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7 rue René-Descartes, 67084 STRASBOURG CEDEX

heinkel@math.unistra.fr

June 8, 2010

Abstract

We characterize Banach spaces B of stable-type p (1 < p < 2) by
the property that for every sequence (Xi) of B-valued random variables,
independent, centered and fulfilling some integrability assumption, the

sequence
(

X1+···+Xn

n1/p

)

is a quasimartingale.
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1 Introduction

“How to characterize the regularity of a Banach space (B, ‖ · ‖) by the fact
that a kind of classical strong law of large numbers (SLLN) holds for B-valued
random variables (r.v.)?” is a well know problem. Two kinds of regular Banach
spaces – the spaces of Rademacher type p and the spaces of stable type p –
have been nicely characterized in that way (see chapter 9 in [3]).

Here our goal will be to show that the SLLN characterization of spaces of
stable type p (1 < p < 2) can be made more precise in supposing that the
“normalized sums” obeying the SLLN have even a quasimartingale behaviour.

To begin with, we recall some definitions.
In the sequel, (B, ‖ ·‖) will be a real separable Banach space, equipped with

its Borel σ-field B. A B-valued r.v. X is a measurable function defined on
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a probability space (Ω, T ,P) with values in (B, B). Such a r.v. is said to be
(strongly) integrable if E‖X‖ < +∞ and ∀f ∈ B′, Ef(X) = 0; this is denoted
by E(X) = 0.

Let p > 1 be given. The weak-ℓp norm of a sequence a := (a1, . . . , an) of
real numbers is defined as follows :

‖a‖p,∞ := sup
t>0

(tp Card(i : |ai| > t))
1
p =

n
sup
k=1

a∗kk
1/p,

where (a∗1, . . . , a
∗
n) denotes the non-increasing rearrangement of the sequence

(|a1|, . . . , |an|).
Let now (εk) be a sequence of independent Rademacher random variables

(

that is P(εk = 1) = P(εk = −1) = 1
2

)

.
Rademacher type p spaces and stable type p spaces are defined as follows :

Definition 1.

1. Let 1 < p < 2. The Banach space (B, ‖ · ‖) is of Rademacher type p if
there exists a constant c(p) > 0 such that for every finite sequence (xi)
in B :

(

E

∥

∥

∥

∥

∥

n
∑

i=1

εixi

∥

∥

∥

∥

∥

p) 1
p

6 c(p)

(

n
∑

i=1

‖xi‖
p

)
1
p

.

2. Let 1 6 p 6 2. The Banach space (B, ‖ · ‖) is of stable type p if there
exists a constant C(p) > 0 such that for every finite sequence (xi) in B :

E

∥

∥

∥

∥

∥

n
∑

i=1

εixi

∥

∥

∥

∥

∥

6 C(p) ‖(‖x1‖, . . . , ‖xn‖)‖p,∞ .

Remark 2.

1. If (B, ‖ · ‖) is of stable type p, then there exists q > p, such that (B, ‖ · ‖)
is also of stable type q [5].

2. If (B, ‖ · ‖) is of stable type p, it is also of Rademacher type p [7].

3. The above definition of stable type is not the classical one (which involves
standard stable r.v.), but an equivalent statement (see for instance [3],
proposition 9.12) which will be used in our proofs.

Remark 3.

Let (B, ‖ · ‖) be a Banach space and 1 6 p 6 2. If B is of (Rademacher) type
p, there exists a constant c(p) such that for every finite sequence (Xi) with
‖Xi‖ ∈ Lp :

E

∥

∥

∥

∥

∥

n
∑

i=1

Xi

∥

∥

∥

∥

∥

p

6 c(p)

n
∑

i=1

E‖Xi‖
p. (1)
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The stable type p has been characterized in terms of Marcinkiewicz-Zygmund
like SLLN :

Theorem 4 (Maurey-Pisier [5]).
Let 1 < p < 2. The following two properties are equivalent :

1. (B, ‖ · ‖) is of stable type p.

2. For every bounded sequence (xi) in B, the sequence

(

1
n1/p

n
∑

k=1

εkxk

)

converges a.s. to 0.

Theorem 5 (Woyczynski [8]).
Let 1 < p < 2. The following two properties are equivalent :

1. (B, ‖ · ‖) is of stable type p.

2. For every sequence (Xi) of independent, strongly centered B-valued r.v.
for which there exists a nonnegative r.v. ξ with Eξp < +∞ such that :

∃c > 0, ∀t > 0, ∀i ∈ N
∗, P(‖Xi‖ > t) 6 cP(ξ > t),

the sequence
(

Sn

n1/p

)

converges a.s. to 0, where, as usual, Sn := X1+ · · ·+
Xn.

In this paper, we will prove a result in the same spirit as Woyczynski’s
result, but in which the SLLN behaviour of the sequence

(

Sn

n1/p

)

is even a
quasimartingale behaviour.

2 A quasimartingale characterization of spaces

of stable type p.

We start this section by defining the quasimartingale behaviour of
(

Sn

n1/p

)

:

Definition 6.

Let (Xk) be a sequence of independent, strongly centered (B, ‖ · ‖)-valued r.v.
Denote Sn := X1 + · · · + Xn and Fn := σ(X1, . . . ,Xn). Let p ∈]1, 2[. The
sequence

(

Sn

n1/p ,Fn

)

, or simplier
(

Sn

n1/p

)

, is a quasimartingale if :

+∞
∑

n=1

E

∥

∥

∥

∥

∥

E

(

Sn+1

(n+ 1)
1/p

−
Sn

n1/p

∣

∣

∣

∣

∣

Fn

)∥

∥

∥

∥

∥

< +∞. (2)

Remark 7.

Since the r.v. (Xk) are independent and centered, condition (2) is equivalent
to :

+∞
∑

n=1

E‖Sn‖

n1+1/p
< +∞.
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Now we are able to state our characterization of spaces of stable type p

(1 < p < 2) :

Theorem 8.

Let 1 < p < 2. The following two properties are equivalent :

1. B is a stable type p space;

2. For every sequence (Xn) of independent, strongly centered r.v., such that

∫ +∞

0

g1/p(t)dt < +∞, (3)

where
∀t > 0, g(t) := sup

n>1
P(‖Xn‖ > t),

(

Sn

n1/p

)

is a quasimartingale.

Remark 9.

1. Condition (3) is not surprising : indeed, in the i.i.d. case, it can be
written :

∫ +∞

0

P
1/p(‖X‖ > t)dt < +∞, (4)

which condition is necessary for
(

Sn

n1/p

)

being a quasimartingale in every
Banach space B (see [1], proposition 3).

2. Property (4) implies that E‖X‖p < +∞ (see [1], remark 4).

3. There exists a small class of r.v. X such that E‖X‖p < +∞ and for
which (4) does not hold (see example 1 in [1]).

So – comparing theorems 5 and 8 – one sees that the price to pay for getting
a quasimartingale behaviour for

(

Sn

n1/p

)

instead of a simple a.s. convergence to
0, is to sharpen a little bit the hypothesis Eξp < +∞ of theorem 5.

Proof.
In the sequel, ck will denote positive constants which precise value does not

matter.
Let us show the implication 1=⇒ 2.
First consider the special case where there exists M > 0 such that : ∀t >

M, g(t) = 0. Then ∀k, ‖Xk‖ 6 M a.s. The space B being of Rademacher
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type q for some q > p by comments 1) and 2) following definition 1, and using
relation (1), one has :

E‖Sn‖

n1+1/p
6

c(q)

n1+1/p

(

n
∑

k=1

E‖Xk‖
q

)
1
q

6
c(q)Mn

1
q

n1+ 1
p

and the series having general terms E‖Sn‖

n
1+ 1

p
converges.

From now we suppose that ∀t > 0, g(t) > 0.
By a classical symmetrization argument it suffices to consider the case of

symmetrically distributed r.v. (Xk). For showing that under condition (3) the

series having general term E‖Sn‖

n
1+ 1

p
converges, one will split each r.v. X1, . . . ,Xn

involved in the sum Sn into two parts Un,k and Vn,k by truncating Xk at a
suitable level vn.

For defining vn, one first notices that, g being decreasing, one has :

sup
t>0

tpg(t) 6

(∫ +∞

0

g
1
p (x)dx

)p

< +∞.

Furthermore, multiplying the Xk by a suitable constant if necessary, one
can suppose without loss of generality that :

sup
t>0

tpg(t) 6 1. (5)

Now define vn := inf
(

t > 0|g(t) 6 1
n

)

.
It follows from the definition of g and (5) that :

vn 6 n1/p and g(vn) 6
1

n
.

For every n ∈ N
∗ and k = 1, . . . , n, one considers the following centered r.v.

(by symmetry) :

Un,k := Xk1(‖Xk‖6vn) and Vn,k := Xk1(‖Xk‖>vn),

and the associated sums :

An :=

n
∑

k=1

Un,k

n1+ 1
p

and Bn :=

n
∑

k=1

Vn,k

n1+ 1
p

.

For showing that the series having general terms E‖Sn‖

n
1+ 1

p
converges, one will

show that :
+∞
∑

n=1

E‖An‖ < +∞ (6)
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and
+∞
∑

n=1

E‖Bn‖ < +∞. (7)

We first prove (6).
By remark 1. following definition 1, there exists q > p such that (B, ‖ · ‖) is

also q–stable.
Now suppose that the r.v. Xk are defined on a probability space (Ω, T ,P)

and consider (εk) a sequence of independent Rademacher r.v. defined on an-
other probability space (Ω′, T ′,P′). By symmetry, one has :

E‖An‖ =

∫

Ω

(

∫

Ω′

1

n1+ 1
p

∥

∥

∥

∥

∥

n
∑

k=1

εk(ω
′)Un,k(ω)

∥

∥

∥

∥

∥

dP′(ω′)

)

dP(ω).

By application of the definition of the stable type q, one obtains :

E‖An‖ 6
C(q)

n1+ 1
p

E (‖(‖Un,1‖, . . . , ‖Un,n‖)‖q,∞) .

For bounding the tails of the weak-ℓp norm of a sequence of positive, inde-
pendent r.v., we will use the following classical result due to Marcus Pisier
[4] :

Lemma 10.

For positive valued, independent r.v. ξ1, . . . , ξn, one has :

∀q > 1, ∀u > 0, P (‖(ξ1, . . . ξn)‖q,∞ > u) 6
2e

uq
∆(ξ1, . . . , ξn), (8)

where ∆(ξ1, . . . , ξn) = sup
t>0

(

tq
n
∑

k=1

P(ξk > t)

)

.

For simplicity, denote ∆n the quantity ∆(‖Un,1‖, . . . , ‖Un,n‖), and notice
that by application of lemma 10 :

E (‖(‖Un,1‖, . . . , ‖Un,n‖)‖q,∞) =

∫ +∞

0

P (‖(‖Un,1‖, . . . , ‖Un,n‖)‖q,∞ > u)du

6 ∆
1
q
n +

∫ +∞

∆
1
q
n

2e

uq
∆ndu

6 c2∆
1
q
n

So the proof of (6) reduces to the following lemma :

Lemma 11.
+∞
∑

n=1

∆
1
q
n

n1+ 1
p

< +∞
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Proof of lemma 11 :

One first notices that :

∆n 6 sup
t6vn

tq
n
∑

k=1

P(‖Xk‖ > t) 6 sup
t6vn

ntqg(t) 6 n

(∫ vn

0

g
1
q (u)du

)q

,

the last inequality following from the fact that g is decreasing.
For concluding the proof of lemma 11 it remains to check that the series

with general term an := 1

n
1+ 1

p
−

1
q

∫ vn
0

g
1
q (u)du converges.

First observe that :

+∞
∑

n=1

an 6

+∞
∑

n=1

1

n1+ 1
p−

1
q

n
∑

j=0

∫ vj+1

vj

g
1
q (u)du,

where v0 := 0, and then exchange the summations in n and j :

+∞
∑

n=1

an 6 c3



v1 +
+∞
∑

j=1

1

j
1
p−

1
q

(

∫ vj+1

vj

g
1
q (u)du

)



 ,

so, by the definition of vj+1 :

+∞
∑

n=1

an 6 c4

(

v1 +

∫ +∞

0

g
1
p (u)du

)

,

which concludes the proof of lemma 11.
Now we are going to prove (7).
First notice the following chain of inequalities :

E‖Bn‖ 6

n
∑

k=1

E‖Vn,k‖

n1+ 1
p

=

n
∑

k=1

∫ +∞

0

P

(

‖Vn,k‖

n1+ 1
p

> u

)

du

6

n
∑

k=1

vn

n1+ 1
p

P(‖Xk‖ > vn) +
n

n1+ 1
p

∫ +∞

vn

g(u)du

6
nvn

n1+ 1
p

g(vn) +
1

n
1
p

∫ +∞

vn

g(u)du 6
vn

n1+ 1
p

+
1

n
1
p

∫ +∞

vn

g(u)du.

Therefore, for proving (7), it suffices to check that condition (3) implies the

convergence of the two series with general terms vn

n
1+ 1

p
and 1

n
1
p

∫ +∞

vn
g(u)du.

Lemma 12.

If (3) is fulfilled, then
+∞
∑

n=1

vn

n
1+ 1

p
< +∞.
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Proof of lemma 12 :
For j ∈ N

∗, one denotes tj :=
vj+vj+1

2 . Then :

∫ +∞

0

g
1
p (u)du >

+∞
∑

j=1

∫ tj

vj

g
1
p (t)dt >

+∞
∑

j=1

1

(j + 1)
1
p

vj+1 − vj

2
. (9)

Now observe that :

n−1
∑

j=1

1

(j + 1)
1
p

(vj+1 − vj) = −
v1

2
1
p

+

n−1
∑

j=2

vj

(

1

j
1
p

−
1

(j + 1)
1
p

)

+
vn

n
1
p

(10)

As :
vn

2
g

1
p (vn) 6

∫ vn

vn
2

g
1
p (u)du,

one gets lim
n→+∞

vng
1
p (vn) = 0 and also lim

n→+∞

vn

n
1
p
= 0.

As 1

j
1
p
− 1

(j+1)
1
p
>

c5

j
1+ 1

p
, it follows from (9) and (10) that the series having

general term vn

n
1+ 1

p
converges.

For completing the proof of the implication 1=⇒ 2 of theorem 8, it remains
to check :

Lemma 13.

Under (3), one has
+∞
∑

n=1

1

n
1
p

∫ +∞

vn
g(u)du < +∞.

Proof of lemma 13.
Let us write :

α :=
+∞
∑

n=1

1

n
1
p

∫ +∞

vn

g(u)du =
+∞
∑

n=1

1

n
1
p

+∞
∑

j=n

∫ vj+1

vj

g(u)du.

By exchanging the summations in n and j, one gets :

α =

+∞
∑

j=1

(

∫ vj+1

vj

g(u)du

)

j
∑

n=1

1

n
1
p

6 c6

+∞
∑

j=1

(

∫ vj+1

vj

g
1
p (u)du

)

j1−
1
p

j1−
1
p

6 c7

∫ +∞

0

g
1
p (u)du.

Let us now show the converse implication 2=⇒ 1 of theorem 8.
We first show a general property which is of independent interest :

Proposition 14.

Let (Yn) be a sequence of independent strongly centered r.v. with values in a
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general Banach space (B, ‖ · ‖). Denote by Tn the sum Y1 + . . .+Yn and by

Gn the σ-field σ(Y1, . . . ,Yn). If

(

Tn

n
1
p
,Gn

)

is a quasimartingale, then

(

Tn

n
1
p

)

converges a.s. to 0.

Proof of proposition 14 :

As noticed earlier, if

(

Tn

n
1
p

)

is a quasimartingale, then :

+∞
∑

n=1

E‖Tn‖

n1+ 1
p

< +∞. (11)

By Jensen’s inequality :

∀N ∈ N
∗,

+∞
∑

n=N

E‖Tn‖

n1+ 1
p

> E‖TN‖

+∞
∑

n=N

1

n1+ 1
p

> c8
E‖TN‖

N
1
p

,

so by (11),

lim
n→+∞

E‖Tn‖

n
1
p

= 0. (12)

By the conditionnal version of Jensen’s inequality :

∀n ∈ N
∗, E (‖Tn+1‖|Gn) > ‖Tn‖, (13)

so :

N
∑

n=1

E

∣

∣

∣

∣

∣

E

(

‖Tn+1‖

(n+ 1)
1
p

−
‖Tn‖

n
1
p

∣

∣

∣

∣

∣

Gn

)∣

∣

∣

∣

∣

6

N
∑

n=1

E

∣

∣

∣

∣

∣

E

(

‖Tn+1‖ − ‖Tn‖

(n+ 1)
1
p

∣

∣

∣

∣

∣

Gn

)∣

∣

∣

∣

∣

+c9

N
∑

n=1

E‖Tn‖

n1+ 1
p

and by (13) :

N
∑

n=1

E

∣

∣

∣

∣

∣

E

(

‖Tn+1‖

(n+ 1)
1
p

−
‖Tn‖

n
1
p

∣

∣

∣

∣

∣

Gn

)∣

∣

∣

∣

∣

6 E

(

‖TN+1‖

(N + 1)
1
p

)

+ c10

N
∑

n=1

E‖Tn‖

n1+ 1
p

.

Finaly, by (11) and (12), the sequence

(

‖Tn‖

n
1+ 1

p

)

is a positive quasimartingale.

Therefore, thanks to theorem 9.4 in [6], it converges a.s. to a limit, which, by
(12) is necessary 0.

This concludes the proof of proposition 14.
Let us now come back to the proof of the implication (2)=⇒(1) of theorem

8.
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Let (εk) be a sequence of independent Rademacher r.v. and (xk) be a
bounded sequence of elements in B. Defining M := sup ‖xk‖, Xk := εkxk, one
gets :

∀t > M, g(t) = sup
k

P(‖Xk‖ > t) = 0,

so condition (3) holds. Therefore 1

n
1
p

n
∑

k=1

εkxk is a quasimartingale, which by

proposition 14 converges a.s. to 0. The p-stability of the space (B, ‖ · ‖) then
follows from theorem 4.

3 What happens when p = 1?

It is natural to wonder if the spaces of stable type 1 (see [2] for the definition
of stable type 1) also admit a “quasimartingale characterization ”. In fact it is
the case, by theorem 6 in [2], which can be reformulated as follows :

Theorem 15. Let B be a Banach space. The following two properties are
equivalent :

1. B is of stable type 1.

2. For every sequence (Xn) of independent, strongly centered r.v., such that

∫ +∞

0

g(t)dt < +∞, (14)

where
∀t > 0, g(t) := sup

n>1
P(‖Xn‖ ln(1 + ‖Xn‖) > t),

(

Sn

n

)

is a quasimartingale.
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