September 2002 and January 2003) containing the 16

collocated brightness temperatures, plus the land fraction

information provided by the HSB data.

b. ECMWF operational analyses

In addition to the satellite database described in sec-

tion 2a, a dataset of surface and atmospheric situations is

built up: they will be used by the RTM model to simulate

the satellite responses and compare them to the satellite

real observations. Hence, we use atmospheric profiles

and surface properties from the 6-hourly operational

global analyses from the Integrated Forecasting System

(IFS) of the ECMWF provided on a regular 1.1258 grid

(hereinafter referred to as the ANA database). To run

the most accurate RTM simulations, the following

information is kept: the temperature, water vapor and

ozone profiles on 21 pressure levels ranging from 1000 to

1 hPa, the cloud profiles (cloud cover and liquid and ice

water) on the 60 nominal model levels, and surface

properties (10-m horizontal wind, 2-m pressure and tem-

perature, surface temperature, convective and large-scale

precipitation, and total cloud cover).

In the following, only nonprecipitating situations are

considered to avoid possible biases in the simulation due

to the scattering of the upwelling radiation by droplets:

a threshold of 1/6 mm h21 in the precipitation fields is

adopted. Furthermore, scenes above 1000 m in altitude

are discarded to limit topography effects.

The AMSR-E/HSB observations and the ANA data-

base are collocated in time (Dt 5 3 h) and space (nearest-

neighbor, no averaging), over the 6308 latitude band.

Over the 2-month period, this results in a coincident da-

tabase of more than 1 million points over sea and land.

c. A global land surface microwave emissivity dataset

For atmospheric profiling, surface-sensitive microwave

observations are so far essentially used over ocean. Over

land, the surface emissivity is difficult to estimate: it is

usually high, limiting the contrast with the atmospheric

contribution, very variable in space, and complex to

model.

A parameterization of the land surface microwave

emissivities has been recently developed (Prigent et al.

2008). For each location and time of the year, it provides

realistic first-guess estimates of the land surface micro-

wave emissivities from 19 to 100 GHz for all scanning

conditions, incidence angles, and polarizations. It is an-

chored to climatological monthly-mean maps of the

emissivities at 19, 37, and 85 GHz, calculated from SSM/I

(Prigent et al. 1997, 2006). It is originally designed for

frequencies between 19 and 85 GHz but tests proved that

it is beneficial down to 5 GHz and up to 190 GHz. The

nominal spatial resolution of the emissivity estimates is

0.258 3 0.258. The results have been thoroughly evaluated

and the root-mean-square (RMS) errors are usually within

0.02, with the noticeable exception of snow-covered re-

gions where the high spatial and temporal variability of

the emissivity signatures are difficult to capture. A tool

based on this parameterization is under development for

the EUMETSAT NWP Satellite Application Facility

(SAF) (Aires et al. 2009, manuscript submitted to Quart

J. Roy. Meteor. Soc.). Figure 1 shows the emissivity atlas

at 85 GHz for the horizontal polarization for September

2002 at 0.258.

d. The RTTOV radiative transfer simulations

The Radiative Transfer for Television and Infrared

Observation Satellite (TIROS) Operational Vertical

Sounder (RTTOV)-9.3 RTM is used to simulate the

AMSR-E and HSB instruments. This model, originally

developed at ECMWF (Eyre 1991) and now supported

by the EUMETSAT NWP SAF (Saunders et al. 1999;
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Matricardi et al. 2001), allows for rapid simulations of

radiances for satellite infrared and microwave radiom-

eters for a given atmospheric state vector.

To compare real satellite observations and RTM sim-

ulations, RTTOV is run using all the ANA information

(section 3b) together with the surface emissivities data-

base over land (section 3c), while over ocean the emis-

sivities are computed by the Fast Emissivity Model,

version 3 (FASTEM-3; Deblonde and English 2001),

surface model. To keep the spatial variability of the land

surface emissivities (see Fig. 1), all the pixels of the 0.258

emissivity database are associated to its closest ANA

1.1258 grid point. In other words, over continental areas

one atmosphere of the ANA database is reproduced for

multiple different values of emissivities. Based on these

inputs parameters, RTTOV is used to perform simula-

tions of AMSR-E and HSB brightness temperatures

(TBs). These simulated TBs are compared with the co-

incident real observations, described in section 3a.

e. Radiosonde measurements

To check the quality of the retrievals compared to the

ECMWF analysis, the September 2002 and January

2003 radiosondes are extracted from the ECMWF op-

erational sounding archive used during the assimilation

process in the 40-yr and interim ECMWF reanalyses

(ERA-40 and ERA-Interim; Uppala et al. 2005). The

temperature and humidity measurements have been

quality-controlled in order to discard incomplete profiles

(threshold of 30 hPa for the temperature and 350 hPa for

the humidity), and a vertical extrapolation was applied up

to the top of the atmosphere (5.10–2 hPa) using a clima-

tology [R. Armante, Laboratoire de Météorologie Dy-

namique (LMD), 2008, personal communication]. Finally,

the measurements are interpolated on a fixed 40-level

pressure grid.

3. Calibration procedure and results

In this section, we present a novel approach to ‘‘cali-

brate’’ one dataset to another. The calibration can be

seen as a statistical problem: How can measurements in

one data space be transformed to become statistically

‘‘closer’’ (in a sense that needs to be specified) to an-

other data space? This definition, very general on pur-

pose, covers a large ensemble of applications.

Many statistical retrieval schemes use a statistical data-

set to calibrate their inversions. This dataset is very often

constructed using RTM simulations. Then, the inversion

algorithm should be applied to data that are coherent

with the simulations used to calibrate it: Real observa-

tions from Aqua need to be calibrated to the simulation

space so that the inversion scheme is coherent.1 For

demonstration purposes, the calibration method is ap-

plied to one particular case: the retrieval of atmospheric

WV from AMSR-E/HSB Aqua measurements.

a. NN calibration model

NNs have been widely used to perform nonlinear

transformations from one space to another, by following

some particular statistical constraints. In particular, NN

techniques have been very successful in developing com-

putationally efficient algorithms for remote sensing ap-

plications. For example, an NN algorithm is applied to

retrieve simultaneously the atmospheric temperature and

FIG. 1. Emissivity at 85 GHz (horizontal polarization) for September 2002.

1 In some contexts, it is also possible that the simulated dataset

needs to be ‘‘calibrated’’ to real observations.
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humidity atmospheric profiles at 23 fixed pressure levels

from 1000 to 1 hPa over sea using AMSU-A and -B ob-

servations (Aires and Prigent 2007). In this study, we

propose to use such NNs to calibrate satellite obser-

vations. The NN model is a classical architecture but

the use of this type of model for calibration as a pre-

processing step before inversion is, to our knowledge,

novel.

The multilayered perceptron (MLP) model (Rumelhart

et al. 1986) is the NN model that is selected here. It is

a nonlinear mapping model: given an input X, it provides

an output Y in a nonlinear way. The complexity captured

by MLPs is strongly limited in practice by the fact that

backpropagation training of NNs is nondeterministic

polynomial time (NP)-complete (Blum and Rivest 1992)

and by their need for enormous unbiased training sets as

complexity increases. As often occurs in satellite appli-

cations, the number of samples is not an issue in this

study. The limiting factor is often the information content

of the satellite observations. In our case, X is composed

of the data to be calibrated and Y represents the cali-

brated data. We illustrate the methodology using AMSR-

E/HSB observations. The dimension of inputs and out-

puts is dictated by the problem; the network architecture

is defined by the number of hidden layers and the num-

ber of neurons in the hidden layer(s). The architecture

of the NN has 16 neurons in the input layer (i.e., the 16

observed TBs), 10 neurons in the hidden layer, and 16

neurons in the output layer (i.e., the 16 calibrated TBs).

The optimization of the number of hidden neurons is

performed using a heuristic approach but the learning is

performed on a training dataset and the capacities of the

NN are tested on an independent dataset in order to

avoid overtraining/overparameterization problems.

b. Learning dataset

The NN is trained to reproduce the behavior de-

scribed by a database of samples, that is, the learning

dataset, composed of inputs Xe (i.e., the real observa-

tions TBs) and their associated outputs Ye (i.e., the

calibrated TB), for e 5 1, . . . , N, with N being the

sample’s number in the learning database. Provided that

enough samples (Xe, Ye) are available (usually the case

in satellite applications), any continuous relationship, as

complex as it is, can be represented by an MLP (Hornik

et al. 1989; Cybenko 1989).

The real AMSR-E/HSB observations from the Aqua

platform and the respective TB RT-TOV simulations

presented in section 2 constitute here the learning data-

set. The NN is designed to ‘‘project’’ or calibrate the ac-

tual real Aqua observations into the space of the RTTOV

simulations.

The quality of the learning dataset is essential for the

final NN performance. The learning dataset includes

some sources of errors that need to be mentioned:

d errors of the ECMWF analysis (geophysical variables

at the surface or the atmosphere from the analysis can

have errors that impact the RTM simulations),
d coincidence errors in time and space between ECMWF

analysis and real satellite observations,
d errors due to the difference on the spatial resolution of

the analysis and satellite data, and
d imperfections of the RTM code resulting in systematic

bias or RMS errors.

The goal of the calibration procedure is to reduce the

NWP and RTM errors (e.g., bias, range of variability,

structure, saturations) inside the calibration procedure,

but it should be kept in mind that other sources of dis-

crepancies are still present in the learning database and

that the calibration procedure cannot suppress them by

building a perfect bridge between real and simulated

satellite TBs.

Four NNs have been derived, for cloud-free and

cloudy situations, and for land and ocean scenes. The

cloud flag is derived from the ECMWF reanalysis.2 We

are aware of the uncertainty with this variable, but it

nevertheless makes it possible to separate the analysis in

two broad classes, with different sensitivities to the pa-

rameters. For the learning of these NNs, four different

learning databases have been constructed:

d cloud-free-over-ocean scenes (CF/O),
d cloud-free-over-land scenes (CF/L),
d cloudy-over-ocean scenes (CL/O), and
d cloudy-over-land scenes (CL/L).

Each one of these four learning datasets includes about

100 000 situations, which is largely sufficient to train the

four respective NNs. Two particular months of data have

been used to generate these learning databases (section

2), but in an operational context the learning dataset

could be regularly updated with the most recent satellite

observations. In this way, the calibration procedure

would become adaptive, which means that its properties

evolve in real time.

c. Comparison of real and simulated satellite
observations

The first measure of discrepancies between two data-

sets is the bias (i.e., the systematic difference of the two

datasets). This bias can be a very important problem if

the retrieval scheme uses the absolute values of the

2 Tests are under way to develop a cloud classification scheme

based on the MW satellite observations.
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observations. If only relative values are required, then it

is not a problem. There is generally some bias between

real and simulated satellite observations. Good statisti-

cal samples allow for the estimation of these systematic

differences. These biases are given in Table 1. The sup-

pression of these biases from the real observations is the

first stage of the calibration procedure introduced in this

paper. Bigger errors seem to be related to the surface,

especially for horizontally polarized channels that have

a larger variability of their emissivities. We can also note

that the larger errors occur below 18 GHz for channels

where we had to interpolate the surface emissivity (see

section 2c).

The RMS of the differences between simulated TBs

and calibrated or noncalibrated real observations are

represented in Fig. 2 for the four configurations (CF/O,

CF/L, CL/O, and CL/L). All the situations where the

difference between the simulated and observed TBs is

larger than 40 K are filtered out: these situations likely

correspond to nonfiltered precipitating scenes (section

3b). The impact of the calibration can be directly mea-

sured by comparing the solid (calibrated) and dashed

(noncalibrated) lines. It is interesting to see that the cali-

bration often reduces the discrepancies between simulated

and observed satellite measurements by a few kelvins.

This is true for land scenes, for both cloud-free and cloudy

situations, and for all channels for both AMSR-E and

HSB instruments. For ocean scenes, the improvement is

also significant for cloud-free and cloudy situations, except

for 18.7 and 23.8 GHz for clear scenes, where the impact is

slightly negative.

Other statistical results were analyzed (not shown) to

check the quality of the calibration: 1) error distribu-

tions are less spread when using the calibrated data, 2)

correlation levels between channels are only slightly

increased when the observations are calibrated, and 3)

the scatterplots of differences showed that the quality of

the calibration procedure is satisfactory for all ranges of

brightness temperatures.

In Fig. 3, maps of RMS errors are represented for

differences between simulations and the (left) raw or

(right) calibrated observations. Statistics are performed

over the two months of data (see section 3b) for (top)

HSB channel 183.31 6 1 GHz and (bottom) AMSR-E

channel 18.7 GHz, horizontal polarization. This figure

includes the four separate configurations that the cali-

bration procedure deals with: over land and ocean sur-

faces and for clear and cloudy (but nonprecipitating)

scenes. It can be seen that the errors decrease from left

to right, meaning that the calibration reduces differ-

ences between simulations and observations.

Furthermore, statistics have been performed to test

the angle dependency of these results (not shown). No

angle dependency was found, so the final calibration

procedure does not take into account the scanning angle

information.

In the following, the impact of the calibration pro-

cedure is measured on the quality of the WV retrieval.

4. Calibration impact on water vapor retrieval

The inversion scheme is not presented here thoroughly

(it will be the subject of another study). The WV inver-

sion is used only to evaluate the impact of the calibration

scheme. The quality of the WV retrievals will be assessed

on both the relative humidity and brightness temperature

spaces.

a. WV retrieval scheme

The retrieval scheme is composed of an MLP neural

network, similar to the NN described in section 3a for

the calibration. The inputs are the 16 observations from

Aqua over ocean, plus 16 microwave surface emissivity

first guesses over land. There are 44 outputs over ocean:

the 43 WV contents of the atmospheric profile layers

from the surface to the top of the atmosphere and the

surface wind speed. Over land, there are 60 outputs: the

43 WV contents plus the surface temperature and the 16

emissivities. Hence, the network architecture has 16 (32)

neurons in the input layer for the ocean (land) case. It has

44 (60) neurons in the output layer over ocean (land). The

number of neurons in the hidden layer is optimized by

TABLE 1. Bias statistics [simulations (sim) 2 real observations]

between RTTOV TB simulations and real observations from

AMSR-E and HSB on board the Aqua platform. The ECMWF

analyses are used as input for the RTM simulations. The charac-

teristics of the instrument noises are also indicated for each channel.

Freq. (GHz) Noise (K)

Bias (K) (sim 2 real obs)

Clear Cloudy

Land Ocean Land Ocean

AMSR-E 6.9 V 0.3 22.71 22.67 1.07 21.39

6.9 H 0.3 8.43 22.60 7.79 20.47

10.8 V 0.6 21.70 21.71 1.45 20.64

10.8 H 0.6 6.25 21.40 5.62 0.53

18.7 V 0.6 22.85 20.77 0.47 2.96

18.7 H 0.6 0.23 0.14 1.97 6.77

23.8 V 0.6 22.93 20.20 0.48 4.06

23.8H 0.6 20.02 0.82 2.37 8.44

36.5 V 0.6 24.78 20.63 20.88 3.70

36.5 H 0.6 21.75 21.47 1.11 7.09

89.0 V 1.1 27.00 22.60 24.21 0.24

89.0 H 1.1 25.27 26.00 22.81 2.39

HSB 150.0 1.0 24.00 21.57 22.16 0.15

183.311 6 1 1.0 21.13 21.13 0.14 20.41

183.311 6 3 1.0 20.75 20.72 1.30 0.11

183.311 6 7 1.2 20.83 20.20 21.85 21.11
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trial and error and finally set to 30. As for the calibration

procedure, four NNs have been derived, for cloud-free

and cloudy situations and for land and ocean scenes.

In this study, no a priori information on the WV profile

is used by the retrieval. It would be possible to use a priori

information in an NN retrieval scheme (Aires et al. 2001),

but the ANA WV is already very good because all the

satellite observations available in the NWP centers and

all the radiosondes from the Global Transmission System

have been assimilated. By using WV a priori information

in the retrieval scheme, it would have been difficult to

measure the information content of the actual satellite

observations.

To train the NN, two strategies could be used:

d The training could be performed on a learning data-

base composed of real Aqua observations and collo-

cated WV profiles from ECMWF analysis. This type of

scheme is said to be an ‘‘empirical’’ inversion because

no RTM is used to solve the inverse problem.
d The inversion can also be trained on a learning data-

base composed of the same WV profiles from ECMWF

analysis, but with Aqua satellite observations (from

AMSR-E and HSB instruments) simulated by a RTM

coupled to atmospheric profiles instead of real obser-

vations directly. This type of inversion is said to be

a ‘‘physical’’ inversion.

The scheme in Fig. 4 illustrates these two options. The first

approach involves only one transformation of the real

observations: It mixes the calibration and the retrieval in

a unique procedure. The second approach explicitly in-

volves two transformations, namely the calibration of the

data and the actual retrieval. Both methods could lead to

similar results, but the second one is preferred here for

multiple reasons. First, it is always a good idea to control

the quality, defaults, and uncertainties associated with

each step of a processing chain. Knowing the difficulties

provides ways of improvement and defines the applica-

tion limit of the method. Second, if the instruments

evolve with time, the calibration also needs to evolve. It

is simpler to have this calibration changing over time

independently of the nonevolving retrieval step. Finally,

this calibration technique for satellite data is very general

FIG. 2. RMS differences between observed and calibrated data for AMSR-E and HSB channels. Four cases are

considered: (top) cloud free and (bottom) cloudy without precipitation, for (left) ocean and (right) land scenes. The

solid and dashed lines correspond to the RMS difference when using calibrated and noncalibrated TBs, respectively.
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and shows the potential of the technique for very differ-

ent applications.

The learning dataset is composed of atmospheric situ-

ations sampled over one year of ECMWF analysis (sec-

tion 2b), and all the variables necessary to feed a RTM are

kept. The RTTOV model (section 2d) is used to simulate

satellite observations at AMSR-E and HSB frequencies.

The instrument noise of the Aqua instruments (Table 1) is

taken into account in the training process.

b. Evaluation of the calibration

Two general retrieval strategies are generally con-

sidered: the so-called empirical retrieval schemes have

a ‘‘learning’’ dataset of coincident satellite measure-

ments and realistic WV profiles. In this case, no RTM is

involved and a statistical procedure is used to model the

link between the observations and the WV. The second

type of retrieval scheme uses a RTM; this is the ap-

proach adopted in this paper. Empirical retrieval

schemes can be used if no RTM is satisfactory or if the

dataset of geophysical variables (i.e., the WV profile) is

particularly good. On the contrary, the physical retrieval

schemes rely on the RTM ability to simulate realistic

satellite observations.

In empirical retrieval schemes, the inversion algo-

rithm has to retrieve WV profiles as close as possible to

the realistic WV profiles included in the learning data-

set. With physical algorithms, the inversion algorithm

has to estimate WV profiles that, when used as RTM

input, provide simulated satellite observations that are

as close as possible to the actual real observations. As

a consequence, it is important for the ‘‘physical’’ re-

trieval scheme presented in this study to check the re-

trievals in the space of the WV profiles (comparisons

with ECMWF analysis and radiosondes) but, most im-

portantly, to test them also in the space of the satellite

observations themselves.

1) DEPARTURE FROM THE ECMWF ANALYSES

Figure 5 represents the RMS of the departure of the

retrieval from the ECMWF analysis, over the two months

over the tropics and for six atmospheric layers.3 Calibration

FIG. 3. RMS error maps computed over two months for differences between RTTOV simulations and (left) real

Aqua observations and (right) calibrated Aqua observations for (top) an HSB channel at 183.31 6 1 GHz and

(bottom) an AMSR-E channel at 18.7 GHz, vertically polarized.

3 It has been explained previously that the WV retrieval was

performed on 43 atmospheric layers. AMSR-E and HSB in-

struments cannot provide such high vertical resolution. The choice

of retrieving the WV profile on that many atmospheric layers was

made for practical considerations: In particular, it allows for direct

RTTOV simulations on the WV profile. However, the actual real

retrieval of our inversion scheme is defined on six thicker layers

delimited by the surface, 920, 750, 560, 400, 250 hPa, and the top of

the atmosphere. This choice has been analyzed and optimized to

limit the retrieval errors in the atmospheric layers.
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seems to degrade the statistics over ocean above 600 mb;

the explanation for this behavior is that relative humidity

becomes small at these levels and that the information

content is very limited since weighting functions do not

reach these altitudes. However, these departures cannot

be directly considered as errors because it cannot be said

a priori which one is the closest to reality: even if the

ECMWF analysis is of good quality, the Aqua retrieval

can be closer to reality at the higher spatial resolution

of the satellite. The purpose of this figure is to show

that the retrieval from calibrated data is closer to the

ANA data than the retrieval without calibration, for most

atmospheric layers. This is especially true in the lower

atmosphere for the clear-sky situations over land. These

results are not a proof that the retrieval is good but do

show that the calibration procedure helps the retrieval of

the WV profiles.

2) COMPARISON WITH RADIOSONDES

To measure the impact of the calibration on the quality

of the WV scheme, the retrievals based on raw and cali-

brated Aqua observations are compared to about 500

radiosonde measurements, over land. Figure 6 represents

the RMS differences. It is clear in this figure that the re-

trievals from calibrated Aqua observations (solid lines)

are closer to radiosondes than the retrievals from raw

Aqua observations (dot–dashed lines). This is particularly

true for the lower atmospheric layers (from 750 hPa

down to the surface), with a decrease of the error of 5%

close to the surface, which represents 1/4 of the error un-

der clear-sky conditions. This figure illustrates the main

point of this paper: the calibration of the observations

helps when the NWP/RTM models have errors and when

satellite observations do add information.

The agreement between retrieved WV profiles and

radiosondes is comparable to the agreement between

the ANA and radiosondes (not shown). The statistics on

the latter are slightly better, which is understandable

since the ECMWF analysis assimilates the radiosondes.

c. Brightness temperature comparisons between
retrievals from raw and calibrated data

It has been noted in the introduction of section 4b that

for ‘‘physical’’ retrieval schemes, the quality criterion of

the inversion process is based on the difference between

the actual observations and RTM simulations. This qual-

ity criterion should be improved when the first guess or the

a priori information on the state of the atmosphere is re-

placed by the retrieval. As a consequence, it is very natural

to test the quality of a retrieval by checking the differences

between RTM simulations and actual satellite observa-

tions. If the retrieval process degrades these statistics, the

inversion has not improved the a priori or has mathe-

matically diverged and failed to perform the retrieval.

The procedure used to validate the retrievals in the

satellite observation space is described in Fig. 7, and the

meaning of each component in this validation scheme is

provided in Table 2. The observations (Fig. 7, top) can

be directly inverted, INV(obs) (Fig. 7, left), or they can

be calibrated and then inverted, INV[CAL(obs)] (Fig. 7,

middle). All the geophysical variables retrieved by the

inversion scheme described in section 4a are used as

inputs for the RTM (i.e., RTTOV): the WV profile but

also the surface temperature and emissivities over land,

and the wind at the surface over ocean. The RTM sim-

ulations are performed on the noncalibrated inversions,

RT[INV(obs)] (Fig. 7, left), or on the calibrated in-

versions, RTfINV[CAL(obs)]g (Fig. 7, middle). The

RTM simulations are also performed using the raw

ECMWF analysis (Fig. 7, right). The differences be-

tween the simulations on the analysis and the RTM

simulations on inversions appear uniquely in the pa-

rameters that the inversion scheme retrieves, with all

other parameters remaining identical. Comparisons in

the TB space are represented in this scheme by colors

(as in Fig. 8; see explanation directly below). Compari-

sons can be made between the three RTM simulations

(Fig. 7, bottom) and the observations or the calibrated

observations.

FIG. 4. Schematic representation of the observations, simulated

TBs, and geophysical spaces together with the various links/

relationships investigated in this study. Two strategies can be used

to perform the WV retrieval from the ‘‘TB Obs’’ space to the

‘‘Geophysical variable’’ space. The first is a ‘‘Total Retrieval NN’’

(dotted arrows) that performs at the same time the calibration and

the retrieval. In this case, the TB Obs and the analysis are put in

coincidence and this dataset is used to train the retrieval scheme. In

the second case—see the two NNs (dashed arrows) with an in-

termediate step in the ‘‘TB Simul’’ space—an NN calibration is

trained to link TB Obs and TB Simul: the learning dataset is con-

stituted of the coincidence of real observations, TB Obs, and

simulations performed in the analysis, TB Simul. The second NN

links the TB Simul to the Analysis; this is a classical retrieval

trained on a synthetic dataset. The RTM arrow represents the re-

lationship TB Simul 5 RTM(Analysis).
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Figure 8 represents the RMS errors between RTM

simulations and satellite observations (calibrated or

not). The four configurations are considered: cloud free

over ocean scenes, cloud free over land scenes, cloudy

over ocean scenes, and cloudy over land scenes. The

different colored curves are explained here:

Green curve 5 RMS RT(ana) 2 obs: ‘‘distance’’ be-

tween the analysis and the satellite observations.

Any improvement relative to this curve means that

the retrievals improve the analysis by getting closer

to the satellite observations.

Purple curve 5 RMS RT[INV(obs)] 2 CAL(obs):

quality of the retrieval when using noncalibrated

data for the inversion.

Red curve 5 RMS RT(ana) 2 CAL(obs): level of

agreement between the analysis and the satellite

observations. It is legitimate to compare the TB

simulations with calibrated observations because

the calibration procedure has been designed based

on these analyses. As a consequence, the agreement

is always improved relative to the comparison with

raw observations (i.e., green curve).

Blue curve 5 RMS RT[INV(obs)] 2 obs: remaining

discrepancies when the retrieval is performed

on noncalibrated observations. This statistic is

represented here to allow for comparisons of

third-party retrieval statistics using no calibration

procedure.

Black curve 5 RMS RTfINV[CAL(obs)]g 2 CAL

(obs): internal coherency of the retrieval scheme

(including the calibration step). The whole inversion

process consists of minimizing their sum over the

channels.

Dealing with all these statistics can be confusing, but the

comparison of these curves allows us to measure different

quantities. For example, the comparison of the green and

purple curves shows that even if no calibration is used, the

inversion process globally improves the analysis.

When the purple and the black curves are compared,

the calibrated observations are chosen as the reference.

This makes sense because we are using a physical re-

trieval scheme and the inherent assumption is that the

RTM is reliable. The comparison of these two curves

measures the direct impact of the calibration on the quality

of the retrievals. The differences can reach a few degrees

and are highly significant for the four configurations and

all channels, especially the channels with large errors

before calibration. For several channels, most of them in

H polarization, the RMS error is divided by 2 or more.

The comparison of the blue and black curves esti-

mates the improvement offered by the proposed cali-

bration step when correcting systematic RTM and NWP

FIG. 5. RMS relative humidity departure of the ECMWF analysis and the retrieval from raw

(dotted) and calibrated (solid) Aqua observations for cloud free/land (black), cloudy/land

(green), cloud free/ocean (red), and cloudy/ocean (blue) configurations.
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errors. It shows that the retrieval scheme is much more

coherent when performed in the calibrated data space

than in the direct observation space. This means that the

mathematical process of the inversion is more robust in

the ‘‘regularized’’ space of the calibrated satellite ob-

servations space.4

The difference between the black and red curves

demonstrates that the analysis has been improved, even

in the space of the calibrated satellite observations. It is

legitimate to do this comparison on the calibration data

space because the calibration process has been trained

on the analysis; in a similar way, it helps the analysis and

the retrievals. This improvement would also be observed

if compared with direct noncalibrated observations (not

shown).

5. Discussion

For purposes of clarity, it is helpful to return to the

definition and the goal of the calibration in this study.

Calibration of a satellite instrument means quantifying

its responses to known signals that are traceable to

agreed standards. This is based on the assumption that

the standard is stable and more reliable than the satellite

instrument. However, in the context of this paper, it is

arguable whether the agreed ‘‘reference’’ dataset, the

ECMWF analysis with RTTOV simulations, is any

better known than what the satellite responses to signals

are. In fact, the satellite instrument calibration today has

accuracies better than 1 K, so the large biases between

observations and simulations presented in Table 1 can-

not be totally attributable to satellite observations; some

is due to errors in the NWP and RTM models. It should

be clear here that the goal of the NN calibration pro-

cedure is not to perform an absolute calibration of the

Aqua instruments. The goal is to compensate for these

NWP and RTM model errors as a preprocessing step

before the retrievals. It has been shown in previous

sections that the use of the NN calibration procedure

improves the inversions.

This preprocessing approach competes with methods

that train a single retrieval NN to match observed radi-

ances to a real-time NWP model. The proposed two-step

NN method is important primarily when an operational

NWP model used for training and operations is effec-

tively less accurate than the offline NWP model used for

FIG. 6. RMS differences in relative humidity between a collection of radiosonde measure-

ments and coincident retrievals from raw (dot–dashed) and calibrated (solid) Aqua observa-

tions. These statistics are performed over land for clear (gray) and cloudy (black) scenes over

two months over the tropics.

4 The inversion of satellite observations is often an ill-posed

problem, and many mathematical techniques tend to regularize the

problem. Transforming the input or output data by ‘‘projecting’’

them in spaces where the inversion is better constrained is a clas-

sical approach (Tarantola 1987).
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training because of real-time misalignment of data in

space or time or unknown surfaces. Misalignment errors,

for example, include those associated with rapidly mov-

ing sharp water vapor fronts.

The main limit to the NN calibration procedure pre-

sented here is that NWP and RTM errors often vary in

time and space in complex ways. The NN approach is

nonlinear and its behavior is state dependent but the

errors might not be fully revealed by the raw radiances

only. This suggests that one way to improve the method

is to include, as input with the raw radiances, all avail-

able relevant prior information that does not compro-

mise the result (e.g., scan angle, season, latitude, surface

type, elevation), provided that the training dataset is

sufficiently large that the enlarged network does not

become unstable. This will be the subject of forthcoming

developments.

The proposed calibration procedure for inversion us-

ing an NN model is very general and could be used for

various calibration problems related to remote sensing

applications. For example, the method can place data

from multiple satellites on a single footing. First, the

‘‘reference’’ dataset on which the raw observations are

‘‘projected’’ can be, again, RTM simulations on NWP

analysis. In this approach, the calibration will benefit

directly any retrieval scheme that is based on the NWP

and RTM models. The instruments can be different,

with different observing channel characteristics. Second,

the reference dataset can also be one of the instrument

raw observations. This approach would necessitate put-

ting into spatiotemporal coincidence the two sets of ob-

servations: the NWP 1 RTM errors would not factor into

this configuration, but coincidence errors would be in-

troduced. This scheme is particularly appropriate for

cases in which the instruments have similar characteris-

tics: the instruments can have slightly different charac-

teristics, but in this case the calibration could operate only

on the common information content part of the obser-

vations.

Another application of the proposed NN scheme is

the time calibration of satellite measurements to limit

instrument drift. As always, a reference dataset needs to

be defined. Again, the first solution is that it can be based

on NWP analysis, but only if the instrument observa-

tions have not been assimilated in the analysis. In the

second solution, the reference data can also be an en-

semble of RTM simulations performed on radiosonde

measurements. In this case, the radiosonde ensemble

must be diversified (e.g., air mass, latitude, surface type,

viewing angle of the satellite observations in coincidence)

with a quite constant measurement network over time.

This is a true challenge, of course. An adaptive training

algorithm based on these evolving radiosonde measure-

ments can be employed to modify over time the behavior

of the NN calibration scheme in order to obtain a time-

drift correction. When a retrieval algorithm is developed,

it is often validated using radiosonde measurements. Sig-

nificant bias between retrievals and the in situ measure-

ments can be observed and a calibration method can be

used as a postprocessing step to reduce them. The NN

calibration procedure proposed in this study can also be

used in this context and will benefit, again, from its mul-

tivariate and nonlinear capacities.

TABLE 2. Explanation of the data components used in the TB space validation: CAL is calibration, INV is inversion (i.e., RTM21), RT is

radiative transfer, and ANA is the ECMWF analysis.

Name used in the text Processing chain Description

Obs . . . Raw observation

CAL(obs) obsCAL
/

. . . Calibrated observations

INV(obs) obsINV
/

. . . Retrieval performed on raw (observations)

INV[CAL(obs)] obsCAL
/

. . . INV
/

. . . Retrieval performed on calibrated (observations)

RT[INV(obs)] obsINV
/

. . . RT
/

. . . Radiative transfer done on INV(obs)

RTfINV[CAL(obs)]g obsCAL
/

. . . INV
/

. . . RT
/

. . . Radiative transfer done on fINV[CAL(obs)]g
RT(ana) anaRT

/
. . . Radiative transfer done on NWP(analysis)

FIG. 7. Validation scheme for TB space. Processes are repre-

sented with thick and dashed black arrows; comparisons of the TB

space are represented with double arrows (colors are as in Fig. 8).
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The NN calibration methodology can also be used to

compensate for failing channels. Let m be the number of

channels in the instrument. For each missing channel,

an NN calibration model can be trained from the initial

(m 2 1)-dimensional space of raw channels to the m-

dimensional space of calibrated channels. These m models

perform a spectral interpolation to generate a synthetic

measurement that can replace the failing channel. This is

possible because there are strong correlations among the

observing channels. This very simple scheme would allow

the use of an already implemented retrieval algorithm

without any significant modification.

6. Conclusions

In this paper, a novel calibration procedure based on

neural networks is presented. This NN calibration is

satisfactory: it reduces the differences between observed

and simulated TBs and, as a consequence, the retrieval

scheme performs better on the calibrated observations.

An experiment has been conducted on real AMSR-E/

HSB observations on board the Aqua platform: the re-

trieval of WV has been improved by the use of the cal-

ibration scheme. This test also illustrated two additional

important facts:

1) It is now possible to simulate quite realistically sat-

ellite observations over continental surfaces, and

retrieval can performed well over land when realistic

surface emissivities are adopted (Aires et al. 2001;

Karbou et al. 2005); and

2) The presence of nonprecipitating clouds can be ad-

equately accounted for in the retrieval process

(Chevallier and Bauer 2003).

This calibration procedure is very general and could

be used in different contexts such as

d to intercalibrate instruments from different platforms

(e.g., for satellite constellations such as the Global

Precipitation Measurement missions),

FIG. 8. RMS differences between RTM simulations and calibrated (or noncalibrated) real observations. The

RMS errors are for RT(ana) 2 obs (green), RT[INV(obs)] 2 CAL(obs) (purple), RT(ana) 2 CAL(obs) (red),

RT[INV(obs)] 2 obs (blue), and RTfINV[CAL(obs)]g 2 CAL(obs) (black). See the text and Table 2 for

explanations.

DECEMBER 2010 A I R E S E T A L . 2471

D
ow

nloaded from
 http://journals.am

etsoc.org/jam
c/article-pdf/49/12/2458/3554193/2010jam

c2435_1.pdf by guest on 20 N
ovem

ber 2020



d to calibrate retrieval products toward in situ mea-

surements, and
d to perform adaptive calibration to reduce the impact

of instrument drifts during their lifetime.

The methodology can also be used as an attractive and

efficient way to solve the problem of a failing channel:

The calibration model performs a spectral interpolation

to generate a synthetic channel measurement that can

replace the failing measurement, allowing the use of an

already implemented retrieval algorithm without any

significant modification.

The perspectives of this work are to extend the cali-

bration process to other satellites, in particular for the

AMSU-A, AMSU-B, and MHS instruments on board the

MetOp platform or the Saphir and Madras instruments

on board the Megha-Tropiques mission. These calibra-

tion procedures have been developed to build retrieval

chains for these platforms. We would also like to test the

addition of external information in the scheme, such as

surface type or air mass.
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