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Abstract: Baseline activity of resting state brain networks (RSN) in a resting subject has become 

one of the fastest growing research topics in neuroimaging. It has been shown that up to 12 RSNs 

can be differentiated using an independent component analysis (ICA) of the blood oxygen level 

dependent (BOLD) resting state data. In this study, we investigate how many RSN signal sources 

can be separated from the entire brain cortex using high dimension ICA analysis from a group 

dataset. Group data from 55 subjects was analysed using temporal concatenation and a 

probabilistic ICA (PICA) algorithm. ICA repeatability testing (ICASSO) verified that 60 of the 

70 computed components were robustly detectable. Forty-two independent signal sources were 

identifiable as RSN, and 28 were related to artifacts or other non-interest sources (non-RSN). 

The depicted RSNs bore a closer match to functional neuroanatomy than the previously reported 

RSN components. The non-RSN sources have significantly lower temporal inter-source 

connectivity than the RSN (p< 0.0003). We conclude that the high model order ICA of the group 

BOLD data enables functional segmentation of the brain cortex. The method enables new 

approaches to causality and connectivity analysis with more specific anatomical details. 
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Introduction 

 

Since the discovery of functionally connected low frequency fluctuations of the blood oxygen 

dependent (BOLD) with a functional MRI by Biswal and colleagues, the detection of baseline 

activity within functional brain networks has become a fast growing interest area in brain 

imaging research [Biswal et al., 1995; Fox & Raichle 2007,Vincent et al., 2007]. Intra-cortical 

local field potential and multiunit activity fluctuations partly correlate with the fluctuations of the 

BOLD signal with a 6 second lag in anesthetized conditions [Logothetis et al., 2001; Shmuel et 

al., 2008]. In addition to electrophysiological activity, metabolic, and vasomotor effects partly 

explain the detected BOLD fluctuation changes [Fukunaga et al., 2008; Kannurpatti et al., 2008; 

Kiviniemi 2008].  

 

The combined effects of these fluctuations in neuronal networks have been shown to be 

differentiable from noise during normal, awake resting conditions. Independent component 

analysis (ICA) is an effective tool in separating statistically independent source signals of the 

BOLD data.  ICA separates various sources of the fMRI signal by maximizing the non-

Gaussianity of the source signals. Spatial domain ICA (sICA) can separate BOLD signal sources 

that represent reactions to externally cued task-activations, background activity within functional 

brain (i.e. resting state) networks (RSN), and various physiological noise and artifact sources 

[Beckmann et al., 2004 & 2005; Calhoun et al., 2001; Kiviniemi et al., 2003; McKeown et al., 

1998; Van de Ven 2004].  ICA methodology yields results that are equally accurate to other 

contemporary methods of detecting large scale temporally coherent networks from the BOLD 

signal data [Long et al., 2008]. 
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It has been suggested that 10 to 12 RSNs can be detected from the brain cortex from resting state 

BOLD data, using ICA with a component dimensionality, i.e. a model order,  around 25-40 

components [Beckmann et al. 2005, De Luca et al., 2006, Damoiseaux et al., 2006]. However, 

the most recent reports on topographic delineation of cortex and functional connectivity nodes 

show that there should be more than a dozen detectable functional networks on the brain cortex 

[Bartels & Zeki 2005; Cohen et al., 2008; Di Martino et al., 2008; Malinen et al., 2007, Mezer et 

al., 2008; Pawela et al., 2008]. When the model order of the ICA estimation is increased, the 

separated BOLD signal sources have been shown to split into several functional nodes [Li et al., 

2007; Ma et al., 2007, Malinen et al., 2007, Eichele et al., 2008]. McKeown and co-workers have 

shown that the detected ICA components of BOLD data actually represent deterministic signal 

sources of the data, even in very high model orders [McKeown et al., 2002].  

 

In this study, we evaluate how many independent RSN signal sources of baseline brain activity 

can be detected from the brain cortex using a fairly large group of subjects and a relatively high 

order group ICA. We show that the previously detected RSN signal sources can be differentiated 

into a more finely tuned functional anatomy by extending the use of temporal connectivity, the 

frequency power spectral and the anatomical clustering characteristics of the signal sources into 

group analysis data. We show that over 60 of the detected signal sources can be robustly detected 

with repeatability analysis (ICASSO-software package) from group data. We found supporting 

evidence for our hypothesis that true RSN sources have increased temporal inter-source 

connectivity compared to noise sources. Spatial overlap of the RSN components, and predefined 

Page 3 of 53

John Wiley & Sons, Inc.

Human Brain Mapping

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

anatomical structures are presented. The possible functional and clinical implications of the 

results are discussed. 

 

Materials and Methods  

 

The ethical committee of Oulu University Hospital has approved the studies for which the 

subjects have been recruited, and informed consent has been obtained from each subject 

individually according the Helsinki declaration. Fifty-five control subjects were chosen (age 

24.96 ± 5.25 years, 32 ♀, 23 ♂) from three  resting state studies: an At Risk Mental Stage 

(ARMS) 1986 birth cohort study of ADHD and schizophrenia; a 1966 birth cohort study of 

schizophrenia; brain tumor resting state study, total n = 200. Subjects were imaged on a GE 1.5T 

HDX scanner equipped with an 8-channel head coil using parallel imaging with an acceleration 

factor 2. The scanning was done during January 2007- May 2008. All subjects received identical 

instructions: to simply rest and focus on a cross on an fMRI dedicated screen which they saw 

through the mirror system of the head coil. Hearing was protected using ear plugs, and motion 

was minimized using soft pads fitted over the ears. 

The functional scanning was performed using an EPI GRE sequence. The TR used was 1800 ms 

and the TE was 40 ms. The whole brain was covered, using 28 oblique axial slices 4 mm thick 

with a 0.4 mm space between the slices.  FOV was 25.6 cm x 25.6 cm with a 64 x 64 matrix, and 

a flip angle of 90 degrees. The resting state scan consisted of 253 functional volumes. The first 

three images were excluded due to T1 equilibrium effects. In all three studies, the resting state 

scanning started the protocols, and lasted 7 minutes and 36 seconds. In addition to resting-state 

fMRI, T1-weighted scans were taken with 3D FSPGR BRAVO sequence (FOV 24.0 cm, matrix 
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256 x 256, slice thickness 1.0 mm, TR 12.1ms, TE 5.2 ms, and flip angle 20 degrees) in order to 

obtain anatomical images for co-registration of the fMRI data to standard space coordinates. 

 

Pre-processing of imaging data 

 

Head motion in the fMRI data was corrected using multi-resolution rigid body co-registration of 

volumes, as implemented in FSL 3.3 MCFLIRT software [Jenkinson et al. 2002]. The default 

settings used were: middle volume as reference, a three-stage search (8 mm rough + 4 mm, 

initialized with 8 mm results + 4 mm fine grain, initialized with the previous 4 mm step results) 

with final tri-linear interpolation of voxel values, and normalized spatial correlation as the 

optimization cost function. Brain extraction was carried out for motion corrected BOLD volumes 

with optimization of the deforming smooth surface model, as implemented in FSL 3.3 BET 

software [Smith 2002] using threshold parameters f = 0.5 and g = 0; and for 3D FSPGR volumes, 

using parameters f = 0.25 and g = 0. After brain extraction, the  BOLD volumes were spatially 

smoothed, 7 mm FWHM Gaussian kernel and voxel time series were detrended using a Gaussian 

linear high-pass filter with a 125 second cutoff.  The FSL 4.0 fslmaths tool was used for these 

steps.  

Multi-resolution affine co-registration as implemented in the FSL 4.0 FLIRT software 

[Jenkinson et al. 2002] was used to co-register mean non-smoothed fMRI volumes to 3D FSPGR 

volumes of corresponding subjects, and 3D FSPGR volumes to the Montreal Neurological 

Institute (MNI) standard structural space template (MNI152_T1_2mm_brain template included 

in FSL). Tri-linear interpolation was used, a correlation ratio was used as the optimization cost 

function, and regarding the rotation parameters a search was done in the full [-π π] range. The 
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resulting transformations and the tri-linear interpolation were used to spatially standardize 

smoothed and filtered BOLD volumes to the 2 mm MNI standard space. Because an sICA was 

run later on fMRI data concatenated from the 55 subjects, in practice the spatial resolution of 

spatially standardized BOLD volumes had to be lowered to 4 mm. 

 

Spatial domain analysis   

 

Analysis was carried out using Probabilistic Independent Component Analysis (PICA) 

[Beckmann et al., 2004] on pre-processed and spatially standardized BOLD data, temporally 

concatenated from data sets of individual subjects. The implementation of PICA and temporal 

concatenation in FSL 4.0 MELODIC software was used in this study. The default processing 

provided in MELODIC, and used in this study, starts on the subject level. Intensities of voxel 

time courses in pre-processed fMRI volumes are converted to percentages of change with respect 

to the mean intensity in those voxels. This is followed by group level joined normalization of 

voxel time course variances. The mean 4D fMRI data set is averaged from individual data sets, 

and the variance estimate is computed from it. The variance estimate used in normalization is 

computed so that 1) data with respect to its time points (temporal dimensions) is whitened, 2) in 

whitened space, large values corresponding to variance, possibly not originating from Gaussian 

processes, are noted with some threshold value, and their influence excluded from data in the 

original space, after which 3) variance is computed ordinarily on resulting residual data. Within 

MELODIC implementation and in its joined normalization scheme, this threshold value was set 

to 3.1. Fourth, voxels with insufficient variances (<0.0001) are set to zero because they contain 

nearly constant time courses, and in that sense a bad signal-to-noise ratio that would (after 
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variance normalization) contribute too much to the analysis. Each individual subject fMRI data 

set is divided voxel-wise with a standard deviation corresponding to the voxel-wise variance 

estimate. A whitening matrix corresponding to the whitening mean 4D fMRI data set is 

computed and used for group-level joined whitening and dimensionality reduction of each 

individual subject fMRI data sets.  The number of resulting dimensions corresponds to the model 

order of ICA that is intended to be used. In this study, the model order was chosen to be 70, in 

correspondence to the  high order sICA modeling of the resting state BOLD data. Since PPCA 

estimation suggested 73 components in an initial test, we reduced it to 70 components due to 

better extraction of extracranial voxels after using a more sensitive BET algorithm outside the 

MELODIC framework.  

 

The jointly whitened and reduced individual fMRI data sets are further whitened, and then 

temporally concatenated. Further dimensionality reduction is performed with principal 

components analysis (PCA) on the concatenated data. The number of dimensions in the 

concatenated data (number of subjects times 70) is reduced to the number of independent 

components to be computed, 70 in this study.  Finally, FastICA [Hyvärinen 1999] is performed 

using voxel values as samples, and PCA reduced and whitened temporal dimensions as variables. 

In this study, we used the default settings in the MELODIC software: symmetric 

orthogonalization and skewness (“pow3”) as the contrast function.  

 

In a PICA framework, estimated intensity maps (independent components) are converted to Z-

scores by dividing intensity values by voxel-wise standard deviations of noise distribution. 

Standard deviations are estimated through calculation of corresponding voxel-wise variances of 
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the original pre-processed data in the subspace left out by dimensionality reduction steps. 

Probability distributions of values in individual resulting score maps are modeled using a 

mixture of functions, a zero mean Gaussian function and two gamma functions. The Gaussian 

function corresponds to the effects due to chance, and the gamma functions model outliers not 

observed by chance. For a given Z-score, the sum of gamma function values divided by the sum 

of all function values can be used to calculate the probability of actually observing an effect with 

that score. With regard to these probabilities, a probability threshold (P-value) is set to leave out 

(set to zero) those voxel values in score maps that are presumed to be observed in the PICA 

results by chance. In this study, we used P = 0.5, attributing equal relevance to both false 

negatives and false positives.  

 

The Juelich histological atlas [Eickhoff et al. 2007], and the Harvard -Oxford cortical and 

subcortical atlases (Harvard Center for Morphometric Analysis) which are provided with the 

FSL4 software package were used to quantify anatomical characteristics of thresholded Z-score 

maps. For this purpose, maps were upsampled back to 2 mm resolution MNI standard space. 

Individual anatomical regions in the probabilistic atlases were binarized, and used as masks to 

extract the corresponding regions in maps. An FSL4 fslstats tool was used to calculate mean and 

maximum intensity in regions, as well as the location of maximum intensity. The number of 

voxels in the masked PICA maps was also calculated, and divided by number of voxels in the 

whole anatomical masking region, to provide a percentage of the coverage of different 

anatomical areas by individual maps.  
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A neuroradiologist (VK) depicted the thresholded PICA maps corresponding to the RSNs by 

choosing anatomically clustered sources in the cortical regions, in the vicinity of functional brain 

regions. The sources were further classified into three regions for illustration purposes with a 

scheme modified from Salvador and co-workers [2005] (peri-sylvian = rolandic and temporal, 

frontal, occipito-parietal). In each of the selected sources, 1) sources presented clustered voxel 

groups, 2) sources were focused on cortical structures, and 3) time courses in the ICA mixing 

matrix corresponding to the maps showed elevated low frequency (<0.1 Hz) power. Artifactual 

non-RSNs were identified based on their motion related location at the borders of the brain, in 

cerebrospinal fluid (CSF), at the proximity of large blood vessels, in white matter, and in the 

vicinity of areas shown to be susceptible to physiological pulsations with relatively increased or 

mixed high frequency power [Birn et al., 2006; Lund et al., 2006].  

 

Repeatability analysis: The data from the final step prior to FastICA was also subjected to ICA 

repeatability analysis (ICASSO) [Himberg, Hyvärinen & Esposito 2004]. Since ICA is sensitive 

to its initialization, this framework runs FastICA multiple times on the same data, with random 

initializations and clusters with a hierarchical clustering algorithm, on the results from individual 

runs. The number of clusters is the same as the number of components, and provides statistics 

about the quality of the clusters, reflecting the stability of the ICA results. In this study, we used 

the provided Matlab implementation [Himberg, Hyvärinen & Esposito 2004] with 100 runs, and 

a low epsilon threshold (0.0000001) so that optimization would not converge too soon before 

reaching extrema. Symmetric orthogonalization and skewness (“skew”) as the contrast function 

were also used in this setting. The conservative cluster quality index Iq was used to estimate 

individual component repeatability [Himberg, Hyvärinen & Esposito 2004].  Iq is one for an ideal 
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cluster, and decreases when component clusters become less compact and isolated in repeated 

ICA runs. 

 

Time domain analysis 

 

A mixing matrix estimated in an sICA contains time courses corresponding to estimated spatial 

maps (independent components). The time courses represent the behavior of non-artifact 

components in time more accurately than the average BOLD time courses computed from the 

same spatial area as in the maps; this is because the most dominant effects of cardiac, respiratory, 

CSF-pulsation and motion, and other artifacts are eliminated into separate components. This 

offers preprocessed time courses for temporal correlation analysis of BOLD signal sources [Jafri 

et al., 2008; Sorg et al., 2007].  

In a temporal concatenation scheme, the mixing matrix can be divided into subject specific 

consecutive segments, reflecting subject-wise temporal behavior of components. In this study, 

these subject specific 250 point time courses were used to assess pair-wise inter component 

connectivity on the group level. The time courses were first de-trended, and then correlated with 

each other on the subject level with the Pearson product-moment correlation coefficient with a 

zero lag. The group level average and standard deviation of the results were calculated for each 

correlation pair’s absolute values.  

In addition, the mean of these group-level absolute correlation coefficients was calculated per 

component within the group of components corresponding to RSNs, and within the group 

corresponding to non-RSNs. These values were tested for differences with a two-sample t-test 

between RSNs and non-RSNs. 
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Frequency domain analysis 

 

The subject-wise time courses extracted from the mixing matrix were (after detrending) also 

converted to power spectra, to assess contribution of low frequency power in them. For each 

time course, a spectrogram was computed with 128-point rectangular windowing in Matlab 

(R2008a) with the similarly named function. Rectangular windowing was sufficient, since no 

sinc-interpolation (e.g. no zero padding) was used in the Discrete Fourier Transform. The 

absolute values of the resulting 123 spectra were raised to the second power to approximate 

power spectra, and they were averaged to obtain a final power spectrum estimate for each time 

course.  

For the group-level analysis, each power spectrum was normalized by dividing its values by its 

total power. Normalized power spectra from individual subjects were averaged for each 

component, to produce a group-level representation of temporal power. In addition, Singular 

Value Decomposition was used for each component to produce, on a group-level, a rank-1 

approximation of subject-specific power spectra for that component. Rank-1 approximation 

depicts frequencies with the most commonly elevated power in subject-level time courses.  
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Results 

 

Repeatability measures 

 

An ICASSO algorithm was run on the pre-whitened PCA-data matrix provided by the 

MELODIC. After 100 repeated runs of the group ICA, significantly clustered components were 

detected. Fifty-one of the 70 ICs had an Iq over 0.8, and 60 ICs still had an Iq of at least 0.7. 

Figure 1 shows clustering of the centroid components and stability indexes in reducing the 

stability order. PICA estimation of the group data yielded 73 components. We made 7 separate 

runs altering the basic spatial smoothening parameters (3-7mm FWHM), temporal high (100-420 

s) and low-pass filtering. In essence, the spatial correlation between the detected ICA 

components of  separate runs was always > 0.7.  

 

  < Fig.1 can be here > 

 

RSN-identification 

 

The group PICA separated 42 components that were identified as RSN. These 42 components 

cover most of the brain cortex excluding areas having susceptibility artefacts due to air sinuses. 

The corresponding RSN components had an average Iq  = 0.83 (±0.13) in the ICASSO analysis. 

The RSN components had elevated low frequency fluctuation power and, spatially, were 

clustered components located in the cortex.  Figures 2 to 4 show fused maps and separate spatial 

distributions of 25 of the different signal sources on both sides of the Sylvian fissure and the 
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central sulcus (Peri-Sylvian), in the frontal lobe (Frontal), and in the occital and parietal regions 

(Occipito-Parietal). The remaining signal sources are shown in Fig. 5 in more optimal 3D 

presentations. 

 Twenty-eight ICs were related to non-RSN sources. Eighteen non-RSN components were 

identified as motion/realignment artifacts, and physiological noise sources such as arterial and 

CSF pulsation. Ten of the discarded components were detected as large voxel clusters in the 

white matter, and were not further analysed. Ten examples of the non-RSN sources are shown in 

Fig.6. 

   

Anatomical parcellation 

 

In practice, most of the cerebral cortex can be shown to be segmented with the IC components 

(c.f. the  upper rows in Figures 2-4). On average, the maximal spatial correlation between 

detected RSN components and other sources was 0.2 (sd  0.04). This can be seen in Figures 2-4 

as a limited spatial overlap of separate signal source components. Table 1 lists the first 3-5 

largest overlapping anatomical segments used in FSL4 (Juelich and Oxford atlases) in 

comparison with the selected RSN signal sources. The RSN components actually show more 

connectivity nodes to multiple other anatomical structures, and the complete table is presented in 

the supplementary material (Supplementary: Extended Table 1.2 ). In the following, the 

individual RSN sources are evaluated, based on spatial overlap with pre-existing anatomical 

segments. Temporal inter-source synchrony of the sources, and the highest spatial correlation 

with ICASSO components are also presented.  
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Rolandic signal sources 

 

Figure 2 shows six signal sources identified as peri-rolandic, situated at or in the vicinity of the 

central sulcus. Although most of the sources have strong localized connectivity, some have long 

range connectivity to other primary and secondary sensory areas, such as to the visual and 

auditory regions. 

 

The motor cortex was divided into two different signal sources resembling the classical 

separation of upper cortical structures representing the hand areas (IC 27) and midline feet areas 

(IC 19). Similar to the original discovery of Biswal et al., there was a midline connectivity node 

posterior to the typical SMA seen during activation studies [Biswal et al., 1995]. Another motor 

cortex component, IC 24, was depicted, but it was not clear whether such parcellation is due to 

physiological factors, or if the results are split due to positioning differences in the original 

BOLD axial slices. Anterior to motor areas there were unilateral components (IC’s 53 & 60) with 

positive connectivity to the cerebellum. The right anterior motor IC 60 was spatially larger than 

the left IC 53.   

 

Primary and secondary somatosensory cortices were separated into signal sources of their own 

(IC  6 and, 43, respectively). Posterior to these, there was a symmetrical, bilateral post-

somatosensory cluster (Fig ure 5, IC 40). The somatosensory signal source also showed smaller 

clusters of connectivity to anatomical visual, auditory and Broca’s areas (c.f. Table 1_2 

[supplementary]). The signal source IC 14 was situated below the somatosensory cortex in the 

white-grey matter boundary. The secondary somatosensory source (IC 43) also showed 
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connectivity with structures in the cerebellum, in addition to secondary somatosensory, auditory, 

motor and pre-motor anatomical structures. The supplementary motor area (SMA, i.e. 

juxtapositional lobule) area had bilateral connectivity clusters in IC 49, primarily involving the 

insular cortices, and partly involving the secondary somatosensory area, resembling mirror 

neuron networks. Interestingly, both pre-motor areas BA6 also presented unilateral components, 

i.e. IC’s 53 & 60 (Fig 5). There was a tendency that the farther a source was from the central 

sulcus, the longer the distances were between detected connectivity clusters. 

 

   < Fig 2 can be here > 

Temporal lobe signal sources 

 

In figure 2, the primary auditory cortex was identified as a bilateral component of its own, with a 

right brain dominance (IC 25). As with the peri-rolandic sources, this large network presented 

connectivity with other sources in distant regions, in both the motor and visual areas. A Broca’s 

area on the left and an homologous right hemisphere Broca’s area were detected in a unique 

bilateral component, with a clear, functionally connected cluster in the right paracingulate areas, 

posterior cingulate gyrus, and bilateral occipital poles (IC 30). The the fronto-insular cortex of 

the salience network was detected in a bilateral IC 15 with a partial Broca’s area and inferior 

frontal gyrus involvement, in addition to paracingulate gyrus connectivity [Shihadran et al., 

2008]. IC 49 showing connectivity to SMA could be differentiated from the salience network. 

The temporal poles (IC 13, Fig. 5) were also detected in a unique signal source, with 

connectivity to midline structures to bilateral hippocampi.   
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Frontal signal sources 

 

The frontal lobe had eleven RSN signal sources, seven of which are presented in Figure 3. In five 

sources (ICs 7, 10, 18, 31 and 37), connectivity to language-related areas, such as the auditory 

cortex, inferior frontal gyrus and/or Broca’s anatomical areas, was detected. In addition to these 

areas, IC 7 and 10 were also connected to the anterior cingulate and paracingulate gyri. IC 7 had 

connectivity to the angular gyri and the visual cortex. IC 10 was present at the lower frontal pole 

and medial frontal cortex, and IC  8 was related to the upper frontal pole, and the middle and 

superior frontal and angular gyri.  IC 18 was connected to the superior frontal gyrus, 

paracingulate, and cingulate gyri. IC 23 was connected to the angular and supramarginal gyri, 

along with the visual cortex. IC 37 was related to the superior and medial frontal gyri, and the 

paracingulate gyri.  

   < Fig.3 can be here> 

 

Occipital and Parietal signal sources 

 

 There were seven separated signal source clusters in the occipital lobe, all spatially connected to 

visual areas (c.f. Figure 4). IC 2 was situated at the lateral part of the primary visual cortex (V1), 

as in the lateral visual component in previous papers. Above and lateral to it was IC 4, with 

midline connectivity in V5. IC 39 was also comprised of bilateral V5 areas, yet different V5 

areas from those in IC 4, with connectivity to V1&2 and the  inferior and medial temporal gyrus. 

IC 59 typically presented the previously detected medial visual resting state network, comprising 

almost completely of the intracalcarine and supracalcarine cortex, the lingual cortex, and the 
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major parts of V1&2 and the cuneal cortex. An anterior medial visual component IC 32 in V2, 

with hippocampal and geniculate body connectivity, was also detected. A posterior component 

IC 21 was separated from the medial  central IC 59. The cuneal and precuneal cortex were 

dominant in IC 63, along with V1&2, with clear retrosplenial connectivity. In addition, there 

were two anti-correlated components in the visual areas (IC’s 52 & 61) showing positive z-

scores caudally on the other visual cortex, and negative z-scores on the contra-lateral side more 

cranially.  

   < Fig. 4-6 can be here > 

Default mode and frontal attention control sources 

 

Several ICA sources were detected in the areas known to be related to the default mode network 

(DMN). IC 10 = ventromedial prefrontal cortex (vmPFC), IC 38 = precuneus & parietal lobule 

(PCC). ICs 7, 10, 23, 18, and 37 were closely related to anatomical structures of the DMN (c.f. 

Figures 3-4). The regions usually detected as anti-correlated to DMN in correlation analysis were 

also detected as sources of their own, i.e. IC’s 6, 40 and 49 [Fox et al., 2007,Buckner et al., 

2008]. IC 17 resembles the frontal areas central executive network [Shihadran et al., 2008]. 

Figure 7 shows an example of PICA images calculated with 100 repeated ICASSO runs with 

model orders 10, 70 and 150. Please note how the core areas of the default mode divide into 

smaller sub-networks with increasing model order.  

  

 

 

  < Fig. 7 can be here> 
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Time domain synchrony 

 

The inter-source connectivity between all the calculated ICs are presented in a matrix in Figure 

8. The graph shows how the individual sources are connected to the other sources on average 

with zero time lag. The correlation coefficients range from 0.64 to -0.66 ( ± 0.21). The mean 

correlation coefficients of each component provide an overall assessment of general inter-source 

connectivity of a given IC. The overall connectivity of the non-RSN sources was statistically 

significantly lower than the connectivity of the RSN sources (t = 4.6, p< 0.000024, c.f. Figure 8 

bottom). Eight out of the ten lowest values of summed correlation were depicted in non-RSN 

sources. There is, however, some overlap in the correlation values between the RSN and non-

RSN sources, and temporal zero-lagged correlation alone cannot be used to separate the sources 

with absolute certainty.  

   < Fig.8 can be here> 

Frequency domain  

 

The mean power spectra of the individual ICA time courses extracted from the group data 

mixing matrix had increased low frequency power with 1/f distribution characteristics (see also 

Figures 2-4). The first rank approximate of the power spectra shows the most contributing 

frequencies, mostly presenting the same proportional distribution as the mean power spectra. In 

the majority of the components, the dominant feature is the 1/f characteristic trend. However, in 

ICs 7, 18, 19, 21, 25, 27, 30, 32, 38, 43, 59, and 63, there is a distinct peak in lower frequencies.  

That is, the lowest frequency is not with the largest power. The peaks were almost absent from 

frontal sources, with the exception of DFM related IC 18. Primary auditory IC 25, 
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somatosensory IC 43, motor ICs 19 and 27, and visual sources 21, 32 and 59 showed peaks. In 

the visual cortex, IC 59 in the medial areas had an exceptional 0.045 Hz frequency peak at the 

most dominant approximate. Default mode IC 38 and the Broca area source IC 30 also presented 

peaks in their power spectra.  

Discussion 

 

The results of this study represent functional segmentation of the human brain cortex, using the 

statistical independence of spontaneous brain activity sources as a delineating feature. We have 

shown that the intrinsic baseline activity of the brain cortex can be separated into 42 independent 

sources, having resting state network features, using a high model order PICA approach. These 

sources cover virtually the whole brain cortex, excluding the sources affected by susceptibility 

artefacts near air-sinus interfaces. The dominant low frequency power characteristics of rank-1 

approximates in the RSN support the idea that the sources represent low frequency background 

activity of the RSN. All of the RSN sources have increased LFF power in the mean power 

spectra (c.f. Figures 2-4). 

 

 The utilization of continuous in vivo baseline activity information on  brain activity offers a 

complementary method to previous anatomical/histological dissection studies, as well as imaging 

data-based segmentation studies, which currently form the basis of spatial localization schemes. 

The introduction of functional segmentation offers a more accurate tool for delineating 

functional activity that traverses presently used tissue segmentation borders in connected 

neuronal networks. In addition, these IC source maps can be used as data driven, statistically 

independent, functional seed regions for further correlation analyses.  
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Using present 1.5 T MRI scanning methodology our group has identified 42 signal sources over 

the whole brain cortex. The results of this study are in excellent agreement with the recent results 

of Cohen et al. [2008], who showed several small functionally connected areas within the same 

cortical regions. The work of Malinen and co-workers convincingly shows that during natural 

stimuli there are all together at least twenty task and non-task related signal sources detectable in 

the brain [Malinen et al., 2007]. Compared to a higher resolution fMRI scan on a rat, the results 

of this study seem conservative, since rats were shown to have some 20 connectivity hubs 

detectable in the somatosensory and visual systems alone [Pawela et al., 2008]. Two groups have 

been able to identify separate regions from the striatum and thalamus with distinct functional 

connectivity to the brain cortex in human subjects [DiMartino et al., 2008, Mezer et al, 2008]. 

On a sub-millimeter scale, anatomical structures of the visual field columns and cortical layers 

can be identified based on the spontaneous electrophysiological activity of sub-second time 

scales.  This suggests that an even greater number of spontaneous signal sources will be 

detectable with increased spatiotemporal accuracy in the future [Kenet et al., 2003; Pelled & 

Goelman 2004]. 

 

The previously detected 12 signal sources that were found in smaller datasets are basically 

summations of some of the sources presented here [Beckmann, et al., 2005; Damoiseaux et al., 

2006; Sorg et al., 2007; Jafri et al., 2008].  An example of this can be seen in the Figure 7, where 

the DMN is initially presented as one single source with the model order 10, and, after increasing 

the model order, becomes divided into several sources.  It seems that low model orders provide 

information on large scale networks, whereas higher model orders, at least in group-data settings, 
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provide sub-network accuracy. We are currently analyzing the effect of model order on the 

dividing of RSN’s into sub-networks. We suggest that the 42 group-PICA signal sources 

depicted in this study represent a more finely-tuned and segmented version of the functional 

neuro-anatomy of the RSN’s in the brain cortex, and therefore we strongly support using high 

model order in large group datasets.    

 

The distinction of components into two categories of either RSN or non-RSN may be somewhat 

arbitrary although there have been some successful attempts towards automated noise removal 

that basically also delineates IC’s into neuronal and artifactual originated ones [De Martino et al., 

2007; Tohka et al., 2008]. One might justifiably speculate in the absence of definite exclusion 

criteria that there exist a “borderline” between RSN sources and non-RSN sources. Some IC’s 

have features of cortical signal source overlapping with regions often presenting artifacts. For 

example IC’s 3, 24 and 40 all are situated within the cranial brain cortex and somewhat resemble 

sources seen in individual ICA results as motion artefact/partial volume effects. However at least 

IC 40 seems to be a RSN based on further studies not shown here. On the other hand IC’s 8, 52 

and 61 are situated very close to sagital or transverse sinuses and one might speculate that the 

source has some contribution from pulsation from sagital sinus. However the sagital sinus at 

least  was shown to have an even more confined source of its own (IC 46) c.f. Fig 6. It would be 

beneficial to obtain a more quantitative criteria than anatomical positioning and low frequency 

fluctuation of the sources in order to differentiate true RSN sources from artefacts.   

 

The signal sources depicted here accurately follow the known functional anatomy of the sensory 

and motor networks. Sources IC 19 and 27 together cover   89 % of the right and 86 % of the left 

Page 21 of 53

John Wiley & Sons, Inc.

Human Brain Mapping

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

primary motor cortices when compared to MNI atlases in fsl4. Primary sensorimotor areas were 

shown to have spatial connectivity with fourteen IC’s, twelve of which were the same (IC 

3,4,6,14,19,24,27,40,43,53,60,66). The M1 anatomical area was uniquely connected to IC’s 41 & 

45 , while S1 was connected to IC 9 & 35, c.f. Table 1_2 in the supplement.  Somatosensory  S1 

had a spatial overlap of  61 % (IC 6) and S2 72 % (IC 43). The supplementary motor area (i.e. 

juxtapositional lobule) activity was differentiated from the primary sensorimotor components, 

although it was shown to have connectivity to them. SMA was shown to be connected to 12 

RSN’s, the largest share being detected in IC 49 (58%). Also IC’s 53 (24 %), IC 60 (34%), IC 18 

(30%), IC 19 (36%) had relatively high spatial overlaps with the SMA template. The unilateral 

and somewhat anterior pre-motor sources (IC’s 53 & 60: Broadman area BA6, 42 % and 55%, 

respectively) could be related functional differences of the subjects pre-motor areas [Longcamp 

et al, 2005].    

 

Visual sources are separated into multiple sources, and not only into medial and lateral 

components as before. The primary and secondary visual cortices V1 & V 2 were detected in 10 

IC’s (IC’s 1,2,4,21,32,38,52,59,61,63),and, the largest overlap for V1 was in IC’s 21 and 55, 

both having  55.5 %.  The secondary V2 had the largest overlaps in IC’s 21 (51%) and IC 59 

(54%). The multiple components have a strong resemblance to natural viewing (V1-V5, lateral 

occipital complexes) and listening-related components in the occipital and temporal regions 

[Bartels & Zeki 2005, Malinen et al., 2007]. The positive/negative IC’s 52 and 61 resemble 

visual fields seen in visual hemifield activation study using the frequency based group ICA 

[Calhoun et al., 2003].  
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IC 25 was most overlapping with the primary auditory cortex ( 90.5% with the right TE 1.0 and  

89.7 % with TE 1.2 on the left) and  is left-dominant. The primary auditory cortex was connected 

to ten IC’s (IC’s 1,15,18,25,29,37,39,43,47,68). Broca’s area had connectivity with sixteen 

sources (IC’s 3,4,7,8,9,10,15,30,31,35,37,39,43,49,66,68) with largest nodes in IC 30 (77 % right 

side), IC 35 (97 % left side).  Several other frontal and temporal sources have interesting and 

complex connectivity with various functional regions related to attention, language and other 

cognitive functions. Their spatial overlapping with presently known anatomical regions are rich, 

just like those of the primary sensory and motor cortices, and they are presented  more precisely 

in the Supplement: Extended Table 1.2.  

 

Recent findings show that the DMN nodes have separate causality and connectivity 

characteristics [Sridharan et al., 2008; Uddin et al., 2008]. Also researchers using ICA have 

noticed the separation of the DMN into at least two sub-networks [Calhoun et al., 2008; 

Damoiseaux et al., 2006]. The results of this study shows that  the DMN is functionally 

differentiated into anterior and posterior parts. There are also “DMN-type” components (IC 7, 

10, 23, 18, and 37) with clear spatial overlap with DMN related areas [Buckner et al, 2008]. The 

detection of these areas is particularly sensitive to model order of the ICA and we are currently 

investigating this phenomenon.  

 

The regions detected as anti-correlated with the DMN in correlation analyses using global mean 

regression were also detected as sources of their own (IC’s 6, 40, 49). The use of ICA avoids the 

problematic regression of the global mean signal, although the PCA mean subtraction step in 

pre-processing of PICA also alters the data to some extent [Murphy et al., 2008]. Based on the 
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present results, the areas anti-correlated to DMN in correlation analyses are also present as 

independent signal sources and therefore may not be completely a by-product of global mean 

signal regression of BOLD signal.   

 

 In order to maximize the chances of effective treatment, it is crucially important to identify 

diseases at the earliest stage possible. Functional alterations often present themselves as 

symptoms prior to irreversible tissue damage. For clinical brain research, function-based tissue 

segmentation is of pivotal importance in the early detection and characterization of diseases. 

Greicius and co-workers [2004, 2007] have already shown that minimally impaired memory 

deficiency or depression are related to the function of a brain network. ICA analyses detecting 

multiple brain networks have shown that, while some networks show no changes, others may be 

more affected by diseases such as Alzheimer’s and schizophrenia [Calhoun et al., 2008; Jafri et 

al., 2008; Sorg et al., 2007]. The high model order ICA segmentation increases functional and 

anatomical specificity in the connectivity analysis of the networks and so may enhance our 

ability to detect disease-related network alterations.   

 

The ICA methodology in this study is widely used by other researchers, and we suggest that the 

relatively high number of detected RSN components is due to increased signal-to-noise ratio 

related to the large dataset used in the group analysis. How inter-subject variance affects the 

results is, however, an important question; are we seeing more fringe components that are only 

present on sub-populations within the group [Schmidthorst & Holland, 2004]? For example, 

bored, anxious or enthusiastic subjects might have different strengths of fluctuations in default 
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mode sub-networks. The answer to this problem is also related to model order of a large group 

dataset and therefore this issue may not be entirely handled within the scope of this manuscript.  

 

The only minor alteration compared to general trends in ICA analyses was the utilization of 70 

components. The high model order is supported by the works of McKeown et al. [2002] and 

some recent ones as well [De Martino et al., 2007, Malinen et al., 2007]. One can always 

speculate on the effects of over-fitting in the detected components, if there are any. It should be 

noted that model order estimation with PPCA also yielded high model order numbers, i.e. 73 in 

this dataset, which strongly speaks against major overfitting. Two of the original 73 components 

were related to non-accurate extra-brain tissue removal, and this was corrected by utilizing 

another bet-algorithm outside the MELODICA automated tool.  

 

 In order to validate the stability of the method, we employed ICASSO on the pre-processed 

MELODIC data matrix. In doing so, 60 out of 70 components were shown to have a stability 

value of at least 0.7 in the group analysis, especially when the ICASSO was computed using a 

low epsilon threshold. Higher epsilon thresholds led to less clustered components in repeated 

runs due to less demanding convergence of the ICA algorithm around local maxima. It should be 

interesting to see how the repeated ICASSO analysis results differentiate from single subject run 

PICA results. We are currently exploring the benefits of using both PICA and ICASSO in a 

combined analysis setting. Another unclear issue is how the RSN’s detected in the group data 

can be used in individual settings. Based on the results shown here, a familiar ICA related issue 

re-emerges; what is the optimal model order of ICA in datasets with increased subject numbers, 

and how are pre-processing schemes influencing the results? We are currently investigating 
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whether it is still possible to detect more accurate RSN components with bigger data samples and 

higher model orders.  

 

The temporal correlation matrix of the ICA enables the assessment of connectivity between all 

the detected signal sources. It can be seen that some of the sources have limited correlation to 

practically all the other sources, which becomes visible as a dark row in the mean connectivity 

matrix (c.f. Figure 5). These dark lines tend to be non-RSNs sources related to noise/artefacts 

and, indeed, their mean temporal inter-source connectivity is significantly lower than those of 

the RSN sources. The temporal correlation structure could perhaps be used as a feature in 

differentiating the non-RSN and RSN sources with different lag periods. The non-RSN sources 

are thus temporally more independent than the connected RSN sources, and therefore their 

automated separation seems feasible from this point of view [De Martino et al., 2007; Tohka et 

al., 2008].   

 

There have been concerns about the uncontrolled nature of the resting state regarding attention 

and free thinking induced alterations. In this study, we used a semi-resting state by instructing 

the subject to fixate on a cross shown on the screen. The subject is not completely at rest and 

tries to sustain attention on the cross. On the other hand, no restrictions on the fixation or mental 

imagery were given either. The fixation reduces motion artefacts and still offers some cognitive 

baseline function in order to reduce some of the variability of free thinking. McAvoy et al 

recently presented rather similar spatial distribution of areas where BOLD fluctuation frequency 

is dependent on whether the subject has eyes open, closed or is fixating on a cross. We found a 

similar distribution of areas, and in addition differences in power spectral densities between the 
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visual area sources. The V1 related medial (IC 59) and dorsal (IC 21) components in this study 

have somewhat different rank-1 approximates from the other occipital sources. It would be 

interesting to see how these sources differ in subjects with eyes closed in a large number of 

subjects. 

 

 Importantly, it has been shown that the effective estimation and removal of underlying 

oscillations significantly improves the signal-to-noise ratio in the task activation studies [Fox et 

al., 2006]. In addition, baseline activity oscillations preceding stimuli explains the  major share 

of the subsequent stimulus response variability [Boly et al., 2007; Fox et al., 2006, Eichele et al., 

2008]. There may be stimulus-locked connectivity alterations that can be masked by the baseline 

oscillations, rendering the hemodynamic response functions and correlation based connectivity 

measurement inaccurate. After establishing the cortical oscillatory activity within each of the 

networks with high model order ICA, one may be able to utilize these baseline oscillations in a 

regression analysis in a more accurate manner, and obtain increased signal-to-noise ratios in 

stimulus related effective connectivity analyses of brain networks. Also, due to the fact that ICA 

separates noise sources, the mixing matrix signals seem to yield effective measures for 

connectivity and causality measurements, without biasing physiological or motion related 

correlations [Eichele, et al.2008, Sorg et al., 2008, Calhoun et al., 2008].  

 

 Mantini and co-workers were able to distinguish EEG power distribution fingerprints of 

different RSNs [Mantini et al., 2007]. Although the frequency resolution of fMRI alone is not as 

good as that of EEG, one is able to depict differences between the power distributions and first 

rank approximates of the RSNs (c.f. Figures 2-4). Primary sensory and motor sources, default 
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mode, Broca’s area and some occipital visual sources present some prominent frequency peaks 

in addition to the 1/f trend in the spectrum. The frontal sources predominantly have 1/f 

distributions without clear peaks. The functional significance of this difference in peak frequency 

distributions needs further elucidation.  

 

Conclusion       

 

The brain cortex can be robustly segmented into 42 independent RSNs by utilizing the group-

ICA of baseline BOLD data. This method offers complementary information on tissue 

characteristics of cortical structures compared to previous post-mortem histological and 

microanatomic dissection of structures. Utilization of a relatively high model order and multi-

subject group data enables increased accuracy of functional segmentation of brain tissue due to 

increased signal-to-noise ratio.  The method reveals multiple interlinked connectivity sub-

networks enabling more fine-tuned characterization of seed regions for further causality and 

connectivity analyses. 
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On the left, the clustering of group PICA-derived components in ICASSO after 100 repeated runs. 
On the right, ICASSO run components in descending clustering index values, showing that in 60/70 
components the clusters are repeatedly detectable (Iq ≥ 0.7). Please note that the ICASSO cluster 

numbers are not the same as the PICA numbers in the text and other images.  
18x9mm (600 x 600 DPI)  
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Signal sources located around the Sylvian fissure, both peri-rolandic and temporal sources are 
presented. At the top, a fused image presenting overlays of the different sources. Below that, IC 
sources are mapped with color labels provided by the fsl-view tool. On the right, the mean power 
spectra and rank 1 approximate on the same row as the map of the given source. On the left, the 

sources are numbered using the same numbers as referenced in the text.  
71x93mm (600 x 600 DPI)  
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The occipital and parietal RSN signal sources presented in the same way as in Fig.2 with power 

spectra and rank 1 approximates. The DMN posterior part is depicted in IC 38.  

78x124mm (600 x 600 DPI)  
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shows examples of frontal signal sources in a similar order to  Fig’s 2-3. Note the relative lack of 
power peaks compared to the more posterior components. The default mode network pattern can 

be seen to originate from several sub-networks in the fused images at the top.  
67x80mm (600 x 600 DPI)  
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Shows examples of the remaining 17 RSN in coronal, axial and sagital views on an MNI template. 
The MNI coordinates are shown in the image. Red-yellow positive z-scores, and blue negative z-

scores.  
67x86mm (600 x 600 DPI)  
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Ten artefactual non-RSN sources, from top left: brain stem pulsation (IC 11), motion artefact 
(IC18), two white matter sources (IC’s 16,17), cerebral artery related (IC 28), Sagital sinus (IC 46), 

two CSF-ventricle pulsation sources (IC 51,56) and temporal motion related source (IC 65) and 
frontal sinus susceptibility artefacts (IC 66).  

38x27mm (600 x 600 DPI)  
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Sagital and axial examples of the default mode network shown  with model order 10, 70 and 150 
after 100 ICASSO runs shown in a PICA setting in fsl4, with p = 0.5 threshold. The core default 

mode areas become separated into at least three independent sub-networks, one in the pre-cuneus 
and posterior parietal areas, and two in the ventro-medial prefrontal areas.  

34x75mm (600 x 600 DPI)  

 

Page 45 of 53

John Wiley & Sons, Inc.

Human Brain Mapping

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 
  

 

 

Top: the individual correlation matrix of each signal source compared to each other enables 
assessment of the inter-source connectivity of basically the entire brain cortex. Mean correlation 

coefficients with 0 time lag are color encoded at the top/right, and standard deviations of individual 
source correlation pairs in grey scale at the bottom. Below: mean inter-component correlation 

coefficients between individual sources are analysed at the subject level. The resting state network 
(RSN) components show increased inter-source connectivity between all the calculated sources 

compared to artefact related non-RSN sources.  
 

42x70mm (600 x 600 DPI)  
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   Overlap % t-score MNI max-t Template    

# IC  ANATOMICAL ROI AREA Area IC vs. ROI mean max   X Y Z Source 
#  ICASSO 

Spatial 
correlation 

Iq 

1 GM Visual cortex V5  R/L 60/55 6,7/ 5,6 14/11 27/67 31/26 28/31 J 15 0,86 0,964 

 Temporal Occipital Fusiform Cortex  66,5 7,3 20,1 30 29 26 HO    

 Occipital Fusiform Gyrus  78,0 8,1 20,6 30 28 26 HO    

 Lateral Occipital Cortex, inferior division  58,0 6,7 20,1 30 27 26 HO    

             

             

2 GM Visual cortex V1 BA17 V1 / V2 37,0 / 37,5 8,5 / 8,6 31,3 / 31,3 60 / 60 16 / 16 34 / 34 J 63 0,84 0,810 

 GM Visual cortex V2 BA18  37,5 8,6 31,3 60,0 16,0 34,0 J    

 Occipital Fusiform Gyrus  55,0 4,9 31,3 60,0 16,0 34,0 HO    

          50 0,67 0,814 

3 GM Premotor cortex BA6  R/L 30,0 / 31,0 5.83/5.97 13,8 / 13,5 32/54 74/74 66/66 J    

 Superior Frontal Gyrus  43,6 6,9 14,6 30,0 74,0 64,0 HO    

 Middle Frontal Gyrus  42,0 6,8 14,6 30,0 74,0 64,0 HO    

             

4 GM Visual cortex V5  R/L 73,0 / 62,0 5.9 / 5.4 11. 2 / 9.9  24/64 22/21 42/41 J 61 0,56 0,627 

 Lateral Occipital Cortex, superoir division  44,9 6,8 17,0 52,0 18,0 52,0 HO    

 Cuneal Cortex  55,8 6,8 17,0 52,0 18,0 52,0 HO    

             

6 GM Anterior intra-parietal sulcus hIP2  R/L 78,0 / 56,0 7,5 / 5,2 18,2 / 12,0 13 / 76 1,0 1,0 J 43 0,83 0,821 

 
GM Secondary somatosensory cortex / 
Parietal operculum OP1   61,5 9,0 19,0 12,0 52,0 54,0 J 

   

 Supramarginal Gyrus, anterior division  68,8 7,3 19,0 12,0 52,0 54,0 HO    

             

7 GM Anterior intra-parietal sulcus hIP1   32,9 6,7 17,0 70,0 32,0 50,0 J 46 0,84 0,730 

 GM Visual cortex V5   46,3 5,0 14,4 71,0 29,0 48,0 J    

 
Middle Temporal Gyrus, temporooccipital 
part  38,8 5,2 16,4 73,0 32,0 48,0 HO 

   

 Angular Gyrus  36,2 6,5 18,0 72,0 32,0 50,0     

             

8 Frontal Pole  27,2 6,8 21,3 44,0 94,0 46,0 HO 9 0,90 0,950 

 Superior Frontal Gyrus  27,8 7,0 21,0 44,0 94,0 47,0 HO    

 Paracingulate Gyrus  28,6 6,3 18,8 43,0 92,0 48,0 HO    
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   Overlap % t-score MNI max-t Template    

# IC  ANATOMICAL ROI AREA Area IC vs. ROI mean max   X Y Z Source 
#  ICASSO 

Spatial 
correlation 

Iq 

9 GM Anterior intra-parietal sulcus hIP1   68,9 6,4 15,5 30,0 28,0 60,0 J 26 0,86 0,914 

 GM Anterior intra-parietal sulcus hIP2  56,7 5,0 10,2 24,0 36,0 62,0 J    

 Lateral Occipital Cortex, superoir division  32,6 6,2 17,5 32,0 26,0 62,0 HO    

             

10 GM Broca's area BA45   20,6 -1,9 4,1 24,0 82,0 36,0 J 4 0,72 0,982 

 WM Cingulum   20,0 3,0 9,0 50,0 85,0 36,0 J    

 Frontal Medial Cortex  65,3 8,7 22,2 46,0 92,0 32,0 HO    

 Paracingulate Gyrus  50,5 6,5 22,2 46,0 92,0 32,0 HO    

             

13 GM Amygdala_laterobasal group  R/L 37 / 37 5,6 / 5,1 11,0/9,5 27 / 67 63 / 68 17 / 20  J 8 0,94 0,947 

 GM Hippocampus entorhinal cortex  R/L 40 / 38 5,5 / 4,8 11,5 / 10,0 27 / 62 63 / 60 16 / 16 J    

 Inferior Temporal Gyrus, anterior division  76,7 7,8 14,5 68,0 68,0 16,0 HO    

 Temporal Fusiform Cortex, anterior division  73,8 6,8 13,6 22,0 64,0 16,0 HO    

             

14 GM Primary somatosensory cortex BA3a  R/L 19,8 / 33,6 5,0 / 5,5 10,8 / 12,8 42 / 51 41 / 44 62 / 60 J 11 0,78 0,939 

 Cingulate Gyrus, posterior division  40,7 6,6 12,9 50,0 44,0 60,0 HO    

 Precuneous Cortex  40,2 5,7 12,9 50,0 44,0 60,0 HO    

 Cuneal Cortex  21,4 3,9 6,4 38,0 32,0 58,0 HO    

   0,0          

15 GM Broca's area BA44  R/L 44,9 / 30,7 4,2 / 4,5 13,0 / 14,6 18 / 67 74 / 75 34 / 32 J 67 0,84 0,579 

 GM Broca's area BA45  R/L 53,1 / 45,5 5,0 / 5,3 13,5 / 15,1 19 / 68 74 / 74 32 / 32 J    

 Inferior Frontal Gyrus,  
pars 

tria./operc. 51,0 / 42,6 5,5 / 5,3 15,1 / 14,6 68 / 69  74 / 74 32 / 32 HO 
   

 Paracingulate Gyrus  43,2 3,9 8,2 46,0 74,0 60,0 HO    

 Frontal Operculum Cortex  66,4 7,6 15,1 68,0 74,0 32,0 HO    

   0,0          

   0,0          

18 GM Primary auditory cortex TE1.1 R/L 44,0 / 64,0 3,3 / 4,1 4,9 / 6,3 24 / 66 48 / 50 44 / 40 J 60 0,72 0,746 

 Paracingulate Gyrus  62,7 6,4 19,0 44,0 76,0 48,0 HO    

 Cingulate Gyrus, anterior division  68,5 7,0 19,0 44,0 76,0 48,0 HO    

             

             

19 GM Primary motor cortex BA4a(+p)  R/L 50,2 / 50,8 7,4 / 8,0 15,3 / 15,4 45 / 46 52 / 52 68 / 68 J 35 0,90 0,919 

 
GM Primary somatosensory cortex 
BA3a(+1-3b)  R  41,0 / 39,8 7,8 / 7,7 14,6 / 15,0 44 / 56 50 / 48 66 / 66 J 

   

 Juxtapositional Lobule Cortex   35,6 7,2 15,4 46,0 52,0 68,0 HO    
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   Overlap % t-score MNI max-t Template    

# IC  ANATOMICAL ROI AREA Area IC vs. ROI mean max   X Y Z Source 
#  ICASSO 

Spatial 
correlation 

Iq 

21 GM Visual cortex V1 BA17 V1/V2 55,5 / 51,2 8,7 / 7,7 26,8 / 26,8 42 / 42 18 / 18 36 / 36 J 66 0,91 0,645 

 Intracalcarine Cortex  51,5 10,3 26,8 42,0 18,0 36,0 HO    

 Occipital Pole  52,3 8,3 26,8 42,0 18,0 36,0 HO    

             

23 GM Anterior intra-parietal sulcus hIP1-2  R/L 47,5 / 38,1 8,0 / 5,6 19,0 / 12,5 20 / 69 34 / 34 59 / 60 J 30 0,81 0,859 

 Supramarginal Gyrus, posterior division  35,2 6,8 19,8 18,0 36,0 58,0 HO    

 Angular Gyrus  50,4 7,8 19,8 18,0 36,0 58,0 HO    

 Lateral Occipital Cortex, superoir division  29,3 5,7 19,8 18,0 36,0 58,0 HO    

             

24 GM Primary motor cortex BA4a+p  R/L 38,6 / 35,8  7,0 / 5,8 12,7 / 13,5 40 / 50 56 / 57 74 / 74 J 58 0,67 0,907 

 GM Primary somatosensory cortex BA1  R/L 34,4 / 31,1 6,4 / 4,7 12,1 / 11,6 30 / 50 50 / 51 72 / 74 J    

 GM Premotor cortex BA6 R R/L 27,0 / 27,5 6,6 / 5,8 12,7 / 13,6 40 / 52 56 / 58 74 / 74 J    

 Juxtapositional Lobule Cortex (SMA)  26,0 4,7 13,5 50,0 58,0 74,0 HO    

             

25 GM Primary auditory cortex TE1.0 (-1.2) R/L 90,5 / 87,6 8,1 / 8,9 17,7 / 19,3 14 / 76 52 / 50 40 / 40 J 14 0,94 0,925 

 
GM Secondary somatosensory cortex / 
Parietal operculum OP1  R/L 39,7 / 52,9  6,7 / 9,2 17,0 / 19,3 14 / 76 53 / 50 40 / 40 J 

   

 Heschl's Gyrus (includes H1 and H2)  90,6 8,7 19,4 76,0 50,0 40,0 HO    

             

27 GM Anterior intra-parietal sulcus hIP2  R/L 49,3 / 48,9 7,0 / 7,9 17,9 / 18,7 22 / 70 50 / 48 63 / 61  J 69 0,88 0,578 

 GM Primary motor cortex BA4p (+a)  35,3 7,9 18,3 22,0 51,0 64,0 J    

 GM Primary somatosensory cortex BA2  R/L 55,6 / 59,8  7,6 / 9,9 18,3 / 19,8 22 / 66 52 / 52 64 / 66 J    

 Supramarginal Gyrus, anterior division  56,3 6,4 19,3 68,0 48,0 63,0 HO    

             

29 GM Amygdala_centromedial group  R/L 68,6 / 40,1 5,0 / 4,5 11,6 / 9,6 24 / 62 61 / 54 26 / 31 J 23 0,90 0,940 

 GM Hippocampus cornu ammonis  R/L 41,0 / 32,6  5,2 / 5,3 12,9 / 13,7 24 / 65 57 / 54 29 / 30 J    

 GM Lateral geniculate body  R/L 54,4 / 42,7 3,5 / 3,4 5,8 / 5,7  30 / 60 55 / 53 32 / 30 J    

 Planum Polare  64,5 7,7 15,6 66,0 56,0 30,0 HO    

             

30 GM Anterior intra-parietal sulcus hIP1 R/L 37,9 / 21,6 3,8 / 3,7 6,2 / 5,8 26 / 24 34 / 36 60 / 60 J 33 0,84 0,923 

 GM Broca's area BA44 (+BA45) R/L 77,5 / 33,9 6,7 / 4,4 13,1 / 8,3 20 / 68 70 / 72 48 / 48 J    

 
GM Secondary somatosensory cortex / 
Parietal operculum OP3 (+OP2,4) R 55,3 4,5 10,5 22,0 65,0 46,0 J 

   

 Inferior Frontal Gyrus, pars opercularis  63,9 6,3 13,1 20,0 70,0 48,0 HO    

 Right Caudate  20,0 3,1 4,2 34,0 61,0 46,0 HO    
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   Overlap % t-score MNI max-t Template    

# IC  ANATOMICAL ROI AREA Area IC vs. ROI mean max   X Y Z Source 
#  ICASSO 

Spatial 
correlation 

Iq 

31 GM Broca's area BA45  R/L 16,7 / 29,0 0,4 / 4,0 7,4 / 11,1 22 / 66 86 / 86 45 / 43  54 0,69 0,665 

 Frontal Pole  42,5 5,1 18,6 60,0 94,0 40,0     

 Inferior Frontal Gyrus, pars triangularis  22,3 1,5 8,8 66,0 84,0 45,0     

             

32 GM Hippocampus subiculum  R/L 42,9 / 48,2 4,8 / 5,4 9,4 / 11,02 32 / 58  42 / 43 30 / 30 J 28 0,66 0,936 

 GM Visual cortex V2 BA18  26,0 3,4 9,9 52,0 34,0 38,0 J    

 GM Medial (+lateral ) geniculate body  R/L 55,8 / 88,5 3,4 / 3,9 4,9 / 6,2 38 / 50 47 / 46 29 / 30 J    

 Parahippocampal Gyrus, posterior division  83,3 5,7 12,0 58,0 42,0 28,0 HO    

             

34 Cerebellum         13 0,91 0,935 

             

35 GM Broca's area BA45(+BA45) R/L 19,4 / 97,0 3,5 / 8,8 5,6  / 17,7 20 / 70 80 / 84 40 / 36 J 42 0,84 0,811 

 Inferior Frontal Gyrus, pars triangularis  59,6 8,0 17,7 70,0 84,0 36,0 J    

 Inferior Frontal Gyrus, pars opercularis  51,5 6,7 16,5 70,0 78,0 41,0 J    

 Frontal Operculum Cortex  39,7 5,8 15,6 70,0 77,0 41,0 J    

             

37 Frontal Pole  32,2 4,5 15,7 28,0 84,0 54,0 HO 34 0,69 0,897 

 Superior Frontal Gyrus  27,5 3,9 15,7 28,0 84,0 54,0 HO    

 Middle Frontal Gyrus  36,9 5,5 15,7 28,0 84,0 54,0 HO    

 Paracingulate Gyrus  22,9 1,0 5,1 41,0 90,0 53,0 HO    

             

38 Cingulate Gyrus, posterior division  50,5 8,2 19,7 46,0 33,0 50,0 HO 65 0,83 0,883 

 Precuneous Cortex  43,8 8,0 19,9 46,0 32,0 50,0 HO    

 Cuneal Cortex  40,2 8,4 19,7 46,0 31,0 50,0 HO    

 Supracalcarine Cortex  53,6 9,2 19,9 46,0 32,0 50,0 HO    

             

39 GM Visual cortex V5  R/L 91,5 / 56,0 7,1 / 4,0 12,7 / 6,2 18 / 70 34 / 32 38 / 36 J 16 0,86 0,923 

 
Middle Temporal Gyrus, temporooccipital 
part  69,4 6,4 14,6 20,0 38,0 38,0 J 

   

 
Inferior Temporal Gyrus, temporooccipital 
part  37,7 5,9 13,3 17,0 37,0 36,0 J 

   

 Lateral Occipital Cortex, inferior division  34,2 5,3 13,6 20,0 36,0 38,0 J    
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   Overlap % t-score MNI max-t Template    

# IC  ANATOMICAL ROI AREA Area IC vs. ROI mean max   X Y Z Source 
#  ICASSO 

Spatial 
correlation 

Iq 

40 GM Primary somatosensory cortex BA2  R/L 36,8 / 39,0 5,6 / 6,4 15,0 / 12,7 32 / 58 36 / 36 70 / 70 J 20 0,82 0,908 

 Postcentral Gyrus  22,1 5,2 14,9 33,0 36,0 70,0 HO    

 Superior Parietal Lobule  52,1 6,1 15,0 32,0 36,0 70,0 HO    

 Lateral Occipital Cortex, superoir division  20,3 5,6 15,0 32,0 36,0 70,0 HO    

 Precuneous Cortex  17,8 3,4 13,7 37,0 34,0 70,0 HO    

             

41 GM Amygdala_centromedial group  R/L 80,1 / 76,3 6,9 / 6,2 18,4 / 14,6 31 / 58  64 / 63 32 / 32 J 12 0,93 0,942 

 Putamen R/L 92,7 / 93,4 9,4 / 7,9 21,0 / 18,4 58 / 32 66 / 66 34 / 32 HO    

 Pallidum  80,0 / 80,4 5,5 / 7,0 11,4 / 16,9 56 / 54 66 / 70 34 / 33 HO    

  Accumbens R/L 51,4 / 55,7 5,4 / 5,5 12,3 / 11,4 36 / 54 70 / 70 32 / 33 HO    

             

43 GM Primary auditory cortex TE1.2  R/L 59,9 / 43,5 9,9 / 8,7 26,2 / 23,5 14 / 74 60 / 58 43 / 45 J 1 0,95 0,984 

 GM Primary somatosensory cortex BA3b  R/L 37,2 / 37,2 14,0 / 13,4 34,1 / 33,7 16 / 72 60 / 58 48 / 50 J    

 
GM Secondary somatosensory cortex / 
Parietal operculum OP4 (OP1-3) R/L 72,9 / 71,9 12,2 / 12,3 34,1 / 33,7 16 / 72 60 / 58 48  / 50 J 

   

 Central Opercular Cortex  39,3 10,0 30,7 16,0 60,0 46,0 HO    

             

45 GM Medial geniculate body  R/L 24,7 / 16,4 3,0 / 3,0 3,5 / 3,5 38 / 49 52 / 48 33 / 30 J 17 0,90 0,901 

 Brain-Stem  22,3 4,2 11,1 42,0 40,0 24,0 HO    

 Right Thalamus  8,5 3,3 4,3 40,0 52,0 34,0 HO    

             

47 GM Primary auditory cortex TE1.2  R/L 31,2/43,7 4,5/4,5 7,9/7,8 22 60 36 J 47 0,82 0,795 

 Subcallosal Cortex  29,0 6,6 16,4 44 78 38 HO    

 Paracingulate Gyrus  31,7 5,7 16,4 44 81 38 HO    

 Cingulate Gyrus, anterior division  33,8 6,8 17,1 44 80 38 HO    

 Left Accumbens  31,4 4,4 8,6 48 74 36 HO    

             

49 GM Broca's area BA44  R/L 53,5 / 41,1 5,3 / 1,8 12,9 / 10,2 16 / 74  66 / 64 36 / 36 J 57 0,65 0,586 

 GM Primary auditory cortex TE1.2  R/L 99,8 / 91,0 7,6 / 5,6 13,0 / 10,2 16 / 74 66 / 64 36 / 36 J    

 Insular Cortex  59,7 5,4 12,7 24,0 66,0 36,0 J    

 Juxtapositional Lobule Cortex (SMA)  57,9 4,9 11,4 44,0 66,0 58,0 HO    

 Frontal Operculum Cortex  62,0 6,0 13,0 16,0 66,0 36,0 HO    

 Central Opercular Cortex  65,2 6,1 13,0 16,0 66,0 36,0 HO    

 Planum Polare  69,8 6,3 13,0 16,0 66,0 36,0 HO    
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# IC  ANATOMICAL ROI AREA Area IC vs. ROI mean max   X Y Z Source 
#  ICASSO 

Spatial 
correlation 

Iq 

52 GM Visual cortex V1 BA17 L , V1/V2 19,7 / 19,4 1,7 / 1,6 16,6 / 15,8 54 / 52  18 / 18 24 / 25 J 32 0,73 0,888 

 Lateral Occipital Cortex, inferior division L 24,5 3,6 17,1 56,0 20,0 24,0 J    

 Occipital Fusiform Gyrus L 34,7 5,9 17,1 56,0 20,0 24,0 HO    

 Occipital Pole L 28,1 1,7 17,0 52,0 18,0 24,0 HO    

             

53 GM Primary motor cortex BA4a  L 18,9 4,5 10,5 60,0 58,0 62,0 J 41 0,30 0,942 

 Superior Frontal Gyrus  19,7 5,5 12,2 58,0 60,0 64,0 HO    

 Middle Frontal Gyrus  14,2 5,5 12,2 58,0 60,0 64,0 HO    

 Juxtapositional Lobule Cortex (SMA)  25,8 4,1 7,9 53,0 64,0 64,0 HO    

             

             

59 GM Visual cortex V1 BA17  55,5 9,7 22,3 50,0 28,0 38,0 J 10 0,88 0,951 

 GM Visual cortex V2 BA18 R 54,4 9,3 22,3 50,0 28,0 38,0 J    

 Intracalcarine Cortex R 86,9 12,0 22,3 50,0 28,0 38,0 HO    

 Lingual Gyrus R 63,1 10,4 22,3 50,0 28,0 38,0 HO    

 Supracalcarine Cortex R 68,6 11,6 22,3 50,0 28,0 38,0 HO    

             

60 GM Anterior intra-parietal sulcus hIP2  R  49,4 4,4 8,4 25,0 51,0 62,0 J 52 0,79 0,678 

 GM Primary motor cortex BA4p  R  47,9 5,5 11,0 33,0 56,0 64,0 J    

 GM Primary somatosensory cortex BA2  R  50,0 4,6 9,1 24,0 53,0 64,0 J    

 GM Premotor cortex BA6  R  55,1 6,1 13,8 32,0 60,0 64,0 J    

             

61 GM Visual cortex V1 BA17 R  23,8 2,8 16,5 36,0 18,0 26,0 J 55 0,64 0,627 

 GM Visual cortex V2 BA18  22,4 2,7 16,6 32,0 20,0 26,0 J    

 Occipital Fusiform Gyrus  33,7 5,8 16,7 32,0 20,0 24,0 HO    

 Occipital Pole  32,0 3,9 16,6 32,0 20,0 25,0 HO    

             

63 Lateral Occipital Cortex, superior division  21,3 6,0 25,0 43,0 24,0 58,0 J 61 0,61 0,628 

 Precuneous Cortex  30,9 8,1 25,1 44,0 24,0 56,0 J    

 Cuneal Cortex  54,0 8,9 25,1 44,0 24,0 56,0 J    

 Supracalcarine Cortex  29,7 6,7 23,2 42,0 25,0 56,0 J    

 

 
 
 
         

   

66 Frontal Medial Cortex  33,9 6,6 15,2 42 94 28  4 0,70 0,971 
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# IC  ANATOMICAL ROI AREA Area IC vs. ROI mean max   X Y Z Source 
#  ICASSO 
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 Juxtapositional Lobule Cortex (SMA)  25,7 3,4 5,2 48 64 58     

 
Middle Temporal Gyrus, temporooccipital 
part  19,6 3,6 6,0 72 36 40  

   

             

             

68 GM Broca's area BA44   20,7 4,6 24,5 29,0 68,0 56,0 J 68 0,70 0,602 

 GM Primary auditory cortex TE1.2   24,4 3,1 74,7 78,0 53,0 42,0 J    

 GM Visual cortex V5   33,2 3,6 19,2 20,0 28,0 47,0 J    

 Superior Frontal Gyrus  21,8 5,6 33,6 32,0 70,0 56,0 HO    

             

          max 0,95 0,984 

          mean 0,79 0,829 

          std 0,13 0,132 

             

#IC = number of selected component, Anatomical ROI Area = Name of anatomical template from fsl4, Area = side or other anatomical specification R = right, L= left, 

Overlap % = anatomical overlap percentage of components vs. anatomical structure, t-score = t-value (mean, maximum [Max], minimum[Min]), MNI max-t = maximum t-

value  x, y  & z-direction Montreal Neurologic Institute 152 coordinates, Template source = anatomical ROI source in fsl4: J= Juelich, HO=Harvard-Oxford template, # 

ICASSO = icasso run equivalent to selected IC, spatial correlation = spatial correlation between ICASSO and selected IC, Iq = ICASSO clustering index. 
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