A-infinity gl(N)-equivariant matrix integrals
 Serguei Barannikov

To cite this version:

Serguei Barannikov. A-infinity gl(N)-equivariant matrix integrals. Workshop on Geometry and Physics of the Landau-Ginzburg model, May 2010, Grenoble, France. hal-00490107

HAL Id: hal-00490107
https://hal.science/hal-00490107
Submitted on 7 Jun 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A-infinity $G L(N)$-equivariant matrix integrals

Serguei Barannikov

CNRS
02/06/2010

The noncommutative Batalin－Vilkovisky formalism

－$V-\mathbb{Z} / 2 \mathbb{Z}$ graded vector space，I－scalar product on V^{\vee} of degree d ，

The noncommutative Batalin-Vilkovisky formalism

- $V-\mathbb{Z} / 2 \mathbb{Z}$ graded vector space, $I-$ scalar product on V^{\vee} of degree d,
- The noncommutative Batalin-Vilkovisky equation ([B1],2005),

$$
\hbar \Delta S+\frac{1}{2}\{S, S\}=0
$$

$S=\sum_{g \geq 0, i} \hbar^{2 g-1+i} S_{g, i}$ where

$$
S_{g, i} \in \operatorname{Symm}^{i}\left(C_{\lambda}[1-d]\right), C_{\lambda}=\left(\oplus_{j=0}^{\infty}\left(\left(V[1]^{\otimes j}\right)^{\vee}\right)^{\mathbb{Z} / j \mathbb{Z}}\right)
$$

-the symmetric/exterior, powers for odd/even d, of cyclic cochains

The noncommutative Batalin-Vilkovisky formalism

- $V-\mathbb{Z} / 2 \mathbb{Z}$ graded vector space, I - scalar product on V^{\vee} of degree d,
- The noncommutative Batalin-Vilkovisky equation ([B1],2005),

$$
\hbar \Delta S+\frac{1}{2}\{S, S\}=0
$$

$$
S=\sum_{g \geq 0, i} \hbar^{2 g-1+i} S_{g, i} \text { where }
$$

$$
S_{g, i} \in \operatorname{Symm}^{i}\left(C_{\lambda}[1-d]\right), C_{\lambda}=\left(\oplus_{j=0}^{\infty}\left(\left(V[1]^{\otimes j}\right)^{\vee}\right)^{\mathbb{Z} / j \mathbb{Z}}\right)
$$

-the symmetric/exterior, powers for odd/even d, of cyclic cochains

$$
\left\{S_{0,1}, S_{0,1}\right\}=0
$$

so $S_{0,1}=m_{A_{\infty}}$ - Calabi-Yau A_{∞}-algebra, ($=A_{\infty}$-algebra with invariant scalar product of degree d)

The noncommutative Batalin-Vilkovisky formalism

- $V-\mathbb{Z} / 2 \mathbb{Z}$ graded vector space, I - scalar product on V^{\vee} of degree d,
- The noncommutative Batalin-Vilkovisky equation ([B1],2005),

$$
\hbar \Delta S+\frac{1}{2}\{S, S\}=0
$$

$$
S=\sum_{g \geq 0, i} \hbar^{2 g-1+i} S_{g, i} \text { where }
$$

$$
S_{g, i} \in \operatorname{Symm}^{i}\left(C_{\lambda}[1-d]\right), C_{\lambda}=\left(\oplus_{j=0}^{\infty}\left(\left(V[1]^{\otimes j}\right)^{\vee}\right)^{\mathbb{Z} / j \mathbb{Z}}\right)
$$

-the symmetric/exterior, powers for odd/even d, of cyclic cochains -

$$
\left\{S_{0,1}, S_{0,1}\right\}=0
$$

so $S_{0,1}=m_{A_{\infty}}$ - Calabi-Yau A_{∞}-algebra, ($=A_{\infty}$-algebra with invariant scalar product of degree d)

- ([B2],2006) solution $S \rightarrow$ matrix integrals

$$
\int \exp \widehat{S}(X, \Lambda) d X
$$

$X \in g l(N \mid N) \otimes V[1]$ in the odd d case, $X \in q(N) \otimes V[1]$ in the even d case,

The noncommutative Batalin-Vilkovisky formalism

- $V-\mathbb{Z} / 2 \mathbb{Z}$ graded vector space, I - scalar product on V^{\vee} of degree d,
- The noncommutative Batalin-Vilkovisky equation ([B1],2005),

$$
\hbar \Delta S+\frac{1}{2}\{S, S\}=0
$$

$$
S=\sum_{g \geq 0, i} \hbar^{2 g-1+i} S_{g, i} \text { where }
$$

$$
S_{g, i} \in \operatorname{Symm}^{i}\left(C_{\lambda}[1-d]\right), C_{\lambda}=\left(\oplus_{j=0}^{\infty}\left(\left(V[1]^{\otimes j}\right)^{\vee}\right)^{\mathbb{Z} / j \mathbb{Z}}\right)
$$

-the symmetric/exterior, powers for odd/even d, of cyclic cochains -

$$
\left\{S_{0,1}, S_{0,1}\right\}=0
$$

so $S_{0,1}=m_{A_{\infty}}$ - Calabi-Yau A_{∞}-algebra, ($=A_{\infty}$-algebra with invariant scalar product of degree d)

- ([B2],2006) solution $S \rightarrow$ matrix integrals

$$
\int \exp \widehat{S}(X, \Lambda) d X
$$

$X \in g l(N \mid N) \otimes V[1]$ in the odd d case, $X \in q(N) \otimes V[1]$ in the even d case,

- In the case of the algebra $e \cdot e=e$, the answer is the matrix Airy integral $\int \exp \left(\frac{1}{6} \operatorname{Tr}\left(Y^{3}\right)-\frac{1}{2} \operatorname{Tr}\left(\Lambda Y^{2}\right)\right) d Y$

The A－infinity equivariant matrix integrals（［B2］，2006）

－The asymptotic expansion as $\Lambda \rightarrow \infty \Rightarrow$ sum over stable ribbon graphs \Rightarrow cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)$（in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}, \mathcal{L}\right)$ for odd d）

The A－infinity equivariant matrix integrals（［B2］，2006）

－The asymptotic expansion as $\Lambda \rightarrow \infty \Rightarrow$ sum over stable ribbon graphs \Rightarrow cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)$（in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}, \mathcal{L}\right)$ for odd d）
－This is the higher genus counterpart of the（nc）Hodge theory integration on CY projective manifolds，$\left(\hbar \Delta \gamma+\bar{\partial} \gamma+\frac{1}{2}[\gamma, \gamma]=0, \gamma \in \Omega^{0, *}(M, \Lambda T)\right)$

The A－infinity equivariant matrix integrals（［B2］，2006）

－The asymptotic expansion as $\Lambda \rightarrow \infty \Rightarrow$ sum over stable ribbon graphs \Rightarrow cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)$（in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}, \mathcal{L}\right)$ for odd d）
－This is the higher genus counterpart of the（nc）Hodge theory integration on CY projective manifolds，$\left(\hbar \Delta \gamma+\bar{\partial} \gamma+\frac{1}{2}[\gamma, \gamma]=0, \gamma \in \Omega^{0, *}(M, \Lambda T)\right)$
－

$$
\left(\Delta_{\text {matrix }}+i_{g l}\right) \exp \widehat{S}(X, \Lambda)=0
$$

$\Rightarrow \exp \widehat{S}(X, \Lambda)$ corresponds to $g I$－equivariantly closed differential form．

The A-infinity equivariant matrix integrals ([B2],2006)

- The asymptotic expansion as $\Lambda \rightarrow \infty \Rightarrow$ sum over stable ribbon graphs \Rightarrow cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)$ (in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}, \mathcal{L}\right)$ for odd d)
- This is the higher genus counterpart of the (nc)Hodge theory integration on CY projective manifolds, $\left(\hbar \Delta \gamma+\bar{\partial} \gamma+\frac{1}{2}[\gamma, \gamma]=0, \gamma \in \Omega^{0, *}(M, \Lambda T)\right)$
-

$$
\left(\Delta_{\text {matrix }}+i_{g l}\right) \exp \widehat{S}(X, \Lambda)=0
$$

$\Rightarrow \exp \widehat{S}(X, \Lambda)$ corresponds to $g I$-equivariantly closed differential form.

- By setting $\widetilde{A}=A \oplus A^{\vee}[d] I$ extend the formalism to nonCY A_{∞}-algebras, including weak CY algebras.

The A-infinity equivariant matrix integrals ([B2],2006)

- The asymptotic expansion as $\Lambda \rightarrow \infty \Rightarrow$ sum over stable ribbon graphs \Rightarrow cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)$ (in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}, \mathcal{L}\right)$ for odd d)
- This is the higher genus counterpart of the (nc)Hodge theory integration on CY projective manifolds, $\left(\hbar \Delta \gamma+\bar{\partial} \gamma+\frac{1}{2}[\gamma, \gamma]=0, \gamma \in \Omega^{0, *}(M, \Lambda T)\right)$
-

$$
\left(\Delta_{\text {matrix }}+i_{g l}\right) \exp \widehat{S}(X, \Lambda)=0
$$

$\Rightarrow \exp \widehat{S}(X, \Lambda)$ corresponds to $g I$-equivariantly closed differential form.

- By setting $\widetilde{A}=A \oplus A^{\vee}[d] I$ extend the formalism to nonCY A_{∞}-algebras, including weak CY algebras.
- My A_{∞} equivariant matrix integrals give an integration framework in the noncommutative (derived algebraic) geometry, particularly adobted to the equation $\left\{m_{A_{\infty}}, m_{A_{\infty}}\right\}=0$

$$
\begin{gathered}
\int \exp \widehat{S}(X, \Lambda) \widehat{\varphi} d X \\
\varphi \in \operatorname{Ker}(\hbar \Delta+\{S, \cdot\}), \quad \varphi_{g, i} \in \operatorname{Symm}^{i}\left(C_{\lambda}[1-d]\right)
\end{gathered}
$$

CY complex projective variety ($\mathrm{g}=0$ calculations)

- M - projective manifold $/ \mathbb{C}, c_{1}\left(T_{M}\right)=0$

$$
\begin{gathered}
\hbar \Delta \gamma+\bar{\partial} \gamma+\frac{1}{2}[\gamma, \gamma]=0, \\
\gamma(\hbar) \in \Omega^{0, *}(M, \Lambda T)
\end{gathered}
$$

CY complex projective variety ($\mathrm{g}=0$ calculations)

- M - projective manifold $/ \mathbb{C}, c_{1}\left(T_{M}\right)=0$

$$
\begin{gathered}
h \Delta \gamma+\bar{\partial} \gamma+\frac{1}{2}[\gamma, \gamma]=0 \\
\gamma(h) \in \Omega^{0, *}(M, \Lambda T)
\end{gathered}
$$

- $\gamma_{0} \Leftrightarrow A_{\infty}$-deformations of $D^{b} \operatorname{Coh}(M)$ (deformations of the A_{∞}-algebra $A=\operatorname{Ext}(C), C$-compact generator)

CY complex projective variety ($\mathrm{g}=0$ calculations)

- M - projective manifold $/ \mathrm{C}, c_{1}\left(T_{M}\right)=0$

$$
\begin{gathered}
h \Delta \gamma+\bar{\partial} \gamma+\frac{1}{2}[\gamma, \gamma]=0 \\
\gamma(h) \in \Omega^{0, *}(M, \Lambda T)
\end{gathered}
$$

- $\gamma_{0} \Leftrightarrow A_{\infty}$-deformations of $D^{b} \operatorname{Coh}(M)$ (deformations of the A_{∞}-algebra $A=\operatorname{Ext}(C), C$-compact generator)

$$
\begin{array}{r}
\Omega(t, \hbar)=\int_{M} \exp (\gamma) \omega \\
\gamma(t, \hbar)=\Sigma_{i} \gamma_{i} \hbar^{i}, t \in \mathcal{M}_{\Lambda T}, \omega \in \Gamma\left(M, K_{M}\right)
\end{array}
$$

CY complex projective variety ($\mathrm{g}=0$ calculations)

- M - projective manifold $/ \mathrm{C}, c_{1}\left(T_{M}\right)=0$

$$
\begin{gathered}
h \Delta \gamma+\bar{\partial} \gamma+\frac{1}{2}[\gamma, \gamma]=0, \\
\gamma(h) \in \Omega^{0, *}(M, \Lambda T)
\end{gathered}
$$

- $\gamma_{0} \Leftrightarrow A_{\infty}$-deformations of $D^{b} \operatorname{Coh}(M)$ (deformations of the A_{∞}-algebra $A=\operatorname{Ext}(C), C$-compact generator)

$$
\begin{array}{r}
\Omega(t, \hbar)=\int_{M} \exp (\gamma) \omega \\
\gamma(t, \hbar)=\Sigma_{i} \gamma_{i} \hbar^{i}, t \in \mathcal{M}_{\Lambda T}, \omega \in \Gamma\left(M, K_{M}\right)
\end{array}
$$

- for γ^{W}, normalized via a filtration W opposite to $F^{\text {Hodge }}([\mathrm{B} 5])$:

$$
\frac{\partial^{2}}{\partial t^{i} \partial t^{j}} \Omega=\hbar^{-1} C_{i j}^{k}(t) \frac{\partial}{\partial t^{k}} \Omega
$$

CY complex projective variety ($\mathrm{g}=0$ calculations)

- M - projective manifold $/ \mathrm{C}, c_{1}\left(T_{M}\right)=0$

$$
\begin{gathered}
h \Delta \gamma+\bar{\partial} \gamma+\frac{1}{2}[\gamma, \gamma]=0, \\
\gamma(h) \in \Omega^{0, *}(M, \Lambda T)
\end{gathered}
$$

- $\gamma_{0} \Leftrightarrow A_{\infty}$-deformations of $D^{b} \operatorname{Coh}(M)$ (deformations of the A_{∞}-algebra $A=E x t(C), C$-compact generator)

$$
\begin{array}{r}
\Omega(t, \hbar)=\int_{M} \exp (\gamma) \omega \\
\gamma(t, \hbar)=\Sigma_{i} \gamma_{i} \hbar^{i}, t \in \mathcal{M}_{\Lambda T}, \omega \in \Gamma\left(M, K_{M}\right)
\end{array}
$$

- for γ^{W}, normalized via a filtration W opposite to $F^{\text {Hodge }}([\mathrm{B} 5])$:

$$
\begin{aligned}
\frac{\partial^{2}}{\partial t^{i} \partial t^{j}} \Omega & =\hbar^{-1} C_{i j}^{k}(t) \frac{\partial}{\partial t^{k}} \Omega \\
C_{k i j}(t)=\partial^{3}(\text { genus } & \left.=0 \text { GW-potential of } M^{\text {mirror }}\right)
\end{aligned}
$$

Noncommutative Hodge structures ([B5])

- The class $\left[\exp \left(\gamma^{W}\right) \mathscr{\omega}\right]=\Omega(t, \hbar)$ is obtained as intersection

$$
\begin{aligned}
\Omega(t, h) & =\mathcal{L}(t) \cap(\text { Affine space }(W)) \\
\mathcal{L}(t) & \subset H_{D R}^{*}(M)((h)) \widehat{\otimes} \mathcal{O}_{\mathcal{M}_{\Lambda T}}
\end{aligned}
$$

Noncommutative Hodge structures ([B5])

- The class $\left[\exp \left(\gamma^{W}\right) \omega\right]=\Omega(t, \hbar)$ is obtained as intersection

$$
\begin{aligned}
\Omega(t, h) & =\mathcal{L}(t) \cap(\text { Affine space }(W)) \\
\mathcal{L}(t) & \subset H_{D R}^{*}(M)((h)) \widehat{\otimes} \mathcal{O}_{\mathcal{M}_{\Delta T}}
\end{aligned}
$$

- The semi-infinite subspace $\mathcal{L}(t), t \in \mathcal{M}_{\Lambda T}$, is defined for arbitrary projective manifold/C

$$
\mathcal{L}(t):\left(\exp \frac{1}{\hbar} i_{\gamma_{0}}\right)\left(\varphi_{0}+\hbar \varphi_{1}+\ldots\right), \varphi_{i} \in \Omega_{D R}
$$

Noncommutative Hodge structures ([B5])

- The class $\left[\exp \left(\gamma^{W}\right) \omega\right]=\Omega(t, h)$ is obtained as intersection

$$
\begin{aligned}
\Omega(t, h) & =\mathcal{L}(t) \cap(\text { Affine space }(W)) \\
\mathcal{L}(t) & \subset H_{D R}^{*}(M)((h)) \widehat{\otimes} \mathcal{O}_{\mathcal{M}_{\Delta T}}
\end{aligned}
$$

- The semi-infinite subspace $\mathcal{L}(t), t \in \mathcal{M}_{\Lambda T}$, is defined for arbitrary projective manifold/C

$$
\begin{gathered}
\mathcal{L}(t):\left(\exp \frac{1}{\hbar} i_{\gamma_{0}}\right)\left(\varphi_{0}+\hbar \varphi_{1}+\ldots\right), \varphi_{i} \in \Omega_{D R} \\
\hbar \mathcal{L}(t) \subset \mathcal{L}(t), \frac{\partial}{\partial t} \mathcal{L}(t) \subset \hbar^{-1} \mathcal{L}(t) \\
\frac{\partial}{\partial \hbar} \mathcal{L}(t) \subset \hbar^{-2} \mathcal{L}(t), \quad \mathcal{L}(h) \oplus \overline{\mathcal{L}}\left(\left.\bar{\hbar}\right|_{\bar{\hbar}=\hbar^{-1}}\right)
\end{gathered}
$$

(implies tt^{*}-equations, remarkably $\mathcal{D}_{\frac{\partial}{\partial \hbar}}$-modules over \mathbb{A}^{1} with similar properties appeared many years ago in works of Birkhoff, Malgrange, K.Saito and M.Saito)

Noncommutative Hodge structures ([B5])

- The class $\left[\exp \left(\gamma^{W}\right) \omega\right]=\Omega(t, h)$ is obtained as intersection

$$
\begin{aligned}
\Omega(t, h) & =\mathcal{L}(t) \cap(\text { Affine space }(W)) \\
\mathcal{L}(t) & \subset H_{D R}^{*}(M)((h)) \widehat{\otimes} \mathcal{O}_{\mathcal{M}_{\Delta T}}
\end{aligned}
$$

- The semi-infinite subspace $\mathcal{L}(t), t \in \mathcal{M}_{\Lambda T}$, is defined for arbitrary projective manifold/C

$$
\begin{gathered}
\mathcal{L}(t):\left(\exp \frac{1}{\hbar} i_{\gamma_{0}}\right)\left(\varphi_{0}+\hbar \varphi_{1}+\ldots\right), \varphi_{i} \in \Omega_{D R} \\
\hbar \mathcal{L}(t) \subset \mathcal{L}(t), \frac{\partial}{\partial t} \mathcal{L}(t) \subset \hbar^{-1} \mathcal{L}(t) \\
\frac{\partial}{\partial \hbar} \mathcal{L}(t) \subset \hbar^{-2} \mathcal{L}(t), \quad \mathcal{L}(h) \oplus \overline{\mathcal{L}}\left(\left.\bar{\hbar}\right|_{\bar{\hbar}=\hbar^{-1}}\right)
\end{gathered}
$$

(implies tt^{*}-equations, remarkably $\mathcal{D}_{\frac{\partial}{\partial \hbar}}$-modules over \mathbb{A}^{1} with similar properties appeared many years ago in works of Birkhoff, Malgrange, K.Saito and M.Saito)

- Over moduli space of complex structures

$$
\mathcal{L}(t)=\sum_{r}\left(F^{\text {Hodge }}\right)^{r} \hbar^{-r}[[\hbar]]
$$

Noncommutative Hodge structures ([B5]), cont'd

- $\mathcal{L}(t)$ corresponds via HKR and formality isomorphisms for $C^{*}(A, A)+$ $k\left[\xi, \frac{\partial}{\partial \xi}\right]$-module $C_{*}(A)$ to

$$
\mathcal{L}(t)=H C^{-}\left(A_{t}\right) \subset H P\left(A_{t}\right)
$$

Noncommutative Hodge structures ([B5]), cont'd

- $\mathcal{L}(t)$ corresponds via HKR and formality isomorphisms for $C^{*}(A, A)+$ $k\left[\xi, \frac{\partial}{\partial \xi}\right]$-module $C_{*}(A)$ to

$$
\mathcal{L}(t)=H C^{-}\left(A_{t}\right) \subset H P\left(A_{t}\right)
$$

- Recall $H P: C_{*}(A)((\hbar)), b+\hbar B, H C^{-}(A): C_{*}(A)[[\hbar]], b+\hbar B$

Noncommutative Hodge structures ([B5]), cont'd

- $\mathcal{L}(t)$ corresponds via HKR and formality isomorphisms for $C^{*}(A, A)+$ $k\left[\xi, \frac{\partial}{\partial \xi}\right]$-module $C_{*}(A)$ to

$$
\mathcal{L}(t)=H C^{-}\left(A_{t}\right) \subset H P\left(A_{t}\right)
$$

- Recall $H P: C_{*}(A)((\hbar)), b+\hbar B, H C^{-}(A): C_{*}(A)[[\hbar]], b+\hbar B$
- Let A be an arbitrary A_{∞}-algebra, the $\frac{\infty}{2}$ subspace ${H C^{-}}^{-}(A) \rightarrow H P(A)$,

$$
\begin{gathered}
\hbar H C^{-}(A) \subset H C^{-}(A) \\
\frac{\partial}{\partial \hbar} H C^{-}(A) \subset \hbar^{-2} H C^{-}(A)
\end{gathered}
$$

$$
\frac{\partial}{\partial t} H C^{-}\left(A_{t}\right) \subset \hbar^{-1} H C^{-}\left(A_{t}\right), \quad \frac{\partial}{\partial t}-\text { Getzler flat connection on } H P\left(A_{t}\right)
$$

where

$$
r k_{[[h]]} H C^{-}(A)=r k_{C((h))} H P
$$

assumed, i.e. the degeneration of nc Hodge -to-De Rham spectral sequence, proven (Kaledin) for A-smooth and compact, Z_{+}- graded, then $\mathrm{HC}^{-} \subset H P$,

Noncommutative Hodge structures ([B5]), cont'd

- $\mathcal{L}(t)$ corresponds via HKR and formality isomorphisms for $C^{*}(A, A)+$ $k\left[\xi, \frac{\partial}{\partial \xi}\right]$-module $C_{*}(A)$ to

$$
\mathcal{L}(t)=H C^{-}\left(A_{t}\right) \subset H P\left(A_{t}\right)
$$

- Recall $H P: C_{*}(A)((\hbar)), b+\hbar B, H C^{-}(A): C_{*}(A)[[\hbar]], b+\hbar B$
- Let A be an arbitrary A_{∞}-algebra, the $\frac{\infty}{2}$ subspace ${H C^{-}}^{-}(A) \rightarrow H P(A)$,

$$
\begin{gathered}
\hbar H C^{-}(A) \subset H C^{-}(A) \\
\frac{\partial}{\partial h} H C^{-}(A) \subset \hbar^{-2} H C^{-}(A) \\
\frac{\partial}{\partial t} H C^{-}\left(A_{t}\right) \subset \hbar^{-1} H C^{-}\left(A_{t}\right), \quad \frac{\partial}{\partial t}-\text { Getzler flat connection on } H P\left(A_{t}\right)
\end{gathered}
$$

where

$$
r k_{[[h]]} H C^{-}(A)=r k_{C((h))} H P
$$

assumed, i.e. the degeneration of nc Hodge -to-De Rham spectral sequence, proven (Kaledin) for A-smooth and compact, Z_{+}- graded, then $\mathrm{HC}^{-} \subset H P$,

- Real structure on $H P$ in the case of arbitrary A_{∞}-algebra?

Noncommutative Batalin-Vilkovisky operator ([B1])

- $V-\mathbb{Z} / 2 \mathbb{Z}$ graded vector space, l - scalar product on V^{\vee} of degree d,

$$
F=\operatorname{Symm}\left(C_{\lambda}(V)[1-d]\right)
$$

-symmetric/exterior, powers for odd/even d, of cyclic cochains:
$C_{\lambda}=\left(\oplus_{j=0}^{\infty}\left(\left(V[1]^{\otimes j}\right)^{\vee}\right)^{\mathbb{Z} / j \mathbb{Z}}\right)$

Noncommutative Batalin-Vilkovisky operator ([B1])

- $V-\mathbb{Z} / 2 \mathbb{Z}$ graded vector space, I - scalar product on V^{\vee} of degree d,

$$
F=\operatorname{Symm}\left(C_{\lambda}(V)[1-d]\right)
$$

-symmetric/exterior, powers for odd/even d, of cyclic cochains:

$$
C_{\lambda}=\left(\oplus_{j=0}^{\infty}\left(\left(V[1]^{\otimes j}\right)^{\vee}\right)^{\mathbb{Z} / j \mathbb{Z}}\right)
$$

- Define the noncommutative BV differential on F via

$$
\begin{aligned}
& \Delta\left(x_{\rho_{1}} \ldots x_{\rho_{r}}\right)_{\lambda}\left(x_{\tau_{1}} \ldots x_{\tau_{t}}\right)_{\lambda}= \\
& \quad=\sum_{p, q}(-1)^{\varepsilon} \rho_{\rho_{p} \tau_{q}}\left(x_{\rho_{1}} \ldots x_{\rho_{\rho-1}} x_{\tau_{q+1}} \ldots x_{\tau_{q-1}} x_{\rho_{\rho+1}} \ldots x_{\rho_{r}}\right)_{\lambda}+ \\
& \sum_{p \pm 1 \neq q}(-1)^{\tilde{\varepsilon}} l_{\rho_{p} \rho_{q}}\left(x_{\rho_{1}} \ldots x_{\rho_{\rho-1}} x_{\rho_{q+1}} \ldots x_{\rho_{r}}\right)_{\lambda}\left(x_{\rho_{p+1}} \ldots x_{\rho_{q-1}}\right)_{\lambda}\left(x_{\tau_{1}} \ldots x_{\tau_{t}}\right)_{\lambda} \\
& \sum_{p \pm 1 \neq q}(-1)^{\tilde{\tilde{\varepsilon}}} \tau_{\tau_{p} \tau_{q}}\left(x_{\rho_{1}} \ldots x_{\rho_{r}}\right)_{\lambda}\left(x_{\tau_{1}} \ldots x_{\tau_{p-1}} x_{\tau_{q+1}} \ldots x_{\tau_{t}}\right)_{\lambda}\left(x_{\tau_{p+1}} \ldots x_{\tau_{q-1}}\right)_{\lambda}
\end{aligned}
$$

Noncommutative Batalin-Vilkovisky differential cont'd

- signs are the standard Koszul signs taking into account that $\overline{\left(x_{\rho_{1}} \ldots x_{\rho_{r}}\right)_{\lambda}}=(1-d)+\sum \overline{x_{\rho_{i}}}, x_{i} \in V[1]$.

Noncommutative Batalin-Vilkovisky differential cont'd

- signs are the standard Koszul signs taking into account that $\overline{\left(x_{\rho_{1}} \ldots x_{\rho_{r}}\right)_{\lambda}}=(1-d)+\sum \overline{x_{\rho_{i}}}, x_{i} \in V[1]$.
- $\Delta^{2}=0$

Noncommutative Batalin-Vilkovisky differential cont'd

- signs are the standard Koszul signs taking into account that $\overline{\left(x_{\rho_{1}} \ldots x_{\rho_{r}}\right)_{\lambda}}=(1-d)+\sum \overline{x_{\rho_{i}}}, x_{i} \in V[1]$.
- $\Delta^{2}=0$
- $\Delta=\Delta_{1}+\Delta_{2}$,

Noncommutative Batalin-Vilkovisky differential cont'd

- signs are the standard Koszul signs taking into account that $\overline{\left(x_{\rho_{1}} \ldots x_{\rho_{r}}\right)_{\lambda}}=(1-d)+\sum \overline{x_{\rho_{i}}}, x_{i} \in V[1]$.
- $\Delta^{2}=0$
- $\Delta=\Delta_{1}+\Delta_{2}$,
- Δ_{1}-differential of Lie algebra on C_{λ} (\rightarrow non-commutative symplectic geometry, ribbon graph complex, open moduli space $H_{*}\left(\mathcal{M}_{g, n}\right)($ M.K.,1992 $)$)

Noncommutative Batalin-Vilkovisky differential cont'd

- signs are the standard Koszul signs taking into account that $\overline{\left(x_{\rho_{1}} \ldots x_{\rho_{r}}\right)_{\lambda}}=(1-d)+\sum \overline{x_{\rho_{i}}}, x_{i} \in V[1]$.
- $\Delta^{2}=0$
- $\Delta=\Delta_{1}+\Delta_{2}$,
- Δ_{1}-differential of Lie algebra on C_{λ} (\rightarrow non-commutative symplectic geometry, ribbon graph complex, open moduli space $H_{*}\left(\mathcal{M}_{g, n}\right)($ M.K.,1992 $)$)
- $\Delta_{1}+\hbar \Delta_{2} \rightarrow$ non-commutative Batalin-Vilkovisky geometry, stable ribbon graphs, compactified moduli spaces $H_{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)([\mathrm{B} 1])$

Noncommutative Batalin-Vilkovisky differential cont'd

- signs are the standard Koszul signs taking into account that $\overline{\left(x_{\rho_{1}} \ldots x_{\rho_{r}}\right)_{\lambda}}=(1-d)+\sum \overline{x_{\rho_{i}}}, x_{i} \in V[1]$.
- $\Delta^{2}=0$
- $\Delta=\Delta_{1}+\Delta_{2}$,
- Δ_{1}-differential of Lie algebra on C_{λ} (\rightarrow non-commutative symplectic geometry, ribbon graph complex, open moduli space $H_{*}\left(\mathcal{M}_{g, n}\right)($ M.K.,1992 $)$)
- $\Delta_{1}+\hbar \Delta_{2} \rightarrow$ non-commutative Batalin-Vilkovisky geometry, stable ribbon graphs, compactified moduli spaces $H_{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)([\mathrm{B} 1])$
- $\operatorname{Ker} \Delta_{1}+\Delta_{2}=\operatorname{Im} \Delta_{1}+\Delta_{2}$

Solutions to nc BV equation

- Conjecture ([B1]). Counting of holomorphic curves $\left(\Sigma, \partial \Sigma, p_{i}\right) \rightarrow(M$, $\left.\coprod L_{i}, \oplus H_{*}\left(L_{i} \bigcap L_{j}\right)\right)$, with $\mathbb{Z} / 2 \mathbb{Z}$-graded local systems, gives solution to the nc-BV equations.

Solutions to nc BV equation

- Conjecture ([B1]). Counting of holomorphic curves $\left(\Sigma, \partial \Sigma, p_{i}\right) \rightarrow(M$, $\left.\coprod L_{i}, \oplus H_{*}\left(L_{i} \bigcap L_{j}\right)\right)$, with $\mathbb{Z} / 2 \mathbb{Z}$-graded local systems, gives solution to the nc-BV equations.
- Theorem ([B6]). Summation over ribbon graphs \rightarrow solution to the nc Batalin-Vilkovisky equation from dg-associative algebras (summation over trees \rightarrow A-infinity algebra structure)

Strange associative superalgebra with odd trace and psi-classes.

- V - associative algebra, odd/even scalar product

Strange associative superalgebra with odd trace and psi-classes.

- V - associative algebra, odd/even scalar product
- Assume: I - an odd derivation acting on V, preserving the scalar product: , in general $I^{2} \neq 0(!), \exists \widetilde{I}, \quad[I, \widetilde{I}]=1, \operatorname{str}([a, \cdot])=0$ for any $a \in A$.

Strange associative superalgebra with odd trace and psi-classes.

- V - associative algebra, odd/even scalar product
- Assume: I - an odd derivation acting on V, preserving the scalar product: , in general $I^{2} \neq 0(!), \exists \widetilde{I}, \quad[I, \widetilde{I}]=1, \operatorname{str}([a, \cdot])=0$ for any $a \in A$.
- Theorem $([\mathrm{B} 2],[\mathrm{B} 3])$ This data \rightarrow Cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)$

Strange associative superalgebra with odd trace and psi-classes.

- V - associative algebra, odd/even scalar product
- Assume: I - an odd derivation acting on V, preserving the scalar product: , in general $I^{2} \neq 0(!), \exists \widetilde{I}, \quad[I, \widetilde{I}]=1, \operatorname{str}([a, \cdot])=0$ for any $a \in A$.
- Theorem $([\mathrm{B} 2],[\mathrm{B} 3])$ This data \rightarrow Cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)$
- Example $q(N), q(N)=\{[X, \pi]=0 \mid X \in g I(N \mid N)\}$, where π-odd involution, $q(N)$ has odd trace otr, $I=[\Xi, \cdot], \Xi$ - odd element $\Xi=\left(0 \quad \mid \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right),\left(I^{2} \neq 0(!)\right)$

Strange associative superalgebra with odd trace and psi-classes.

- V - associative algebra, odd/even scalar product
- Assume: I - an odd derivation acting on V, preserving the scalar product: , in general $I^{2} \neq 0(!), \exists \widetilde{I}, \quad[I, \widetilde{I}]=1, \operatorname{str}([a, \cdot])=0$ for any $a \in A$.
- Theorem $([\mathrm{B} 2],[\mathrm{B} 3])$ This data \rightarrow Cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)$
- Example $q(N), q(N)=\{[X, \pi]=0 \mid X \in g I(N \mid N)\}$, where π-odd involution, $q(N)$ has odd trace otr, $I=[\Xi, \cdot], \quad \Xi$ - odd element $\Xi=\left(0 \quad \mid \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right),\left(I^{2} \neq 0(!)\right)$
- Theorem ([B2],[B3]) This is the generating function for products of classes $c_{1}\left(T_{i}\right)$.

Strange associative superalgebra with odd trace and psi-classes.

- V - associative algebra, odd/even scalar product
- Assume: I - an odd derivation acting on V, preserving the scalar product: , in general $I^{2} \neq 0(!), \exists \widetilde{I}, \quad[I, \widetilde{I}]=1, \operatorname{str}([a, \cdot])=0$ for any $a \in A$.
- Theorem $([\mathrm{B} 2],[\mathrm{B} 3])$ This data \rightarrow Cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)$
- Example $q(N), q(N)=\{[X, \pi]=0 \mid X \in g I(N \mid N)\}$, where π-odd involution, $q(N)$ has odd trace otr, $I=[\Xi, \cdot], \quad \Xi$ - odd element $\Xi=\left(0 \quad \mid \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right),\left(I^{2} \neq 0(!)\right)$
- Theorem ([B2],[B3]) This is the generating function for products of classes $c_{1}\left(T_{i}\right)$.
- Similarly, with even scalar product and an odd derivation, in particular for $g l(N \mid N)$ and $I=[\Xi, \cdot], \Xi \in g l(N \mid N)_{\text {odd }}$.

References：

［B1］S．Barannikov，Modular operads and Batalin－Vilkovisky geometry．IMRN， Vol．2007，article ID rnm075．Preprint Max Planck Institute for Mathematics 2006－48（25／04／2006），
围［B2］S．Barannikov，Noncommutative Batalin－Vilkovisky geometry and matrix integrals．«Comptes rendus Mathematique» of the French Academy of Sciences，presented for publication by Academy member M．Kontsevich on 20／05／2009，arXiv：0912．5484；Preprint NI06043 Newton Institute（09／2006）， Preprint HAL，the electronic CNRS archive，hal－00102085（09／2006）
［B3］S．Barannikov，Supersymmetry and cohomology of graph complexes． Preprint hal－00429963；（11／2009）．

目
［B4］S．Barannikov，Matrix De Rham complex and quantum A－infinity algebras．arXiv：1001．5264，Preprint hal－00378776；（04／2009）．
國［B5］S．Barannikov，Quantum periods－I．Semi－infinite variations of Hodge structures．Preprint ENS DMA－00－19．arXiv：math／0006193（06／2000）， Intern．Math．Res．Notices．2001，No． 23
［B6］S．Barannikov，Solving the noncommutative Batalin－Vilkovisky equation．

