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Development after nuclear transfer (NT) is subjected to defects originating from both the epiblast and the

trophoblast parts of the conceptus and is always accompanied by placentomegaly at term. Here we have

investigated the origin of the reprogramming errors affecting the trophoblast lineage in mouse NT embryos.

We show that trophoblast stem (TS) cells can be derived from NT embryos (ntTS cells) and used as an

experimental in vitro model of trophoblast proliferation and differentiation. Strikingly, TS derivation is more

efficient from NT embryos than from controls and ntTS cells exhibit a growth advantage over control TS cells

under self-renewal conditions. While epiblast-produced growth factors Fgf4 and Activin exert a fine-tuned

control on the balance between self-renewal and differentiation of control TS cells, ntTS cells exhibit a

reduced dependency upon their micro-environment. Since the supply of growth factors is known do

decrease at the onset of placental formation in vivo we propose that TS cells in NT embryos continue to self-

renew during a longer period of time than in fertilized embryo. The resulting increased pool of progenitors

could contribute to the enlarged extra-embryonic region observed in the early trophoblast of in vivo grown

mouse NT blastocysts that results in placentomegaly.

Introduction

Reprogramming through nuclear transfer (NT) leads to viable

adults although with a low efficiency (Campbell et al., 2007). Both the

embryonic and extra-embryonic compartments are probably affected

by reprogramming errors (Jouneau et al., 2006; Yang et al., 2007; Miki

et al., 2009). The blastocyst is composed of the pluripotent inner cell

mass (ICM) surrounded by the trophoblast, which is the first

differentiated lineage of the embryo (Yamanaka et al., 2006; Arnold

and Robertson, 2009). The trophoblast is characterizedmolecularly by

the expression of the transcription factor Cdx2, whereas the ICM

express the POU family factor Oct4. The part of the trophoblast not in

contact with the ICM (mural trophoblast) differentiates into giant

cells that are involved in implantation whereas the polar trophoblast

in contact with the ICM remains proliferative (Sutherland, 2003;

Rossant, 2004). The trophoblast seems correctly specified and initially

functional in NT blastocysts, as most of them express Cdx2 correctly

and can implant (Wakayama et al., 1998; Jouneau et al., 2006;

Kishigami et al., 2006). However, the quality of these blastocysts is

dependent on the origin of the donor cells. In ESNT reprogramming of

pluripotent markers such as Oct4, Sox2, Nodal and Nanog is probably

less difficult as they are already expressed in the donor cells. Indeed,

ICM from ESNT blastocysts are more alike fertilized ones whereas ICM

from SCNT are more abnormal, only a few of them expressing

correctly Oct4 (Boiani et al., 2002; Bortvin et al., 2003). Cell number

and cell allocation between ICM and trophoblast are also correct in

ESNT blastocysts (Zhou et al., 2001; Jouneau et al., 2006). After

implantation and during gastrulation (E5–E7) the growth and

patterning of the embryo require a tightly controlled cross-talk

between trophoblast and epiblast (Ang and Constam, 2004). In our

previous study we showed that despite being less abnormal at the

beginning, ESNT embryos rapidly display defects affecting first the

epiblast and then the trophoblast, leading to early post-implantation

lethality (Jouneau et al., 2006). We showed that the specific

morphological defects evidenced at E7 in NT embryos, could be

rescued by incorporating trophoblast cells from a tetraploid fertilized

embryo. Among the described defects, one was characterized by an

enlarged extra-embryonic region as the expense of the embryonic

one. During fetal stages, as early as E13, the NT placentas become

hypertrophic and structural abnormalities of term placentas such as

enlarged and abnormally shaped spongiotrophoblast and increase in

glycogen cell population have been reported in NT conceptuses

derived from both somatic and ES donor cells (Tanaka et al., 2001;

Ono and Kono, 2006; Wakisaka et al., 2008). Placentomegaly is a
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feature of NT conceptuses shared by many species (Yang et al., 2007).

In ruminants, where placentas are composed of multiple units called

placentomes, these units are less numerous but hypertrophic after NT.

Large scale gene expression analysis have been performed on

placental tissues from both cattle and mouse clones and revealed

a large number of deregulated genes, with a higher incidence

than reported for the liver of cloned mice (Humpherys et al., 2002;

Suemizu et al., 2003; Everts et al., 2008). Despite these molecular

description of placentas, no attempts have been made to determine

the developmental origin of the trophoblast defects. The aim of the

present study was, therefore, to investigate the reprogramming errors

affecting trophoblast lineage in mouse NT embryos. For that we

decided to take advantage of the possibility to derive trophoblast stem

cells (TS) from early trophoblast tissue. TS cells are isolated in vitro

from the trophoblast of blastocysts (at E3.5) or implanted embryos

(from E6.5 to E8.5). They are derived from the proliferating polar

trophoblast and from the extra-embryonic ectoderm (ExE), tissues

localized at the direct contact of the epiblast and supposed to

maintain a pool of proliferating cells before their differentiation

within the forming placenta at E9.5 (Tanaka et al., 1998; Uy et al.,

2002; Kunath et al., 2004; Rielland et al., 2008). The Exe will give rise

to the chorion and then to the placental labyrinth, whereas

progenitors of differentiated derivatives already present in vivo in

the ectoplacental cone lying above the ExE will give rise to the

spongiotrophoblast of the placenta (Cross, 2005). Since the initial

study of Tanaka et al. (1998), TS cells have been largely used as an in

vitro model to study the function of genes involved in trophoblast

development and function (Rielland et al., 2008). They express a set of

markers known to be involved in vivo in the maintenance of the

trophoblast, such as Cdx2, Eomes, Esrrb, Fgfr2 and Sox2 (Beck et al.,

1995; Arman et al., 1998; Tanaka et al., 1998; Tremblay et al., 2001;

Avilion et al., 2003; Strumpf et al., 2005). TS cells self-renew under the

control of two main signaling pathways, FGF4/Erk1/2 and TGFβ/

Smad2/3 (Corson et al., 2003; Saba-El-Leil et al., 2003; Erlebacher

et al., 2004; Yang et al., 2006). In their absence, TS cells readily

differentiate in vitro into different trophoblast derivatives, such as

giant cells expressing Prl3d1, spongiotrophoblast expressing Ascl2

and glycogen cells expressing Tpbpa (Hemberger et al., 2004; Hughes

et al., 2004; Simmons and Cross, 2005). In vivo both Fgf4 and Nodal, a

member of the TGFβ family, are secreted by the epiblast (Niswander

and Martin, 1992; Conlon et al., 1994) which thus participates in the

maintenance of a trophoblast stem cell micro-environment (Goldin

and Papaioannou, 2003; Guzman-Ayala et al., 2004).

We first established the in vivo pattern of expression of several

genes involved in the maintenance of a trophoblast stem cell micro-

environment in NT embryos. Then we showed that TS cells, when

derived from NT embryos, exhibited a growth advantage over their

fertilized counterparts. Finally we provide evidence that this ad-

vantage is still exhibited when the supply of growth factors is

reduced, suggesting a functional disconnection of NT trophoblast cells

with their micro-environment in vitro. Taken together, our data

provide an experimental support for the in vitro analysis of the

mechanisms leading to the abnormalities observed during the early

post-implantation period of NT trophoblast development in vivo.

Materials and methods

Production of nuclear transfer mouse embryos

Nuclear transfer was performed as described previously (Zhou

et al., 2001; Maalouf et al., 2009). Briefly, NT embryos were

reconstructed by injection of metaphase plates of R1 ES cell into

enucleated oocytes from superovulated B6CBF1 females. The recon-

structed embryos were activated with strontium in CZB medium. A

pseudo polar body was expulsed so that the reconstructed embryo

remained diploid. Embryos were then cultured in M16 medium

(Sigma) at 37 °C and 5% CO2 up to the blastocyst stage (4 days) or

transferred at one or two-cell stage into pseudo pregnant B6CBF1

females before dissection at E3.5, E6.6 or E7.5. All experiments

involving animals were carried out with the obligation to observe

European regulations on animal welfare.

Isolation and culture of TS cells

TS cells were isolated from blastocysts or extra-embryonic

ectoderm (ExE) of both fertilized 129/SVJ embryos and NT embryos

reconstructed with ES donor nuclei (R1). NT blastocysts were either

developed in vivo and flushed from females 3 days after transfer or in

vitro after 4 days of culture in M16 medium (Sigma). 129/SVJ

fertilized blastocysts were directly flushed from the uterus at E3.5.

Blastocysts were then seeded in 4-well plates on a layer of Mitomycin-

inactivated fetal fibroblasts (feeders) in TS medium containing FGF4

(37 ng/ml, Sigma) and heparin (1 μg/ml, Sigma) at 37 °C, 5% CO2 as

described (Tanaka et al., 1998). ExE from E6.5/7 embryos were

isolated from the ectoplacental cone and the epiblast and then

separated from the visceral endoderm by enzymatic treatment

(trypsin 0.5%, Sigma and pancreatin 2.5%, Sigma) in saline tyrode

10 min at 4 °C (Hogan et al., 1994). Cells from the ExE were then

dissociated 10 min at 37 °C in 0.25% trypsin diluted in saline tyrode

before culture. TS colonies were kept four passages on feeders with

FGF4 at high concentration (37 ng/ml). After that, feeders were

replaced by 70% feeder-conditioned medium in a medium referred as

TS+EFCM+FGF4, in which FGF4 concentration was lowered to

25 ng/ml (as described in Tanaka et al. (1998)). After adaptation to

this new culture system, cell lines were considered as established. For

some experiments, conditioned medium was replaced by Activin A

(10 ng/ml, R&D System). Differentiation medium is composed by TS

medium and the Activin receptor specific inhibitor SB431542 (Sigma)

at 10 μM (Inman et al., 2002).

In situ hybridization on cultured cells and embryos

Cells grown on coverslips were fixed in paraformaldehyde 4% for

1 h at RT. The probe-containing plasmids were transcribed in vitro

using the Dig-RNA labeling kit (Roche). Whole-mount in situ

hybridization on cells and embryos was performed essentially as

previously described (Wilkinson et al., 1990). Permeabilization of

cells was done using Triton 1%. Proteinase K and RNAse treatments

were omitted for embryos up to midstreak stage. Alkaline phospha-

tase activity was detected by using BM purple AP substrate (Roche).

All probes were kindly provided by the lab of Janet Rossant. Cells were

counter-stained with Nuclear Fast Red, dehydrated and coverslips

were mounted on glass slide using Eukitt mounting medium (EMS).

Immunostaining on cells and embryos

TScells grownoncoverslipswerefixedwith 4%paraformaldehyde in

PBS at room temperature (RT) for 30 min. They were then permeabi-

lized 20 min in PBS containing 5% of fetal calf serum (Gibco) and 0.1%

Triton X100 (Sigma) (=PSST). Incubation was carried out overnight at

4 °C with primary antibodies (Cdx2 1:200, Biogenex; P Erk1/2, 1:350,

Cell Signaling; Sox2, 1:500, Millipore; β-Catenin, 1:100, Transduction;

Fgfr2, 1:200,) diluted in PSST. After rinsing, cells or embryos were

incubated 1 h at RT with secondary antibodies as follows: for Cdx2 and

β-Catenin: FITC conjugated goat anti-mouse antibody (Jackson, 1:400),

for Sox2: TRITC conjugated goat anti-rabbit (Jackson 1:400); for P

Erk1/2 and Fgfr2: Biotin-conjugated Donkey anti-rabbit (Upstate,

1:350) followed by Streptavidin-conjugated Texas Red, (Zymed,

1:300). Nuclei were counter-stained with Hoechst (Sigma, 1 μg/ml).

Coverslips were mounted with Cytifluor (Biovalley) on a glass slide.

Whole-mount immunostaining of P-Erk1/2 in E6-E7 embryos was

performed as described in Corson et al. (2003).
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Assessment of proliferation by BrdU incorporation

TS cells grown on coverslips incubated with 100 μM BrdU during

10 min at 37 °C in TS medium before being fixed in 4% paraformalde-

hyde in PBS. BrdU incorporation was revealed by immunostaining

with an anti-BrdU monoclonal antibody (Roche) at 1/50 one hour at

37 °C followed by a goat anti-mouse antibody coupled to Fluorescein

(Jackson) at 1/400 one hour at RT. Coverslips were mounted on slides

using Cytifluor (Biovalley).

Observation and imaging of samples

Cells were photographed using a Leitz DMRB microscope (Leica

Microsystems, Wetzlar, Germany) with a 40× objective equipped with

an Olympus DP50 digital camera (Tokyo, Japan). Embryos after whole-

mount in situ hybridization were observed and photographed under a

Zeiss SZX binocular coupled to a digital camera. Embryos after whole-

mount immunostaining were observed under a Zeiss Confocal micro-

scope (LSM 310) and pictures were taken on middle optical sections.

Q-RTPCR

Total RNA were extracted by RNAeasy kit (Qiagen) then treated by

DNase I (Roche) at 1 U/μg of total RNA and reverse transcribed with

hexanucleotides at 50 μg/μg of total RNA (Promega) and Superscript II

(Invitrogen). Real time PCR was performed using an ABI Prism 7000

Sequence Detector. All reaction were run in triplicates using cDNA

template synthesized from 1 μg RNA. The thermal cycler program

consisted of 45 cycles with SYBRG (Applied Biosystem) detection.

Standard curves were established for each gene using serial dilutions

of a control TS cDNA and run on the same plate as samples. Ct values

were averaged and copy abundance of each gene in each sample were

determined from their respective standard curves then normalized to

the number of β-Actin copies. Statistical significance was determined

by Student test: in control or in NT lines each gene has been compared

between control medium and differentiation medium.

PCR amplifications were performed with the following pri-

mers: mEomes (Tm: 60 °C) ccttcaccttctcagagacacagtt, tcgatcttag-

ctgggtgat/atcc (Erlebacher et al., 2002), Ascl2 (Tm: 60 °C) catcccacc-

cccctaag/ct aggcataggcccaggtttctt (Erlebacher et al., 2002), Prl3d1

(Tm: 60 °C) gctgacattaagggcagaaacc, gaccaagcagggtagtcaaaattt (Erle-

bacher et al., 2002), and β-Actin (Tm: 55 °C) gctctggctcctagcaccat,

gccaccgatccacaccgcgt.

Growth curves

ntTS or TS cells (passages 10–15) were seeded in duplicates at a

density of 40,000 or 20,000 cells per 4-well plates in 400 μl of TS+

EFCM+FGF4 medium. Every 2 days, cells were trypsinized, resus-

pended in 1 ml of medium and manually counted. Experiment was

repeated twice.

Cloning assay

ntTS or TS cells (passages 10–20) were seeded in duplicates at a

density of 2000 or 1000 cells per 60 mm plate in 2 ml of TS+EFCM+

FGF4 and cultured 10 to 15 days. Cells were fixed 30 min in 3.7%

formaldehyde in PBS, then washed twice in PBS and stained with

crystal violet. Only colonies composed of cells with the characteristic

TS morphology were counted. Experiment was repeated three times.

Apo-one Homogeneous Caspase 3/7 Assay

Caspase-3/7 activity assays were performed with the Promega

Apo-ONE Homogeneous Caspase-3/7 Assay kit (Promega, Charbon-

nières, France) according to the manufacturer's protocol. TS or ntTS

cells (passages 18–19) were grown in 60 mm diameter plates in TS+

EFCM+FGF4 medium. After four days of culture, adherent and

floating cells were harvested, centrifuged and resuspended in TS

medium. Cells were counted and 100 μl of cell suspensions or control

TS medium was mixed with the same volume of the Apo-One Homo-

geneous Caspase-3/7 reagent. Fluorescent product formation was

measured at an excitation/emission wavelength of 499/521 nm,

every 6 min over a 120 min period using a Tristar LB 941 plate reader

(Berthold, Thoiry, France). Caspase-3/7 activity was expressed as the

ratio of the caspase activity (slope of the kinetic in arbitrary units) to

the number of cells. Each cell line was tested in duplicate.

Statistical analyses

Student test and Mann–Whitney U test were used for all analyses

except for Tables 1 and 2, for which χ2 test was used.

Results

Trophoblast markers are correctly expressed and maintained in NT

embryos

Progenitors of the differentiated cells of the placenta originate

from a pool of trophoblast stem cells present in the extra-embryonic

ectoderm and ectoplacental cone at E6–7. We investigated whether

the trophoblast in NT embryos correctly expressed at this early stage

the different genes known to be essential for its maintenance. In our

previous study we had shown that somemorphological abnormalities

were apparent in NT embryos at E6–7 such as enlarged ExE, reduced

epiblast and abnormal shape (Jouneau et al., 2006). Such defects may

impact the ability of the trophoblast to maintain a favorable

trophoblast stem cell (TS) micro-environment (Guzman-Ayala et al.,

2004). Transcription factors such as Cdx2, Eomes and Essrb and

signaling molecules such as Nodal and Erk1/2 (downstream effector

of FGF signaling pathway) need to be expressed correctly (for review,

see Rielland et al., 2008; Jouneau et al., 2006). ESNT embryos were

dissected at E6 or E7 and subjected to whole-mount immunostaining

or in situ hybridization (Fig. 1). More than ten embryos were used for

each gene tested, some of them exhibiting abnormal morphologies:

Table 1

Characteristics of TS derivation from blastocysts (A) and extra-embryonic ectoderm

(ExE) (B).

A

No of ExE No of ExE giving

TS colonies (%)

No of lines established

(% of ExE)

Cont 9 8 (89)e 0 (0)

NT 26 13(50)f 5 (19)

B

No of

blastocysts

No of

outgrowths (%)

No of outgrowths giving

TS colonies

(% of blastocysts)

No of derived

TS cell lines

(% of outgrowth

giving TS colonies)

Cont 34 30 (88)a 29 (85)b 9 (31)c

NT 45 40 (89)a 33 (73)b 19 (58)d

Numbers with different superscript letters within a column are significantly different

(Pb0.05).

Table 2

Number of blastocysts giving rise to TS colonies (appeared/total, %) when cultured in

the presence of decreased concentrations (in ng/ml) of FGF4 or Activin A.

FGF4 37 37 37 12 0

Activin A 10 5 0 10 10

Cont 17/22 (77%)a 12/22 (54.5%) 8/23 (35%)b 0/20 (0%) 0/19 (0%)

NT 18/24 (75%) 14/20 (70%) 17/23 (74%)a 10/12 (83%) 0/15 (0%)

a and b are significantly different (Pb0.01).
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embryos shown in B, H, L and P exhibited an enlarged ExE and/or a

reduced epiblast and the NT embryo in E, a vesicular shape mor-

phology (small, rounded, with no visible frontier between epiblast

and Exe) (Jouneau et al., 2006). In all cases, Cdx2and Essrbwere found

to be correctly expressed in the ExE abutting the epiblast and in the

chorion (Figs. 1A–F), as shown previously for Eomes (Jouneau et al.,

2006). The Exe contains the proliferating stem cells of the trophoblast,

whereas the ectoplacental cone contains already committed proge-

Fig. 1. Correct expression of different markers controlling the extra-embryonic ectoderm fate in NT embryos. Whole-mount in situ hybridization showing expression of Cdx2 (A, B),

Essrb (C–F), Nodal (J–M) and Ascl2 (O–Q). Whole-mount immunostaining showing the presence of phosphorylated-Erk1/2 (G–I). Note the reduced epiblast and/or extra-embryonic

region in NT embryos in B, H, L and P and the vesicular shape in E. The arrow in E indicates the weak but positive staining for Essrb. Controls were dissected at E6.5 except for D, which

is at E7.5. NT embryos were dissected at E7.5 except for H and I (E6.5). Scale Bars: 100 μm.
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nitors that express Ascl2 instead of Cdx2, Essrb and Eomes (Guillemot

et al., 1994). We verified that Ascl2 domain of expression was also

restricted to the ectoplacental cone in NT embryos (Figs. 1K–M). Then

we examined the presence of the phosphorylated activated form of

Erk1/2 and the expression of Nodal. Immunostaining of P-Erk1/2

revealed its expression in the proximal ExE in NT embryos as expected

(Corson et al., 2003) and compared to control, the domain of

expression was apparently more extended distally (compare

Figs. 1G and I). Nodal expression domain corresponded to the epiblast

(Figs. 1J–M) and in NT embryos with a reduced epiblast (see the

embryo in Fig. 1H) the Nodal expression domain was reduced

accordingly.

Our data indicate that the early trophoblast patterning is not

dramatically affected in NT embryos. We then decided to isolate

trophoblast stem cells from NT embryos to examine whether they

would exhibit properties different from control ones.

TS cells can be derived from NT embryos at a higher efficiency than

in controls

We first collected ExE tissues from ESNT embryos with the

different morphologies as described above. The ExE were dissociated

and cultured on a feeder layer in the presence of FGF4. We then

checked the appearance of colonies of cells with the characteristic TS

morphology (epithelial colony with smooth edges and cells with a

small nucleus/cytoplasm ratio, see Tanaka et al., 1998). Only 50% of

NT ExE gave rise to TS colonies compared to 88% for controls (Pb0.05)

(Table 1A). However, it was not possible to correlate TS colony

formation and the stage or morphology of the initial NT ExE (data not

shown). This indicates that despite an apparently correct in vivo

micro-environment, some NT embryos are already too compromised

to give rise to TS colonies. This fits well will the fact that half of the NT

embryos die between E7 and E10 (Jouneau et al., 2006). Nevertheless,

five ntTS lines were obtained from twenty-six NT ExE, among them

one line from a vesicular shape embryo (Table 1A and data not

Fig. 2. ntTS cell lines are established more rapidly than control TS lines. Box plots

showing the time from P0 to the fourth passage of TS cells. The lines correspond to the

median. Cells are considered to be established after passage 4. The mean time for ntTS

cells is significantly shorter than for cont TS cells (Pb0.001).

Fig. 3. ntTS cells express the expected markers during self-renewal (A–I and M) and differentiation (J–L andM). Immunostaining for A–C, E, F, H and I. Nuclei were stained in blue. In

situ hybridization for D, G, J–L. Scale bar: 100 μm. (M) Q-PCR analysis of Eomes, Ascl2 or Prl3d1 expression in cont- and ntTS cells cultured 5 days in TS+EFMC+FGF4 (control

medium) or TS+SB431542 10 μM (differentiation medium). Relative level of expression was expressed as percentage of Actin. The histograms represent the mean value (±sd) for

two control and two NT cell lines. For each gene within one cell line expression was compared between “control medium” and “differentiation medium” and the differences were all

statistically significant (Pb0.01).
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shown). By contrast, no TS lines were obtained from the 9 control Exe

used. It seems, therefore, that the derivation of a TS cell line from the

primary colonies is efficient for NT embryos. We next further inves-

tigated this phenomenon by deriving TS cells from NT blastocysts.

NT and fertilized blastocysts were explanted on a feeder layer with

FGF4. After four days they formed outgrowths which after dissociation

were able to give rise to TS cell colonies. Our control blastocysts were

directly collected in vivo at E3.5 as the strain ofmicewe used (129 SV/J)

was very refractory to in vitro culture.We, therefore, testedwhether the

in vitro culture of NT embryos could influence their ability to give rise to

TS colonies. For that, in a separate series of experiment, we checked the

proportion of blastocysts giving TS colonies and the number of TS

colonies for NT embryos transferred into pseudo pregnant females for

three days before flushing (n=30). No difference was detectable bet-

ween these embryos and those cultured only in vitro, thereby excluding

any bias due to in vitro culture.

We observed a similar proportion of NT and control blastocysts

forming an outgrowth and then giving rise to TS colonies (Table 1B).

However, in vitro expansion of these colonies into a cell line

highlighted a first difference between control and ntTS cells. Only

31% of control outgrowths gave rise to TS lines whereas more than

half (58%) of NT outgrowths did (Pb0.03, Table 1B). Moreover, we

estimated the time in days from the passage 0 (dissociation of the

outgrowth) to the passage 4 when TS cells were considered to be

established (see Materials and methods). We observed a significant

decrease of establishment time (mean=43 days) in NT cultures

compared to controls (mean=70 days) (Fig. 2, Pb0.001).

In conclusion, TS cells were easily established from both pre- and

post-implantation NT embryos and the time required for the

derivation of TS cell from NT blastocysts was strikingly shorter than

for controls. We, therefore, decided to further investigate the pro-

perties of these TS cell lines.

ntTS cells can differentiate properly

We first verified the correct expression of different markers

expressed by TS cells during self-renewal such as Cdx2, Eomes, Esrrb,

Sox2, Fgfr2 and Phospho-Erk1/2. As expected, the established ntTS

cell lines expressed all these genes and the Erk1/2 pathway was

efficiently activated (Figs. 3A to I). Removal of FGF4 and Activin from

the medium should lead to down-regulation of these markers and

differentiation into giant cells expressing Prl3d1, spongiotrophoblast

expressing Ascl2 and glycogen cells expressing Tpbpa (Simmons and

Cross, 2005). We demonstrated the correct differentiation ability of

ntTS cells by in situ hybridization for Ascl2 (Fig. 3J), Tpbpa (Fig. 3K)

and Prl3d1 (Fig. 3L). Moreover, we correlated by Q-PCR the down-

regulation of Eomes with the up-regulation of Ascl2 and Prl3d1

(Fig. 3M). In conclusion, the established NT lines are true TS cells with

the ability to self-renew and differentiate properly.

Proliferative ability differs between ntTS and control TS lines

In order to understand why ntTS cells were established more

rapidly than controls, we investigated the proliferation ability of two

ntTS cell lines in comparison with two control TS lines, all being

derived from blastocysts. We first estimated the increase in cell

number during 8 days in culture (Fig. 4A). ntTS cells began to

proliferate 24 h after platingwhile a latency period of 48 hwas evident

for the control TS cells. In addition to this initial delay in the onset of

proliferation, control TS cells displayed a longer doubling time, as

evidenced by the separation of the curves on Fig. 4A. After 72 h of

culture, the doubling time was 24 h for NT lines and 33 h for control

lines. As a result, the increase in cell number is higher in ntTS cultures

than controls after 8 days of culture. We concluded that the early ntTS

growth advantage exhibited during establishment in culture was

maintained along passages.

The percentage of TS cells in S phase was estimated by BrdU

incorporation (Fig. 4B). The mean ratio of cells in S phase ranged

between 50 and 60% after only 10 min of BrdU uptake, showing that

TS cells are highly proliferative cells. In addition, we observed that the

border of the colonies always proliferated more actively than the

center, whatever the cell origin, control or clones (62% vs 48%,

Pb0.005). The slower proliferation in the center could be due to

contact inhibition of proliferation, a property of non-transformed cells

(Zhao et al., 2007). We compared separately the proliferation rate in

the border and the center between control and ntTS cell lines. No

significant differences were detected (Fig. 4B). We conclude that ntTS

cell growth advantage cannot be explained just by an increased

number of proliferating cells.

We have then examined whether a difference in apoptotic rate

could explain the difference in proliferation between ntTS and control

TS cells. The caspase 3/7 activity, one of the mediator of apoptosis,

was measured in the cultures under self-renewing conditions. No

significant difference between ntTS and control TS lines was detected

(Fig. 4C).

In order to compare the self-renewal ability of TS cells, we assessed

their clonogenic activity by estimating their plating efficiency (Fig. 5).

Only colonies composed of cells with a characteristic TS cell

morphology were counted, as the others were obviously composed

of giant cells and other differentiated cells. We found that ntTS cell

Fig. 4. ntTS cells self-renew more efficiently than controls (A) TS cells were seeded at

low density in TS+EFCM+FGF4 medium and counted every 2 days. The increase in

cell number was estimated from four replicates. (B) Box plots showing the percentages

of TS cells in S phase estimated by the number of BrdU positive cells. At least 300 cells

were counted in colonies from six different TS cell lines (6 for controls 6 for NT). Border

"B" (the first three layers of cells) and centers "C" of the colonies display significantly

different proliferation rate (a vs b, Pb0.01). By contrast, no difference was found

between NT and controls. (C) Caspase-3/7 activity is comparable between TS and nTS

cell lines. TS and nTS cells were cultured four days and levels of caspase-3/7 activity

were determined as described in Materials and methods. Values are the mean of two

control and two NT cell lines. They are expressed in arbitrary units (aU) as the ratio of

the slope of the caspase activity kinetic to the number of cells.
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lines exhibited a higher rate of colony-forming cells (CFC) than con-

trols (15% vs 7%, Pb0.001).

To conclude ntTS cell lines have an establishment time shorter

than control and this growth advantage seems to be maintained

during culture probably due to an increased number of cells with the

capacity of self-renewal. We verified the karyotype of these ntTS lines

and found that they were euploid, so their peculiar properties cannot

be correlated to aneuploidy.

ntTS cells exhibit a decreased dependence upon FGF4 and Activin/Nodal

compared to controls

During derivation of TS cells, ntTS cell lines were established more

easily from primary colonies than controls (Table 1B). We observed

that the loss of control cultures happened mainly at passage 4 when

the FGF4 concentration was lowered (from 37 to 25 ng/ml) and the

feeder layer replaced by conditioned medium (see Materials and

methods) causing cells to differentiate. Interestingly, fewer NT

cultures were lost during this change in culture system, suggesting

their greater robustness regarding variations of the environment. To

investigate whether this could be due to a modified behavior towards

growth factors of trophoblast cells from NT embryos, we cultured NT

and fertilized blastocysts in the presence of decreasing concentrations

of FGF4 or Activin. Twelve days after the outgrowth dissociation, we

then counted the number of Cdx2-positive colonies (Table 2 and Fig.

6). In control medium containing 37 ng/ml of FGF4 and 10 ng/ml of

Activin A, no significant difference was observed in the number of

blastocysts able to give rise to TS colonies between NT and controls

and this rate (75–77%) was similar to that obtained with cultures in

TS+EFCM+FGF4 (compare Tables 1B and 2). By contrast, a higher

mean number of colonies was obtained in NT cultures compared to

control cultures (16 and 7, respectively, Fig. 6, Pb0.05). A reduced

supply of Activin and even its removal did not affect the appearance of

TS colonies from NT blastocysts and reduced only marginally the

mean number of colonies, from 16 with Activin 10 ng/ml to 9 without

Activin (P=0.2). By contrast, the absence of Activin in the cultures of

fertilized blastocysts provoked a reduction by half of both the rate of

TS colony appearance (77% to 35%, Pb0.005) and the mean number of

colonies (7 to 3, Pb0.002). Moreover, only ntTS colonies were able to

be maintained with a lower concentration of Activin, as 3 ntTS lines

out of 10 cultures were established and none from controls in the

presence of 5 ng/ml Activin (data not show). A reduction in the

supply of FGF4 was sufficient to completely prevent the emergence of

Cdx2 positive colonies in control cultures whereas NT cultures were

not initially affected. However, no TS lines could be established from

these NT cultures. In absence of FGF4we never observed TS colonies in

the two types of culture. The few emerging colonies rapidly

differentiated into giant cells.

In conclusion, in control cultures, the formation and number of TS

colonies were correlated to the concentration of Activin in the

medium and strictly dependent on a high concentration of FGF4. By

contrast, in NT cultures, the formation and number of TS colonies

were not initially dependent on the presence of Activin and were not

affected by a reduction of FGF4 in the medium, even if they were still

dependent upon its presence.

Discussion

In this study we have investigated the cellular and developmental

origin of the reprogramming errors affecting the NT embryo

development.

In our previous study, we showed that morphological defects such

as enlarged ExE are caused by some defects in the trophoblast

(Jouneau et al., 2006). A common feature of all living NT conceptuses

(whatever the donor cell) is placental hypertrophy arising as early as

E13. Indeed, a recent study has clearly demonstrated that placento-

megaly after nuclear transfer arises when embryonic donor nucleus

comes from any embryonic cells older than 8-cell stage (Ono and

Kono, 2006).

We derived TS cells from NT embryos, in order to get an in vitro

model to study the homeostasis of the trophoblast.

Fig. 5. ntTS cell lines have a higher rate of colony-forming cells (CFC) (P=0.001). Cells

were plated at low density and TS colonies derived from single cells were counted.

Experiment was repeated three times.

Fig. 6. Vertical dot plots showing the number of Cdx2 positive colonies appearing after

dissociation of the blastocyst outgrowths in the presence of various concentrations of

FGF4 or Activin A. Each dot represents the number of colonies for one outgrowth. The

concentration of both factors in the medium and the corresponding number of control

and NT blastocysts used are indicated. Different superscript letters mean significantly

different results (t-test or Mann–Whitney U test): a vs b (Pb0.05), c vs d (Pb0.002) and

a vs c (Pb0.02). The lines indicate the mean number of colonies in each condition.
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ntTS cells have a growth advantage over the fertilized counterparts

Our results show that the competency of NT embryos to give rise to

TS cell colonies and lines is higher than that of control fertilized

embryos and that the ntTS cells have a growth advantage over

fertilized TS cells as indicated by the following panel of features: (i) a

reducedmean time required to establish the ntTS lines (time between

colony formation after dissociation of the blastocyst outgrowth and

the fourth passage); (ii) a higher rate of cells forming colonies (CFC) in

ntTS lines as shown by the higher clonogenic activity; (iii) a reduced

latency after passaging before proliferation resumes; (iv) a tendency

to resist differentiation and to keep self-renewal when the supply of

growth factors is reduced. The growth advantage of ntTS cells in vitro

correlates well with our previous finding in vivo: in chimeras

composed of 2n NT cells and 4n fertilized cells, we observed that

the resulting Exe at E7 was often chimeric, whereas in control 2n

fertilized/4n fertilized cells, the diploid cells were excluded from the

Exe. This shows that the growth advantage of trophoblast cells in NT

embryos overrides that of the tetraploid cells in the Exe (Eakin and

Behringer, 2003; Jouneau et al., 2006). This study of chimeras has

recently been prolonged by Miki et al. who observed that placentas

derived from 2n NT/4n fertilized cells were indeed mainly composed

of cells of NT origin (Miki et al., 2009).

Increased stemness of ntTS cells

During TS cell establishment only a proportion of cells are real

stem cells with the ability to expand and self-renew. The other cells

are already committed to a differentiated derivative or will divide

asymmetrically to give rise to only one daughter stem cell (Clarke and

Fuller, 2006). Indeed, at each passage a small proportion of TS cells

will differentiate spontaneously into giant cells or spongiotrophoblast

(Tanaka et al., 1998 and our results). Such a property makes TS cells

quite similar to adult stem cells, such as HSC, which maintain the

balance between self-renewal and differentiation so as to keep stable

the pool of stem cells (Wilson et al., 2004). The tendency of ntTS

outgrowths to give rise to more colonies when Activin A and FGF4 are

supplied at the optimal concentration, together with their higher ratio

of CFC, may indicate a shift of the balance towards self-renewal rather

than differentiation. In hES cell cultures, where the ratio of CFC is in

the same range as in TS cells, the CFC assay has been considered to be a

good indicator of the undifferentiated status of the culture (O'Connor

et al., 2008). The colonies appearing after the dissociation of the

outgrowth are probably clonal, as they arise from cells dispersed at a

low density in the plate. The fact that the number of colonies is higher

for NT cultures reflects either an increased proliferation rate of

trophoblast cells during outgrowth phase or a higher number of TS

cells in the blastocyst, or both. The initial number of TS cells in vivo is

not known at the blastocyst stage. Only one detailed embryology

study addressed this question in the Exe (Uy et al., 2002). This study

has shown that few cells, about 1% of the Exe, have the potential to

generate a TS colony. This is in agreement with the view of TS cells

being localized in a niche in vivo (Jones and Wagers, 2008). At

blastocyst stage, it is admitted that the polar trophoblast in contact

with the ICM (the source of mitogenic Fgf4) is the reservoir of pro-

liferating cells that will expand to give rise to the ExE after

implantation (Kunath et al., 2004). The mural trophoblast that lines

the blastocoel will give rise to the trophoblast giant cells, but before

implantation they are still diploid and not irreversibly committed as

they can resume proliferation if supplied with FGF4 (Gardner et al.,

1973; Rassoulzadegan et al., 2000). When the whole blastocyst

outgrowth is cultured with FGF4, then it is expected that both polar

and mural trophoblast cells can give rise to TS cells. To address this

question, it would be necessary to separate the polar from the mural

trophoblast and to dissociate the cells before culture and counting of

clonal TS colony.

Ability of NT Exe to give rise to TS cell lines

Whereas NT blastocysts can give rise to primary TS colonies as

efficiently as fertilized embryos, this capacity is lower after implanta-

tion, as less Exe from NT embryos can give rise to TS colonies com-

pared to control Exe. This suggests that subtle defects not detectable

by the panel of markers examinedmay be detrimental for the survival

of the embryos and, more specifically, for the derivation of TS cells.

Between the late blastocyst and the early implantation stages occurs

the remethylation of the genome, ending with the epiblast being

hypermethylated compared to the trophoblast (Monk et al., 1987;

Santos et al., 2002). An abnormally high methylation in the tro-

phoblast has been shown in bovine NT blastocysts and it is believed to

be the same in the mouse, although no experimental evidence has yet

been brought up (Dean et al., 2001; Kang et al., 2002; Dean et al.,

2003). Such epigenetic defects may be responsible for the lower rate

of colony formation from NT Exe compared to controls.

Conversely, the ability of a NT embryo to give rise to TS colonies

in vitro is not directly predictive of its survival potential in vivo. A

clear demonstration of this is the fact that we have been able to

derive a TS cell line from a compromised embryo classified as

“vesicular shape”. We showed previously that such embryos do not

express pluripotent epiblast markers, such as Nodal and Oct4

(Jouneau et al., 2006). They probably also do not express Fgf4, as

its expression is controlled by Oct4 (Yuan et al., 1995; Ambrosetti et

al., 1997). As mentioned above for the mural trophoblast, the supply

of both FGF4 and Activin during the in vitro culture has allowed the

trophoblast of the vesicular embryo to resume proliferation. It

suggests that these vesicular embryos still contain living TS cells. It

would be interesting to try to derive TS cells from epiblast-deficient

embryos, such as Nodal mutants (Guzman-Ayala et al., 2004; Camus

et al., 2006; Mesnard et al., 2006). It would tell whether the robust

competency of the trophoblast to maintain TS cells in absence

of epiblast signaling is a consequence of nuclear transfer or could

be also observed in genetically manipulated epiblast-deficient

embryos.

Reduced dependency of ntTS cells towards their environment

We then investigated the degree of dependency of ntTS cells upon

the two essential growth factors FGF4 and Nodal/Activin. In the

fertilized embryo, maintenance of Cdx2 expression requires the

presence of both FGF4 and Activin/Nodal (Guzman-Ayala et al.,

2004; Georgiades and Rossant, 2006). Our data demonstrate that the

balance between self-renewal and differentiation in normal tropho-

blast cells is controlled by a fine-tuned threshold of the concentration

of these two growth factors. Control blastocysts can still give rise to a

few Cdx2 positive colonies when Activin is absent, but at a lower rate.

It can be explained by the potential source of TGFβ in the serum

(Erlebacher et al., 2004) and the property of FGF4 alone to prevent ExE

to differentiate into EPC cells expressing Ascl2 (Guzman-Ayala et al.,

2004). However, these primary colonies cannot be maintained and

established into a TS cell line if Activin is absent or even reduced. The

putative source of TGFβ in the serum is, therefore, not sufficient to

replace the need for Activin in long-term cultures. A dose-dependent

effect on pluripotency has been shown previously in human ES cell

cultures (Vallier et al., 2005). With either Activin only or FGF2 only,

pluripotency of hES cells is initially maintained, but lost progressively

with passages. When we reduced the supply of FGF4, no Cdx2-

positive TS colonies were formed from control blastocysts. By

contrast, NT trophoblast cells are able to partly escape the control

exerted by growth factors. First, the appearance and number of TS

colonies per NT blastocysts do not depend on Activin concentration

and ntTS lines have been established under half the normal supply of

Activin. Second, TS colonies can appear at a normal rate when FGF4

supply is reduced, although no lines could be established. Such a
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lower depen-dency is in agreement with the ability to derive TS cells

from NT embryos with a reduced epiblast.

Overall our results show that ntTS cell line derivation and

functional NT placenta development are possible even though

embryonic factors necessary to their development are not in adequate

concentrations, because of a modified sensitivity of the NT trophoblast

to its environment.

Hypotheses concerning trophoblast development in NT conceptuses

Placental formation starts after E8.5 by the occlusion of the

ectoplacental cavity (between chorion and ectoplacental cone)

followed by the fusion of the allantois and the chorion (Downs,

2002). This occlusion has been shown tomark the loss of possibility to

derive TS cells (Uy et al., 2002). At the same time, Cdx2 and Essrb

expression is highly reduced and Nodal and Fgf4 expression is

confined to the node and posterior primitive streak, respectively

(Conlon et al., 1994; Beck et al., 1995; Bueno et al., 1996; Luo et al.,

1997). Attenuation of Fgf4-induced Erk signaling releases the

repression of the nuclear activity of an Ets-family transcription

repressor, Erf, which in turn promotes trophoblast differentiation

and probably participates in the occlusion of the ectoplacental cavity

(Corson et al., 2003; Papadaki et al., 2007). We hypothesize that in the

chorion at E8.5, when both FGF and Nodal signaling are reduced, the

ability of ntTS cells to self-renewwill resist to this reduction of growth

factors. Differentiation would therefore occur later than in control

embryos, when embryonic factors would become totally absent. Such

a delayed differentiation is in agreement the results from Wakisaka-

Saito et al. who have shown that most NT conceptuses at E10.5, when

they have some trophoblast tissue, are still at the chorionic stage with

no labyrinth and a reduced or absent spongiotrophoblast layer

(Wakisaka-Saito et al., 2006). Longer maintenance of TS cells can

therefore explain the delayed differentiation and morphogenesis of

the placenta, however, it does not completely explain the onset of

placentomegaly as early as E13 and the fact that NT placentas

continue to grow after E15 whereas controls do not (Jouneau et al.,

2006). Placentomegaly could be induced as an adaptive response to

placental dysfunction, as it has been suggested for enlarged

placentomes developed after NT in bovine (Constant et al., 2006).

One hypothesis is that the progenitors generated by these TS cells

would also somehow inherit an increased proliferation potential.

Alternatively, overgrowth of the placenta may be induced in response

to signals emitted by the NT fetus. A recent study by Miki et al. has

indeed underlined such role of the embryonic part of the conceptus

(Miki et al., 2009). They observed that chimeric embryos composed of

2n fertilized/4n NT embryos, where the trophoblast is of NT origin,

exhibited a placenta with normal size. Conversely, the NT embryo part

is by itself not able to induce placentomegaly, as shown by the reverse

chimera experiment where 2n NT ICMwere injected into 4n fertilized

blastocysts (Amano et al., 2002). Altogether, these results combined

with ours indicate that abnormal interactions between both parts of

the NT conceptus lead to placentomegaly. In other terms, an early

defective cross-talk between epiblast and trophoblast would be

counteracted by a reduced dependency of the latter tissue and later

the fetus would send signals to the placenta leading to its hyper-

trophic development, so as to fulfill the fetal nutrient needs. As all

surviving fetuses have a hypertrophic placenta, this feature may be a

condition of their survival.

At last, another player contributing to the placentomegaly

associated with the development of cloned mouse embryos, namely

the uterus, must not be forgotten especially in the light of recent

studies in the bovine species. In this species, the uterine endometrium

can sense the type of trophoblast it interacts with, fertilized and NT

trophoblast eliciting different responses from the uterus (Bauersachs

et al., 2009; Mansouri-Attia et al., 2009). Therefore it is conceivable

that the growth of the NT placenta could be further enhanced by the

uterus that would overproduce growth-enhancing hormones or

mediators.

ES cells have been derived from NT or fertilized embryos and

shown to be equivalent functionally and molecularly (Brambrink

et al., 2006; Wakayama et al., 2006). By contrast, we have shown in

the present study that ntTS cells exhibit some properties of

maintenance and proliferation strikingly different from their fertilized

counterparts which make them a valuable in vitro tool. Genome-wide

molecular comparison of these cell lines is now ongoing and will help

to understand the reprogramming errors affecting the extra-embryo-

nic lineage after nuclear transfer.
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