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We characterize Banach spaces B of stable-type p (1 < p < 2) by the property that for every sequence (Xi) of B-valued random variables, independent, centered and fulfilling some integrability assumption, the sequence X 1 +•••+Xn n 1/p is a quasimartingale.

Introduction

"How to characterize the regularity of a Banach space (B, • ) by the fact that a kind of classical strong law of large numbers (SLLN) holds for B-valued random variables (r.v.)?" is a well know problem. Two kinds of regular Banach spaces -the spaces of Rademacher type p and the spaces of stable type phave been nicely characterized in that way (see chapter 9 in [START_REF] Ledoux | Probability in Banach spaces[END_REF]).

Here our goal will be to show that the SLLN characterization of spaces of stable type p (1 < p < 2) can be made more precise in supposing that the "normalized sums" obeying the SLLN have even a quasimartingale behaviour.

To begin with, we recall some definitions.

In the sequel, (B, • ) will be a real separable Banach space, equipped with its Borel σ-field B. A B-valued r.v. X is a measurable function defined on a probability space (Ω, T , P) with values in (B, B). Such a r.v. is said to be (strongly) integrable if E X < +∞ and ∀f ∈ B ′ , Ef (X) = 0; this is denoted by E(X) = 0.

Let p 1 be given. The weak-ℓ p norm of a sequence a := (a 1 , . . . , a n ) of real numbers is defined as follows : a p,∞ := sup t>0 (t p Card(i :

|a i | > t)) 1 p = n sup k=1 a * k k 1/p ,
where (a * 1 , . . . , a * n ) denotes the non-increasing rearrangement of the sequence (|a 1 |, . . . , |a n |).

Let now (ε k ) be a sequence of independent Rademacher random variables that is

P(ε k = 1) = P(ε k = -1) = 1
2 . Rademacher type p spaces and stable type p spaces are defined as follows :

Definition 1. 1. Let 1 < p < 2. The Banach space (B, • ) is of Rademacher type p if
there exists a constant c(p) > 0 such that for every finite sequence (x i ) in B :

E n i=1 ε i x i p 1 p c(p) n i=1 x i p 1 p . 2. Let 1 p 2.
The Banach space (B, • ) is of stable type p if there exists a constant C(p) > 0 such that for every finite sequence (x i ) in B :

E n i=1 ε i x i C(p) ( x 1 , . . . , x n ) p,∞ .
Remark 2.

If (B, •

) is of stable type p, then there exists q > p, such that (B, • ) is also of stable type q [5].

If (B, •

) is of stable type p, it is also of Rademacher type p [START_REF] Pisier | Type des espaces normés[END_REF].

3. The above definition of stable type is not the classical one (which involves standard stable r.v.), but an equivalent statement (see for instance [START_REF] Ledoux | Probability in Banach spaces[END_REF], proposition 9.12) which will be used in our proofs.

Remark 3. Let (B, • ) be a Banach space and 1 p 2. If B is of (Rademacher) type p, there exists a constant c(p) such that for every finite sequence (X i ) with

X i ∈ L p : E n i=1 X i p c(p) n i=1 E X i p . (1) 
The stable type p has been characterized in terms of Marcinkiewicz-Zygmund like SLLN : Theorem 4 (Maurey-Pisier [START_REF] Maurey | Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach[END_REF]). Let 1 < p < 2. The following two properties are equivalent :

1. (B, • ) is of stable type p.
2. For every bounded sequence (x i ) in B, the sequence

1 n 1/p n k=1 ε k x k converges a.s. to 0.
Theorem 5 (Woyczynski [START_REF] Woyczyński | On Marcinkiewicz-Zygmund law of large numbers in Banach spaces and related rates of convergence[END_REF]). Let 1 < p < 2. The following two properties are equivalent :

1. (B, • ) is of stable type p.
2. For every sequence (X i ) of independent, strongly centered B-valued r.v.

for which there exists a nonnegative r.v. ξ with Eξ p < +∞ such that :

∃c > 0, ∀t > 0, ∀i ∈ N * , P( X i > t) cP(ξ > t),
the sequence Sn n 1/p converges a.s. to 0, where, as usual,

S n := X 1 + • • • + X n .
In this paper, we will prove a result in the same spirit as Woyczynski's result, but in which the SLLN behaviour of the sequence Sn n 1/p is even a quasimartingale behaviour.

A quasimartingale characterization of spaces

of stable type p.

We start this section by defining the quasimartingale behaviour of Sn n 1/p : Definition 6. Let (X k ) be a sequence of independent, strongly centered (B,

• )-valued r.v. Denote S n := X 1 + • • • + X n and F n := σ(X 1 , . . . , X n ). Let p ∈]1, 2[. The sequence Sn n 1/p , F n , or simplier Sn n 1/p , is a quasimartingale if : +∞ n=1 E E S n+1 (n + 1) 1/p - S n n 1/p F n < +∞. ( 2 
)
Remark 7. Since the r.v. (X k ) are independent and centered, condition (2) is equivalent to :

+∞ n=1 E S n n 1+1/p < +∞.
Now we are able to state our characterization of spaces of stable type p (1 < p < 2) :

Theorem 8. Let 1 < p < 2.
The following two properties are equivalent :

1. B is a stable type p space; 2. For every sequence (X n ) of independent, strongly centered r.v., such that +∞ 0

g 1/p (t)dt < +∞, ( 3 
)
where ∀t > 0, g(t) := sup

n 1 P( X n > t), Sn n 1/p is a quasimartingale. Remark 9.
1. Condition (3) is not surprising : indeed, in the i.i.d. case, it can be written :

+∞ 0 P 1/p ( X > t)dt < +∞, (4) 
which condition is necessary for Sn n 1/p being a quasimartingale in every Banach space B (see [START_REF] Hechner | The Marcinkiewicz-Zygmund LLN in Banach spaces: a generalized martingale approach[END_REF], proposition 3). [START_REF] Marcus | Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes[END_REF] implies that E X p < +∞ (see [START_REF] Hechner | The Marcinkiewicz-Zygmund LLN in Banach spaces: a generalized martingale approach[END_REF], remark 4).

Property

3. There exists a small class of r.v. X such that E X p < +∞ and for which (4) does not hold (see example 1 in [START_REF] Hechner | The Marcinkiewicz-Zygmund LLN in Banach spaces: a generalized martingale approach[END_REF]).

So -comparing theorems 5 and 8 -one sees that the price to pay for getting a quasimartingale behaviour for Sn n 1/p instead of a simple a.s. convergence to 0, is to sharpen a little bit the hypothesis Eξ p < +∞ of theorem 5.

Proof.

In the sequel, c k will denote positive constants which precise value does not matter.

Let us show the implication 1 =⇒ 2. First consider the special case where there exists M > 0 such that : ∀t > M, g(t) = 0. Then ∀k, X k M a.s. The space B being of Rademacher type q for some q > p by comments 1) and 2) following definition 1, and using relation ( 1), one has : (

E S n n 1+1/p c(q) n 1+1/p n k=1 E X k q 1 q c(q)M n 1 q n 1+
Now define v n := inf t > 0|g(t) 1 n . It follows from the definition of g and ( 5) that :

v n n 1/p and g(v n ) 1 n .
For every n ∈ N * and k = 1, . . . , n, one considers the following centered r.v. (by symmetry) :

U n,k := X k 1 ( X k vn) and V n,k := X k 1 ( X k >vn) ,
and the associated sums :

A n := n k=1 U n,k n 1+ 1 p and B n := n k=1 V n,k n 1+ 1 p .
For showing that the series having general terms E Sn n 1+ 1 p converges, one will show that :

+∞ n=1 E A n < +∞ (6) 
and

+∞ n=1 E B n < +∞. (7) 
We first prove [START_REF] Métivier | Semimartingales. A course on stochastic processes[END_REF]. By remark 1. following definition 1, there exists q > p such that (B, • ) is also q-stable. Now suppose that the r.v. X k are defined on a probability space (Ω, T , P) and consider (ε k ) a sequence of independent Rademacher r.v. defined on another probability space (Ω ′ , T ′ , P ′ ). By symmetry, one has :

E A n = Ω Ω ′ 1 n 1+ 1 p n k=1 ε k (ω ′ )U n,k (ω) dP ′ (ω ′ ) dP(ω).
By application of the definition of the stable type q, one obtains :

E A n C(q) n 1+ 1 p E ( ( U n,1 , . . . , U n,n ) q,∞ ) .
For bounding the tails of the weak-ℓ p norm of a sequence of positive, independent r.v., we will use the following classical result due to Marcus Pisier [4] :

Lemma 10. For positive valued, independent r.v. ξ 1 , . . . , ξ n , one has :

∀q 1, ∀u > 0, P ( (ξ 1 , . . . ξ n ) q,∞ > u) 2e u q ∆(ξ 1 , . . . , ξ n ), (8) 
where ∆(ξ 1 , . . . , ξ n ) = sup t>0 t q n k=1 P(ξ k > t) .

For simplicity, denote ∆ n the quantity ∆( U n,1 , . . . , U n,n ), and notice that by application of lemma 10 :

E ( ( U n,1 , . . . , U n,n ) q,∞ ) = +∞ 0 P ( ( U n,1 , . . . , U n,n ) q,∞ > u) du ∆ 1 q n + +∞ ∆ 1 q n 2e u q ∆ n du c 2 ∆ 1 q n
So the proof of ( 6) reduces to the following lemma :

Lemma 11. +∞ n=1 ∆ 1 q n n 1+ 1 p < +∞

Proof of lemma 11 :

One first notices that :

∆ n sup t vn t q n k=1 P( X k > t) sup t vn nt q g(t) n vn 0 g 1 q (u)du q ,
the last inequality following from the fact that g is decreasing.

For concluding the proof of lemma 11 it remains to check that the series with general term a n :=

1 n 1+ 1 p -1 q vn 0 g 1 q (u)du converges. First observe that : +∞ n=1 a n +∞ n=1 1 n 1+ 1 p -1 q n j=0 vj+1 vj g 1 q (u)du,
where v 0 := 0, and then exchange the summations in n and j :

+∞ n=1 a n c 3   v 1 + +∞ j=1 1 j 1 p -1 q vj+1 vj g 1 q (u)du   , so, by the definition of v j+1 : +∞ n=1 a n c 4 v 1 + +∞ 0 g 1 p (u)du ,
which concludes the proof of lemma 11. Now we are going to prove [START_REF] Pisier | Type des espaces normés[END_REF]. First notice the following chain of inequalities :

E B n n k=1 E V n,k n 1+ 1 p = n k=1 +∞ 0 P V n,k n 1+ 1 p > u du n k=1 v n n 1+ 1 p P( X k > v n ) + n n 1+ 1 p +∞ vn g(u)du nv n n 1+ 1 p g(v n ) + 1 n 1 p +∞ vn g(u)du v n n 1+ 1 p + 1 n 1 p +∞ vn g(u)du.
Therefore, for proving [START_REF] Pisier | Type des espaces normés[END_REF], it suffices to check that condition (3) implies the convergence of the two series with general terms vn Lemma 12.

If (3) is fulfilled, then +∞ n=1 vn n 1+ 1 p < +∞.
Proof of lemma 12 : For j ∈ N * , one denotes t j := vj +vj+1 2

. Then :

+∞ 0 g 1 p (u)du +∞ j=1 tj vj g 1 p (t)dt +∞ j=1 1 (j + 1) 1 p v j+1 -v j 2 . (9) 
Now observe that :

n-1 j=1 1 (j + 1) 1 p (v j+1 -v j ) = - v 1 2 1 p + n-1 j=2 v j 1 j 1 p - 1 (j + 1) 1 p + v n n 1 p (10) 
As : For completing the proof of the implication 1 =⇒ 2 of theorem 8, it remains to check : Lemma 13. is a quasimartingale, then :

v n 2 g 1 p (v n )

Under (3), one has

+∞ n=1 E T n n 1+ 1 p < +∞. ( 11 
)
By Jensen's inequality :

∀N ∈ N * , +∞ n=N E T n n 1+ 1 p E T N +∞ n=N 1 n 1+ 1 p c 8 E T N N 1 p , so by (11), lim n→+∞ E T n n 1 p = 0. ( 12 
)
By the conditionnal version of Jensen's inequality :

∀n ∈ N * , E ( T n+1 |G n ) T n , (13) so : 
N n=1

E E T n+1

(n + 1)

1 p - T n n 1 p G n N n=1 E E T n+1 -T n (n + 1) 1 p G n +c 9 N n=1 E T n n 1+ 1 p
and by (13) :

N n=1 E E T n+1 (n + 1) 1 p - T n n 1 p G n E T N +1 (N + 1) 1 p + c 10 N n=1 E T n n 1+ 1 p .
Finaly, by ( 11) and ( 12), the sequence

Tn n 1+ 1 p is a positive quasimartingale.
Therefore, thanks to theorem 9.4 in [START_REF] Métivier | Semimartingales. A course on stochastic processes[END_REF], it converges a.s. to a limit, which, by ( 12) is necessary 0. This concludes the proof of proposition 14.

Let us now come back to the proof of the implication (2) =⇒(1) of theorem 8.

Let (ε k ) be a sequence of independent Rademacher r.v. and (x k ) be a bounded sequence of elements in B. Defining M := sup x k , X k := ε k x k , one gets :

∀t > M, g(t) = sup 3 What happens when p = 1?

It is natural to wonder if the spaces of stable type 1 (see [START_REF] Hechner | Kolmogorov's law of large numbers and generalized martingales[END_REF] for the definition of stable type 1) also admit a "quasimartingale characterization ". In fact it is the case, by theorem 6 in [START_REF] Hechner | Kolmogorov's law of large numbers and generalized martingales[END_REF], which can be reformulated as follows :

Theorem 15. Let B be a Banach space. The following two properties are equivalent :

1. B is of stable type 1.

2. For every sequence (X n ) of independent, strongly centered r.v., such that +∞ 0 g(t)dt < +∞, (

where ∀t > 0, g(t) := sup

n 1 P( X n ln(1 + X n ) > t),
Sn n is a quasimartingale.

,

  it follows from (9) and (10) that the series having general term vn n

1 p 1 p

 11 By exchanging the summations in n and j, one gets : (u)du.Let us now show the converse implication 2 =⇒ 1 of theorem 8. We first show a general property which is of independent interest : Proposition 14. Let (Y n ) be a sequence of independent strongly centered r.v. with values in a general Banach space (B, • ). Denote by T n the sum Y 1 + . . . + Y n and by G n the σ-field σ(Y 1 , . . . , Y n ). If Tn n 1 p , G n is a quasimartingale, then Tn n converges a.s. to 0. Proof of proposition 14 : As noticed earlier, if Tn n 1 p

ε

  k x k is a quasimartingale, which by proposition 14 converges a.s. to 0. The p-stability of the space (B, • ) then follows from theorem 4.

  converges, one will split each r.v. X 1 , . . . , X n involved in the sum S n into two parts U n,k and V n,k by truncating X k at a suitable level v n .For defining v n , one first notices that, g being decreasing, one has :
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Furthermore, multiplying the X k by a suitable constant if necessary, one can suppose without loss of generality that : sup t>0 t p g(t) 1.